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Introduction

Precision freeform manufacturing allows the fabrication of surfaces with large numbers of degrees of freedom. However, these processes typically involve the use of subaperture tools, which leave behind surface grooves whose characteristic frequencies are between those of figure and roughness. These errors, known as mid-spatial frequency (MSF) errors, introduce unwanted effects that are difficult to characterize and complicate tolerancing on manufactured parts [START_REF] Tamkin | Theory of modulation transfer function artifacts due to mid-spatialfrequency errors and its application to optical tolerancing[END_REF][START_REF] Forbes | Never-ending struggles with mid-spatial frequencies[END_REF].

In prior work, we explored the effects on the optical transfer function (OTF) of wavefront errors, including quadratic aberrations [START_REF] Liang | Effects of defocus and other quadratic errors on OTF[END_REF] as well as MSF groove structures due to subaperture tools [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF]. In the latter case, two types of MSF groove errors common in freeform manufacturing processes were analyzed: parallel straight grooves resulting from diamond milling, and concentric circular (or spiral) grooves resulting from diamond turning. The key theoretical tool proposed there to obtain analytic expressions for the OTF was referred to as the pupil-difference probability density (PDPD), which is defined as the probability density that two random points in the pupil with given vector separation have a given difference in wavefront error. This prior study assumed regular grooves of equal height and width [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF]. However, real processes present tool-tip or spindle vibrations, causing the MSF structures to have profiles are not perfectly periodic. Diamond machining usually involves a fixed tool-tip that makes contact with the optical part as the part is moving (rotating or translating). A local coordinate system is used in which the three directions are called the thrust, cutting, and feed directions of the machine, as shown in Fig. 1(a). It is well established that there can be tool-tip vibration in all three of these directions [START_REF] Wang | A theoretical and experimental investigation of the tool-tip vibration and its influence upon surface generation in single-point diamond turning[END_REF][START_REF] Wang | Investigation on the influence of tool-tip vibration on surface roughness and its representative measurement in ultra-precision diamond turning[END_REF][START_REF] Zhang | A theoretical and experimental study of surface generation under spindle vibration in ultra-precision raster milling[END_REF][START_REF] Takasu | Influence of Study Vibration with Small Amplitude Upon Surface Roughness in Diamond Machining[END_REF][START_REF] Martin | Precision Spindle and Bearing Error Analysis[END_REF][START_REF] Kim | Microscopic topographical analysis of tool vibration effects on diamond turned optical surfaces[END_REF], and so incorporating such effects into the models for the OTF is of central importance. Vibrations in the thrust and cutting directions cause random variations t i in the depth of each groove, following a probability density K T (t i ) with standard deviation µ, as shown in Fig. 1(c). Vibrations in the feed direction, on the other hand, introduce random lateral groove displacements f i following a probability density K F (f i ) with standard deviation σ. Our goal is to provide simple approximate formulas for the OTF of milled and turned surfaces that incorporate these effects.

The outline of this work is as follows: A review of the PDPD is provided in Sec. 2. The analysis of MSF structures including the effects of tool-tip vibrations is given in Sec. [START_REF] Liang | Effects of defocus and other quadratic errors on OTF[END_REF] for milled surfaces and in Sec. 4 for turned surfaces. For readers more interested in the formulas than the formal derivations, Sec. 5 provides a self-contained summary of the main results. 

Review of general PDPD theory

The PDPD, denoted as P(η, ρ), is defined as the probability density that for two random points in the system's pupil whose vector separation is ρ, the difference in aberration function W is equal to some prescribed quantity η. Mathematically, this can be written in the following form:

P(η, ρ) ∫ O(ρ) δ{η -[W(q -ρ/2) -W(q + ρ/2)]} d 2 q ∫ O(ρ) d 2 q , ( 1 
)
where denotes a definition, δ is the Dirac delta distribution, and O(ρ) is the overlap region of two pupil copies separated by ρ. Note that the area of O(ρ) normalized by its value at ρ = 0 gives precisely the OTF for a perfect unaberrated system. In the case of a system with a circular pupil of radius R (say, in units of NA or spatial frequency), the perfect system's OTF depends only on ρ = |ρ| and is given by [START_REF] Goodman | Introduction to Fourier Optics[END_REF] OTF perf (ρ) =

∫ O(ρ) d 2 q ∫ O(0) d 2 q = 2 π cos -1 ρ 2R - ρ 2R 1 - ρ 2R 2 . ( 2 
)
The usefulness of the PDPD stems from its one-dimensional Fourier relation with the OTF:

OTF(k, ρ) = OTF perf (ρ) P(k, ρ) = OTF perf (ρ) ∫ P(η, ρ) exp(ikη) dη, (3) 
where the tilde denotes a Fourier transform from error difference η to wavenumber k. As was shown in [START_REF] Liang | Effects of defocus and other quadratic errors on OTF[END_REF] and [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF], working with the PDPD rather than directly with the OTF allows geometrical insights that lead to useful approximations. This is also the case in the treatment that follows.

