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Featured Application: Inscription and interrogation of fiber Bragg gratings into MgO
nanoparticle-doped fiber for optical fiber distributed and multiplexed sensing.

Abstract: The characterization of Fiber Bragg Grating (FBG) sensors on a high-scattering fiber, having
the core doped with MgO nanoparticles for polarization-dependent temperature sensing is reported.
The fiber has a scattering level 37.2 dB higher than a single-mode fiber. FBGs have been inscribed by
mean of a near-infrared femtosecond laser and a phase mask, with Bragg wavelength around 1552 nm.
The characterization shows a thermal sensitivity of 11.45 pm/◦C. A polarization-selective thermal
behavior has been obtained, with sensitivity of 11.53 pm/◦C for the perpendicular polarization (S)
and 11.08 pm/◦C for the parallel polarization (P), thus having 4.0% different sensitivity between
the two polarizations. The results show the inscription of high-reflectivity FBGs onto a fiber core
doped with nanoparticles, with the possibility of having reflectors into a fiber with tailored Rayleigh
scattering properties.

Keywords: Fiber Bragg Grating (FBG); Rayleigh scattering; FBG sensor; enhanced backscattering
fiber; polarization-sensitive device

1. Introduction

A Fiber Bragg Grating (FBG) is a periodic modulation of the refractive index within the core of an
optical fiber [1], which results in a wavelength-selective resonant behavior that resonates at the so-called
Bragg wavelength [2]. The spectrum of an FBG results in a narrow bandwidth of reflected waves,
while the remainder of the spectrum is transmitted through the grating. The FBG, as well described
in [1,2], implements the Bragg resonant condition within an optical fiber, and results in a compact
device that finds broad applications in telecommunications and sensing. In fiber optics, FBGs are
extremely important as they behave as narrow-band notch filters, or as passband filters when preceded
by a circulator or fiber coupler [3]. An FBG substantially implements a similar function to microwave
or electronic resonators, but at a much narrower resonance filters and at infrared wavelengths. Thus,
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FBGs find many applications in telecommunications [1], in signal equalization [3], and as reflectors for
laser cavity in fiber lasers [4]. FBGs are also popular for sensing, as the Bragg wavelength shifts when
temperature or strain variations are applied to the grating [5], making it a compact sensing device that
finds numerous fields of application.

The first generation of FBGs have been fabricated using photosensitive fibers [1], having a
significant Ge-doping that facilitates the process of FBG inscription, and on standard single-mode
fibers (SMFs) by means of H2 loading [6]. More recently, the possibility to use a femtosecond (fs) laser
focused on the fiber core has opened the possibility of inscribing an FBG on several types of fibers [7,8].
SMF fibers have low attenuation and adhere to telecommunication standards (such as ITU-T G.657.A1
and G.652.D), and the possibility of inscribing FBGs into such fibers gives rise to wavelength filters
and sensors at a relatively low cost, and easy to be interconnected.

With the emergence of research on specialty fibers, engineered in order to achieve specific functions
that SMFs cannot achieve, new sensing functions can be enabled. In this sense, the possibility of
inscribing FBGs in specialty fibers has provided the backbone for advanced applications in sensing and
fiber lasers, particularly thanks to direct inscription. Among others, Iadicicco et al. [9] reported FBGs
in microstructured fibers which add refractive index sensitivity to the inherent temperature/strain
sensitivity; Jovanovic et al. [10] reported FBGs directly inscribed with a point-by-point technique
in the inner core of a dual-core fiber, which represents the end reflectors of a fiber laser cavity;
Leal-Junior et al. [11] reported FBGs inscribed in a polymer fiber in the infrared, which achieves a much
larger sensitivity to temperature effects, and reports also a humidity sensitivity; Pugliese et al. [12]
reported FBGs inscribed in a bioresorbable fiber, which has the property of being potentially absorbed
by the human body after use.

