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Abstract: Oxidation of alcohols plays an important role in industrial chemistry. Novel green techniques,
such as sonochemistry, could be economically interesting by improving industrial synthesis yield.
In this paper, we studied the selective oxidation of benzyl alcohol as a model of aromatic alcohol
compound under various experimental parameters such as substrate concentration, oxidant nature and
concentration, catalyst nature and concentration, temperature, pH, reaction duration, and ultrasound
frequency. The influence of each parameter was studied with and without ultrasound to identify the
individual sonochemical effect on the transformation. Our main finding was an increase in the yield and
selectivity for benzaldehyde under ultrasonic conditions. Hydrogen peroxide and iron sulfate were used
as green oxidant and catalyst. Coupled with ultrasound, these conditions increased the benzaldehyde
yield by +45% compared to silent conditions. Investigation concerning the transformation mechanism
revealed the involvement of radical species.

Keywords: sonochemistry; ultrasound; hydroxyl radical; selective oxidation; benzyl alcohol; benzaldehyde

1. Introduction

In industrial chemistry, selective oxidation is commonplace as it enables the synthesis of carbonyl
compounds, alcohols, epoxides, carboxylic acids, ethers, and esters [1] that are used in various fields,
such as agroindustry, pharmaceuticals, cosmetics, and dyes. However, some processes developed in
laboratories are not suitable for industrial applications due to safety concerns, like thermal hazards
and hazardous waste production [1–3]. For these reasons, sustainable activation techniques that would
enable the use of abundant, cheap, and safe reagents must be developed.

Sonochemistry is the use of power ultrasound (US) as an activation method to perform chemical
reactions [4]. It can induce changes of reactivity, enhance transformations by improving yields or
selectivity, reduce duration time, and eventually replace hazardous reagents with harmless ones [5–9].
Ultrasonic waves propagate in liquids, which provokes compression and dilatation of the medium.
When the dilated medium reaches a pressure below the saturated vapor pressure, a microbubble of
gas is created, and the following cycles of compression and decompression lead to its growth until it
reaches a critical size and implodes. The implosion of the bubble, known as cavitation phenomenon,
causes extreme temperature (1000–5000 K) and pressure (1000 atm) [10]. Physical and chemical effects
can be observed during a cavitation phenomenon. Notable physical effects include microjets stream
shockwaves and improved mass transfer, while chemical effects arise from radical species formation
due to homolytic breakage of molecules [11]. In the case of water as a solvent, hydroxyl radical species
(HO•) are generated [12]. These species are powerful oxidants (E◦ = 2.3 V) and are highly reactive
towards organic compounds (k = 106

− 1010 mol L−1.s−1) [13].
Benzaldehyde is an important organic intermediate in pharmaceutical, fragrances, dyes,

and agribusiness industries. In the pursuit of more sustainable chemistry, the 12 principles of green
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chemistry were proposed [14] and suggest using safer solvents and auxiliaries in chemical synthesis.
In organic chemistry, the use of harmful and polluting oxidants [15] should be replaced by harmless,
environmentally safe, and abundant oxidants. Thus, several environmentally driven studies focused
on benzaldehyde synthesis using H2O2 as a green oxidant [16–19]. Sonochemistry has proven a
promising technique to reduce chemicals amounts, limit reaction duration, avoid extreme conditions,
and lead to energy saving [11,20,21].

In this study, we searched for simple conditions to convert benzyl alcohol to benzaldehyde using
green oxidants: Molecular dioxygen and hydrogen peroxide [2]. To this end, various parameters such
as substrate concentration, oxidant concentration, catalyst nature and concentration, temperature,
pH, and reaction duration were studied over wide ranges to identify optimal conditions for the
transformation. We tested molecular dioxygen and hydrogen peroxide as oxidants because of
their clean nature [22,23]. The transformation mechanism was investigated under low and high
frequency ultrasound.