Effects of tool-tip vibrations in MSF structures for milled surfaces

The PDPD due to parallel MSF grooves (e.g. resulting from diamond milling) can be approximately expressed in terms of the one-dimensional PDPD of its cross-section [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF] by using the scalar pupil displacement variables q n = q • n and ρ n = ρ • n, where n is the unit vector normal to the grooves. The grooves of the nominal MSF structure (without tool-tip vibrations) can be modeled as a piecewise-parabolic function, where h and T are the grooves' nominal peak-to-valley (PV) and width (or period), respectively, as illustrated in Fig. 1(b). It was shown in [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF] that such a MSF structure leads to a very simple nominal PDPD (and Fourier transform):

P 1 (η, ρ n ) = 1 w 0 (h, T, ρ n ) rect η w 0 (h, T, ρ n ) and P1 (k, ρ n ) = sinc [kw 0 (h, T, ρ n )/2] , (4) 
where w 0 (h, T, ρ n ) = 8h ρ+ ρ-, with ρ+ = (ρ n /T) mod 1, ρ-= (1 -ρ n /T) mod 1 = 1 -ρ+ , and rect(u) = 1 for |u| ≤ 1/2 and zero otherwise. The fact that P 1 in Eq. ( 4) takes the form of a rectangle function can be understood from Fig. 2 where we see that the difference of two displaced versions of W takes on a regular piecewise-linear sawtooth shape (gray lines) constrained in η to a localized region of width w 0 .

Fig. 2. (a) Two oppositely shifted copies of W, along with their difference ∆W, where t i and t j denote the vertical shift of each parabolic segment for W(q n -ρ n /2) and W(q n + ρ n /2), respectively, due to thrust vibration. (b) Zoom for one quasi-period, where the effect of thrust vibration is seen to correspond to a vertical shift defined by the difference t it j .

At this point, it is useful to define the transition function T ρ n as

T ρ n (f , g) Max 1 - ρ n T , 0 f + Min ρ n T , 1 g, ( 5 
)
for any f and g. Clearly, T ρ n gives rise to a linear transition between f and g as ρ n passes through the first period. This is useful in Secs. 3 and 4 because the PDPD involves the difference of two copies of W displaced by ρ n . When ρ n < T, this difference includes points from the same period. Although this is unimportant when the MSF structure is periodic (nominal), it is necessary to use T ρ n to account for the case when random variations are introduced to each period independently.

Pistons model for thrust vibrations

Let us start by considering fluctuations in the height of the ridges resulting from variations in thrust (or cutting). We model these fluctuations by letting each parabolic segment be shifted vertically by an amount t i , where each shift is assumed to be independent from all others, following a zero-mean probability density K T (t i ) whose standard deviation µ is assumed to be small compared to h [see Fig. 1(c)]. To begin, we try an overly simplistic model that we call the pistons model, where each complete parabolic segment is rigidly displaced, causing unphysical discontinuities in W as illustrated in Fig. 2(a). The difference of the two oppositely-shifted copies of the error, ∆W = W(q n -ρ n /2) -W(q n + ρ n /2), is then also discontinuous. One can see from Fig. 2 that the rectangular contribution for each straight segment of ∆W is shifted in η by the difference t it j . Hence, the mean effect of thrust vibrations is simply given by

P 1,T (η, ρ n ) = ∬ ∞ -∞ K T (t i )K T (t j )P 1 [η -(t i -t j )] dt i dt j . (6) 
Equation ( 6) has the form of a double convolution, so in the Fourier domain it becomes a product:

P1,T (k, ρ n ) = K2 T (k) P1 (k, ρ n ). ( 7 
)
Estimated forms for the probability densities K T are reported in the literature [START_REF] Wang | A theoretical and experimental investigation of the tool-tip vibration and its influence upon surface generation in single-point diamond turning[END_REF][START_REF] Martin | Precision Spindle and Bearing Error Analysis[END_REF][START_REF] Kim | Microscopic topographical analysis of tool vibration effects on diamond turned optical surfaces[END_REF], with models that are based on studies of tool-tip and spindle resonance frequencies. The resulting distribution (and its Fourier transform) governing thrust vibrations is given by

K T (t) = Re 1 π 2µ 2 -t 2 and KT (k) = J 0 √ 2kµ , (8) 
where J 0 is the zeroth order Bessel function of the first kind. This leads to the simple expression

