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In this paper, we investigate a particular class of switching functions between two linear systems in the plan. The considered functions are defined in terms of geometric constructions. More precisely, we introduce two criteria for proving uniform stability of such functions, both criteria are based on the construction of a Lyapunov function. The first criterion is constructed in terms of an algebraic reformulation of the problem and linear matrix inequalities. The second one is purely geometric. Finally, we illustrate these methods with a numerical example.

INTRODUCTION

A switched system is a (continuous or discrete-time) dynamical system composed of a finite number of subsystems together with a rule, called the switching function or the switching law, that orchestrates the switching between subsystems. Such systems have been studied in various areas of control theory. In particular, stability [START_REF] Decarlo | Perspectives and results on the stability and stabilizability of hybrid systems[END_REF]; [START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF]; [START_REF] Molchanov | Criteria of asymptotic stability of differential and difference inclusions encountered in control theory[END_REF], controllability [START_REF] Sun | Switched linear systems: control and design[END_REF]; [START_REF] Sun | Controllability and reachability criteria for switched linear systems[END_REF], observability [START_REF] Bemporad | Observability and controllability of piecewise affine and hybrid systems[END_REF]; [START_REF] Egerstedt | On observability and reachability in a class of discrete-time switched linear systems[END_REF]; [START_REF] Hespanha | Nonlinear norm-observability notions and stability of switched systems[END_REF], stabilization [START_REF] Johansson | Piecewise linear control systems: a computational approach[END_REF]; [START_REF] Pettersson | Synthesis of switched linear systems[END_REF]; [START_REF] Sun | Analysis and synthesis of switched linear control systems[END_REF], optimal control [START_REF] Bemporad | Control of systems integrating logic, dynamics, and constraints[END_REF]; [START_REF] Xu | Optimal control of switched systems based on parameterization of the switching instants[END_REF], aperiodic sampling [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF], or for discrete-time delay systems [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]; [START_REF] Fridman | Introduction to time-delay systems: Analysis and control[END_REF], for instance.

Stability and stabilization problems generally consist in searching for or proving that a class of switching functions induce, for every initial condition, a convergent trajectory, see [START_REF] Lin | Stability and stabilizability of switched linear systems: A short survey of recent results[END_REF]; [START_REF] Sun | Analysis and synthesis of switched linear control systems[END_REF]. Numerical methods for proving stability results are based on linear matrix inequalities (LMI) and Lyapunov functions or their adaptations, such as, quasi-quadratic [START_REF] Hu | Non-conservative matrix inequality conditions for stability/stabilizability of linear differential inclusions[END_REF], parameter dependent [START_REF] Daafouz | Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach[END_REF], path-dependent [START_REF] Lee | Uniform stabilization of discrete-time switched and Markovian jump linear systems[END_REF], non-monotonic [START_REF] Athanasopoulos | Alternative stability conditions for switched discrete time linear systems[END_REF]; [START_REF] Megretski | Integral quadratic constraints derived from the set-theoretic analysis of difference inclusions[END_REF]; [START_REF] Bliman | Stability analysis of discrete-time switched systems through Lyapunov functions with nonminimal state[END_REF]; [START_REF] Kruszewski | Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time ts fuzzy models: A new approach[END_REF]; [START_REF] Ahmadi | Non-monotonic Lyapunov functions for stability of discrete time nonlinear and switched systems[END_REF], with an augmented state vector [START_REF] Gomide | Stability analysis of discrete-time switched systems under arbitrary switching[END_REF], composite quadratic [START_REF] Hu | Non-conservative matrix inequality conditions for stability/stabilizability of linear differential inclusions[END_REF]; [START_REF] Hetel | Discrete-time switched systems, set-theoretic analysis and quasi-quadratic Lyapunov functions[END_REF] Lyapunov functions or using a Gaussian elimination procedure [START_REF] Aleksandrov | Stability analysis for a class of switched nonlinear systems[END_REF].

