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Abstract  

Theory and empirical data showed that two processes can boost selection against 
deleterious mutations, thus facilitating the purging of the mutation load: inbreeding, by 
exposing recessive deleterious alleles to selection in homozygous form, and sexual selection, 
by enhancing the relative reproductive success of males with small mutation loads. These 
processes tend to be mutually exclusive because sexual selection is reduced under mating 
systems that promote inbreeding, such as self-fertilization in hermaphrodites. We estimated the 
relative efficiency of inbreeding and sexual selection at purging the genetic load, using 50 
generations of experimental evolution, in a hermaphroditic snail (Physa acuta). To this end, we 
generated lines that were exposed to various intensities of inbreeding, sexual selection (on the 
male function) and nonsexual selection (on the female function). We measured how these 
regimes affected the mutation load, quantified through the survival of outcrossed and selfed 
juveniles. We found that juvenile survival strongly decreased in outbred lines with reduced 
male selection, but not when female selection was relaxed, showing that male-specific sexual 
selection does purge deleterious mutations. However, in lines exposed to inbreeding, where 
sexual selection was also relaxed, survival did not decrease, and even increased for self-
fertilized juveniles, showing that purging through inbreeding can compensate for the absence 
of sexual selection. Our results point to the further question of whether a mixed strategy 
combining the advantages of both mechanisms of genetic purging could be evolutionary stable.   
 
Keywords: selfing, experimental evolution, hermaphrodite, purging, mutation load, snail 
 

Background 
Natural selection is often considered as an improvement process, progressively 

increasing the adaptation of organisms to their environment. However, what is known about the 
distribution of the fitness effects of mutations indicates that they are rarely advantageous, and 
mostly vary from slightly deleterious to lethal [1,2]. Thus, natural selection is more often 
purifying genomes from deleterious mutations than accumulating adaptive changes. 
Characterizing when and why this genetic purging is efficient, is therefore crucial to 
understanding the evolutionary fate of both wild and captive populations [3]. 

The efficiency of genetic purging depends on mutations being expressed at the 
phenotypic level on which selection is acting. Two processes are considered to enhance this 
expression, acting in different ways. The first is sexual selection [4,5]. Indeed, if males with 
large numbers of mutations have low reproductive success (e.g., because of female mate choice 
or male-male competition), mutations are eliminated from the population with little 
demographic cost. This idea relies on the genic capture hypothesis [6], i.e. that sexually selected 
traits are highly condition-dependent, so that many deleterious alleles will tend to 
pleiotropically affect male success. A large number of experiments  have been conducted to test 
the effect of sexual selection on purging ([7–13] and previous ones reviewed in [14]). For 
example, Lumley et al. (2015) recently showed that the suppression of sexual selection for many 
generations through imposed monogamy or highly female-biased sex-ratios resulted in elevated 
genetic loads in flour beetles. However, this type of studies yielded overall inconsistent results 
[14]. This inconsistency may be due to sexual-conflict alleles present in the initial standing 
variation of populations. Indeed monogamy relaxes not only sexual selection but also sexual 
conflict, yielding benefits that may conceal the disadvantages of suppressing sexual selection 
[14–18]. This can be avoided by tracking the fate of a limited number of purely deleterious 
mutations introduced, induced or accumulated de novo in populations [7,13,17,19–22] instead 
of the standing load. These mutations, however, represent a small fraction of the genome (and 
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therefore a small expected cumulative effect) compared to the typical standing mutation load 
of natural populations. 

The second process that can purge the genetic load is inbreeding [23,24], especially 
under its strongest form (i.e. self-fertilisation). Inbreeding increases homozygosity, exposing 
recessive deleterious alleles to natural selection. It has been argued, however, that only part of 
the load, that is, highly recessive alleles with large effect, can be purged quickly [23,25]. Inbred 
populations still tend to accumulate slightly deleterious, partially-recessive mutations, a process 
aggravated by selective interference and the decrease of effective population size associated 
with inbreeding [26].  

Self-fertile hermaphroditic organisms can be exposed to both strong sexual selection 
and self-fertilization, depending on how they reproduce, and can purge their genetic load 
through both processes. Many hermaphroditic animals or plants are actually polyandrous and 
subject to intense sexual selection [27–32], and some of them also have the ability to self-
fertilize. Under reduced mate or pollen availability, these populations may self-fertilize as a 
reproductive assurance strategy [33], and some lineages eventually evolve towards preferential, 
often nearly-complete, self-fertilization [34,35]. Evolutionary transitions towards self-
fertilization entail a relaxation of sexual selection that may compromise the purging of 
deleterious mutations. To understand how the mutation load affects the evolution and 
persistence of selfing lineages, it is important to evaluate the relative efficiency of inbreeding 
and sexual selection at promoting genetic purging. A related issue is whether the two processes 
affect the same pool of deleterious mutations. As mentioned above, purging by inbreeding 
depends on the homozygous effect (and recessivity) of mutations on survival and fertility, while 
sexual selection predominantly affects mutations with large heterozygous effects on male 
competitiveness. If these two categories do not completely overlap, both the quantity and the 
nature of the purged mutations may differ, those purged by inbreeding being on average more 
recessive. It is therefore important to monitor how these two processes affect not only fitness 
traits, but also inbreeding depression, which reflects the recessive load. Such studies have not 
been conducted to the best of our knowledge. 