P1,T (k, ρ n ) = J 2 0 √ 2kµ P1 (k, ρ n ). (9) 
Note that the difference between the two shifted copies of W in Fig. 2(a) were assumed to involve different parabolic segments, with independent shifts t i and t j . This is a valid assumption as long as ρ n ≥ T. When ρ n < T, the PDPD includes a contribution from the differences of each groove with a displaced version of itself, and hence proportional to P 1 , the nominal PDPD. The weight of this contribution diminishes proportionally to T -ρ n as ρ n increases, and disappears completely once ρ n ≥ T. Hence, we construct the OTF estimate by using the linear transition function in Eq. ( 5) in the form OTF(k, ρ n ) ≈ OTF perf (ρ)T ρ n ( P1 , P1,T ). Figure 3 shows comparisons of this OTF estimate with the average of several numerically computed OTFs of simulated realistic realizations of such surfaces with the corresponding statistics, for several values of the ratio µ/h. In these simulations, each parabolic segment is assigned a random shift t i but the resulting surface is made continuous by extending the lower parabolic segment in each intersection. The plots show that the pistons model predicts well the local maxima of the OTF, but fails even for moderate values of µ/h near the minima ( ρ+ ≈ 1/2), where the effects of the unphysical discontinuities in W are exacerbated.

Realistic model for thrust vibrations

It turns out that an expression can be found based on a more realistic model with continuous grooves, whose form is almost as simple as that of the pistons model. The key is to study the shift s of the intersections of each segment of ∆W. As can be seen from Fig. 4(b), s depends not only on ρ n but also on the shifts t i and t i+1 of two contiguous grooves, as well as on the shift t j of the groove in the displaced replica that overlaps with this junction. The value of s can be found from simple geometric considerations to be

s(t i , t i+1 , t j , ρ) = (t i -t j ) ρ+ +(t i+1 -t j ) ρ-, (10) 
Because the slopes of the segments of ∆W do not change with these shifts, no scaling factor of the probability density accompanies them. Since all intersections, whether they correspond to positive or negative ∆W, undergo shifts of this type, the average effect of thrust vibrations is In each part, the nominal (black) OTF corresponds to the case of µ = 0, the numerical (blue) OTF is the average OTF from 30 randomly generated [with K T given by Eq. ( 8)] MSF surfaces, and the theoretical models are calculated from Eq. ( 9) (red) and Eq. ( 14) (green).

encapsulated by averaging versions of the nominal distributions shifted by s, weighted by the probability densities of the displacements of the grooves:

P 1,T (η, ρ n ) = ∭ ∞ -∞ K T (t i )K T (t j )K T (t i+1 )P 1 η -s(t i , t i+1 , t j , ρ n ), ρ n dt i dt i+1 dt j . (11) 
It is convenient to perform a change of variables so that s = (t it j ) ρ+ + (t i+1t j ) is one of the variables of integration along with a = t 1 and b = t i+1 . With this, Eq. ( 11) can be rewritten as

P 1,T (η, ρ n ) = ∫ ∞ -∞ ∬ ∞ -∞ K T (a)K T (b)K T (a ρ+ +b ρ--s) da db P 1 (η -s, ρ n ) ds. ( 12 
)
Equation ( 12) can be viewed as a triple convolution, so in the Fourier domain we have

P1,T (k, ρ n ) = KT (k) KT (k ρ+ ) KT (k ρ-) P1 (k, ρ n ). ( 13 
)
Note that Eq. ( 13) differs from the result for the pistons model, Eq. ( 7), in that it has three factors of the characteristic function KT ; furthermore, the arguments of two of these are dependent on ρ n . For K T given by Eq. ( 8), we have the following simple expression for P1,T (k, ρ n ):

P1,T (k, ρ n ) = J 0 √ 2kµ J 0 √ 2kµ ρ+ J 0 √ 2kµ ρ-P1 (k, ρ n ). ( 14 
)
Figure 3 shows comparisons of OTF perf (ρ)T ρ n ( P1 , P1,T ) where P1,T is given by Eq. ( 14), with numerically-computed OTFs for several values of the ratio µ/h. Compared with the pistons model's result in Eq. ( 7), it is evident that Eq. ( 14) is more accurate, particularly near the local minima of the OTF. Although the form of K T in Eq. ( 8) is a realistic model for thrust vibrations, it is worth noting that a zero-mean Gaussian form for K T of the same standard deviation, namely

K T (t) = 1 √ 2π µ exp - t 2 2µ 2 and KT (k) = exp - k 2 µ 2 2 , ( 15 
)
predicts very similar results for the OTF. This is because it is the characteristic functions (and not the probability densities) that appear as factors in Eq. ( 13), and the characteristic functions in Eqs. ( 8) and (15) largely agree for kµ < 1. Under this assumption, P1,T can be written as

P1,T (k, ρ n ) = exp - k 2 µ 2 2 ρ2 + + ρ2 -+ 1 P1 (k, ρ n ). ( 16 
)
Fig. 4. (a) Two oppositely shifted copies of W, along with their difference ∆W, where t i and t j denote the vertical shift of each parabolic segment for W(q n -ρ n /2) and W(q n + ρ n /2), respectively, due to thrust vibration. (b) Zoom for one quasi-period, where the effect of thrust vibration is seen to correspond to a vertical shift s of the intersection points, which is defined in terms of ρ, t i , t i+1 , and t j .

