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Acronyms and abbreviations 

SSQ5: 5-item SSQ short-form 

SSQ12: 12-item SSQ short-form 

SSQ15: 15-item SSQ short-form 

15iSSQ: new 15-item SSQ short-form  

15iSSQs: new 15-item SSQ short-form, obtained as a subset of the SSQ  

SSQ: Speech Spatial and Qualities of hearing scale 

Speech: Speech subscale of the SSQ 

Spatial: Spatial-hearing subscale of the SSQ 

Qualities: Qualities of hearing subscale of the SSQ 

HI: Hearing-impaired  

HIHA: Hearing-impaired, hearing-aid wearers 

HIN: Hearing-impaired, non-hearing-aid wearers 

NH: Normal-hearing subjects 

PTA: Pure-tone threshold average (0.5, 1, 2 and 4 kHz) 

SD: standard deviation 

NA: Non-applicable answers 

F-ANOVA: Friedman’s analysis of variance 

R-ANOVA: repeated-measures analysis of variance  
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ABSTRACT 

 

Objectives: (a) To build a 15-item short-form of the Speech Spatial and Qualities of 

Hearing Scale (SSQ) that maintains the three-factor structure of the full form, using a data-

driven approach consistent with internationally recognized procedures for short-form building. 

(b) To validate the new short-form on an independent sample. (c) To perform an in-depth, 

comparative analysis of all existing, full and short SSQ forms. 

 

Design:  Data from a previous study involving 98 normal-hearing (NH) individuals and 

196 hearing-impaired, non-hearing-aid wearers (HIN), along with results from several other 

published SSQ studies were used for developing the short-form. Data from a new and 

independent sample of 35 NH and 88 HI hearing-aid wearers (HIHA) were used to validate the 

new short-form. Factor and hierarchical cluster analyses were used to check the factor structure 

and internal consistency of the new short-form. In addition, the new short-form was compared 

to all other SSQ forms, including the full SSQ, the German SSQ15, the SSQ12, and the SSQ5. 

Construct validity was further assessed by testing statistical relationships between scores and 

audiometric factors, including pure-tone threshold averages (PTAs) and left/right PTA 

asymmetry. Receiver-operating characteristic (ROC) analyses were used to compare the ability 

of different SSQ forms to discriminate between NH and HI (HIN and HIHA) individuals.  

 

Results: Compared all other SSQ forms, including the full SSQ, the new short-form 

showed negligible cross-loading across the three main subscales, and greater discriminatory 

power between NH and HI subjects (as indicated by a larger area under the ROC curve), as well 

as between the main subscales (especially Speech and Qualities). Moreover, the new, 5-item 

Spatial subscale showed increased sensitivity to left/right PTA asymmetry. Very good internal 

consistency and homogeneity, and high correlations with the SSQ were obtained for all short 

forms. 

 

Conclusion: While maintaining the three-factor structure of the full SSQ, and exceeding 

the latter in terms of construct validity, and sensitivity to audiometric variables, the new 15-

item SSQ, the 15iSSQ, affords a substantial reduction in the number of items and thus, in test 

time. Based on overall scores, Speech subscores, or Spatial subscores, but not Qualities 

subscores, the 15iSSQ appears to be more sensitive to differences in self-evaluated hearing 

abilities between NH and HI subjects than the full SSQ. 

 

Key words: Self-report Measure; Short form building; Hearing Disability; Hearing Loss; 

Spatial Hearing; Speech; Speech Spatial and Qualities of Hearing Scale. 
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INTRODUCTION 

Self-report outcome measures have become an essential component in the evaluation of 

rehabilitation benefits for patients. In the field of audiology, several scales have been developed 

for the self-evaluation of various aspects of hearing, such as speech perception, binaural 

hearing, or hearing in challenging situations. Among these, the Speech Spatial and Qualities of 

Hearing scale (SSQ) designed by Gatehouse and Noble (2004) is a widely used self-report 

measure of hearing, and has already been translated into several languages (Dutch, Korean, 

German, and French). 

In its full form, the SSQ includes 50 items. One advantage of this relatively large number 

of items is that it makes it possible to explore some very specific aspects of hearing via three 

main subscales (Speech, Spatial and Qualities) and 10 pragmatic subscales (Gatehouse & 

Akeroyd 2006).  One disadvantage relates to the substantial amount of time and cognitive effort 

required for completion. Using a French version of the SSQ, Moulin et al. (2015) found that the 

self-assessed time to complete the scale in a hearing-impaired (HI) group varied from 10 

minutes to 1 hour, with more than 25% of respondents reporting completion times above 25 

minutes. This makes it difficult to use the SSQ in routine clinical use, or for swift assessments 

of hearing. Moreover, a tendency for the number of missing responses to increase over the last 

third of the scale was observed, with more missing responses for the most difficult-to-read items 

(Moulin et al., 2015).  Indeed, with over a thousand words, the SSQ can be quite taxing for 

respondents. 

In order to address this problem, short-forms of the SSQ have been developed. 

Demeester et al. (2012) created a short-form with five items (SSQ5) out of the Dutch version 

of the SSQ, specifically for screening purposes. Using the UK version of the SSQ, Noble et al. 

(2013) created a short-form with 12 items (SSQ12) based on a large multi-center dataset. 

Neither of these short forms include subscales. Validating a German version of the SSQ, 

Kiessling et al. (2011) proposed a short-form containing 15 items, with five items per subscale. 

The resulting short-form has the potential to retain the information present in the three main 

subscales of the SSQ. However, each of these short forms was constructed based on results 

from a single study, using a single language and, to our knowledge, none of these short-forms 

has been validated on a different sample of participants from the one used to build it. Lastly, to 

our knowledge, Kiessling et al.’s SSQ15 has only been published in German and has not been 

disseminated internationally. 

In this context, the main goals of the present study were as follows. Firstly, to create a 

short-form of the SSQ using a data-driven approach, taking into account SSQ results from 

multiples studies, spanning different languages. Secondly, to validate the newly created short-

form on a new, independent sample of participants. To this aim, we tried to follow the 

recommendations of Smith et al. (2000) for avoiding the “sins of short-form development”. 

Hence, the short form was built using a data-driven approach and strategies specific to short-

form building (Stanton et al. 2002), using published data from SSQ studies involving four 

different languages (Dutch, English, French, and German). First, responses to items of the 

newly built short-form were extracted from existing data from a previous study in which the 
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full SSQ was administered to 196 hearing-impaired (HI) participants (non-wearers of hearing-

aids: HIN) and 100 normal-hearing (NH) participants (Moulin et al., 2015). Subsequently, both 

the full SSQ and the newly built short-form were administered to a new sample of 88 HI subjects 

(all hearing-aid wearers: HIHA) and 35 NH subjects. In-depth analyses of all existing, full and 

short SSQ forms were performed. In particular, factor and hierarchical cluster analyses were 

used to check the factor structure and internal consistency of the new short-form. In addition, 

the new short-form was compared to all other SSQ forms, including the full SSQ, the German 

SSQ15, the SSQ12, and the SSQ5. Construct validity was further assessed by testing statistical 

relationships between scores and audiometric factors, including pure-tone threshold averages 

(PTAs) and left/right PTA asymmetry. Receiver-operating characteristic (ROC) analyses were 

used to compare the ability of different SSQ forms to discriminate between NH and HI (HIN 

and HIHA) individuals.   