We conducted such a comparison in Physa acuta, a self-compatible hermaphroditic 
freshwater snail. This species shows both pre- and post-copulatory sexual selection on the male 
function [30,36,37] but not -or very little- on the female function. This is because male 
reproductive success is significantly increased by remating after the first copulation, while 
female reproductive success is not. We generated experimental evolution lines of P. acuta 
belonging to four types. The first three types were purely outcrossing; they included the control 
type (maintained under a polygamous mating system typical of high-density populations) and 
two types with relaxed selection on respectively the female or male function (selection on the 
male function being relaxed by removing sexual selection). The fourth type was undergoing 
regular self-fertilization and no sexual selection. We compared the accumulation of deleterious 
mutations under these four regimes by following the change in juvenile survival in selfed and 
outcrossed offspring from all lines in common garden experiments at two evolutionary time 
points (20 and 50 generations). Juvenile survival was chosen because it is an important 
component of fitness and is not sex-specific. 

 We expected, if sexual selection enhances purging, that juvenile survival would 
decrease in lines with relaxed sexual selection, and that this decrease would be stronger than 
that observed in lines with relaxed selection on female reproduction. We expected, if inbreeding 
also promotes purging, that juvenile survival would be higher in lines experiencing both 
frequent self-fertilization and relaxed sexual selection, than in those with only relaxed sexual 
selection. In addition, we expected purging by inbreeding to target more specifically deleterious 
alleles with recessive effect, resulting in a reduced inbreeding depression in lines exposed to 
inbreeding compared to all others. 
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Methods 
Experimental evolution 

Our model species, Physa acuta (Hygrophila, Physidae), is a simultaneous 
hermaphroditic snail that naturally outcrosses but can self-fertilize its eggs in the absence of 
mates [38]. Experimental evolution lines (hereafter EELs) were founded in 2008, from a 
common, genetically diverse pool of individuals issued from 10 natural populations sampled in 
November 2007 near Montpellier, France. Details on the common source population, as well 
as on usual rearing procedures for this species, can be found in [39]. 

We created four types of EELs (C, M, F, and S) allowing us to impose different 
intensities of sexual selection (on the male function), different intensities of selection on female 
reproduction, and different levels of inbreeding. To this end, we manipulated both the mating 
system and the among-individual variance in female reproductive success (Table 1; 
supplementary Fig. S1). Three mating systems were used: (i) mating in large groups maintained 
for one week (hereafter mass-mating), which in this species ensures that each individual is 
inseminated by several partners and that competition occurs among different male-acting 
individuals to obtain mates, and among stored sperm from different donors to fertilize eggs 
(Pélissié et al. 2012, 2014). Thus, this system ensures 100% outcrossing, and authorizes sexual 
selection. (ii) mating in random monogamous pairs for one week, which relaxes sexual 
selection, but still under outcrossing (iii) self-fertilization, which relaxes sexual selection and 
imposes inbreeding. Variance in female reproductive success was manipulated when collecting 
juveniles laid separately by all mothers in individual boxes (supplementary Figure S1). In the 
“no regulation” treatment, we pooled together all juveniles to constitute a pool from which the 
next generation of adults was drawn at random, thus incorporating the natural variance in 
female reproductive success, and letting selection on female reproduction operate. In the 
“juvenile-regulation” treatment we collected a fixed number of juveniles per mother, 
irrespective of how many were present, therefore limiting the variance in female reproductive 
success and the selection on female reproduction. Note that this selection is fertility selection 
and not of sexual nature; it has been previously shown that sexual selection (as measured by 
the Bateman gradient) acts only on the male function in this species (Pélissié et al. 2012). 

These treatments were combined as follows to produce the four types of lines (Table 1; 
supplementary Fig. S1). In the control type (C) both male and female selection was operating 
since individuals reproduced in mass mating and juvenile numbers were not regulated. In the 
male-selected type (M), snails reproduced in mass-mating, inducing sexual selection on the 
male function, but female selection was relaxed through juvenile regulation. The opposite 
occurred in the female-selected type (F): male sexual selection was relaxed by imposing 
monogamy, but juveniles were not regulated, preserving selection on the female function. The 
situation in the selfing type (S) was a bit more complex: the mating system alternated between 
selfing (odd-numbered generations) and monogamy (even-numbered generations) and juvenile 
numbers were never regulated. The selection regime in S lines therefore resembled that of F 
lines (no sexual selection, but selection on female reproduction is preserved), except that the s-
lines were regularly exposed to inbreeding. We did not enforce selfing at each generation in S-
lines, based on previous work suggesting that too many lines would have been lost given the 
strong inbreeding depression [40]. The practical details of the passage of generations in each 
line type are given in supplementary Fig. S1. Each line type was replicated twice (e.g., C1 and 
C2 for the C type), resulting in eight EELs in total, all evolving at a population size of ca. 80-
90 reproductive adults per generation.  

 
Juvenile survival assay 
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The EELs were initiated in 2008, and we sampled them twice, around the 20th (year 
2012) and 50th (2016) generations of experimental evolution, to evaluate change in juvenile 
survival. We chose juvenile survival as our focal fitness component because it affects male and 
female fitness in the same way in simultaneous hermaphrodites, and therefore reflects the load 
of non sex-specific deleterious mutations. In addition, we evaluated the survival of both 
outcrossed and selfed offspring in order to compare the magnitude of inbreeding depression 
generated by deleterious mutations among lines, which depends on their degree of recessivity.  