Feed vibrations model

We now model the effects of feed vibrations by letting each parabolic segment of the groove structure be displaced laterally by an amount f i , as shown in Fig. 5(a). The displacements f i follow a zero-mean probability density K F whose standard deviation σ is assumed to be small compared to the nominal groove width T [see Fig. The lateral displacements of the grooves cause each straight segment of ∆W to provide a different contribution to the PDPD (illustrated by the green rectangle with width w and height α) when compared to the nominal case (gray, with width w 0 and height w -1 0 ). Due to the statistical symmetry of the intersections, we can make the contributions symmetric around the origin in η to facilitate the calculation. The expressions for w and α are then

w(f i , f i+1 , f j , ρ n ) = 8h ρ+ + f j -f i T ρ-+ f i+1 -f j T , (17) 
α(f i , f i+1 ) = T + f i+1 -f i , (18) 
which after averaging lead to the following expression for the PDPD:

P 1,F (η, ρ n ) = 1 T ∭ ∞ -∞ K F (f i )K F (f i+1 )K F (f j ) α(f i , f i+1 ) w(f i , f i+1 , f j ) rect η w(f i , f i+1 , f j ) df i df i+1 df j . ( 19 
)
The Fourier transform of Eq. ( 19) is given by

P1,F (k, ρ n ) = 1 T ∭ ∞ -∞ K F (f i )K F (f i+1 )K F (f j ) α(f i , f i+1 ) sinc kw(f i , f i+1 , f j ) 2 df i df i+1 df j . ( 20 
)
Estimated forms of K F are similar to those reported for K T [START_REF] Wang | A theoretical and experimental investigation of the tool-tip vibration and its influence upon surface generation in single-point diamond turning[END_REF][START_REF] Martin | Precision Spindle and Bearing Error Analysis[END_REF][START_REF] Kim | Microscopic topographical analysis of tool vibration effects on diamond turned optical surfaces[END_REF]. However, to obtain an analytic result, we assume a zero-mean normal distribution like that in Eq. ( 15):

K F (f ) = 1 √ 2πσ exp - f 2 2σ 2 , (21) 
Appendix A shows how Eq. ( 20) can then be solved to give the following expression:

P1,F (k, ρ n ) = T √ π 8khσ Re exp - T 2 ρ2 + 4σ 2 erf[γ + (ρ n )] + exp - T 2 ρ2 - 4σ 2 erf[γ -(ρ n )] , (22) 
where erf(u) is the error function and

γ ± (ρ n ) 4khσ 2 (1 + ρ∓ ) + iT 2 ρ± 2σ T 2 -8ikhσ 2 + 48k 2 h 2 σ 4 /T 2 . ( 23 
)
Figure 6 shows the agreement of OTF perf (ρ)T ρ n ( P1 , P1,F ) using Eq. ( 22) with numericallygenerated results for several values of σ/T. The estimate is accurate near the local minima, but there is a noticeable discrepancy near the local maxima (where ρ/T is an integer) due to the appearance of an erroneous cusp, clearly visible in the insets of Figs. 6(a)-6(c). This discrepancy arises from the model's assumption about the relative order of the intersections between parabolic segments in the two replicas of W. This assumption is violated for values of ρ n that fall roughly within σ of each maximum, where the relative order of these intersections can change. [Notice from Fig. 3(d) that a similar behavior, albeit less important, was observed for thrust vibration.] Although a more sophisticated model could be formulated to account for these effects, it would be considerably more complicated, so we propose instead a simple sinusoidal model, based on the observed shape of the numerically-generated OTFs shown in Figs. 6(a)-6(c), namely

P1,F (k, ρ n ) ≈ C 0 (σ) + C 1 (σ) cos 2πρ n T , (24) 
where C 0 (σ) and C 1 (σ) are chosen so that this sinusoidal coincides with Eq. ( 22) in regions away from the local maxima. We choose as fitting points the local minima ( ρ+ = ρ-= 1/2), where Eq. ( 22) is accurate, and points slightly away from the local maxima ( ρ± = 1/8). The full expressions are given in Appendix A. It turns out, however, that for kh < 3/2 the following simple approximations to those expressions can be used

C 0 (σ) ≈ a 0 (kh) 2 exp - 3k 2 h 2 σ 2 T 2 and C 1 (σ) ≈ a 1 (kh) exp - 22k 2 h 2 σ 2 T 2 , ( 25 
)
where a 0 (kh)/2 and a 1 (kh), derived in [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF], are the coefficients for the Fourier form of P1 ; note that C 0 (0) = a 0 /2 and C 1 (0) = a 1 . The full expressions of a 0 and a 1 are given in Appendix B. However, for kh < 3/2, it is sufficient to use their following truncated Taylor series:

a 0 (kh) ≈ 2 - 8 45 k 2 h 2 and a 1 (kh) ≈ 8 π 4 k 2 h 2 . ( 26 
)
Figure 6 shows comparisons of the resulting estimate OTF ≈ OTF perf (ρ)T ρ n ( P1 , P1,F ) with P1,F given by Eq. ( 24), with numerical simulations. It is evident that this simple model works well even at the local maxima, where Eq. ( 22) fails.