  A new SSQ Short Form         7  

 

MATERIAL AND METHODS 

1. Short-form creation 

To create the new short-form, we considered the following sources of information: 

- Missing-response rates across items for the German SSQ (Kiessling et al. 2011), the 

English SSQ (Akeroyd et al. 2014), and the French SSQ (Moulin et al. 2015; Moulin & Richard 

2016b). 

- Results and normative values obtained on NH subjects for the Dutch SSQ (Demeester 

et al. 2012), the English SSQ (Banh et al. 2012) and the French SSQ (Moulin et al. 2015). 

- Factor analyses of the English SSQ (Akeroyd et al. 2014) and French SSQ (Moulin et 

al. 2015). 

One of the recommended methods suggested by Widaman et al. (2011) for building 

short-forms, is to identify a subset of items in the full-length questionnaire, which maintains 

the factorial integrity of the main scale. For the SSQ, factor analyses have shown that the main 

factors correspond the three main subscales, Speech, Spatial and Qualities (Akeroyd et al. 2014; 

Moulin et al. 2015). The recommended minimum number of items per subscale ranges between 

three and five (Loewenthal 2001).We opted to create a short-form with five items per subscale 

(15 items in total), thus keeping a possibility of further scaling down the questionnaire to three 

or four items per subscale. To distinguish this new short-form from other SSQ short-forms, 

namely, Noble et al.’s (2013) SSQ12 and Kiessling et al.’s (2011) SSQ15, we hereafter refer to 

it as the “15-item SSQ” (15iSSQ).  

The selection of items for inclusion in the short-form used the three categories of “item 

quality” proposed by Stanton et al. (2002):  (1) Internal items qualities, which refer to scale 

properties such as inter-item and total-to-item correlations, internal-consistency measures (e.g. 

Cronbach’s alpha), factor-analysis results, and subscale internal structure; (2) External item 

qualities, which refer to the way the items interact with external factors (construct validity), 

such as correlations between scores and hearing loss, ear asymmetry, age, or number of years 

of education. (3) Judgmental item qualities, which refers to the subjective evaluation by the 

scale user, of the relevance and adaptation to the patient’s level of understanding. Because these 

indices can yield contradictory information regarding the “quality” of an item, item selection 

often reflects a compromise between different evaluation criteria. To deal with this, Stanton et 

al. (2002) proposed to code the quality indices for each item and to sort the items by their level 

of quality, starting from external items quality such as item-level validity, followed by 

judgmental quality and face validity, and finally, internal-consistency item qualities. As we 

wanted to eliminate, first, the most unreliable items, we adapted this approach by devising a 

system of “penalty points”, awarded for each item according to the extent of its departure from 

several numeric criteria related to the quality categories. The scale for “penalty points” was 0, 

1, and 2; a penalty of 2 meant that the corresponding item was eliminated. In a first phase, the 

following criteria were used: 
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 1.1 Elimination of items with the greatest percentage of missing answers and NA 

responses (Missing >10% in English, French and German SSQ).  

 1.2 Elimination of items with less than 20% of variance explained by hearing 

loss, ear asymmetry, age, gender, and number of years of education (based on an analysis of 

French SSQ data from Moulin et al. 2016). 

 1.3 Elimination of all items with the lowest communalities (<50%) in factor 

analyses of the French SSQ and the English SSQ.  

 1.4 Elimination of items having a main-factor load lower than 0.60 and/or cross-

loadings larger than 0.20 (based on factor analyses of the French SSQ and the English SSQ). 

 1.5 Elimination of items whose cutoff scores (defined as the mean – 2 SD), in 

young NH subjects, were below 3.5. This was based on 98 subjects for the French SQ, 103 

subjects for the Dutch SSQ  (Demeester et al. 2012), and 48 subjects for the English SSQ (Banh 

et al. 2012). 

  This first selection phase left a total of 23 items remaining, with 8 from Speech, 

10 from Spatial and 5 from Qualities.  

In a second phase, the criteria listed above were used more coarsely, in that the “penalty 

points” were summed together rather than considered separately; in addition; four other criteria 

were added:  

 2.1 Favoring items with scores not significantly predicted by unwanted factors, 

such as the number of years of education or gender.  

 2.2 Favoring, for the spatial scale, items showing a strong prediction by left/right 

asymmetry in pure-tone thresholds, and eliminating items predicted strongly by ear asymmetry 

for the other subscales. 

 2.3 Favoring, whenever possible, items already present in the SSQ12, the 

SSQ15, or the SSQ5. 

 2.4. Favoring items with high item-to-total correlations.  

This second phase led to a 15-item short-form (#1.1, #1.4, #1.5, #1.6, #1.11, #2.2, #2.6, 

#2.7, #2.11, #2.17, #3.4, #3.5, #3.6, #3.8, #3.9) having one item in common with the SSQ5, 

five items in common with the SSQ12, and 7 items in common with the SSQ15. As an aside, 

the SSQ12 and SSQ15 have 5 items in common, while the SSQ5 and SSQ12 have 3 items in 

common (Appendix, Table 1). Importantly, the 15-item short-form thus created conforms to the 

three main subscales of the SSQ. 

 

2. Short-form validation 

Two samples of subjects were used to validate the short-forms. Sample A contained 98 

young NH subjects (aged 18 to 27 years; mean age = 20.8 years; SD = 2.2 years) and 196 HI 

subjects (aged 18 to 88 years; age = 53.4 years; SD = 17.1 years), who did not use hearing-aids 
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(HIN). For the latter, the four-frequency (0.5, 1, 2, and 4 kHz) PTA was equal to 27.2 dB HL 

(SD = 14.4 dB) on the best ear, and 41 dB HL (SD = 24 dB) on the worse ear, on average (Fig. 

1). The HIN subjects formed a subset of an original sample of 216 HI subjects, which was used 

in two previous publications, along with the 98 NH subjects (Moulin & Richard 2016a; Moulin 

& Richard 2016b). 

Sample B was a new sample, completely independent from the first one. It comprised 

35 NH subjects aged 18 to 30 years (mean = 21.6 years, SD = 2.7 years), and 88 HI hearing-aid 

users (HIHA) aged 19 to 94 years (mean = 73.6 years, SD = 16.2 years). The NH subjects were 

recruited mostly from a pool of university undergraduates. They were free from any medical 

condition, history of otologic pathology, medication, and heavy noise exposure. They 

underwent pure-tone audiometry in half-octave steps from 125 to 8000 Hz using an 

Interacoustic AC40 audiometer in a sound-proof booth. The HIHA subjects were recruited from 

an audiology clinic. Their unaided pure-tone thresholds were measured at 250, 500 Hz, then at 

half-octave steps from 500 to 8000 Hz, using an Aurical Astera. Aided thresholds were 

measured using warble tones at these same frequencies, through speakers. Those patients had 

been wearing their hearing-aids for an average of 3.4 years (SD = 3.7 years) and an average of 

10.4 hours per day (SD = 5.1 hours). The average PTA for the best ear was 43.9 dB HL (SD = 

13.4 dB) and 53.8 dB HL (SD = 19.5 dB) for the worse ear (Fig. 1).  

Subjects from sample B were administered the validated full French language version 

SSQ (Moulin et al., 2015) and the new short-form version at two different time points, separated 

by at least two hours and up to a few days, in randomized testing order; the short-form was 

presented first for half of the subjects. 

The research was conducted in agreement with the World Medical Association 

declaration of Helsinski and in agreement with the French law pertaining to biomedical research 

(Agreement number A-11-385, ‘CPP Sud-Est IV’).  