Individuals used as parents in the first experiment (2012) were extracted from 
generations G17 (S1 and S2), G22 (M2 and F2) and G23 (other lines). The second experiment 
took place in 2016-2017 and was spread over a year in order to include a large number of 
individuals. We therefore extracted individuals from each EEL at different successive 
generations (C1: G47-G52, C2: G48-G51, M1: G51-G52, M2: G50-G51, F1: G51-G53, F2: 
G50-G51, S1:G42-G47, S2: G43-47). However, we assume that evolution of survival is slow 
enough (Noel et al. 2016) to consider that this experiment constitutes a single evolutionary time 
point, near the 50th generation. In both experiments, the generations studied differ among lines, 
because the EELs slowly got desynchronized since their foundation. This is especially true in 
S lines because isolated mature adults wait for ca. two weeks before selfing compared to the 
moment they would engage in outcrossing [41], resulting in a longer generation time in S lines 
than in others. Furthermore, we always started the experiments with outcrossed parents. 
Therefore, assays were possible only in even-numbered generations for the S lines (extending 
the total time span of experiments). Each experiment was subdivided in several temporal blocks 
(based on the date of egg collection) to account for the possible effect of temporal variation in 
raising conditions on juvenile survival (4 and 13 blocks respectively for the two experiments). 
Note that some data (C and S lines from the first experiment) have already been used in a 
previous study[39]. In what follows, we refer to the first and second experiment as the G20 and 
G50 experiment respectively. 

For each experiment, Half of the individuals extracted from the lines were outcrossed 
either in pairs (G20 experiment) or in mass-mating (G50) during three days, and then re-isolated 
and allowed to lay eggs for three days. The other half remained isolated until they started to lay 
self-fertilized eggs, and then allowed to lay for three more days. We collected the clutches in 
both cases, counted the eggs, and added food. Fifteen days later, the juveniles alive were 
counted in each box. Juvenile survival was computed as the number of juveniles divided by the 
initial number of eggs. Eggs hatch in approximately one week, so the eggs that failed to produce 
live juveniles either did not hatch, or produced hatchlings that died during their first week. In 
total, we obtained clutches from 3328 different individuals (see Table 3 for their repartition 
among experiments, treatments and line types), resulting in 234,187 eggs and 104,540 live 
juveniles. 
 
Statistical analyses 
Juvenile survival (coded as a two-column vector, number of juveniles alive and number of eggs 
that failed to produce juveniles) was analysed as a binomial variable using a Generalized Linear 
Mixed Model with the lme4 package in R [42]. Experiment (G20 vs G50), line type (C, M, F, 
S) and treatment (outcrossed vs selfed), and their interactions, were included as fixed effects. 
Replicate within line type, its interactions with fixed effects (other than line type), and temporal 
block, were added as random effects. Moreover, we added individual identity as a random factor 
in order to correct for overdispersion [43]. The fixed and random effects were tested using chi-
square likelihood-ratio tests (LRT). In addition we used Wald tests, for each fixed factor, to test 
which levels of fixed factors were significantly different from the reference level (controls), 
correcting for multiple testing by the FDR method of Benjamini-Hochberg over the different 
levels [44]. 
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Microsatellite data 

We measured genetic diversity at molecular markers to assess whether line types 
underwent different amounts of neutral genetic drift, and whether the individuals produced by 
crosses were indeed cross-fertilised as we intended (i.e. that none of the lines, including the S 
type, evolved some form of preferential self-fertilization). We assessed variation at seven 
microsatellite loci (AF762, AF764, Pac1, Pac2, Pasu11, Pasu2, Pasu9; protocols in [45,46]) in 
32 individuals from the 49th generation of each EEL. Note that for the S lines, the individuals 
we genotyped were actually offspring from crosses between the G48 parents (instead of the 
selfed offspring that were used to propagate the lines). Microsatellite variation was quantified 
using Nei’s unbiased estimate of genetic diversity (He), observed heterozygosity (Ho), the 
number of alleles per locus, and Weir & Cockerham’s (1983) estimator (f) of the inbreeding 
coefficient FIS, using the software Genetix [47].  

 
Results 

Depending on treatment, experiment and line type, survival varied between 0.201 (F, 
G20, selfed) and 0.617 (M, G50, outcrossed), as shown in Figure 1. The fixed factors together 
explained 30.0% of the variance in logit-survival, while the random factors explained 3.6% and 
the rest (66.3%) was residual variance among individuals (Table 2). Among the random factors 
block was significant, as well as the replicate*treatment interaction. However, the fraction of 
variance due to replicate and all its interactions was less than 1%.  Among the fixed effects, 
treatment, line type, and their interaction were significant by LRT (Table 2), meaning that there 
was significant inbreeding depression, and that line types differed in average juvenile survival, 
but also in their levels of inbreeding depression. In addition, no consistent change in survival 
or inbreeding depression was detected between G20 and G50 on average over all line types 
(experiment effect and experiment*treatment interaction both NS). However, the highly 
significant line type*experiment interaction revealed strong line type-specific changes in 
survival.  