Fig. 6. OTFs for various values of σ/T, for kh = 1 and 30 cycles across the aperture. In each part, the nominal OTF (black) corresponds to the case of σ = 0, the numerical OTF (blue) is generated by averaging the OTFs of 30 randomly generated MSF surfaces [with K T given by Eq. ( 15)], and the theoretical models (red and green) are calculated from Eqs. ( 22) and (24), respectively. The insets are zooms of the sections in the dotted black borders, and show the failure of Eq. ( 22) (red) within a region of width 2σ.

Combination of thrust and feed vibrations

The combination of the two effects described so far, without the sinusoidal fitting technique discussed in Sec. 3.3, is given by the product of Eqs. ( 16) and ( 22):

P1,C (k, ρ n ) = exp - k 2 µ 2 2 ρ2 + + ρ2 -+ 1 P1,F (k, ρ n ). ( 27 
)
The effects of thrust vibrations encapsulated in the exponential in Eq. ( 27) can also be incorporated in the sinusoidal model described after Eq. ( 23) in order to arrive at a new simple sinusoidal model for the combined effects of thrust and feed vibrations:

P1,C (k, ρ n ) ≈ G 0 (µ, σ) + G 1 (µ, σ) cos 2πρ n T , ( 28 
)
with G 0 (µ, σ) and G 1 (µ, σ) given explicitly in Appendix A. For kh < 3/2, the expressions for G 0 and G 1 are approximately given by

G 0 (µ, σ) ≈ C 0 (σ) exp - 3k 2 µ 2 4 and G 1 (µ, σ) ≈ C 1 (σ) exp -k 2 µ 2 , ( 29 
)
with C 0 (σ) and C 1 (σ) given by their approximations in Eq. ( 25). The resulting estimate for the OTF, given by OTF perf (ρ)T ρ n ( P1 , P1,C ), is compared to numerical simulations in Fig. 7. 

Standard deviation estimate

Tolerancing requires not only an estimate for the mean of the OTF but also for its spread. Based on numerical simulations we propose the following expression for the standard deviation of P1,C in terms of the dimensionless combinations kh (nominal PV in waves), 2R/T (number of cycles), σ/T (relative feed vibration strength), and µ/h (relative thrust vibration strength):

∆ P1,C (k, ρ n ) ≈ (kh) 2 2 30T 2R 2σ 2 T 2 + µ 2 2h 2 1/2 P1,C (k, ρ n ). ( 30 
)
Figure 8 shows the resulting estimate for the standard deviation for the OTF, namely ±∆OTF(k, numerically generated OTF standard deviations assuming normal distributions for K T and K F . Of course, OTF perf is an upperbound to OTF + ∆OTF, regardless of Eq. (30).

ρ n ) ≈ OTF perf (ρ)[T ρ n ( P1 , P1,C ± ∆ P1,C ) -T ρ n ( P1 , P1,C )] = ±OTF perf (ρ)T ρ n (0, ∆ P1,C ), compared with

Effects of tool-tip vibrations in MSF structures for turned surfaces

We now extend the model to surfaces with concentric grooves such as those approximating the MSF geometry on diamond-turned surfaces, where the description of the groove shapes given earlier applies to the radial cross section, so that the relevant one-dimensional parameter is ρ = |ρ|. As shown in [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF], the PDPD for such groove structures can be decomposed in two contributions: one due to the parts of the overlap region where the grooves from two shifted copies of the error align roughly, and one where they do not (as shown in Appendix C.). The latter usually dominates; this gives rise to a strong attenuation of the oscillations in the OTF and makes the effect of variations along the grooves (which break the rotational symmetry) negligible.

Effects of thrust and feed vibrations

As shown in [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF], the (Fourier-transformed) PDPD of a nominal groove structure with turned geometry, P2 , can be calculated from the corresponding quantity for the radial cross-section, P1 , by expressing the latter as a Fourier series in ρ and multiplying each term by an appropriate factor. Since P1,C in Eq. ( 28) is already a truncated Fourier series, this transformation is straightforward, and (as shown in Appendix B. with a 0 → 2G 0 and which combines the effects of thrust and feed vibrations in the same manner that Eq. ( 27) does.

a 1 → G 1 ) it leads to P2,C (k, ρ) ≈ G 0 (µ, σ) + G 1 (µ, σ)κ 2F(ρ) A(ρ) cos 2πρ T -φ 0 + B(ρ) cos 2πρ T + φ 0 × [1 -G 0 (0, 0) -G 1 (0, 0)C(2)/2] exp -16ρ 2 /T 2 + 1 , (31) 
Here κ ≈ 0.597 and φ 0 ≈ π/5 and C is the Fresnel cosine integral. The resulting OTF estimate is given by OTF perf (ρ)T ρ ( P2 , P2,C ); this quantity, with KT given by Eq. ( 15), is compared with numerical simulations in Fig. 9. Note that the parts proportional to G 0 and G 1 in Eq. ( 31) correspond to the average value (baseline) and the oscillations of the OTF, respectively. Since the OTF oscillations for a turned surface are small for low values of kh, it is possible to further approximate G 1 (kh) ≈ 0 in Eq. ( 31) for an even simpler expression for P2,C .