In this work, we are interested in linear planar switched systems with two subsystems. A complete stability analysis of such systems was done using algebraic invariants, namely the traces and the determinants of the two matrices of the two subsystems [START_REF] Balde | A note on stability conditions for planar switched systems[END_REF]. In the present paper, we are . interested in stabilization problems, where we wish to construct a stable switching function using geometric methods. Indeed, our original goal is to partition the plane into four regions using two distinct lines passing through the origin, and define the switching signal as being the same on two adjacent regions, but alternating while passing from a region to another, see Fig. 1. A different problem is studied here: we assume that two lines passing through the origin are given, and we search for criteria to guarantee that the switching signal defined by these two lines is globally stabilizing, that is, the trajectories induced by this signal converge to the origin. Two such criteria are proposed, both of them involve the design of Lyapunov functions. The first one is based on an algebraic reformulation of the problem in terms of quadratic forms, and the Lyapunov function is constructed in terms of solutions of linear matrix inequalities. The second approach uses purely geometric tools, and the Lyapunov function is constructed in terms of the existence of a parallelogram such that the trajectories are contracted along them. As an illustration of this method we recover an example treated in [START_REF] Lin | Switching stabilizability for continuous-time uncertain switched linear systems[END_REF].

The paper is organized as follows. In Section 2, we recall general notions on continuous-time switched systems, and classical Lyapunov functions properties to prove global exponential stability of such systems. In Section 3, we formulate our general problem and give two reformulations that are used in the sequel. In Section 4, our two main results are proven: two sufficient conditions, one algebraic and the other geometric, for the existence of a solution to the general problem. In Section 5, we illustrate the two conditions with a complete numerical example.

PRELIMINARIES

Let us begin with some notation. For n, m two strictly positive integers, the set of real n × m-matrices is denoted by R n×m . Let

• denote the Euclidean norm on R n . For a matrix P ∈ R n×n , we write P > 0 if P is a positive definite matrix and P < 0 if P is a negative definite matrix.

In this short section, we recall some general notions of continuous-time switched linear systems that are used in the sequel.

Consider n, p, two strictly positive integers, and a finite set of matrices A = {A i ∈ R n×n | 1 ≤ i ≤ p}. A continuous-time switched linear system is described by:

ẋ(t) = A σ (t) x(t), t ∈ R >0 , x(0) = x 0 ∈ R n (1)
where x : R >0 → R n represents the system state, x 0 is the initial condition and σ : R >0 → {1, • • • , p} is a switching function.

The flow associated to σ is denoted by (t, x 0 ) → φ σ (t, x 0 ). Definition 1. Given a switching function σ , the equilibrium point x = 0 of the switched linear system (1) is said to be globally exponentially stable if there exist constant c > 0 and λ > 0 such that

φ σ (t, x 0 ) 2 ≤ ce -λt x 0 2 (2)
holds for all initial conditions x 0 ∈ R n and all t ∈ R >0 . In this situation, we also say that the system (1) is globally exponentially stable.

In the sequel, we will work with systems of the form (1) with

n = p = 2: so A = {A 1 , A 2 ∈ R 2×2 } and ẋ(t) = A σ (t) x(t), t ∈ R >0 , x(0) = x 0 ∈ R 2 (3) 
wit σ : R >0 → {1, 2}.

Our goal is to provide algebraic and geometric conditions on the switching function σ to prove that (3) is globally exponentially stable. Our proofs are based on the design of Lyapunov functions (so, positive functions V : R 2 → R ≥0 , with the property that V is decreasing along trajectories of (3)). Indeed, recall that the existence of such a function guarantees global exponential stability.

GENERAL PROBLEM

For two angles θ 1 , θ 2 ∈ [0, 2π) such that θ 1 = θ 2 mod (π), denote by D θ i the unique line passing through the origin making an angle θ i mod (π) with the x 1 -axis.

Our general problem can be stated as following: given two square matrices A 1 , A 2 ∈ R 2×2 , do there exist angles θ 1 and θ 2 as above such that ( 3) is globally exponentially stable, with the switching function σ : R >0 → {1, 2} defined by 

σ (t) = i if x(t) ∈ O i ,
(t) ∈ {1, 2} if x(t) ∈ O i , where O i (i = 1, 2) denote the topological closures.
Remark that the lines D θ i form the intersection of the two regions O i , i = 1, 2. Moreover, we also point out that the switching function is not well-defined on these two lines. However, in our main results stated in Section 4, we assume that there is no sliding motion along trajectories, which is sufficient for σ to be well-defined. For more details, see Definition 5 and the discussion after this definition.

Next, we will use the following terminology: Definition 2. We say that a pair of angles (θ 1 , θ 2 ) is stabilizing for (A 1 , A 2 ) if it is a solution to the general problem. In the next section, two sufficient conditions are presented such that a given pair of angles

(θ 1 , θ 2 ) is stabilizing for (A 1 , A 2 ).
The first sufficient condition, given in Section 4.1, is algebraic, and the second one, given in Section 4.2, is geometric. In these sections, we use reformulations of the problem by giving other descriptions of Fig. 1.