 

3. Data and statistical analyses 

3.1. Score calculations 

PTA was computed as the average hearing threshold (in dB HL) across 0.5, 1, 2, and 4 

kHz. Ear asymmetry was calculated as the difference in PTAs (in dB) between the left and right 

ears. SSQ scores were calculated over the full scale and over the different short-forms that were 

available in the literature: the SSQ5 (#1.8, #2.3 and #2.9, #3.9 and #3.14; its weighted version 

(SSQ5w) (Demeester et al. 2012)), the SSQ12 (#1.1, #1.4 and #1.10 to #1.12; #2.6, #2.9 and 

#2.13; #3.2, #3.7, #3.9 and #3.14; (Noble et al. 2013) and the SSQ15 (#1.4, #1.5, #1.7, #1.9, 

#1.10; #2.5 to #2.7, #2.9 and #2.12; #3.3, #3.4) (Kiessling et al. 2011). Scores corresponding 

to the new 15-item short-form, 15iSSQ, (#1.1, #1.4, #1.5, #1.6, #1.11, #2.2, #2.6, #2.7, #2.11, 

#2.17, #3.4, #3.5, #3.6, #3.8, #3.9) were also calculated. 

Scores were computed individually for every NH and HI subjects in samples A and B. 

For sample B, two scores were computed for the 15iSSQ: one score was obtained by scoring a 
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subset of items from the SSQ questionnaire, hereafter referred to as the 15iSSQs, for ‘15-item 

SSQ subset’; the second score was obtained by scoring the actual 15-item short-form, which 

was administered separately to the subjects rather than as a part of the full SSQ. 

For the SSQ15 and the 15iSSQ, both of which were designed to maintain the three-

subscale structure of the SSQ (Speech, Spatial and Qualities), three “differential” sub-scores 

were calculated by subtracting sub-scores for the three subscales, pairwise (Qualities – Speech; 

Qualities – Spatial and Speech – Spatial). 

Similarly to Demeester et al. (2012), we calculated the SSQ-disability cutoffs, defined 

as the mean scores obtained in normal hearing population, minus 2 standard deviations, for the 

total scores obtained from SSQ and all short-forms, and the Speech, Spatial and Qualities 

subscales. 

 

3.2 Internal-structure analysis 

Data from the various short-forms were analyzed with common factor analysis, using 

the same parameters as for the full SSQ (see Moulin et al. 2015). Briefly, these analyses were 

performed using the R package “Psych”, with the following parameters: correlation matrix of 

15x15 (SSQ15i), maximum likelihood method for factors extraction, parallel analysis for 

number of factors extraction, and oblique (oblimin) factor rotation.  

Secondly, to determine whether factors of the short-forms reflect the same structure as 

the full scale, hierarchical cluster analyses (Revelle’s ICLUST algorithm, (Revelle 1978; 

Revelle 1979) were performed. Revelle’s method is designed specifically to visualize 

questionnaire scales and subscales. It relies on two indices: the alpha coefficient (mean split-

half reliability), a measure of internal consistency, and Revelle’s beta coefficient (Zinbarg et al. 

2005), a measure of factorial homogeneity; specifically, beta is the worst split-half reliability 

of a scale, and hence is lower than alpha. In short, the scale structure is built starting from two 

item clusters that are most similar to each other; an item is added to the initial two item clusters 

only if this addition improves the internal consistency (measured by alpha) and/or the factorial 

homogeneity (measured by beta) of the cluster. The results are shown using a hierarchical tree 

diagram of clusters that displays the internal sub-structure of the scale, allowing the definition 

of homogeneous subscales. The tree diagram connects increasingly less similar items and/or 

clusters from left to right: the most similar items are combined first, and the most dissimilar 

items are added last. Alpha and beta coefficients are provided for each cluster, and correlations 

coefficients are given for each connection between clusters and/or items. An alpha above 0.8 

and a beta above 0.7, with a difference between these two coefficients lower than 0.1, are 

indicative of good homogeneity and good internal consistency (Cooksey & Soutar 2006). A 

goodness-of-fit index was used to compare the quality of the structures. Specifically, the fits of 

the different models to the data were assessed using root-mean-square residuals (RMSRs). An 

RMSR lower than 0.05 indicates a good fit; RMSRs comprised between 0.05 and 0.08 indicate 

a fair fit (Cooksey & Soutar 2006; Fabrigar et al. 1999). This technique is complementary to 

the more classical approach of factor analysis and is less method-dependent (Cooksey & Soutar 
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2006). The ICLUST algorithm was applied to the whole sample. All statistical analyses were 

performed using the “Psych” package within the R statistical package version 3.1.0 (2014-04-

10). 

 

3.3. Comparisons between different short-forms 

Short-form and subscale scores were compared to each other, and to SSQ scores. Since 

the data of the NH participants deviated from normality (Shapiro-Wilk test, p<0.001, kurtosis 

between 2 and 4 for some variables), these data were compared using non-parametric tests: 

Wilcoxon’s sign test; Friedman’s analysis of variance (F-ANOVA); Spearman’s correlation 

coefficient. The data of the HI subjects, and those used for whole-group analyses (including 

both NH and HI subjects), met the normality assumptions (|skewness| <2.6; |kurtosis|<2.1). 

Accordingly, for these data, parametric tests were used: analysis of variance for repeated 

measures (R-ANOVA); paired t-tests; Pearson’s correlation coefficients. For both NH and HI 

groups, internal validity of each short-form was assessed using Cronbach’s alpha coefficient. 

Correlations between the SSQ and the different short-forms were calculated. To correct for the 

hyper-inflation of those correlation coefficients due to the presence of common items in the 

SSQ and the short-forms, Girard and Christensen’s correction for overlapping error variance 

was used (Girard & Christensen 2008). In order to obtain reciprocal equations allowing to 

transform the SSQ scores to a short-form score and vice versa, taking into account measurement 

error of both scores, orthogonal distance regressions were performed on the total population. 

Multiple-regression analysis of the SSQ, the short-forms, and the subscale scores of the 

HIN and HIHA subjects were performed using three predictors: Better Ear PTA (in dB HL), 

Ear Asymmetry in (dB), and Age (in years). The normality of the residuals was checked using 

the Shapiro-Wilk test, and the assumptions of non-multicollinearity were checked using Dubin-

Watson test and VIF statistics. Correlation coefficients were compared using Revelle’s two-

tailed test for correlated coefficients (R psych package). 

 

3.4. ROC analysis 

Receiver-operating-characteristic (ROC) curves were calculated for HI and NH 

subjects, for the SSQ, each of the short-forms, and each of the three subscales, using Robin et 

al. (2011) R package, pROC. The ROC curves were compared using Venkatraman’s test for 

paired ROCs. The areas under the ROC curve (AUC) and partial AUC across regions of high 

sensitivity (90 to 100%) were compared using Robin et al.’s bootstrap test, based on the 

percentile bootstrap method, using 10000 replicates. The Z statistic and two-tailed p value 

associated with Robin et al.’s bootstrap are given. As the SSQ is designed to assess a difference 

across two conditions (e.g. HI versus NH, or hearing-aid versus no hearing-aid), the region of 

high sensitivity appeared to be most relevant. 
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RESULTS 

1. Factor and cluster analysis of the short-forms 

To check the underlying factor structure of the various short-forms and their similarity 

with the SSQ, common factor analysis with maximum likelihood factor extraction was 

performed on all of the SSQ short-forms except for the SSQ5 and the SSQ12. This was done 

separately for the 196 HIN and the 88 HIHA subjects.  