Among the specialty fibers used in sensing applications, several efforts have been recently devoted
to altering the Rayleigh scattering properties of fibers. In this scenario, three main approaches have
given similar results. Yan et al. [13] reported a method based on rapid pulses with a fs laser (300 nJ
at 250 kHz repetition rate), increasing the scattering level of a SMF by up to 45 dB. Parent et al. [14]
have obtained similar results, with a scattering increment of 37 dB, by means of exposure to intense
ultraviolet light; this method has also been used to generate random gratings [15]. More recently,
Beisenova et al. [16] have obtained a 36.5 dB scattering increment by using a MgO-nanoparticle-doped
(MgO-NP) fiber as sensing medium. This setup has also been used to design a scattering-level
multiplexing [16,17], a new domain of multiplexing where the diversity is given by the scattering
level at each sensing point. While the first two methods are characterized by a specific fabrication at
one specific sensing point, the third method provides an optical fiber that can be spooled and spliced
directly to a SMF, making the operation of building a multi-fiber sensing network much simpler.

The possibility to increase the scattering of a fiber is intriguing in distributed sensing, particularly
using optical backscatter reflectometry (OBR) [18], whereas the analyzer detects the distributed
Rayleigh scattering backreflection occurring in each region of the fiber. In such system, by increasing
the Rayleigh scattering a larger signal at the analyzer can be obtained [13–17], over 3–4 orders of
magnitude larger when properly tuning scattering properties.

In this work, the characterization of FBGs on a high-scattering MgO-NP fiber is presented.
The possibility to have an FBG on such fiber opens important applications for sensing, as it allows
tagging a specific sensing point as reference and measuring a sensing region relatively to the FBG.
Also, due the polarization-sensitive behavior of the fiber, a different sensitivity for each polarization
state can be observed. In the following, the experimental results of FBG inscription into a MgO-NP
and the characterization of the grating for thermal effects, including a polarization-sensitive analysis,
will be reported.
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2. Fabrication and Setup

2.1. MgO Nanoparticle-Doped Fiber

The fiber used in this work presents a core doped with a random pattern of nanoparticles whose
composition is based on MgO [17,19]. The fiber, designed to improve the efficiency of C-band optical
amplifier (wavelengths from 1530 to 1565 nm), presents an additional doping of erbium in the core.
The fiber possesses the typical telecom size, i.e., core diameter of 10µm and cladding diameter of 125µm,
and a protective jacket with 250 µm diameter. This fact permits simple splicing operation with standard
SMF-28 pigtails. The preform of the fiber has been fabricated by a conventional Modified Chemical
Vapor Deposition (MCVD) process, a common technique for specialty optical fibers fabrication.

The proposed technology allows one to grow in-situ oxide nanoparticles due to high temperatures
reached during the MCVD process [19] The implemented principle is based on the spontaneous phase
separation process. This process involves the immiscibility of silicate compound that contain alkaline
earth ions (MO, where M = Mg, Ca or Sr). The result is that the compound will decompose into two
phases: one silica-rich and one MgO-rich in shape of spherical particles. The characteristics of the
nanoparticles (size, size distribution) depends on the concentration of Mg, but typically the process
generates nanoparticle whose size, location and refractive index are random. The size is in between
20 nm and 100 nm, while the refractive index is in between 1.53 to 1.65. The presence of nanoparticle
strongly enhances the scattering and the losses [17,18].

2.2. Fiber Bragg Grating Inscription

The inscription of FBGs on the MgO-NP fiber has been carried out by means of a fs laser and
phase mask method [10,11] [20], using the setup sketched in Figure 1a. The optical fiber has been
placed between two fiber holders, leaving the stripped MgO-NP fiber section exposed to the phase
mask area. With this setup, two FBGs have been inscribed, at 3 cm distance from each other. The first
FBG has 2 mm length, and Bragg wavelength of 1538.5 nm (phase mask with a pitch of 1061 nm) at
room temperature; the second FBG has 4 mm length, and Bragg wavelength around 1552.2 nm (phase
mask with a pitch of 1072 nm) at room temperature. The spectrum of the second FBG, the one used in
the spectral and polarization analysis, is reported in Figure 1b.
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1.29 GHz (10.3 pm), 8192 wavelength points, no gain for each detector; the OBR spatial resolution is 
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the orientation is referred to the swept laser of the OBR source [21]. 