Algebraic formulation

The algebraic reformulation of Section 4.1 is based on the following proposition. Proposition 3. There exists a one-to-one correspondence between pairs of angles (θ 1 , θ 2 ) such that θ 1 = θ 2 mod (π) and real symmetric matrices R with eigenvalues (λ , -1), where λ > 0.

Proof. It is easy to see that pairs of angles that are different modulo π are in bijective correspondence with pairs of distinct lines passing through the origin. Given such a pair of distinct lines, there exists a basis composed of orthonormal unit vectors and a scalar a = 0 such that the two lines are represented by the two equations

x 2 = a x 1 , x 2 = -a x 1 .
(4) In this coordinate system, these lines are solutions of the equation x T R x = 0, where

R = a 2 0 0 -1 . (5) 
The matrix R has eigenvalues -1 and a 2 > 0. In the original coordinate system, the two lines are solutions of x T Rx = 0, where R = (R θ ) T RR θ , with R θ the rotation matrix of angle θ corresponding to the change of coordinates. So R has the same eigenvalues that R, which proves one implication. Conversely, let R be a real symmetric matrix with eigenvalues λ > 0 and -1, so that R admits a diagonal form R such has (5). In the coordinate system corresponding to this diagonal form, the two lines with equations such as in (4) are distinct, which proves the other direction.

Using the previous notation, from Proposition 3, we deduce

D θ 1 ∪ D θ 2 = x ∈ R 2 | x T Rx = 0 .

Fig. 2. Definition of matrices dynamics

Notice that if we replace R by the matrix R = λ R, with λ = 0, then x T Rx = 0 is equivalent to x T Rx = 0 and that R has eigenvalues λ > 0 and -1 if and only if R has a strictly positive and a strictly negative eigenvalue. Moreover, a real symmetric matrix with a strictly positive and a strictly negative eigenvalue is nothing but a real symmetric matrix with a strictly negative determinant. Hence, by the Proposition 3 an algebraic characterization of Fig. 1 can be proposed. Given a real symmetric matrix R with a strictly negative determinant, let v 1 and v 2 be two linearly independent vectors1 that are solutions to the quadratic equation x T Rx = 0. The vector v i is a direction vector of D θ i (i = 1, 2), so if we allow to change R by -R, we may assume that O 1 is the region where the quadratic form x T Rx is strictly positive, and O 2 is the region where it is negative. Hence, Fig. 1 corresponds to the diagram given in Fig. 2.

Geometric formulation

The geometric reformulation of Fig. 1 consists in starting with the lines D θ 1 and D θ 2 instead of the angles, that is, we consider two different lines D 1 and D 2 passing through the origin, and we denote by O 1 and O 2 the induced regions. This is pictured in Fig. 3.

To finish this section, it remains to adapt Definition 2 to our new situations. Definition 4.

(1) We say that a real symmetric matrix with strictly negative determinant is stabilizing for (A 1 , A 2 ) if the corresponding pair of angles by Proposition 3 is stabilizing for (A 1 , A 2 ).

(2) We say that a pair of lines (D 1 , D 2 ) is stabilizing for (A 1 , A 2 ) if the pair of angles they define with the x 1 -axis is stabilizing for (A 1 , A 2 ).

MAIN RESULTS

In this section, we establish our criteria for proving stability.

Both of these criteria require that no sliding motion occur. We first recall this notion. The previous definition means that both matrices A 1 and A 2 point in the same direction at every point of D, that is, the trajectory defined by the matrices necessarily cross D. Equivalently, that means that no trajectory slides along D.

A sufficient algebraic condition

In this subsection, we fix a symmetric matrix R with strictly negative determinant as well as two linearly independent vectors v 1 and v 2 , solutions to x T Rx = 0, such that the lines passing through the origin and oriented by v i (i = 1, 2) induce no sliding motion. Let O 1 and O 2 be the regions they define,respectively, and let O 1 , O 2 be their topological closures, see Fig. 2. Let us consider the system (3) defined in the previous section.