2. Results and Discussion

In the following section, the oxidation of benzyl alcohol into benzaldehyde is described using
three parameters: Benzyl alcohol conversion, benzaldehyde yield, and selectivity for benzaldehyde.
These are calculated according to the following equations (Equations (1)–(3))

Conversion (%) =
moles o f benzyl alcohol reacted

moles o f benzyl alcohol introduced
(1)

Benzaldehyde yield (%) =
moles o f benzaldehyde produced

moles o f benzyl alcohol introduced
(2)

Selectivirty f or benzaldehyde (%) =
moles o f benzaldehyde produced
moles o f benzyl alcohol reacted

(3)

2.1. Effect of Substrate Concentration

The effect of benzyl alcohol concentration in water (6.37 mL batch) on its conversion rate
and benzaldehyde yield was evaluated in the presence of 1 and 0.01 molar equivalent of the
oxidant (aqueous 30% H2O2 solution) and the catalyst (FeSO4), respectively. The following substrate
concentrations were tested: 286 mM, 571 mM, 1.14 M, and 2.26 M, and the results are presented in
Table 1. The transformations in silent conditions (without ultrasound under argon bubbling stirring)
and under low-frequency US (20 kHz) showed similar tendencies. Benzyl alcohol conversion rates
reached the highest range (from 44% to 59%) at a substrate concentration of 571 mM. In these conditions,
the conversion of benzyl alcohol is only slightly affected by initial substrate concentration, but when it
is increased from 571 mM to 2.26 M, benzaldehyde yield drops from 13% (571 mM) to 7% (2.26 M)
under silent conditions, and from 21% (571 mM) to 7% (2.26 M) under ultrasonic conditions.

Table 1. Effect of benzyl alcohol concentration on its conversion rate and benzaldehyde yield.
Reaction conditions: 1 molar eq. H2O2; 1% molar eq. FeSO4; 70 ◦C; 15 min. Silent conditions:
Argon bubbling; ultrasound (US) conditions: 20 kHz, Pacous = 47.9 W L−1 h−1, 13 mm probe.

In Silent Conditions Under US Irradiation

[PhCH2OH]
(mM)

PhCH2OH
Conversion

(%)

PhCHO
Yield
(%)

PhCHO
Selectivity

(%)

PhCH2OH
Conversion

(%)

PhCHO
Yield
(%)

PhCHO
Selectivity

(%)

286 43.8 12.2 28.0 51.1 19.0 37.1
571 54.8 12.7 23.2 59.3 21.2 35.7

1142 46.7 7.7 16.5 49.3 12.9 26.2
2284 49.2 6.1 12.5 47.9 7.1 14.9
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Under low-frequency US irradiation (20 kHz), the benzyl alcohol conversion rate and benzaldehyde
yield are higher than in silent conditions, especially at lower concentrations (about +8% conversion
and +40% yield at 571 mM of benzyl alcohol) compared to the experiment run at a concentration of
2.26 M, for which the conversion rates and yields are similar in both silent and ultrasonic conditions.
When the power of US activation is the same under all conditions, the effect of US has a greater impact
on a lower amount of substrate dissolved in a fixed volume of reaction medium.

It appears that 571 mM is the optimal concentration to convert benzyl alcohol to benzaldehyde.
Further parameter studies were performed at this concentration.

2.2. Effect of Oxidant in the Reaction Medium

Clean oxidants such as molecular dioxygen (O2) and hydrogen peroxide (H2O2) were tested.
Although molecular dioxygen has been successfully employed in aerobic oxidation of alcohols [24],
dioxygen bubbling in the presence of FeSO4 as the catalyst (1% molar) did not lead to benzyl alcohol
conversion (571 mM of benzyl alcohol; 120 min; 70 ◦C; US conditions: 20 kHz, Pacous = 47.9 W L−1 h−1,
13 mm probe). In the same conditions, hydrogen peroxide did lead to benzyl alcohol transformation.
The influence of its concentration and its introduction mode on conversion rate and yield were
further studied.

2.2.1. Effect of H2O2 Concentration

The effect of H2O2 molar ratio on the conversion rate and benzaldehyde yield was studied on a
range of 0.25 to 4 molar equivalents related to the benzyl alcohol substrate (Figure 1).

Molecules 2019, 24, x FOR PEER REVIEW 3 of 19 

 

2284 49.2 6.1 12.5 47.9 7.1 14.9 

Under low-frequency US irradiation (20 kHz), the benzyl alcohol conversion rate and 
benzaldehyde yield are higher than in silent conditions, especially at lower concentrations (about 
+8% conversion and +40% yield at 571 mM of benzyl alcohol) compared to the experiment run at a 
concentration of 2.26 M, for which the conversion rates and yields are similar in both silent and 
ultrasonic conditions. When the power of US activation is the same under all conditions, the effect of 
US has a greater impact on a lower amount of substrate dissolved in a fixed volume of reaction 
medium. 