Standard deviation estimate

Based on numerical simulations we propose an estimate for the standard deviation of P2,C :

∆ P2,C (k, ρ) ≈ (kh) 3/2 2 √ 3 √ 30 2R/T 8σ 2 T 2 + σ T 2 + µ 2 h 2 1/2 P2,C (k, ρ). ( 32 
)
Figure 10 shows how ±∆OTF(k, ρ) ≈ ±OTF perf (ρ)T ρ (0, ∆ P2,C ) compares with numerically generated OTF standard deviations. Once again, OTF perf is an upperbound to OTF + ∆OTF. 

Summary of results

The OTF estimates derived in this work can be summarized by the following simple expression:

OTF(k, ρ) ≈ OTF perf (ρ)B(ρ) Max 1 - x T , 0 G 0 (0, 0) + Min x T , 1 G 0 (µ, σ) + Max 1 - x T , 0 G 1 (0, 0) + Min x T , 1 G 1 (µ, σ) C(x) , (33) 
where x = ρ • n for a milled surface with grooves aligned perpendicularly to the unit vector n and x = ρ = |ρ| for a turned surface, OTF perf (ρ) is given in Eq. ( 2), G 0 and G 1 are given by

G 0 (µ, σ) ≈ 1 - 4 45 k 2 h 2 exp - 3k 2 h 2 σ 2 T 2 - 3k 2 µ 2 4 , (34) 
G 1 (µ, σ) ≈ 8 π 4 k 2 h 2 exp - 22k 2 h 2 σ 2 T 2 -k 2 µ 2 , (35) 
B(ρ) 1 and B(ρ) 0.07k 2 h 2 exp(-16ρ 2 /T 2 ) + 1 for milled and turned surfaces, respectively, and the oscillatory function C is defined as

C(x)            cos 2πx T milled, 0.3 F(x) A(x) cos 2πx T -π/5 + B(x) cos 2πx T + π/5 turned, (36) 
where A, B and F are given in Appendix C. Recall that k is the wavenumber, h is the nominal PV of the wavefront error, T is the nominal groove width, and µ and σ are the standard deviations of the the displacements caused by thrust/cutting and feed vibrations, respectively (see Fig. 1).

The corresponding estimates for the standard deviations of the OTFs are given by

∆OTF(k, x) = OTF(k, x) Min x T , 1                (kh) 2 2 30T 2R 2σ 2 T 2 + µ 2 2h 2 milled, (kh) 3/2 2 √ 3 √ 30T 2R 8σ 2 T 2 + σ T 2 + µ 2 h 2 turned. (37) 
It is important to remember that OTF perf is a strict upperbound to OTF + ∆OTF.

Concluding remarks

Diamond-machined freeform optical surfaces are inevitably affected by the presence of MSF structures, which cause degradation in optical quality and performance. In this work, we extend the analysis of these errors initiated in [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF] by incorporating the effects of vibrations in the thrust, cutting and feed directions, resulting from unwanted relative movement between the diamond tool-tip and the optical element under fabrication. The study was based on a mathematical representation referred to as the PDPD, which allows a geometric/visual interpretation of the effects of these errors. By working in the PDPD domain, we show how thrust and feed vibrations modify the nominal PDPD through several probability integrals. Although most of the examples presented assumed that the vibrations follow a normal distribution, the theory is general for any probability distribution. Parallel and concentric MSF groove patterns were considered, and expressions for the corresponding mean OTF and spread were given. It should be noted, though, that several approximations were assumed when modeling MSF structures with random variations in both milled and turned geometries. For example, in the consideration of milled surfaces, Eq. (28) does not account for variations along the grooves' direction; these effects can be incorporated by multiplying the result by the Fourier transform of a PDPD describing those variations. Furthermore, for turned surfaces, Eq. (31) does not account for variations that break the rotational symmetry of turned MSF structures; the effect of these variations are negligible.

The results serve to further complement previous tolerancing tools regarding MSF structures found on freeform optical surfaces. Since all realistic diamond-machining processes involve tool-tip vibrations MSF structures, the expressions presented here provide a means to further predict the degradation of the OTF beyond the nominally periodic MSF structures.