Figure 1. (a) Schematic diagram of the laser inscription setup used to inscribe refractive gratings; I—iris,
At—power attenuator, M—mirror, C—Convex cylindrical lens, PM—Phase mask. (b) Spectrum of the
FBG inscribed on the MgO-NP having Bragg wavelength around 1552.2 nm.

2.3. Experimental Characterization Setup

The analysis of FBG spectra, as well as of the MgO-NP fiber, has been performed using a commercial
OBR analyzer (Luna OBR4600, Luna Inc., Roanoke, VA, USA). The setup used in measurements is
shown in Figure 2, including both a schematic diagram and the photograph of the whole system.
The MgO-NP fiber has been spliced to a lead-in SMF span by means of a standard splicer (SMF-SMF
splicing recipe, cladding alignment, Fujikura 12-S, Tokyo, Japan). The OBR has been used with the
following parameters: wavelength range 1525.0–1610.5 nm, resolution bandwidth 1.29 GHz (10.3 pm),
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8192 wavelength points, no gain for each detector; the OBR spatial resolution is 9.8 µm. The OBR
detects both polarizations, here labelled S (perpendicular) and P (parallel), where the orientation is
referred to the swept laser of the OBR source [21].Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 10 

 
Figure 2. Setup of the FBG interrogation system. (a) Schematic diagram of the setup; (b) photograph. 

Thermal variations have been obtained by placing the fiber in contact with a heating plate (C-
MAG HS4, IKA, Staufen, Germany). The reference temperature has been measured by another FBG 
(ormoceramic draw-tower grating DTG-1550 nm, FBGS International, Geel, Belgium) connected to a 
commercial FBG interrogator (si255, 1 kHz, Micron Optics, Atlanta, GA, USA) and detecting the peak 
wavelength with ~0.1 pm accuracy; the thermal sensitivity of the reference FBG is 10.4 pm/°C. The 
hot plate temperature has been varied from 60°C to 145°C, approximately 40–125°C over the room 
temperature of 20°C. In order to maintain a heat uniformity, we the hot plate has been covered with 
a beaker. 

3. Experimental Results 

3.1. Characterization of Fiber Bragg Grating 

The result of FBGs inscription on the MgO-NP fiber is shown in Figure 3, which displays the 
power backreflected at each section of the fiber for both polarizations. The lead-in fiber is a SMF, 
which has a scattering level around −91 dB and terminates at 4.58 m length (measured from the OBR 
lead-out connector). In the MgO-NP section, we observe a scattering gain, which is the increment of 
scattering with respect to the SMF, of 37.2 dB, similar to [17]. Due to the high scattering, the fiber has 
a high two-way loss estimated as 22.1 dB/m, i.e., cumulating both the forward and backward wave. 

Two FBGs have been inscribed at the lengths of 4.60 m and 4.63 m. The first FBG exhibits a signal 
increment of ~10 dB over the scattering level and corresponds to a relatively weak FBG; the second 
FBG is stronger (28 dB over the scattering trace) and represents a strong FBG. We also observe that 
the polarization appears to fluctuate along the MgO-NP fiber, as previously observed in [22]. 

We report in Figure 4 the reflection spectrum of the stronger of the two MgO-NP FBGs, i.e., the 
grating inscribed at the length of 4.63 m as the temperature increases; the results are similar to the 
FBG inscribed at 4.60 m. The reflection spectrum of the FBG appears as ~28 dB over the noise floor, 
in compliance with Figure 3. As for a standard FBG, the spectrum appears to shift towards longer 
wavelengths as the temperature variation ΔT increases from the reference value, maintaining the 
spectral shape. At the initial temperature (ΔT = 0 °C, corresponding to the room temperature) the 
Bragg wavelength is 1552.2 nm, and rises to 1553.6 nm for ΔT = 125.6 °C, at the maximum 
temperature. 

Figure 2. Setup of the FBG interrogation system. (a) Schematic diagram of the setup; (b) photograph.