It appears that 571 mM is the optimal concentration to convert benzyl alcohol to benzaldehyde. 
Further parameter studies were performed at this concentration. 

2.2. Effect of Oxidant in the Reaction Medium 

Clean oxidants such as molecular dioxygen (O2) and hydrogen peroxide (H2O2) were tested. 
Although molecular dioxygen has been successfully employed in aerobic oxidation of alcohols [24], 
dioxygen bubbling in the presence of FeSO4 as the catalyst (1% molar) did not lead to benzyl alcohol 
conversion (571 mM of benzyl alcohol; 120 min; 70 °C; US conditions: 20 kHz, Pacous = 47.9 W L−1 h−1, 
13 mm probe). In the same conditions, hydrogen peroxide did lead to benzyl alcohol transformation. 
The influence of its concentration and its introduction mode on conversion rate and yield were 
further studied. 

2.2.1. Effect of H2O2 Concentration 

The effect of H2O2 molar ratio on the conversion rate and benzaldehyde yield was studied on a 
range of 0.25 to 4 molar equivalents related to the benzyl alcohol substrate (Figure 1). 

 
Figure 1. Oxidation of PhCH2OH as a function of H2O2/substrate molar ratio in silent conditions and 
under US irradiation (20 kHz). Reaction conditions: 571 mM PhCH2OH, 1% molar eq. FeSO4, 5.61 mL 
H2O, 62 °C, 15 min. Silent conditions: Argon bubbling; US conditions: 20 kHz, Pacous = 47.9 W L−1 h−1, 
13 mm probe. 

In this experiment, reactions operated in silent conditions and under low-frequency US (20 kHz) 
showed similar trends. The benzyl alcohol conversion rate increased as higher concentrations of H2O2 
was introduced in the medium (from 12% at 0.25 molar equivalent of H2O2 to 79% at 4 molar 
equivalents of H2O2 under silent conditions and from 10% at 0.25 molar equivalent of H2O2 to 77% at 
4 molar equivalents of H2O2 under US). Benzaldehyde yield increased from 9% to 23% when the 
H2O2/substrate molar ratio increased from 0.25 to 1 under US and decreased to 5% at 4 molar 
equivalents of H2O2 (Figure 1). Below 1 molar equivalent of H2O2, the limited concentration of 

Figure 1. Oxidation of PhCH2OH as a function of H2O2/substrate molar ratio in silent conditions and
under US irradiation (20 kHz). Reaction conditions: 571 mM PhCH2OH, 1% molar eq. FeSO4, 5.61 mL
H2O, 62 ◦C, 15 min. Silent conditions: Argon bubbling; US conditions: 20 kHz, Pacous = 47.9 W L−1 h−1,
13 mm probe.

In this experiment, reactions operated in silent conditions and under low-frequency US (20 kHz)
showed similar trends. The benzyl alcohol conversion rate increased as higher concentrations of
H2O2 was introduced in the medium (from 12% at 0.25 molar equivalent of H2O2 to 79% at 4 molar
equivalents of H2O2 under silent conditions and from 10% at 0.25 molar equivalent of H2O2 to 77%
at 4 molar equivalents of H2O2 under US). Benzaldehyde yield increased from 9% to 23% when
the H2O2/substrate molar ratio increased from 0.25 to 1 under US and decreased to 5% at 4 molar
equivalents of H2O2 (Figure 1). Below 1 molar equivalent of H2O2, the limited concentration of
oxidizing species in the medium seems to promote good selectivity to benzaldehyde, by limiting the
over-oxidation phenomena that can occur at higher H2O2 concentration [25,26]. In that case, hydroxyl
radical species formed by homolytic cleavage of hydrogen peroxide through the Fenton process are the
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limiting agent to benzyl alcohol oxidation. For experiments performed with 1 to 4 molar equivalent
of H2O2, the conversion of alcohol increased by +71% under US irradiation and by +52% in silent
conditions while the yield in benzaldehyde was reduced by −78% both in US and silent conditions.
This decrease in benzaldehyde yield is presumably due to further oxidation of benzaldehyde into other
products. Among other products, benzoic acid was identified at concentration levels corresponding to
less than 1% yield. The identification of other transformation products is further discussed in this study.