In order to further characterize these effects, we report the average survival of each line 
type/treatment/experiment, as well as effect sizes and their significance (Wald tests) for each 
term in the full linear model (Table 3). We chose the C line type, the G20 experiment, and the 
outcrossed treatment as references in the linear model. The intercept of the model therefore 
reflected (in logit-scale) the juvenile survival of the C type under outcrossing in G20. The 
average survival of this reference category was 0.495 (Table 3, Figure 1). Wald tests indicate 
that C lines exhibited significant inbreeding depression (Treatment (selfed) term) with ca. 50% 
decrease in survival in inbred offspring relative to outbred ones (inbreeding depression 
estimates are given in the legend of figure 1). The performance of the C lines, irrespective of 
treatment, did not significantly change between the G20 and G50 experiments (Experiment 
(G50) and Treatment * Experiment (selfed, G50) in Table 3). In addition the G20 means of C 
lines were close to those obtained from natural populations that were used to constitute the 
founding population, measured in a previous study (see Figure 1). 

To detail the line type effect and its interaction with treatment and experiment, we will 
examine the results from each line type (M, F, S) in turn, keeping C as a reference (Table 3 and 
Figure 1). Outcrossed juveniles from the M line type survived significantly less than those from 
C in G20 (line type (M) in Table 3), but C and M exhibited similar inbreeding depression (Line 
type * Treatment, (M,selfed), NS). The difference in survival between M and C under 
outcrossing disappeared in G50 (significant Line type by Experiment interaction (M, G50)), 
while inbreeding depressions of C and M remained similar (three-way interaction (M, selfed, 
G50) NS).  
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Among all line types, the F line type presented the most striking differences with 
controls. They had a much lower juvenile survival than C in the G20 experiment (Line type (F)) 
and this holded irrespective of treatment, as inbreeding depression did not differ significantly 
between F and C (Line type * treatment (F,selfed)). The difference in outbred survival rates 
between F and C became significantly larger in G50 (Line type by Experiment (F, G50), fig. 1) 
while inbreeding depression remained not significantly different (three-way interaction (F, 
selfed, G50) NS).  

Finally, the survival in S lines did not differ significantly from that in C lines under 
outcrossing in G20 (Line type (S)). However, their performances under inbreeding were higher, 
as their inbreeding depression was significantly lower (Line type * treatment (S, selfed)). These 
patterns did not significantly change in time, as the corresponding components of the Line type 
* experiment (S, G50) and three-way (S, selfed, G50) interactions were NS. The figures suggest 
that inbreeding depression may have increased in the S line type between G20 and G50 (Figure 
1) but this change turns out to be NS.  

Microsatellite genetic diversity varied from 0.14 to 0.53 among the EELs (Figure 2, 
supplementary Table S1). Within each line type the two replicates were similar, except for the 
C type (C2 showing reduced variation compared to C1). All M and F EELs had diversities and 
numbers of alleles comparable to C (i.e. within the range between C1 and C2). The S EELs, in 
contrast, had lower diversity and number of alleles than all other EELs. All f values were small 
and none significantly departed from zero (Table S1) 

 
Discussion 
Suppression of sexual selection leads to the accumulation of deleterious alleles 

In our design, the F lines represent the fate of a population in the absence of sexual 
selection. This absence had a spectacular effect: juvenile survival dropped to 54% of the 
controls (C) after 20 generations and down to 32% after 50 generations. The F lines have 
therefore progressively accumulated deleterious alleles, which may result partly from new 
mutations, and partly from the increase in frequency of alleles present in the founding 
population. All our lines were subject to mutation, genetic drift and selection. The controls 
themselves did not noticeably change in time, with performances in the range of previous 
studies on wild-caught snails [46], suggesting that they were not far from an equilibrium load. 
The genetic diversity at (neutral) microsatellite loci was not lower in F than in C lines, 
suggesting that their effective sizes were not strikingly different – the census sizes were 
regulated every generation at 90 individuals per line, and the reduced variance in male 
reproductive success is expected, if anything, to increase the effective size in F lines relative to 
C, rather than decrease it. The low performances of F lines are therefore likely due to the change 
in the selection regime on deleterious alleles rather than to an accelerated genetic drift. As 
predicted by the genic capture hypothesis [6], our results therefore imply that many alleles that 
are deleterious to juvenile survival in P. acuta are normally eliminated by sexual selection 
through their pleiotropic effects on male success, an effect that is suppressed under monogamy 
(F lines). In agreement with this idea, a previous study [48] on Physa acuta, showed that in 
conditions allowing male-male competition, inbreeding depression was stronger on male 
reproductive success than on female reproductive success –suggesting a higher impact of 
deleterious mutations on male success. 

 
Effect of sexual selection in simultaneous hermaphroditic vs. gonochoric species 

Previous experiments testing the impact of sexual selection through experimental 
evolution in gonochoric species have yielded inconsistent results, partly reflecting a balance 
bewteen the opposing effects of sexual selection and sexual conflict on population fitness, that 
may depend on the study system [14–18]. Our study is the first to address this question in 
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hermaphrodites. Hermaphrodites can differ from gonochoric species in two respects: the 
intensity of sexual selection and the co-expression of male and female traits in a single 
individual, which has consequences on sexual conflicts. With regard to the first aspect, several 
recent studies have shown that strong sexual selection occurs in predominantly outcrossing 
simultaneous hermaphrodites, for example snails [32,49] and worms [31], contradicting the 
Darwinian view that they have too low mental powers to undergo sexual selection [50]. In 
particular, P. acuta is an outcrossing and highly polyandrous snail, with intense sexual selection 
on the male function at both the pre- and post-copulatory stages [30,36]. With regard to sexual 
conflicts, hermaphrodites differ from gonochoric species because some fitness traits, such as 
juvenile survival, are necessarily a common component of both male and female fitness. In 
gonochoric species all fitness traits are expressed separately in either male, or female contexts, 
and therefore potentially affected by sexual conflicts. In hermaphrodites, the opportunity for 
such conflicts is high for reproductive traits (e.g., the production of male gametes may be in 
trade-off with that of female gametes), but low for pre-reproductive survival. Indeed, any 
reduction in juvenile survival automatically reduces both male and female fitness by the same 
factor within each individual. The spectacular effect of the suppression of sexual selection in 
our study may therefore be a consequence of the trait chosen, and the hermaphroditic condition, 
which reduce the impact of sexual conflicts compared to most studies in gonochoric organisms. 