Our sufficient condition for the matrix R to be stabilizing for (A 1 , A 2 ) is based on the construction of a piecewise Lyapunov function. The construction of the latter is based on the existence of a solution to a linear matrix inequalities (LMI) problem. Theorem 6. Let A 1 , A 2 ∈ R 2×2 , let R be a symmetric matrix with strictly negative determinant and let v 1 and v 2 be two linearly independent solutions to x T Rx = 0 such that the lines passing through the origin and oriented by v i (i = 1, 2) induce no sliding motion. Assume that the following LMI problem admits a solution: there exist τ 1 , τ 2 ≥ 0 and symmetric matrices P 1 , P 2 such that:

P 1 -R > 0, P 2 + R > 0, (6a) -(A T 1 P 1 + P 1 A 1 ) -τ 1 R > 0, -(A T 2 P 2 + P 2 A 2 ) + τ 2 R > 0, (6b) v 1 (P 1 -P 2 )v 1 = 0, v 2 (P 1 -P 2 )v 2 = 0. ( 6c 
)
Then R is stabilizing for (A 1 , A 2 ).

Proof. First, notice that O 1 and O 2 are the sets of points x where the quadratic form x T Rx is non-negative and nonpositive, respectively. Let τ i and P i , i = 1, 2, be solutions to the LMI problem given in the statement of the theorem. Consider the function V : R2 → R defined by V (x) = x T P i x, if x ∈ O i , i = 1, 2. The function V is well-defined since equation (6c) means that x T P 1 x = x T P 2 x whenever x satisfies x T Rx = 0, that is whenever x ∈ O 1 ∩ O 2 2 . Moreover, from (6a), P 1 is positive definite when R is positive definite and P 2 is positive definite when R is negative definite. So by definition, we deduce that V is positive everywhere. An adaptation of this argument shows that (6b) implies that V is strictly negative along the trajectories of ( 3), so that V is strictly decreasing along trajectories. Hence, the trajectories converge exponentially to zero.

Note that (6a) does not impose the matrices P 1 or P 2 to be positive definite. This relaxes conditions in the literatures where composed quadratic functions admit only positive definite functions.

A sufficient geometric condition

In this subsection, we fix two different lines D 1 and D 2 passing through the origin. Let O 1 and O 2 be the regions they define and let O i be the topological closures of these regions, see Fig. 3. Let us consider the system (3) defined in the previous section.

In this section, we are looking for a sufficient condition for (D 1 , D 2 ) to be stabilizing for (A 1 , A 2 ) in the case where the lines D 1 and D 2 induce no sliding motion. To establish this sufficient condition, it is required the existence of a contractive pair for (D 1 , D 2 ). Then that will allow us to construct a piecewise Lyapunov function. Definition 7. Let L 1 , L 2 ∈ R 1×2 . Given two lines D 1 and D 2 , if there exist λ 1 , λ 2 > 0 such that (i) D 1 and D 2 are the diagonals of the parallelogram bounded by the equations

| L i x |= λ i , i = 1, 2, (ii) for i = 1, 2, L i A i x < 0 for every x ∈ R 2 satisfying L i x = λ i and | L j x |≤ λ j , j = i, then we say that (L 1 , L 2 ) is contractive for (D 1 , D 2 ).
Before giving the main result of this section, let us relate the previous notion to the existence of auxiliary stable systems. This approach consisting in using asymptotically stable auxiliary systems for proving stabilization is the one developed in [START_REF] Lin | Switching stabilizability for continuous-time uncertain switched linear systems[END_REF]. Proposition 8. The pair

(L 1 , L 2 ) is contractive for (A 1 , A 2 ) if and only if for every R i ∈ R 2×1 such that L i R i = 1 and | L i R i |≤ λ j
λ i , the following auxiliary system is asymptotically stable ξ

(t) = L i A i R i ξ (t). ( 7 
)
Proof. The auxiliary system ( 7) is one-dimensional, so that it is asymptotically stable if and only if

L i A i R i < 0. Moreover, if x is such that L i x = λ i , with λ i > 0, as in Definition 7, then x = λ i R i . Thus, L i A i R i < 0 is equivalent to L i A i x < 0, which
shows the proposition. Now, we may introduce the main result of the section. Theorem 9. Consider the system (3). Let D 1 , D 2 be two lines passing through the origin inducing no sliding motion for (A 1 , A 2 ). If there exists a contractive pair

(L 1 , L 2 ) for (D 1 , D 2 ), then (D 1 , D 2 ) is stabilizing for (A 1 , A 2 ).
Proof. Consider the notations of Definition 7. Set Ω i to be the region defined by points p ∈ R 2 such that the line passing through p and the origin meets one of the lines L i p = ± λ i . Let x be the trajectory defined by x(0) = x 0 ∈ R 2 and a switching law δ (t) = i if x(t) ∈ Ω i , ∀t ∈ R + Since D 1 and D 2 are the diagonals of the parallelogram defined such as in Definition 7, the region Ω i is equal to O i and δ is equal to σ . Hence, it is sufficient to show that the trajectory x converges exponentially to 0.