1.1. Factor analysis 

All the results from the factor analyses are in table 1. The Kaiser-Meyer-Olkin (KMO) 

indexes of Sampling adequacy were above 0.84 (which corresponds to “very good” (Field et al. 

2012; Fabrigar et al. 1999), with values for individual items all higher than 0.71. Bartlett’s tests 

of sphericity were all highly significant. The analysis showed systematically three factors with 

eigenvalues greater than or equal to 1 (8.8, 1.5 and 1.0), with cumulative variance explained 

between 69% and 75%. The three-factor structure was systematically confirmed by Catell’s 

scree test, parallel analysis, and Velicer’s MAP criterion. The mean communalities ranged from 

0.69 to 0.75. The RMSR ranged between 0.03 and 0.04. Hence, a three-factor extraction was 

always chosen for the final analysis, and an oblique rotation (oblimin) was applied, as the scores 

of all items were intercorrelated. The three rotated factors explained at least 21% of the 

variance, and each factor loaded primarily on items corresponding to the main subscales of the 

SSQ. The three rotated factors correlated with each other, with correlation coefficients ranging 

from 0.44 to 0.67. The different indices showed that this three factor solution was adequate, 

with a Tucker-Lewis index above 0.9 (one exception at 0.87), a CFI (comparative fit index) 

above 0.92, and root mean square error of approximation (RMSEA) between 0.08 and 0.13. 

For the 15iSSQ, the items loadings on each factor showed clear separation between each 

factor, with no consistent cross-loading across the 3 factor analysis. A small degree of cross-

loading was obtained for #1.5 especially for the 15iSSQs on the 88 HIHA, and for #2.2 but only 

for 15iSSQ (Fig. 2). 

For the SSQ15, the separation between the different loads is less clear: for both samples, 

item #3.4 showed low communality (0.56) and cross-loading on factor 3 and factor 2 and both 

#3.3 and #2.12 showed a minor degree of cross-loadings on factors 2 and 3. Items #1.5 showed 

some cross-loadings on factors 1 and 2 for the 88 HIHA (Fig. 2). Hence, in the two different 

populations, items #3.3, #3.4 and #2.12 underperformed. 

1.2. Cluster analysis 

Hierarchical cluster analysis (ICLUST) corroborated the three-factor structure, with 

three distinct clusters corresponding the three subscales (Speech, Spatial and Qualities), for 

both the 15iSSQ and the SSQ15 forms.  

For the 15iSSQ (Fig. 3), Alpha and beta coefficients were higher than 0.82, which is 

above their usual criterion values (0.8 for alpha and 0.7 for beta), and the difference between 

these coefficients was small (<0.1), indicating high homogeneity and consistency within each 

cluster (Cooksey & Soutar 2006). The goodness-of-fit measure for this three-subscale solution 
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was 0.98, with an RMSR < 0.05, which corresponds to an excellent fit. The alpha coefficient 

above 0.91 for the 3 main sub-clusters showed their high reliability. 

 The spatial items are represented in a close knit cluster (C8), with alpha=0.94, in which 

subcluster C6 can be identified and represents of the items pertaining to localization (locate 

vehicle, dog, person).  

Speech items show a close association between items 1.4, 1.11 and 1.6, as a subcluster 

(C5), all pertaining to auditory perception in conditions of several talkers. Items 1.1 and 1.5, 

concerning talking with one person with one source of noise, are associated in subcluster C9. 

Within the quality items, the two items about voice pitch and familiar music are 

associated in cluster C3, whereas the other 3 items, about clarity and naturalness of sounds are 

associated in subcluster C11. 

For the SSQ15, the hierarchical cluster analysis showed a three-factor structure, with 

each factor corresponding to the expected subscale, with an acceptable fit (0.97, RMSR = 0.05), 

a minimum beta coefficient at 0.77, and a minimum alpha coefficient at 0.81. For the 196 HIN 

subjects, the subcluster “quality” showed a lower reliability (alpha= 0.89, beta=0.77), probably 

due to a poorly functioning item (#3.3: Music and voice as separate items), whose addition to 

the cluster led to a decrease of 0.1 in the beta coefficient, with a difference between alpha and 

beta coefficient of 0.12 for this factor, slightly higher than the expected <0.1 (Appendix, Figure 

1).  

 

2. Comparison between SSQ and short-forms scores 

2.1. Missing responses 

The number of missing responses was analysed per item for the HIHA subjects. It 

ranged from 0 to 14.8%, with an average of 3.1% (SD = 3.5) across the 49 items of the SSQ. 

Those percentages were significantly correlated with the percentages obtained in the HIN group 

(r = 0.67, p < 0.0001), with the same items (i.e., items 2.14 to 2.16 and 3.16) yielding the 

greatest number of missing responses for these two groups. The 15iSSQ gave an average of 2% 

(SD = 1.4) and 2% (SD = 2%) for the 15iSSQs, with a significant correlation between the two 

(r = 0.72, p < 0.003). 

2.2. Global scores 

F-ANOVA showed highly significant differences between the different scores (full 

version and short-forms) for the NH subjects (Chi2 = 58.3, df = 7, p < 0.00001) and for the 

HIHA subjects (Chi2 = 68.4, df = 7, p < 0.00001) (Fig. 4) 

For NH subjects, the newly developed short-forms gave significantly greater scores than 

the full scale, with W = 163, p < 0.02 for the 15iSSQ, and W = 113, p < 0.0006 for the 15iSSQs. 

SSQ12 scores were significantly lower than the SSQ scores (W=563, p<0.0001). No significant 

differences were obtained for the SSQ15s or the SSQ5s. 
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 For HIHA subjects, all of the short-forms except SSQ5s gave significantly lower scores 

than the full-form, with W = 2517, p < 0.03 for the 15iSSQ, W = 2985, p < 0.0001 for the 

SSQ15s, and W = 3698, p < 0.00001 for the SSQ12s. 

The 15iSSQ gave greater cut-off scores than the SSQ in both NH samples (6.13 vs 6.00 

for 35 NH), the SSQ15 (5.96) and the SSQ12 (5.31). 

2.3. Subscale scores 

For NH subjects, no statistically significant difference was obtained between the full 

form and the different short-forms for the Speech (Chi2 = 11.6, df = 5, p<0.05) and Spatial 

subscales (Chi2 = 6.3, df =5, p > 0.20). For HIN subjects, no statistically significant difference 

was obtained for the Spatial subscale (F-ANOVA, Chi2 = 10, df = 5, p = 0.07). 

However, for the Speech subscale and the HIN subjects, all the different short-forms 

gave significantly lower scores than the full subscale (F-ANOVA chi2=81.5, df=5, p<0.00001), 

with W = 2728, p < 0.0006 for the 15iSSQ, and W = 3606, p < 0.00001 for the SSQ15s. 

For the Qualities subscale, highly significant differences between full form and the 

different short-forms were observed for NH subjects and for HIHA subjects (F-ANOVA, Chi2 

= 68, df = 5, p < 0.00001 for NH and Chi2 = 73, df = 5, p < 0.00001 for HIHA), albeit in 

opposite directions: for NH subjects, all of the different short-forms yielded significantly 

greater Qualities-subscale scores than the full form, with W = 4, p < 0.00001 for the 15iSSQ, 

and W = 56, p < 0.0001 for the SSQ15s; for HIHA subjects, the short-forms yielded 

significantly lower Qualities sub-scores than the full form, with W = 1071, p < 0.0006 for the 

15iSSQ, and W = 741, p < 0.00001 for the SSQ15s. 