 
Sex-specific effects of relaxed selection  

In theory, the population benefits of sexual selection are linked to an asymmetry 
between the sexes. The theory assumes that more deleterious mutations are eliminated through 
the unsuccessful reproduction of males than through that of females – a cheap way to clear the 
mutation load, as population growth depends mostly on female fertility [4]. Surprisingly, most 
experimental evolution studies suppressed sexual selection in males, but did not symmetrically 
limit the opportunity for selection in females. Some studies, such as [12], limited only the sexual 
component of selection in females (using male-biased sex ratios). This effectively tests whether 
sexual selection is stronger in males, but not that variation in male reproductive success is more 
efficient than variation in female reproductive success at eliminating deleterious mutations. 
Indeed female reproductive success is determined by fertility and largely independent from the 
number of mates in many species, including our study system [30]. Thus, limiting the number 
of males per female is not expected to have a large effect. To validate sexual selection theory, 
one must therefore show that variation in male fitness (determined by sexual selection) is more 
efficient at clearing deleterious alleles than variation in female fitness (mostly determined by 
fertility), and to this end one must relax fertility selection (rather than sexual selection) on 
females. To our knowledge, a single experimental evolution study conducted in Drosophila 
serrata compared the effects of relaxed sexual selection (monogamy) to those of reduced 
variation in female reproductive success, using a design similar to ours [15]. Contrary to 
theoretical expectations, in that study, female selection turned out to be beneficial, and sexual 
selection costly, to population productivity. This was interpreted as an effect of sexual conflict, 
linked to the cost of female harassment by males in lines with opportunity for sexual selection 
[18,51].  

Our results, on the contrary, support the theory of purging by sexual selection. Female 
selection was relaxed in the M lines, and juvenile survival did not decrease on the long term as 
in F lines, demonstrating that selection on female reproduction was not as important as that on 
male reproduction to purge the genetic load. Therefore, alleles affecting juvenile survival have 
stronger pleiotropic effects on male than on female reproduction, as expected from the idea that 
sexual selection makes male fitness more condition-dependent [6]. We would also expect the 
performances of M lines to be somewhat reduced compared to controls (although less than in 
F lines), if some pleiotropic effects on female reproduction existed. A moderate reduction was 

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/273367doi: bioRxiv preprint first posted online Feb. 28, 2018; 

http://dx.doi.org/10.1101/273367


9 
 

indeed observed in G20, but it disappeared around the 50th generation, where M lines survived 
as well as the controls. We did not come up with a clear explanation for this observation. 
However, our results overall show that the contribution of female reproduction to purging 
deleterious alleles acting on juvenile survival is much smaller than that of male reproduction. 
Further studies will be required to examine the evolution of adult reproductive traits in our 
EELs, especially considering that adult traits might more likely be under the influence of sexual 
conflict than juvenile survival. 

 
Inbreeding depression and purging under frequent selfing 

In hermaphrodites, complete self-fertilization suppresses, and partial self-fertilization 
reduces, sexual selection, and the associated genetic purging. However, selfing increases 
homozygosity and exposes partially recessive alleles to selection, therefore promoting another 
form of purging [24,25]. This process is central to classical models of mating system evolution, 
whereby purging in turn selects for higher selfing rates, in a self-reinforcing loop [52]. In line 
with the hypothesis of purging by inbreeding, inbreeding depression was reduced in S lines, 
submitted to frequent selfing, compared to C lines in G20, as already pointed out in a previous 
study [39]. Moreover, M and F lines, which evolved under pure outcrossing like the controls, 
preserved a large inbreeding depression, not significantly different from that of C. The 
difference in inbreeding depression between S and all other lines seemed attenuated in G50, but 
this temporal change is not significant. Overall, inbreeding depression was reduced only in the 
S lines, and this reduction resulted from an increase in the survival of inbred juveniles, rather 
than a decrease in the survival of outbred juveniles. Interestingly, microsatellite analysis did 
not detect hints of self-fertilization among the juveniles produced by nonisolated individuals, 
even in S lines (all Fis were NS). The outcrossed offspring in the S lines were therefore truly 
outcrossed, and our estimates of inbreeding depression were not downwardly biased (which 
would have been possible in case of partial selfing). Overall, the results confirm that some purge 
of deleterious alleles with partially recessive action (i.e. those that contribute to inbreeding 
depression) has occurred specifically in the lines frequently exposed to selfing. 