Consider the positive definite function V : R 2 → R defined by

V (p) =| L i p | if p ∈ Ω i .
Remark that V is well defined since the regions Ω 1 and Ω 2 determine a partition of R 2 . We show that the Dini derivative D + V of V is strictly negative along x. At time t 0 , x(t 0 ) belongs to Ω i . First, assume that no switching occurs at t 0 , that is x(t 0 ) belongs to the interior of Ω i . Recall from [START_REF] Blanchini | Nonquadratic Lyapunov functions for robust control[END_REF] that the Dini derivative along x at t 0 satisfies

D + V (x(t 0 )) = lim t→0,t>0 V (x(t 0 ) + tA i x(t 0 )) -V (x(t 0 )) t . (8) 
If L i x(t 0 ) > 0, then we have L i A i x(t 0 ) < 0 since, in this case, we have x(t 0 ) = µx, where x satisfies L i x = λ i and µ > 0. Hence, for t > 0 sufficiently small,

V (x(t 0 ) + tA i x(t 0 )) = L i x(t 0 ) + tL i A i x(t 0 ) is strictly smaller than L i x(t 0 ) = V (x(t 0 )), so that D + V (x(t 0 )) < 0. If L i x(t 0 ) > 0, by adapting the previous arguments, we show D + V (x(t 0 )) < 0.
Now, if a switching occurs at time t 0 , then x(t 0 ) belongs to D 1 ∪ D 2 . Since no sliding motion occurs on these lines, x(t) belongs to Ω j , j = i, for t > t 0 sufficiently small. By replacing i by j in (8) and by adapting the reasoning of the previous paragraph, we show that D + V (x(t 0 )) < 0.

Let us finish this section by showing that the existence of a contracting pair for (D 1 , D 2 ) is not necessary for the latter to be stabilizing. The proof of Theorem 9 is based on the construction of a piecewise Lyapunov function V . In Theorem 10, we show that there exist systems with a stabilizing switch induced by a stabilizing pair of matrices but without any Lyapunov function such as V .

Before that, we recall from [START_REF] Balde | A note on stability conditions for planar switched systems[END_REF] the notion of worst trajectory for (A 1 , A 2 ) ∈ R 2×2 : this is the trajectory x such that at each t, ẋ(t) forms the smallest angle in clockwise sense with the exiting radial direction. In other words, it is the trajectory which moves away in the fastest from the origin. On the other hand, the best trajectory is the worst trajectory for (-A 1 , -A 2 ): this is the trajectory which goes the fastest to the origin. From [START_REF] Balde | A note on stability conditions for planar switched systems[END_REF], the switching signal corresponding to this trajectory is orchestrated by a pair of lines passing through the origin. Theorem 10. There exist matrices A 1 , A 2 ∈ R 2×2 and a stabilizing pair (D 1 , D 2 ) for (A 1 , A 2 ) such that no contractive pair exists for (D 1 , D 2 ).

Proof. Consider two anti-Hurwitz matrices, that is the real parts of their eigenvalues are non-negative, and such that the best trajectory x is periodic. Let (D 1 , D 2 ) be the lines inducing the switching signal corresponding to x. Now, consider a pair of matrices such that their best trajectory goes to zero and is close to x. By continuity, this trajectory is orchestrated by a feedback defined by a pair of lines

(D ε 1 , D ε 2 ) closed to (D 1 , D 2 ).
If the condition of Theorem 9 is necessary, then there exists V ε such as in the proof. When ε goes to zero, V ε goes to a nonzero function V . Moreover, the derivative of V along x vanishes since the latter is periodic, that is we have ẋ(t) V (x(t)) = 0. That implies that ẋ(t) = 0, that is x is constant, which is a contradiction.

EXAMPLE

In this section, we illustrate Theorems 6 and 9 with a numerical example coming from [START_REF] Lin | Switching stabilizability for continuous-time uncertain switched linear systems[END_REF]. Consider the two matrices A 1 := 0 10 0 0 , A 2 := 1.5 2 -2 -0.5 .