Although the mean scores of the 15iSSQ Speech and Spatial subscales were not lower 

than the SSQ sub-scores, the cut-off scores of the 15iSSQ were lower (6.07 versus 6.15 for 

Speech and 4.13 versus 4.77 for Spatial) than the SSQ Speech and Spatial sub-scores, due to 

larger standard deviations. The SSQ15 gave the lowest cut-off scores (5.9 and 3.85 for Speech 

and Spatial respectively). However, the Qualities cut-off scores were all greater for all short-

forms (15iSSQ, SSQ15) than for the SSQ (Appendix, table 2).  

2.4. Internal validity and correlations between the different SSQ forms. 

Cronbach’s alpha was higher than 0.83 for SSQ5, 0.93 for the SSQ12, and 0.94 for the 

SSQ15 and 15iSSQ. Good consistency was also shown within each subscale, with Cronbach’s 

alphas higher than 0.92 for the Speech and Spatial subscales, and comprised between 0.85 and 

0.91 for the Quality subscale (Appendix, Table 3a). Item-to-total correlations were above 0.67 

for the 196 HIN, and above 0.61 for the HIHA (Appendix, Table 3b). 

The different short-forms correlated very highly with the SSQ, with the lowest 

correlation coefficients obtained for the SSQ5 (r = 0.88, corrected Pearson) and coefficients 

between 0.94 and 0.95 for the other short-forms. The scores for the three subscales correlated 

highly with the corresponding SSQ subscale scores (r above 0.91 for the Speech and Spatial 

subscales, and r between 0.78 and 0.85 for the Quality subscale) (Appendix, Table 4a). Similar 

results were obtained for the non-aided population (Appendix, Table 4b). 
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As the relationship between the SSQ and the SSQ12 (and to a lesser degree the SSQ15, 

see Moulin & Richard 2016a) follows a power function rather than a linear one (Noble et al. 

2013), we fitted the data for each of the short-forms tested using power functions, according to 

Noble’s formulae: 

SSQ Short forms = 10 (SSQ/10)b 

SSQ = 10(SSQ Short forms/10)c 

Non-linear relationships between scores for the SSQ and the SSQ12, on the one hand, 

and the SSQ and the SSQ15, on the other hand, were confirmed (b =1.215 [1.180, 1.250] and b 

= 1.069 [1.041, 1.097], respectively). For the new short-form, the relationship was linear, as 

shown by a 95% confidence interval for b overlapping 1 (Appendix, Table 5). Similar analyses 

performed on the larger sample of hearing-aid non-wearers (NH and HIN) yielded similar 

results, with a linear relationship between scores of the SSQ and of the new short-form. 

Reciprocal equations obtained by orthogonal distance regression between SSQ and the 

new short form, using all subjects (i.e., 417) are: 

15iSSQs = 0.931 * SSQ + 0.492 

SSQ = 1.074 * 15iSSQs - 0.529 

 

3. Construct validity 

3.1. Influence of hearing-loss 

The scores of all the different forms decreased highly significantly with increasing 

hearing-loss in the better ear, with a slope ranging from 0.56 (SSQ5) to 0.81 (15iSSQ) (0.65 for 

the SSQ) scale points per 10-dB HL. These slopes did not differ significantly from each other. 

However, the different short forms differed from each other in the strength of the correlation 

between score and HL, with a significantly higher correlation coefficient for the newly 

developed short-form than for the full form (r = 0.51 versus r = 0.58, t = 2.5, p < 0.02), and a 

significantly lower correlation for the SSQ5 than for the full form (r = 0.41, t = 3.6, p < 0.0005). 

When analysing subscale scores, correlations between scores and HL were not found to 

differ significantly across the different SSQ forms (full versus short).  

Linear regressions performed on the scores of the NH and HIHA subjects showed a 

decrease in short-form scores with hearing loss, with a greater slope for the short-forms in 

general, except for the SSQ5.  

SSQ = -0.065*HL+8.23 (r= 0.51, 26% variance explained) 

15iSSQ = -0.081*HL+8.47 (r = 0.58, 34% variance explained) 

All the details of the relationships between scores (for all the different forms and their 

subscales) and hearing loss are in the Appendix, Table 6. 
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3.2. Influence of patients’ characteristics 

This analysis sought to investigate predictors of the full- and short-form scores. To this 

aim, multiple-regression analyses were performed on the scores for each form, using the 

following explanatory variables: Gender, Age, Better-ear PTA, and (PTA) Asymmetry. The 

latter two audiometric variables were measured with, and without, hearing-aids, and both 

measurements were entered as potential predictors in the model. For these analyses, the data of 

the 88 HIHA subjects were used. Gender and Age were never found to be statistically 

significant predictors. The best models included hearing thresholds measured with hearing-aids, 

and PTA Asymmetry measured without hearing-aids. Therefore, multiple-regression results are 

presented using the better-ear PTA measured with hearing-aids, and PTA asymmetry measured 

without hearing-aids. The size of the effect (r2), and the beta coefficients that allow the 

comparison of the relative influence of each statistically significant predictor on the SSQ scores 

are summarized in Table 7 in the Appendix. The different short-forms yielded results similar to 

the full SSQ, with 32% to 39 % of variance explained by the two predictors: Better-ear PTA 

(beta ranging from -0.28 to -0.36) and PTA Asymmetry (beta ranging from -0.22 to -0.19) for 

the seven different SSQ forms. Ear asymmetry was not a significant predictor of SSQ12 scores, 

but was the only significant predictor of SSQ5 scores.  

The three subscales of the short-forms gave similar results to the three subscales of the 

SSQ: Better-ear PTA and Asymmetry were significant predictors. For all forms, the greatest 

dependencies were between the Asymmetry predictor and scores of the Spatial subscale, and 

between Better-ear PTA and scores of the Quality subscale. The differential scores between the 

main subscales (Qualities – Spatial; Qualities – Speech) did not show any significant 

dependency on the two predictors (Appendix, Table 7a).  

Similar analyses were performed on the 196 non-hearing-aid wearers. Results showed 

that the different short-forms yielded results similar to the SSQ, with 37% to 38 % of variance 

explained by the two predictors: Better Ear PTA (beta from -0.54 to -0.58) and Ear Asymmetry 

(Beta = -0.29 to -0.32) for the five short-forms. The three subscales of the SSQ15 and 15iSSQ 

gave results similar to the three subscales of the SSQ, with the Better-ear PTA and PTA 

Asymmetry as significant predictors. The relative importance of PTA Asymmetry for the 

Spatial subscale was higher for the 15iSSQ, with an even greater beta coefficient (-0.47) than 

for hearing loss (-0.44). The differential scores (Qualities – Spatial) had PTA Asymmetry as 

the main predictor, with 21% of variance explained for the 15iSSQ, which is substantially 

greater than the same score using the SSQ (11%) or the SSQ15 (10%) (Appendix, Table 7b). 

3.3. ROC analysis 

For the SSQ, the area under the ROC curve (AUC) was equal to 77.3 for the HIN group, 

and to 80.1 for the HIHA group. For the HIHA group, significantly larger AUCs (Fig 5) were 

obtained for the 15iSSQ (AUC=84) and the 15iSSQs (AUC=83) than for the SSQ (Z = 1.75, p 

< 0.08, and Z = 2.02, p < 0.05 for the 15iSSQ and 15iSSQs, respectively). By contrast, AUCs 

for the SSQ12 and the SSQ5 were not significantly larger than the SSQ AUC. For the HIN 
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group, differences in AUC between the SSQ and the different short-forms did not reach 

statistical significance (Appendix, table 8a, b). 