Thermal variations have been obtained by placing the fiber in contact with a heating plate
(C-MAG HS4, IKA, Staufen, Germany). The reference temperature has been measured by another FBG
(ormoceramic draw-tower grating DTG-1550 nm, FBGS International, Geel, Belgium) connected to
a commercial FBG interrogator (si255, 1 kHz, Micron Optics, Atlanta, GA, USA) and detecting the
peak wavelength with ~0.1 pm accuracy; the thermal sensitivity of the reference FBG is 10.4 pm/◦C.
The hot plate temperature has been varied from 60◦C to 145◦C, approximately 40–125◦C over the room
temperature of 20◦C. In order to maintain a heat uniformity, we the hot plate has been covered with
a beaker.

3. Experimental Results

3.1. Characterization of Fiber Bragg Grating

The result of FBGs inscription on the MgO-NP fiber is shown in Figure 3, which displays the
power backreflected at each section of the fiber for both polarizations. The lead-in fiber is a SMF, which
has a scattering level around −91 dB and terminates at 4.58 m length (measured from the OBR lead-out
connector). In the MgO-NP section, we observe a scattering gain, which is the increment of scattering
with respect to the SMF, of 37.2 dB, similar to [17]. Due to the high scattering, the fiber has a high
two-way loss estimated as 22.1 dB/m, i.e., cumulating both the forward and backward wave.

Two FBGs have been inscribed at the lengths of 4.60 m and 4.63 m. The first FBG exhibits a signal
increment of ~10 dB over the scattering level and corresponds to a relatively weak FBG; the second
FBG is stronger (28 dB over the scattering trace) and represents a strong FBG. We also observe that the
polarization appears to fluctuate along the MgO-NP fiber, as previously observed in [22].

We report in Figure 4 the reflection spectrum of the stronger of the two MgO-NP FBGs, i.e., the
grating inscribed at the length of 4.63 m as the temperature increases; the results are similar to the
FBG inscribed at 4.60 m. The reflection spectrum of the FBG appears as ~28 dB over the noise floor,
in compliance with Figure 3. As for a standard FBG, the spectrum appears to shift towards longer
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wavelengths as the temperature variation ∆T increases from the reference value, maintaining the
spectral shape. At the initial temperature (∆T = 0 ◦C, corresponding to the room temperature) the
Bragg wavelength is 1552.2 nm, and rises to 1553.6 nm for ∆T = 125.6 ◦C, at the maximum temperature.
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Figure 5 reports the Bragg wavelength of the FBG as a function of the temperature variation.
As in [1,5], the FBG shows a linear wavelength shift, with sensitivity equal to 11.45 pm/◦C and reference
wavelength of 1552.262 nm; the fit has coefficient of determination R2 = 0.997, which shows a very
accurate fit for over 125◦C of temperature range.
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3.2. Polarization Analysis

As previously outlined in [22], the MgO-NP fiber induces a beat length of polarization that has
a higher frequency than a standard SMF, with polarization switching every few centimeters. This
effect is common with the other methods proposed for enhancing the Rayleigh backscattering of the
fiber [13–15]. Thus, in this section we investigate the polarization-sensitive behavior of the FBG, by
separating the S/P polarizations into the analysis.

The polarization effects are shown in Figure 6, which reports the FBG spectra for S and P
polarizations. At first, we observe a different amplitude between the two spectra, with the S
polarization having a higher value, but also fluctuating as the temperature increases. The spectra for
the polarization P appear narrower in bandwidth, and as temperature increases we observe that the
spectra at the P polarization take a different wavelength shift than the spectra for the polarization S.

We can analyse independently the two polarizations, and determine the sensitivity to temperature
at each wavelength; this analysis is shown in Figure 7. We observe a linear pattern for both polarizations,
with thermal sensitivity of 11.53 pm/◦C for the polarization S (R2 = 0.997) and 11.08 pm/◦C for the
polarization P (R2 = 0.995). The analysis shows a significant deviation between the two polarizations,
as the sensitivity for the S polarization (the dominant one, given its higher amplitude) is 4.0% higher
than for the P polarization; this is a reliable measurement given the fidelity of the linear fit, as the R2

term is higher than 0.99 for both estimates. At room temperature, the Bragg wavelength is higher
for the polarization P and lower for the S; as temperature increases however we see a progressive
divergence between the Bragg wavelengths for both polarization states.