Algebraic approach

From [START_REF] Lin | Switching stabilizability for continuous-time uncertain switched linear systems[END_REF], a stabilizing switching is obtained by the lines oriented by the vectors v 1 := (1 0.3) and v 2 := (1 0.11). With notations of Theorem 6, these vectors correspond to the following matrix R := -0.033 -0.095 -0.095 1 .

Then, from Theorem 6, we obtain another proof that this matrix is stabilizing for (A 1 , A 2 ) since there is a solution to the LMIs given by τ 1 = 1.8890, τ 2 = 1.3550 and matrices P 1 and P 2 We note that the matrix P 2 is not sign definite. The obtained level set of the function V (x) = max(x T P 1 x, x T P 2 x) is depicted in Figure 4. 

Geometric approach

Regarding Theorem 9, our objective is to construct a stabilizing pair of lines for (A 1 , A 2 ). We proceed in several steps. In particular, we are looking for two matrices L i := (a i b i ), i = 1, 2, which are contractible for the pair of lines we wish to construct. We havee L 1 A 1 = (0 10a 1 ) and L 2 A 2 = (1.5a 2 -2b 2 2a 2 -0.5b 2 ). We will use Ω 1 and Ω 2 as parameters. They are submitted to the restrictions that they form a partition of R 2 and that L i A i is strictly negative on one of the half-regions of Ω i .

Step 1. Letting x := (1, 0) , we have L 1 A 1 x = 0. Hence, x belongs to Ω 2 , so that we must have L 2 A 2 x < 0. That imposes the following restriction:

3a 2 4 < b 2 . (9) 
Moreover, Ω i being cones, there exists x := (x 1 , x 2 ) ∈ Ω 1 such that x 2 > 0. The inequality L 1 A 1 x = 10a 1 x 2 < 0 gives the following restriction:

a 1 < 0. ( 10 
)
Step 2. We formalize L 1 and L 2 by taking into account ( 9) and ( 10), that is we search for these matrices as follows:

L 1 = (-1 b 1 ) and L 2 = (1 b 2 ), with b 2 > 3 4 .
Step 3. We search the top right corner of the parallelogram as in Definition 7 at a point p 1 with coordinates (1, y 0 ). For that, we select y 0 such that L 2 A 2 y 0 = 0, that is

y 0 = 2b 2 -1.5 2 -0.5b 2 .
We freely select b 2 = 1, so that y 0 = 1 3 , and

p 1 = 1, 1 3 . ( 11 
)
In particular, for every y < y 0 , the point (1, y ) is in the region L 2 A 2 < 0. Moreover, we already have L 2 = (1 1) .

Step 4. We search the bottom right corner p 2 of the parallelogram. Applying the criterion of Theorem 9, the segments [p 1 , p 2 ] and [p 1 , -p 2 ] have to be in the regions L 2 A 2 < 0 and L 1 A 1 < 0, respectively. From the previous step, for the first condition, we may select p 2 in the right half-plan with the second coordinate strictly smaller than 1 3 . For the second condition, -p 2 must be in the upper half-plan. Finally, p 2 must belong to the line directed by L 2 and passing through p 1 , hence we select

p 2 = 19 12 , - 1 4 . ( 13 
)
Now, we obtain b 1 since the line passing through -p 2 and p 1 is directed by L 1 :

L 1 = (1 -31) . ( 14 
)
Step 5. We obtain the two lines D 1 and D 2 that are the diagonals passing through p 1 and -p 1 and by p 2 and -p 2 , respectively: D 1 and D 2 have equations x 2 = 1 3 x 1 and x 2 = -3

19 x 1 , respectively. Finally, the switching function defined by these two lines induces a globally exponentially stable system

(3) since, by construction, (L 1 , L 2 ) is contractive for (D 1 , D 2 ), so (D 1 , D 2 ) is stabilizing for (A 1 , A 2 ).

CONCLUSION

We presented two approaches for proving stability of a continuoustime switched system defined by a pair of 2-dimensional square matrices. These proofs were based on the design of Lyapunov functions: by using LMIs and algebraic tools for the first one and by using a geometric method for the second. This work could be extended into the following two directions. The first one will consist in achieving algorithmic constructions from our results. The second one will be to provide a full characterization of the pair of matrices having a solution to the general problem we introduced at the beginning of Section 3.
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