 Similar analyses were performed for the three subscales (Fig. 5). For the Speech 

subscale, the different short-forms all showed a larger AUC (> 86.4) than the full-form AUC 

(84.2), with significant differences for the 15iSSQs (Z = 2.9, p < 0.004 for the HIHA group; Z 

= 2.4, p < 0.02 for the HIN group). For the Spatial subscale, no significant difference between 

the different short-forms and the full-form were obtained for the HIN group; however, for the 

HIHA group, the short-forms all produced a smaller AUC (71.9 for the 15iSSQ and 69.3 for 

the SSQ15) than the SSQ (72.1), with a significant difference for the 15iSSQs (Z = -2.2, p < 

0.03). For the Qualities subscale, the AUC for the 15iSSQs (Z = -4.4, p < 0.0001) was 

significantly smaller than the AUC for the full-form for the HIN group, but not for HIHA group. 

(Appendix, Tables 8a and 8b). 

 AUCs for the spatial subscale were systematically smaller than AUCs for the other 

subscales, while the AUCs for the Speech subscale were systematically larger than AUCs for 

the other subscales: this pattern was seen for the SSQ, as well as for the different short-forms. 

 A similar analysis was performed for the high-sensitivity region (sensitivity 

above 90%). For the HIHA group, the newly developed short-forms showed a significantly and 

systematically larger partial-AUC than the SSQ (Z = 2.5, p < 0.02 for the 15iSSQ, and Z = 2.4, 

p < 0.02 for the 15iSSQs). No significant differences were obtained between the SSQ and the 

SSQ15, the SSQ12, or the SSQ5. No significant differences were obtained for the HIN group 

either. 
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DISCUSSION 

 The main goals of this study were the creation of a new SSQ short-form using a 

rigorous data-driven approach, in agreement with the criteria suggested by Stanton et al. (2002) 

and the factorial-integrity check suggested by Widaman et al. (2011) and Smith et al. (2000). 

By using data from multiple studies, we tried to avoid the caveat of building a short-form 

specific to a single data set (Widaman et al. 2011). By using various types of criteria for 

selecting items, we tried to overcome the caveats of a single-criterion approach. For instance, 

by using only internal-consistency criteria, or by over-using such criteria, one can end up with 

too narrowly focused a short-form, which explores only some aspects of the full form (Stanton 

et al. 2002).  Following Stanton et al. (2002), we considered three different categories of criteria: 

“judgmental” (such as the percentage of missing answers, the belonging of the items to another 

short form, or the readability), “external qualities” (percentage of variance explained by the five 

main predictors), and “internal qualities” (communalities and factor loadings of factor analysis 

obtained in two different studies; normative data obtained in NH subjects; inter-item and item-

to total correlations). The internal structure of the short-form was cross-checked using factor 

and cluster analyses. The results revealed three clusters for the SSQ15 and the 15iSSQ, each 

corresponding to a main subscale of the SSQ (Speech, Spatial, and Qualities). Lastly, we 

validated the new 15iSSQ using two independent and different samples of participants, 

including both NH and HIHA, hence avoiding the last two of the nine “sins” of short form 

building described by Smith et al. (2000): not administering the short and full forms 

independently, and not using independent samples for validation. 

The results provide evidence for the construct validity of the new 15-items short-form 

thus obtained, the 15iSSQ. In particular, factor and hierarchical cluster analyses confirmed that 

the 15iSSQ has the same three-factor structure as the full SSQ, with no consistent cross-loading. 

The results further indicate than the new 15iSSQ is superior to the other existing 15-item SSQ 

short-form, the SSQ15 (Kiessling et al. 2011). In particular, from a construct-validity 

perspective, factor and hierarchical cluster analyses indicated less cross-loading, and higher fits 

to the three-factor structure of the original SSQ, for the 15iSSQ than for the SSQ15.  

Regarding external validity, consistent with the full SSQ, scores for the 15iSSQ 

decreased with increasing hearing loss, with a higher slope for the 15iSSQ (0.81 points per 10 

dB HL) than for the full SSQ (0.65 points per 10 dB HL). This outcome can be explained by 

one of our criteria for item selection: the presence of relatively high scores and lower variability 

in NH subjects. Although SSQ scores have been initially interpreted as if young NH subjects 

should have perfect scores (e.g., House et al. 2010), in reality, actual SSQ scores for NH are 

often lower than 10 (Demeester et al. 2012; Moulin et al. 2015). Indeed, in the present study, 

the average score of NH respondents for the Spatial subscale was lower than 8 (see Fig. 4). The 

15iSSQ scores were found to be greater than the full-SSQ scores for both NH samples, and 

smaller for the HIN and HIHA subjects, thus reinforcing the contrast between NH and HI 

subjects. In addition, the expected correlation between PTA and score was significantly higher 

for the 15iSSQ (21% of variance explained) than for the SSQ (11% of variance explained). 

Moreover, for both HIHA and HIN groups, the AUC, a measure of the difference between the 
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scores of the NH and HI groups was significantly larger for the 15iSSQ than for the SSQ, 

whereas AUCs obtained using the other short-forms were not (SSQ5, SSQ12 and SSQ15). One 

of the caveats of reducing the number of items in a questionnaire, is the potential increase of 

inter-subjects variability, the scores being less “smoothed out” by an averaging procedure 

across a great number of items than across a smaller number of items. This has potential 

detrimental consequences on the disability SSQ cut-off scores. This is not the case here, as for 

the total score, the cut-off scores obtained with the new short-form were consistenly larger than 

the scores obtained with (1) the SSQ and (2) all the other short-forms. 

A look at the three main subscale scores gives a more complex picture: the cut-off scores 

for the Speech and Spatial subscales tend to be lower for all short-forms than for the SSQ. For 

the qualities subscale, all short-form gave greater cut-off scores than the SSQ qualities. Indeed, 

the 15iSSQ (and to a lesser degree, the SSQ15) gave larger scores for the Qualities subscale in 

all samples, especially in NH. For the Spatial and Speech subscales, 15iSSQ scores were similar 

to SSQ scores for both NH samples, but were significantly lower than SSQ scores for HIN and 

HIHA. As a result, the contrast between Qualities and Speech sub-scores and, to a lesser degree, 

between Speech and Spatial sub-scores, was higher for HI with the 15iSSQ than with the SSQ. 

The lower Spatial sub-scores for the HI participants may be attributed to our choice of favoring 

items that were more sensitive to Ear Asymmetry. This can be observed in the measured 

dependency of the Spatial scores to Best Ear PTA and Ear Asymmetry, where both predictors 

contributed almost equally to the scores; by contrast, for the SSQ15 and the SSQ, the 

contribution of the Best Ear PTA was always substantially greater than the contribution of Ear 

Asymmetry. The statistical relationship between PTA asymmetry and the differential sub-score, 

Qualities – Spatial, was substantially stronger for the 15iSSQ (21% of variance explained) than 

for the SSQ15 (10% of variance explained) or the SSQ (11% of variance explained). Hence, 

although our selection of items for the new short-form was guided primarily by the imperative 

to maintain the three main subscales of the SSQ, two advantageous by-products of this selection 

are a better contrast between NH and HI, and a Spatial subscale that is more sensitive to Ear 

Asymmetry. This greater sensitivity to ear asymmetry can be highly advantageous in the 

analysis of self-reported hearing disabilities linked to ear asymmetry (Vannson et al. 2015), 

unilateral hearing loss (Olsen et al. 2012; Dwyer et al. 2014; Douglas et al. 2007), and the 

evaluation of the benefits of hearing rehabilitation strategies of those assymetrical losses (Pai 

et al. 2012; Dumper et al. 2009). 