Two genomic compartments are often considered in the genetic architecture of 
inbreeding depression: very recessive and strongly deleterious alleles on one hand, and mildly 
deleterious and weakly recessive alleles on the other hand [25]. The semi-lethal recessives are 
easily purged under regular selfing, while the slightly deleterious ones are not, making a part 
of inbreeding depression hard to get rid of [24,53]. In an initially outcrossing population 
exposed to regular selfing, purging is therefore expected to slow down as the recessive semi-
lethals are eliminated and the small-effect alleles persist. Their persistence may also be 
facilitated by the decrease in the effective size due to both homozygosity and selective 
interferences under self-fertilization [54], which is confirmed here by the lower genetic 
diversity of the S lines compared to all others. This persistence might explain that inbreeding 
depression still persisted at G50. 

The classical conception of purging through inbreeding, based on allele recessivity, 
ignores the potential pleiotropy of deleterious alleles on sexually-selected traits. However, our 
results in F lines imply that at least some alleles affecting juvenile survival pleiotropically affect 
male reproduction. The suppression of sexual selection could therefore also relax selection on 
such alleles in S lines leading to a reduction in the survival of outbred juveniles as in F lines. 
This was not observed, whether in G20 or in G50. This means that the efficiency of purging 
through inbreeding is in fact much higher than we could infer based on the comparison between 
S and C lines (see [39]). The relevant controls are indeed the F rather than the C lines, since S 
differs from F by self-fertilization only rather than by both self-fertilization and sexual selection 
(table 1). That S lines maintain high juvenile survival implies that inbreeding does not only 
eliminate recessive semi-lethals, but also prevents the accumulation of alleles with deleterious 
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effects on both juvenile survival and male reproductive success, that would otherwise take place 
in the absence of sexual selection. The genic-capture model of sexual selection assumes that 
the genetic variance in male sexual traits mostly reflects the genomic load, through a condition-
dependent reaction norm [6]. Thus, our S lines, if this reaction norm has not itself evolved, may 
still have the potential to express high male reproductive success if put back in conditions of 
outcrossing and sexual selection. In consistency with this idea, Noel et al. (2016) [39] did not 
find any significant reduction in male reproductive success in G20 outbred individuals of the S 
lines compared to controls. Further studies will be needed to extend to later generations. 

Although our data suggest that inbreeding and sexual selection were approximately 
equally efficient at preserving high juvenile survival, the mutations purged by both processes 
were not exactly the same. The reduced inbreeding depression in S lines indicates that mutations 
purged by inbreeding were on average more recessive. Several categories of mutations may 
contribute to the overall genetic load in our experiment. First, among alleles with recessive 
deleterious effects on juvenile survival, some may have substantial heterozygous effects on 
male success (e.g. through adult body condition), and others may lack such effects, thus not 
being purged by sexual selection. Second, some alleles may not be recessive at all, thus being 
purged more efficiently by sexual selection. Such alleles would still be sensitive – though only 
moderately- to inbreeding, as homozygosity increases the additive genetic variance per locus – 
in our case by a factor (1+Fis)=1.5 every second generation [56]. Third, selection against 
mutations in the haploid phase may contribute to genetic purging, due to competition among 
male gametes, even during self-fertilization when they come from the same individual (see e. 
g. [55]). However, as this process occurs under all mating systems including monogamy, it 
cannot explain differences between selection regimes. All this calls for more studies on the 
architecture of the genetic load. Some nonlinearities in our data, such as the relative decrease 
of juvenile survival in M lines in G20, followed by an increase, or the same trend for inbreeding 
depression in S lines, are also suggestive of a complex genetic architecture of the load, with 
different compartments purged at different speeds depending on the mechanism. 

 
Two routes to purging: population consequences 

The enhancement of the purging process through sexual selection is one of the forces 
that may stabilize biparental sexual reproduction against invasion by asexuals [4]. In this study, 
we have shown that such an advantage can also apply to outcrossing hermaphrodites. This 
implies that in the latter, self-fertilization may come at a risk of accumulating deleterious alleles, 
by suppressing sexual selection. Our data however indicate that purging by inbreeding can 
compensate for the lack of purging by sexual selection, at least at the scale of a few tens of 
generations, and therefore suggest that the latter does not represent a strong obstacle to an 
evolutionary transition towards selfing. However, it is not clear whether purging by inbreeding 
would be efficient at preventing decreases in population fitness over a larger number of 
generations and with higher selfing rates (i.e. nearly obligate selfing instead of the average 
selfing rate of 50% we imposed). Selective interference and reduced effective size may 
eventually limit the efficiency of purging (and of selection in general) in predominant selfers 
[54,57,58], making them evolutionary dead-ends [59,60]. On the other hand, our results suggest 
the possibility of a “best-of-both-worlds strategy” alternating between episodes of inbreeding 
(e.g., facultative selfing or mating between relatives) and of outcrossing with strong opportunity 
for sexual selection, leading to the purging of both the recessive and non-recessive components 
of the load without the disadvantages of continuous inbreeding. When avoiding mutation 
accumulation is an issue for yield or conservation, for example in cultivated plants or captive 
animals, it may be complicated to implement this strategy (e.g., to find the optimal level of 
inbreeding), but our data at least suggest that random monogamy is probably not a good idea. 
In natural conditions, hermaphroditic species may experience strong variation in mating or 
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pollination opportunities. In facultative selfers, such as many snails (including P. acuta) or 
plants, this may induce an alternation in mating systems that efficiently keeps deleterious 
mutations in check. 
 