Appendix A: Milled feed vibration derivation

We begin by defining the characteristic functions KF as

K F (f i ) = 1 2π ∫ ∞ -∞ KF (p i )e -ip i f i dp i . ( 38 
)
With this substitution, Eq. ( 20) becomes a sextuple integral:

P1,F (k, ρ) = 1 T(2π) 3 ∭∭ ∞ -∞ KF (p i ) KF (p j ) KF (p i+1 )e -i(p i f i +p j f j +p i+1 f i+1 ) × α(f i , f i+1 ) sinc kw(f i , f j , f i+1 ) 2 df i df j df i+1 dp i dp j dp i+1 . (39) 
After making a change of variables (with unit Jacobian) from f i , f i+1 to q, r according to q = ρ + f jf i , r = ρ -T + f jf i+1 , the integrals in f j and p j can be solved analytically to yield

P1,F (k, ρ) = 1 T(2π) 3 ∬ ∞ -∞ KF (p i ) KF (p i + p i+1 ) KF (p i+1 )e -ip i ρ e ic(T-ρ) × ∬ ∞ -∞
e ip i q e ip i+1 r (qr) sinc 4kh T 2 qr dqdr dp i dp i+1 .

(

) 40 
The double integral in the square brackets can also be solved analytically, so that Eq. (40

) becomes P1,F (k, ρ) = - iT 8πkh ∬ ∞ -∞ KF (p i ) KF (p i + p i+1 ) KF (p i+1 )e -ip i ρ e ic(T-ρ) × cos p i p i+1 T 2 4kh 1 p i - 1 p i+1 dp i dp i+1 . (41) 
By assuming the Gaussian form for K F in Eq. ( 15), Eq. ( 41) can be solved to give Eq. ( 22). The exact forms of the coefficients C 0 and C 1 in Eq. ( 24) are given by

C 0 (σ) = T √ π (1 + √ 2)8khσ √ 2Re exp - T 2 256σ 2 erf γ + T 8 + exp - 49T 2 256σ 2 erf γ - T 8 + 2 exp - T 2 16σ 2 Re [erf(γ 0 )] , (42) 
C 1 (σ) = (2 - √ 2)T √ π 8khσ Re exp - T 2 256σ 2 erf γ + T 8 + exp - 49T 2 256σ 2 erf γ - T 8 -2 exp - T 2 16σ 2 Re [erf(γ 0 )] , (43 
) for γ 0 γ + (T/2) = γ -(T/2). The corresponding forms for G 0 and G 1 in Eq. ( 28) are (45)

G 0 (µ, σ) = T √ π (1+ √ 2)8khσ √ 2Re exp - T 2 256σ 2 erf γ + T 8 + exp - 49T 2 256σ 2 erf γ - T 8 + 2 exp 9k 2 µ 2 64 exp - T 2 16σ 2 Re [erf(γ 0 )] exp - 57k 2 µ 2 64 , (44) 
G 1 (µ, σ) = (2 - √ 2)T √ π 8khσ 

Appendix B: Review of PDPD theory for diamond-turned surfaces

This appendix summarizes the results in [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF] for finding the Fourier transform of the PDPD for turned surfaces ( P2 ) from that for milled surfaces ( P1 ) with the same cross-section, and provides corrections to two typographic errors in [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF]. This relation was found to take the form 

where A, B, E and F represent specific areas within the overlap of the two shifted circular aperture copies whose expressions are given in Appendix C., the integral operator Qx is defined as

Qx f (ρ) = ∫ 1 0 f (ρ -xv) √ v dv, (47) 
for x given by either t = Min(ρ, T) or τ = -Min(2R -ρ, T), and P0 (k) ∫ T 0 P1 (k, ρ) dρ/T is the average value of P1 over one period. Please note that the equations in [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF] corresponding to Eq. ( 46) included an erroneous extra factor of √ 2 in the prefactor of B(ρ), and the expressions in [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF] for the areas A, B and E included some errors that are now corrected in Appendix C.

The action of Qx is simplest to calculate if P1 is expressed as a Fourier series:

P1 (k, ρ) = a 0 2 + ∞ m=1 a m cos 2πmρ T , (48) 
The Fourier series following the transformation is given by

Qx P1 (k, ρ) = a 0 + T |x| ∞ m=1 a m √ m C 2 m|x| T cos 2πmρ T + sgn(x)S 2 m|x| T sin 2πmρ T , (49) 
where C and S are the Fresnel cosine and sine integrals. For MSF with moderate PV errors, the first two terms in the series in Eq. ( 49) are dominant, so we can use the approximation P2 (k, ρ) ≈ a 0 2 + a 1 P C (ρ) cos 2πρ T + P S (ρ) sin 2πρ T ,

where

P C (ρ) 1 2F(ρ) A(ρ) T t C 2 t T + B(ρ) T τ C 2 τ T , (51) 
P S (ρ) 1 2F(ρ) A(ρ) T t S 2 t T -B(ρ) T τ S 2 τ T . ( 52 
)
Aside from the first and last periods [ρ ∈ (0, T) ∪ (2R -T, 2R)], t/T and τ/T are unity. Since we consider the first period separately later, and the OTF of the last period is strongly attenuated by the prefactor OTF perf , we can simply use t/T = τ/T = 1 leading to the approximations 

where κ = C 2 (2) + S 2 (2) ≈ 0.597 and φ 0 = tan -1 [S(2)/C(2)] ≈ π/5. To ensure that the value of the OTF is unity at ρ = 0, the erroneous assumption that t/T = τ/T = 1 for the first period can be patched up with a factor of [1a 0 /2a 1 C(2)/2] exp -16ρ 2 /T 2 + 1, as seen in Eq. (31).