It is worth noting that we found a linear relationship between scores obtained with the 

new short-form and scores for the full SSQ. This differs from the SSQ12 for which the 

relationship is nonlinear (Moulin & Richard 2016b; Noble et al. 2013) and, to a lesser degree, 

from the SSQ15, and makes it straightforward to infer scores for the full SSQ based on the new 

short-form scores, or vice versa. One limitation of this study stems from the fact that test-retest 

reliability of the new short-form was not verified. To the best of our knowledge, this 

shortcoming applies also to the other SSQ short-forms. However, it appears highly unlikely that 

the 15iSSQ is any less reliable than its existing 15- and 12-item counterparts, the SSQ15 and 

the SSQ12. First, the items in this new short-form come from the same set of items that was 
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used to create the SSQ15 and the SSQ12, namely the complete set of SSQ questions, which has 

shown a high degree of correlation between several administration modes and at different time 

points (Singh & Kathleen Pichora-Fuller 2010). Second, we obtained very good correlations 

between the 15iSSQs and the 15iSSQ (r=0.93) and no statistically significant differences 

between 15iSSQs and 15iSSQ in the same samples (NH and HIHA), whether the full score or 

scores per subscales were considered. Although the delay between the two administrations was 

too low (less than a week) to really assess long-term reproducibility, and responses to the subset 

version (15iSSQs) were, to some degree, influenced by the other questions of the full SSQ, it 

does give a clear indication of the good test/retest reproducibility of the 15iSSQ. 

Even if it were merely equivalent to the full SSQ for differentiating between NH and HI 

subjects, the 15iSSQ could be advantageously used for this purpose in research studies or 

clinical work, given its shorter length. In fact, the results showed that, in some respects, the 

short-form affords better discrimination between NH and HI subjects than the full SSQ, and a 

better sensitivity to ear asymmetry thanks to the Spatial subscale. One qualification to this 

conclusion stems from the finding of smaller AUCs for the 15iSSQ than for the SSQ, for one 

specific combinations of HI subgroups and subscales: the Qualities subscale with the HIN 

group. For this reason, we cannot recommend using the 15iSSQ in lieu of the full SSQ in all 

situations, including those in which longer length of the latter is not a major limitation. 

 

Acknowledgements 

The authors wish to thank Jeremy Montagnat-Misson for technical help during the data 

collection.   



  A new SSQ Short Form         21  

 

REFERENCES 

Akeroyd, M.A., Guy, F.H., Harrison, D.L., et al. (2014). A factor analysis of the SSQ 

(Speech, Spatial, and Qualities of Hearing Scale). Int. J. Audiol., 53, 101–114. 

Banh, J., Singh, G., Pichora-Fuller, M.K. (2012). Age affects responses on the Speech, 

Spatial, and Qualities of Hearing Scale (SSQ) by adults with minimal audiometric loss. J. Am. 

Acad. Audiol., 23, 81-91; quiz 139-140. 

Cooksey, R.W., Soutar, G.N. (2006). Coefficient Beta and Hierarchical Item Clustering 

An Analytical Procedure for Establishing and Displaying the Dimensionality and Homogeneity 

of Summated Scales. Organ. Res. Methods, 9, 78–98. 

Demeester, K., Topsakal, V., Hendrickx, J.-J., et al. (2012). Hearing disability measured 

by the speech, spatial, and qualities of hearing scale in clinically normal-hearing and hearing-

impaired middle-aged persons, and disability screening by means of a reduced SSQ (the SSQ5). 

Ear Hear., 33, 615–616. 

Douglas, S.A., Yeung, P., Daudia, A., et al. (2007). Spatial hearing disability after 

acoustic neuroma removal. The Laryngoscope, 117, 1648–1651. 

Dumper, J., Hodgetts, B., Liu, R., et al. (2009). Indications for bone-anchored hearing 

AIDS: a functional outcomes study. J. Otolaryngol. - Head Neck Surg. J. Oto-Rhino-Laryngol. 

Chir. Cervico-Faciale, 38, 96–105. 

Dwyer, N.Y., Firszt, J.B., Reeder, R.M. (2014). Effects of unilateral input and mode of 

hearing in the better ear: self-reported performance using the speech, spatial and qualities of 

hearing scale. Ear Hear., 35, 126–136. 

Fabrigar, L.R., Wegener, D.T., MacCallum, R.C., et al. (1999). Evaluating the use of 

exploratory factor analysis in psychological research. Psychol. Methods, 4, 272–299. 

Field, A., Miles, J., Field, Z. (2012). Discovering Statistics Using R 1 edition., London ; 

Thousand Oaks, Calif: SAGE Publications Ltd. 

Gatehouse, S., Akeroyd, M. (2006). Two-eared listening in dynamic situations: 

Audición con dos oídos en situaciones dinámicas. Int. J. Audiol., 45, 120–124. 

Girard, T.A., Christensen, B.K. (2008). Clarifying problems and offering solutions for 

correlated error when assessing the validity of selected-subtest short forms. Psychol. Assess., 

20, 76–80. 

House, J.W., Kutz, J.W., Chung, J., et al. (2010). Bone-anchored hearing aid subjective 

benefit for unilateral deafness. The Laryngoscope, 120, 601–607. 

Kiessling, J., Grugel, L., Meister, I.G., et al. (2011). Übertragung der Fragebögen 

SADL, ECHO und SSQ ins Deutsche und deren Evaluation. German translations of 

questionnaires SADL, ECHO and SSQ and their evaluation. Z Audiol, 6–16. 

Loewenthal, K.M. (2001). An Introduction to Psychological Tests and Scales, 

Psychology Press. 



  A new SSQ Short Form         22  

 

Moulin, A., Pauzie, A., Richard, C. (2015). Validation of a French translation of the 

speech, spatial, and qualities of hearing scale (SSQ) and comparison with other language 

versions. Int. J. Audiol., 54, 889–898. 

Moulin, A., Richard, C. (2016a). Sources of variability of speech, spatial, and qualities 

of hearing scale (SSQ) scores in normal-hearing and hearing-impaired populations. Int. J. 

Audiol., 55, 101–109. 

Moulin, A., Richard, C. (2016b). Validation of a French-Language Version of the 

Spatial Hearing Questionnaire, Cluster Analysis and Comparison with the Speech, Spatial, and 

Qualities of Hearing Scale. Ear Hear., 37, 412–423. 

Noble, W., Jensen, N.S., Naylor, G., et al. (2013). A short form of the Speech, Spatial 

and Qualities of Hearing scale suitable for clinical use: The SSQ12. Int. J. Audiol., 52, 409–

412. 

Olsen, S.Ø., Hernvig, L.H., Nielsen, L.H. (2012). Self-reported hearing performance 

among subjects with unilateral sensorineural hearing loss. Audiol. Med., 10, 83–92. 

Pai, I., Kelleher, C., Nunn, T., et al. (2012). Outcome of bone-anchored hearing aids for 

single-sided deafness: A prospective study. Acta Otolaryngol. (Stockh.), 132, 751–755. 