2.2.2. Effect of H2O2 Introduction Mode in the Reaction Medium

Considering that H2O2 may decompose during the reaction with the targeted substrate,
we performed experiments in which the oxidant was not introduced all at once. Instead, the molar
amount of H2O2 (3.72 mmol) was divided into two portions, of 1.86 mmol each, that were introduced at
t = 0 min and at t = 7.5 min. For both introduction modes (all at once and portioned), similar conversions
and yields were observed (Figure 2), suggesting that H2O2 introduction mode is not the limiting factor
to further conversion of benzyl alcohol into benzaldehyde.

Molecules 2019, 24, x FOR PEER REVIEW 4 of 19 

 

oxidizing species in the medium seems to promote good selectivity to benzaldehyde, by limiting the 
over-oxidation phenomena that can occur at higher H2O2 concentration [25,26]. In that case, hydroxyl 
radical species formed by homolytic cleavage of hydrogen peroxide through the Fenton process are 
the limiting agent to benzyl alcohol oxidation. For experiments performed with 1 to 4 molar 
equivalent of H2O2, the conversion of alcohol increased by +71% under US irradiation and by +52% 
in silent conditions while the yield in benzaldehyde was reduced by −78% both in US and silent 
conditions. This decrease in benzaldehyde yield is presumably due to further oxidation of 
benzaldehyde into other products. Among other products, benzoic acid was identified at 
concentration levels corresponding to less than 1% yield. The identification of other transformation 
products is further discussed in this study. 

2.2.2. Effect of H2O2 Introduction Mode in the Reaction Medium 

Considering that H2O2 may decompose during the reaction with the targeted substrate, we 
performed experiments in which the oxidant was not introduced all at once. Instead, the molar 
amount of H2O2 (3.72 mmol) was divided into two portions, of 1.86 mmol each, that were introduced 
at t = 0 min and at t = 7.5 min. For both introduction modes (all at once and portioned), similar 
conversions and yields were observed (Figure 2), suggesting that H2O2 introduction mode is not the 
limiting factor to further conversion of benzyl alcohol into benzaldehyde. 

 
Figure 2. Oxidation of PhCH2OH as a function of the H2O2 introduction mode in silent condition and 
under US irradiation (20 kHz). Reaction conditions: 571 mM PhCH2OH, 1 molar eq. H2O2; 1% molar 
eq. FeSO4, 5.61 mL H2O, 70 °C, 15 min); silent conditions: Argon bubbling; US conditions: 20 kHz, 
Pacous = 47.9 W L−1 h−1, 13 mm probe. 

2.3. Effect of the Catalyst Nature and Concentration 

2.3.1. Effect of the Catalyst Nature 

Catalyst complexes implying transition metals are often considered as efficient catalysts 
especially for oxidation reactions [27–33]. The effect of several metal oxides currently used as catalysts 
(Fe3O4, FeO, Fe2O3, FeTiO3, CoFe2O4, MnTiO3), metals (Cu(0) and Fe(0)), and salts (MnCl2, CuCl2, 
CuSO4, FeCl3, and FeSO4) were tested in the transformation of benzyl alcohol to benzaldehyde (Table 
2) in the above conditions. When the 15 min reaction was conducted with metal oxides as the catalyst, 
an average of 10% conversion of benzyl alcohol was observed but only traces of benzaldehyde were 
obtained. Transformations with salts containing Mn and Cu as transition metals led to higher 
benzaldehyde yields (3%–8%) with the same benzyl alcohol conversion rates (close to 10%). Salts 
containing Fe (FeSO4 and FeCl3) lead to higher conversion rates (40% and 53%, respectively) and 
higher yields (26% and 17%, respectively). Dissociated salts appeared to be the most efficient form of 
catalyst, for oxidation in these aqueous conditions with H2O2 as the oxidizing agent, leading to better 

Figure 2. Oxidation of PhCH2OH as a function of the H2O2 introduction mode in silent condition and
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eq. FeSO4, 5.61 mL H2O, 70 ◦C, 15 min); silent conditions: Argon bubbling; US conditions: 20 kHz,
Pacous = 47.9 W L−1 h−1, 13 mm probe.