Conclusion 

Our study provides strong support to the theory of genetic purging by sexual selection. 
We tested this theory for the first time in hermaphrodites and confirmed that suppressing 
selection on the female function did not compromise genetic purging as much as suppressing 
sexual selection on the male function. We also showed that inbreeding was, at least on the short 
term, a very efficient alternative way to enhance genetic purging. Inbreeding not only eliminates 
recessive alleles, thus reducing inbreeding depression and preserving the fitness of inbred 
individuals. It also reduces the fraction of genetic load expressed in outbred individuals, which 
should otherwise increase because of the absence of sexual selection. This calls for more work 
on the architecture of the genetic load, and on the optimal strategies to limit its impacts in 
agronomical and natural contexts. 
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Figure 1. Juvenile survival in the two experiments, for each line and experimental treatment (red: outcrossing, blue: selfing). The average values 
are given together with their SE over individuals, the two replicates are represented separately for each line type. The relative difference in survival 
between outcrossed and self-fertilized offspring represents inbreeding depression (δ). The values of δ ±SE for each line type and each experiment 
are C: 0.46±0.10 (1stexpt) and 0.47±0.08 (2ndexpt), F: 0.49±0.15 and 0.16±0.34, M: 0.40±0.13 and 0.40±0.06, and S: 0.08±0.12 and 0.28±0.06. 
We did not measure juvenile survival in the founding G0 population common to all lines. However we were able to retrieve from a previous study 
[46] data on the juvenile survival of first-generation self-fertilized and cross-fertilized offspring from 7 of the 10 natural populations that were used 
to constitute the founding population. The means (±-SE across populations) were respectively : 0.544± 0.054 and 0.251± 0.038 (indicated by 
dashed lines and shaded areas in the left panel), with an inbreeding depression of δ = 0.524 ± 0.077.  
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Figure 2. Genetic diversity (expected heterozygosity He) and observed heterozygosity (Ho) at seven microsatellite loci per line (32 individuals per 

line) at the 49th generation. Each line type (C, F, M and S) is represented by two replicates. 
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Table 1: Selective pressures in the different types of experimental evolutionary lines. 

 

Line type 
Mating 

system 

(Sexual) selection on 

the male function 

(Nonsexual) selection 

on the female function 
Inbreeding 

Control (C) Mass-mating Yes Yes No 

Male-selected (M) Mass-mating Yes No No 

Female-selected (F) Monogamy No Yes No 

Selfing (S) 
Selfing and 
monogamy 

No Yes Yes 
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Table 2.   Results of the linear model (GLMM) on juvenile survival (Binomial variable with logit link, with individual observation as a random 
factor to account for overdispersion). Tests of fixed effects by Likelihood-ratio chi-square tests (LRT) are provided; the number of degrees of 
freedom is 1 except for line type and interactions that involve line type  (3 df). P-values <0.05 are in bold. To facilitate interpretation, we laid out 
the question and answers associated to each test of fixed effect, and the percentage of total variance (rather than raw values) explained by each 
random effect. ID=inbreeding depression.  

 

Question Effect LRT 
(2) 

P Interpretation of tests for fixed 
effects (% explained variance for 

random effects) 
 

 FIXED EFFECTS    

Is there a difference in average 
survival between outcrossed and 
selfed juveniles, reflecting ID? 
 

Treatment 21.74 3×10-6 Yes, ID is significant overall 

Is there a change in average juvenile 
survival over generations, between 
G20 and G50? 
 

Experiment 0.203 0.652 No, survival does not significantly 
change between G20 and G50  

Is there a change in average impact 
of inbreeding (ID) over generations? 
 

Treatment * experiment 0.135 0.714 No, average ID does not significantly 
change between G20 and G50 

Does average juvenile survival differ 
depending on selection regime? 
 

Line type 25.25 1.4×10-5 Yes, line types significantly differ in 
their average survival rate 

Does ID differ depending on 
selection regime? 

Line type * treatment 7.821 0.050 Yes, ID significantly differs among 
line types  
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Does the selection regime affect the 
temporal change in survival between 
G20 and G50? 
 

Line type * experiment 15.215 0.002 Yes, survival changes between G20 
and G50 in a line type-specific way 

Does the selection regime affect the 
temporal change in ID between G20 
and G50? 

Line type *  
treatment * experiment 

5.501 0.139 No, there are no significant line-
specific changes in ID between G20 
and G50 

 RANDOM EFFECTS 
 

   

 Block 89.789 < 2×10-16 3.02% 
 Replicate (within line type) 2.256 0.133 0.11% 
 Replicate*treatment 10.956  0.012 0.40% 
 Replicate*experiment 1.812  0.612 0.01% 
 Replicate*treatment 

*experiment 
1.811 0.770 0.08% 

 Individual observation (residual)   66.33% 
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Table 3.   Estimates, effect sizes and tests of model terms in the complete linear model (same GLMM as in Table 2). Abbreviations for effects: L 
= Line type, T= treatment, E = Experiment. Sample size (number of individuals laying eggs), predicted and raw means of juvenile survival are 
provided by group, each group being characterized by a combination of line type (C, M, F, or S), treatment (outcrossed or selfed) and experiment 
(G20 or G50). By construction, the mean of the reference group (C/outcrossed/G20) is predicted by the intercept of the model. the factor levels 
(or combinations thereof) being tested are highlighted. Model predictions (de-logited) differ from raw means because of the use of logit scale in 
the model, and the presence of random factors to model means and variance within groups (the logit scale gives more weight to values close to 0 
or 1). We therefore provide both de-logited model estimates and raw means. Effect size (model term divided by its SE) and associated Wald-tests 
are given together with their interpretation. P-values have been corrected for multiple-testing by the Benjamini-Hochberg FDR procedure, when 
three line types (M, F, S) were separately compared with controls (Line type effects and their interactions). P values <0.05 are in bold.  
ID=inbreeding depression. 