Revelle, W. (1979). Hierarchical Cluster Analysis And The Internal Structure Of Tests. 

Multivar. Behav. Res., 14, 57–74. 

Revelle, W. (1978). ICLUST: A cluster analytic approach to exploratory and 

confirmatory scale construction. Behav. Res. Methods Instrum., 10, 739–742. 

Robin, X., Turck, N., Hainard, A., et al. (2011). pROC: an open-source package for R 

and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, 77. 

Singh, G., Kathleen Pichora-Fuller, M. (2010). Older adults’ performance on the speech, 

spatial, and qualities of hearing scale (SSQ): Test-retest reliability and a comparison of 

interview and self-administration methods. Int. J. Audiol., 49, 733–740. 

Smith, G.T., McCarthy, D.M., Anderson, K.G. (2000). On the sins of short-form 

development. Psychol. Assess., 12, 102–111. 

Stanton, J.M., Sinar, E.F., Balzer, W.K., et al. (2002). Issues and Strategies for Reducing 

the Length of Self-Report Scales. Pers. Psychol., 55, 167–194. 

Vannson, N., James, C., Fraysse, B., et al. (2015). Quality of Life and Auditory 

Performance in Adults with Asymmetric Hearing Loss. Audiol. Neurotol., 20, 38–43. 

Widaman, K.F., Little, T.D., Preacher, K.J., et al. (2011). On creating and using short 

forms of scales in secondary research. In K. H. Trzesniewski, M. B. Donnellan, & R. E. Lucas, 

eds. Secondary data analysis: An introduction for psychologists. (pp. 39–61). Washington, DC, 

US: American Psychological Association. 



  A new SSQ Short Form         23  

 

Zinbarg, R.E., Revelle, W., Yovel, I., et al. (2005). Cronbach’s α, Revelle’s β, and 

Mcdonald’s ωH: their relations with each other and two alternative conceptualizations of 

reliability. Psychometrika, 70, 123–133.  



  A new SSQ Short Form         24  

 

FIGURES AND FIGURE LEGENDS 

NH HIN NH HIHA

A
g

e
 (

y
e

a
rs

)

20

30

40

50

60

70

80

90

NH           HIN

BE WE BE WE BE WE BE WE BE WE

P
T

A
 (

d
B

 H
L

)

0

20

40

60

80

100

NH            NoHA         HA

Sample BSample A

  HIHA

Sample BSample A

 

Figure 1 

Statistical characteristics of the different subject samples. Left panel: age. Middle and 

right panels: best-ear (BE) and worst-ear (WE) PTA. For Sample B, all HI subjects were 

hearing-aid wearers, and PTAs measured with HAs and without Has (‘No HA’) are reported. 
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Figure 2 

Factor loadings computed using factor analysis applied on the responses to 15-item 

subsets from the full SSQ corresponding to the 15iSSQ (left panel) or to the SSQ15 (right 

panel). The three factors are indicated by different colors (black: factor 1; dark-grey: factor 2; 

light-grey: factor 3). The different subject samples are shown using different symbols, as 

indicated on the figure. ‘15iSSQs’ refers to data collected separately in 88 HIHA subjects using 

the 15iSSQ. 
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Figure 3 

Tree diagram obtained using hierarchical cluster analysis (ICLUST) of the 15iSSQs data 

from 196 HI subjects. Shortened verbal descriptions (after Bahn et al., 2012) of the 15 items 

are listed on the left, grouped by subscale. The most similar items are combined first, and 

increasingly less similar clusters are represented from left to right. For each cluster, the alpha 

coefficient and Revelle’s B (worst-split-half reliability) are provided. Three main clusters (in 

black: C8, C10 and C12), corresponding to a main subscale, are identified. 
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Figure 4 

Left panel: full and short-form SSQ scores for the 88 HIHA subjects (blue) and 35 young 

NH subjects (green) composing Sample B. The short-form scores were either, obtained using 

the 15iSSQ or, computed by tallying scores across five, 12, or 15-item subsets of the (full) SSQ 

corresponding to the SSQ5, the SSQ12, the SSQ15, or the 15iSSQ; the latter subscores are 

referred to as ‘15iSSQs’, to distinguish them from scores obtained using the 15iSSQ. Right 

panel: full and short-form SSQ scores obtained using subsets of the (full) SSQ in the 196 HI 

subjects (blue) and 98 young NH subjects (green) composing Sample A. Error bars show 95% 

confidence intervals. 
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Figure 5 

ROCs for each subscale (Speech, Spatial, Qualities). Left: ROCs computed based on 

Sample-A data. Right: ROCs computed based on Sample-B data. Top row: ROCs computed on 

scores for the (full) SSQ and for various SSQ short-forms. Bottom row: ROC curves computed 

on subscale scores for either the (full) SSQ or the 15iSSQ.  
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Table 1 

 

Population analyzed 88 HIHA patients 196 HIN patients 

Form analyzed 15iSSQ 15iSSQs SSQ15s 15iSSQs SSQ15s 

Kaiser-Meyer-Olkin (kmo) 
index 

0.92 0.84 0.9 0.93 0.93 

KMO values for individual 
items 

0.86 0.71 0.73 0.88 0.86 

Bartell's test of sphericity 
(df=105, p<0.00001) (Chi2) 

1300 1220 1069 2838 2656 

Eigenvalues of first three 
factors (F1, F2 and F3) 

8.2, 1.7, 1.4 8.2, 1.3, 1.1 8.0, 1.3, 1.0 8.8, 1.5, 1.0 8.6, 1.2, 1.0 

% variance explained by 
the three factors 

55, 11, 9 55, 9, 8 54, 9, 7 58, 10, 7 58, 8, 7 

Cumulative variance 
explained (%) 

75 71 69 75 72 

Mean communality (SD) 0.75 (0.12)  0.71, (0.15) 0.69, (0.10) 0.75 (0.08) 0.71 (0.10) 

Minimum communality 0.59 0.49 0.55 0.6 0.55 

% variance explained by 
the three rotated factors 

28, 24, 24 27, 23, 21 27, 21, 21 26, 25, 24 25, 24, 23 

Correlation coefficient 
between the three factors 

0.44 to 0.63 0.52 to 0.67 0.45 to 0.59 0.54 to 0.66 0.65 to 0.66 

Items on which F1 loads, 
with minimum load 

Spatial, 0.57 Spatial, 0.73 Spatial, 0.62 Speech, 0.64 Spatial, 0.65 

Items on which F2 loads, 
with minimum load 

Speech, 0.65 Speech, 0.52 Speech, 0.51 Quality, 0.65 Quality, 0.56 

Items on which F3 loads, 
with minimum load 

Quality, 0.67 Quality, 0.57 Quality, 0.43 Spatial, 0.73 Speech, 0.66 

Tucker-Lewis index 0.96 0.87 0.9 0.93 0.92 

CFI (Comparative fit index) 0.98 0.92 0.94 0.96 0.95 

RMSR 0.03 0.04 0.04 0.03 0.03 

RMSEA (root mean square 
error of approximation) 

0.08 0.13 0.11 0.1 0.1 

 

Table 1: Results of factor analyses performed on 15iSSQ, 15SSQs, and SSQ15 data 

from the HIHA and HIN subjects. 

 

List of SDC: 

Appendix : SupplementaryData.xlsx, available upon request (annie.moulin@cnrs.fr) 
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