A polarization analysis is carried out in Figure 8, reporting the FBG bandwidth (estimated as
the full-width half-maximum, FWHM) and the maximum spectral amplitude for each polarization.
At first, we observe an interesting pattern for the FWHM, which at room temperature is wider for the
P polarization (as shown in Figure 6) where the minimum amplitude is recorded; as the temperature
increases, the FWHM assumes different values for the 2 polarization, and is equal to 0.33–0.35 nm for
the S polarization and to 0.27–0.28 nm for the P polarization, showing a significant deviation which is
also clear as the spectra are plotted in Figure 6.
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The amplitude of the spectral response also shows a temperature-dependent pattern, as the light
appears to transfer from the S to P polarization as the temperature increases. At room temperature,
the polarization difference is over 12 dB, but reaches a minimum of 0.6 dB at ∆T = 75 ◦C, where the two
polarizations have similar amplitude; at higher temperature, the process reverses and S polarization
appears to have higher amplitude.
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4. Discussion

The characterization of FBGs on a high-scattering MgO-NP fiber, with enhanced backscattering
properties, has implications, particularly in terms of sensing and polarization effects, as it can provide
an additional layer of complexity in sensing.

The main difference between the MgO-NP fiber and the other methods for enhancing the
backscattering is that the first one can be used, effectively, as a fiber, and thus the FBG is part of the
optical circuitry used to implement filtering and cavity effects [4,10], as well as to create distributed
reflectors supported by the random effect of the scattering nanoparticles [23]. In sensing, this is
important as the FBG allows “tagging” a specific sensing point where the FBG is located, and
referencing the remainder of the fiber to the valued measured in this location, enabling solutions that
mix optical frequency domain reflectometry of fiber scattering and FBG interrogation [24,25]. The main
application for the MgO-NP fiber is in scattering-level multiplexing, which requires a fiber with high
Rayleigh scattering in order to simultaneously detect multiple channels on the OBR device [16,17].
The addition of FBGs to this sensing system can be used to extend the sensing length of each channel,
by using the additional reflectivity of the FBG in addition to the scattering level, compensating for the
relative inline high losses of the fiber.

In addition, the different sensitivity exhibited by the polarizations to thermal effects is a significant
effect, as the difference is estimated as 4% with a good degree of confidence (R2 > 0.99). In comparison,
this difference is 0.5% for a fiber doped with MgO nanoparticles but having no scattering enhancement,
and is <0.1% for a standard FBG [1].

Similar results have been obtained with FBGs inscribed on fibers having high birefringence [26,27]
or on polarization-maintaining fibers [8], whereas it is clearly possible to distinguish between the two
Bragg wavelengths of slow/fast axis. In this work, however, we do not use a fiber with asymmetric
design, but rather the polarization effect happens due to the scattering events occurring in the fiber,
which determine the S/P polarizations to have a different thermal coefficient. This effect has been
used in birefringent fibers to discriminate strain and temperature by means of detecting the difference



Appl. Sci. 2019, 9, 3107 9 of 10

between the two Bragg wavelengths, which is ~0.5 nm in [28]. It is noteworthy that the polarization
effect is not obtained by asymmetrical design of the fiber [29], but is routed in the scattering content of
the MgO nanoparticles. Overall, the results presented in this work open the possibility to thermally
tune the wavelength and polarization of the FBGs inscribed on this fiber, considering also the different
bandwidth exhibited by the two polarization states.

5. Conclusions

The characterization of FBGs onto a specialty fiber doped with MgO nanoparticles having enhanced
Rayleigh scattering is reported in this work. The MgO-NP fiber has 37.2 dB scattering increment over
a SMF, and 22.1 dB/m two-way loss. The FBGs achieved up to 28 dB amplitude over the scattering
level. A thermal characterization shows the sensitivity to be 11.45 pm/◦C, similar to standard glass
fibers; the thermal sensitivity exhibits a 4% difference between the two S/P polarizations (respectively,
11.53 pm/◦C and 11.08 pm/◦C). Future work will consist on exploiting the polarization properties for
sensing applications, and on the analysis of the high-scattering impact in FBG sensing networks.
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