 

Model term Group of 
individuals 
concerned 

N Survival 
(predicted) 

Survival 
(raw means 
± SE) 

Effect 
size 

P Interpretation 

Intercept C/outcrossed/G20 137 0.492 0.545± 0.022    
 

T (selfed) C/selfed/G20 77 0.201 0.293± 0.027 -5.680 1×10-8 ID is significant in C lines in G20 

E (G50) C/outcrossed/G50 445 0.557 0.602 ±0.013 0.732 0.464 Survival of C lines under outcrossing does not 
change between G20 and G50  
 

T*E(selfed, G50) C/selfed/G50 404 0.257 0.319± 0.014 0.177 0.860 ID in C lines does not change between G20 
and G50  
 

L (M) M/outcrossed/G20 45 0.322 0.374±0.049 -2.506 0.018 M lines survive less than C lines under 
outcrossing in G20 
 

L (F) F/outcrossed/G20 44 0.237 0.293±0.034 -3.972 2×10-4 F lines survive less than C lines under 
outcrossing in G20 
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L (S) S/outcrossed/G20 133 0.438 0.496±0.019 -1.157 0.247 Survival does not differ between S and C lines 
under outcrossing in G20 
 

L*T(M,selfed) M/selfed/G20 38 0.156 0.226±0.035 0.936 0.523 ID does not differ between C and M lines in 
G20 
 

L*T(F,selfed) F/selfed/G20 34 0.090 0.151± 0.032 0.462 0.644 ID does not differ between C and F in G20 
 

L*T(S,selfed) S/selfed/G20 84 0.406 0.459±0.028 3.738 6×10-4 ID is lower in S than in C lines in G20 
 

L*E(M,G50) M/outcrossed/G50 268 0.619 0.619±0.015 2.477 0.020 Survival of outcrossed juveniles differs 
between C and M lines in G20, but not in G50 
 

L*E(F,G50) F/outcrossed/G50 234 0.102 0.191±0.014 -3.200 0.004 The difference in survival between F and C 
lines increases between G20 and G50, under 
outcrossing 
 

L*E(S,G50) S/outcrossed/G50 456 0.541 0.569±0.012 0.480 0.631 Survival of outcrossed juveniles is stable in 
time for both S and C lines 
 

L*T*E(M,selfed,G50) M/selfed/G50 198 0.304 0.372±0.018 -0.800 0.424 ID is similar between M and C in both G50 
and G20 
 

L*T*E(F,selfed,G50) F/selfed/G50 261 0.070 0.161± 0.012 1.251 0.316 ID is similar between F and C in both G50 and 
G20 
 

L*T*E(S,selfed,G50) S/selfed/G50 469 0.355 0.408±0.012 -1.579 0.316 The difference in ID between C and S lines is 
preserved (or reduced but not significantly) 
between G20 and G50 
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Supplementary material 

Figure S1. Passage from generation N to generation N+1 in the four types of experimental 
evolution lines (C; M: F, and S: ). All line types have been represented as different paths on the 
same diagram to stress similarities and differences among them at each stage. Differences arise 
at the reproduction stage (note that S lines alternate between two modes for even-numbered and 
odd-numbered generations) and at the juvenile collection stage. The numbers of individuals 
conserved at each step was calculated in order to obtain a population of approximately 90 
reproductive virgin adults at the time of reproduction (this number could vary between 80 and 
98 depending on mortality).  
 In practice, when we collected juveniles, we initially kept a large excess of them. In C, 
F and S lines several hundreds of juveniles were first pooled in a large aquarium then the 
aquarium was sampled to make 45 boxes of three juveniles (N=135). They then grew for one 
more week until we sampled 98 of them to raise individually, which ended up at ca. 90 
reproductive individuals (80 to 98) given mortality.  
  In M lines, we did not pool juveniles in aquaria and directly made one box of three 
juveniles for each mother separately (when possible). After growing them one week, we 
collected one juvenile per box (=i.e. per mother) to raise it in isolation. Because of mortality or 
failure at the egg-laying or hatching stages, we usually obtained less than 98 maternal broods, 
so we added a second juvenile taken in some of the boxes at random until we had N=98. This 
resulted in ca. 90 (80-98) reproductive adults as in the other lines. 
 In all lines, some juveniles in excess were grown in backup aquaria, and served to 
compensate for mortality if the number of adults turned out to be below 80. 
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Table S1.  Microsatellite variation in all experimental evolution lines (N=32 individuals per 
line, 7 polymorphic loci) at the 49th generation. Each type (C, F, M and S) is represented by 
two replicate lines. Genetic diversity He, observed heterozygosity Ho, average number of alleles 
per locus Nall, and inbreeding coefficient f. 
 

 C1 C2 F1 F2 M1 M2 S1 S2 

He 0.526 0.219 0.272 0.321 0.366 0.381 0.141 0.163 

Ho 0.515 0.237 0.263 0.326 0.385 0.407 0.143 0.152 

Nall 3.714 1.714 1.857 2.429 2.571 2.429 1.571 1.571 

f 0.022 -0.080 0.034 -0.014 -0.055 -0.071 -0.012 0.070 
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