Fig. 1 .

 1 Fig. 1. (a) Diagram of the tool-tip (orange) and the rotating optical part (purple) in a diamond-turning process, and the three directions of possible vibrations. (b) Nominal MSF structure (black) with height h and period T. The size of the pupil is 2R, twice the radius. An example of a MSF structure with random variations is also shown (gray). A sample cycle from (b) is shown in (c) with the probability densities K T (red, with uncertainty µ) governing thrust (and cutting) vibrations, and K F (blue, with uncertainty σ) governing feed vibrations.

Fig. 3 .

 3 Fig. 3. OTF sections for various values of µ/h, for kh = 1 and 30 cycles across the aperture.In each part, the nominal (black) OTF corresponds to the case of µ = 0, the numerical (blue) OTF is the average OTF from 30 randomly generated [with K T given by Eq. (8)] MSF surfaces, and the theoretical models are calculated from Eq. (9) (red) and Eq. (14) (green).

  1(c)]. These displacements modify the saw-tooth structure of ∆W such that (unlike for thrust vibrations) the slopes of the different line segments in ∆W change, as shown in Fig. 5(b). Therefore, not only do the limits of the contributions to the PDPD change with the fluctuations, but also their relative weights.

Fig. 5 .

 5 Fig. 5.(a) Two oppositely shifted copies of W, along with their difference ∆W, where f i and f j denote the horizontal shift for each parabolic segment of W(q n -ρ n /2) and W(q n + ρ n /2), respectively. (b) Zoom for one quasi-period, where the effect of feed vibration is to alter both the vertical position of the intersection (w/2 instead of the nominal w 0 /2) and the weight of the contribution to the probability distribution (α/w instead of the nominal T/w 0 ).

Fig. 7 .

 7 Fig. 7. OTFs for various values of µ/h and σ/T, for kh = 1 and 30 cycles across the aperture. In each, the nominal OTF (black) corresponds to the case of µ = σ = 0, the numerical OTF (blue) is generated by averaging the OTFs of 75 randomly generated MSF surfaces [with K T given by Eq. (15)], and the theoretical model (red) is calculated from Eq. (27).

Fig. 8 .

 8 Fig. 8. Estimated (red) and numerically calculated (blue) standard deviation of the OTF for the indicated values of µ/h, σ/T and kh, with 30 cycles across the aperture, based on 50 randomly generated MSF surfaces [with K T given by Eq. (15)]. The difference of the OTF of each realization with the average OTF is shown as a translucent gray curve.

Fig. 9 .

 9 Fig. 9. OTFs for various values of µ/h and σ/T, for kh = 1 with 20 cycles across the aperture. In each, the nominal OTF (black) corresponds to the case of µ = σ = 0, the numerical OTF (blue) is generated by averaging the OTFs of 75 randomly generated MSF surfaces (with Gaussian statistics), and the theoretical model (red) is calculated from Eq. (31).

Fig. 10 .

 10 Fig. 10. Estimated (red) and numerically calculated (blue) standard deviation of the OTF for the indicated values of µ/h, σ/T and kh, with 20 cycles across the aperture, based on 50 randomly generated MSF surfaces (with Gaussian statistics). The difference of the OTF of each realization with the average OTF is shown as a translucent gray curve.

P2 (k, ρ) = 1 F

 1 k, ρ) + E(ρ) P0 (k) ,

P

  C (ρ) ≈ A(ρ)C (2) + B(ρ)C (2) 2F(ρ) and P S (ρ) ≈ A(ρ)S (2) -B(ρ)S (2) 2F(ρ) . (53)Using Eqs. (53) and simple trigonometric identities, Eq. (50) can be written as P2 (k, ρ)
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Note that, for µ = 0 and σ = 0, a m were found in [START_REF] Liang | Understanding the effects of groove structures on the OTF[END_REF] to be given by a m = π 8kh erfi (1 + i)(2khmπ)

where erfi(u) is the imaginary error function. Equations ( 26) give the truncated (to second order) Taylor series of a 0 (kh) and a 1 (kh), which are a valid approximation for kh 3/2.

Appendix C: Definitions of overlap area functions

The area functions A(ρ) and B(ρ) are given for ρ < R by

while for ρ ≥ R they are

where

For all ρ ∈ [0, 2R], we have

Figure 11 shows a graphical representation of A(ρ), B(ρ), and E(ρ) = F(ρ) -A(ρ) -B(ρ) as the areas of the blue, red, and green regions, respectively. 
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