2.3. Effect of the Catalyst Nature and Concentration

2.3.1. Effect of the Catalyst Nature

Catalyst complexes implying transition metals are often considered as efficient catalysts especially
for oxidation reactions [27–33]. The effect of several metal oxides currently used as catalysts (Fe3O4,
FeO, Fe2O3, FeTiO3, CoFe2O4, MnTiO3), metals (Cu(0) and Fe(0)), and salts (MnCl2, CuCl2, CuSO4,
FeCl3, and FeSO4) were tested in the transformation of benzyl alcohol to benzaldehyde (Table 2) in the
above conditions. When the 15 min reaction was conducted with metal oxides as the catalyst, an average
of 10% conversion of benzyl alcohol was observed but only traces of benzaldehyde were obtained.
Transformations with salts containing Mn and Cu as transition metals led to higher benzaldehyde
yields (3–8%) with the same benzyl alcohol conversion rates (close to 10%). Salts containing Fe (FeSO4

and FeCl3) lead to higher conversion rates (40% and 53%, respectively) and higher yields (26% and
17%, respectively). Dissociated salts appeared to be the most efficient form of catalyst, for oxidation
in these aqueous conditions with H2O2 as the oxidizing agent, leading to better conversions and
yields. For example, FeSO4 dissociates into Fe2+ and SO4

2−; iron(II) ions are known to react with
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H2O2 to produce hydroxyl radical species according to the Fenton process (Equations (4)–(6)), [34] and
regenerate forming HO2

� radical species and protons from hydrogen peroxide.

Fe2+ + H2O2→ Fe3+ + HO- + HO (4)

Fe3+ + H2O2→ Fe2+ + HO2
� + H+ (5)

Fe3+ + HO2
�
→ Fe2+ + O2 + H+ (6)

Table 2. Oxidation of PhCH2OH according to nature of catalyst: Mineral metal oxides and ionic crystals
in silent condition and under US irradiation (20 kHz). Reaction conditions: 571 mM PhCH2OH, 1 molar
eq. H2O2; 1% molar eq. catalyst, 5.61 mL H2O, 70 ◦C, 15 min. Silent conditions: Argon bubbling;
US conditions: 20 kHz, Pacous = 47.9 W L−1 h−1, 13 mm probe.

In Silent Conditions Under US Irradiation

Catalyst
PhCH2OH
Conversion

(%)

PhCHO
Yield
(%)

PhCHO
Selectivity

(%)

PhCH2OH
Conversion

(%)

PhCHO
Yield
(%)

PhCHO
Selectivity

(%)

Metal
oxides

Fe3O4 18.2 0.3 1.5 17.0 0.6 3.4
FeO 19.8 0.2 0.9 17.6 0.2 1.1

Fe2O3 17.1 0.1 0.8 15.6 0.2 1.1
FeTiO3 18.0 0.3 1.5 16.4 0.5 3.1
CoFeO4 18.4 0.1 0.6 16.7 0.3 1.6
MnTiO3 19.5 0.2 0.9 18.1 0.2 1.1

Metals
Cu 25.8 8.0 30.9 17.1 4.2 24.7

Fe 13.4 0.5 3.4 11.5 2.1 18.2

Salts

MnCl2 11.8 0.4 3.1 15.0 2.5 16.4
CuCl2 16.4 4.6 27.8 16.2 6.8 41.7
CuSO4 10.8 4.6 42.4 10.6 8.1 77.0
FeCl3 50.2 3.4 6.8 52.6 16.9 32.2
FeSO4 40.4 19.6 48.5 43.3 26.2 60.5

In Table 2, one can observe that iron salts, through this Fenton effect, are more effective in the
transformation of benzyl alcohol than manganese and copper salts. A study that tested CuSO4 reported
an almost complete transformation of benzyl alcohol (99%) with 76% benzaldehyde yield in an aqueous
medium while using 3 molar equivalents of H2O2 [17]. In this case, mechanistic investigation indicated
that no hydroxyl radical species were produced.

A complementary study allowed us to compare benzyl alcohol transformation into benzaldehyde
in the presence of different salts (FeSO4, FeCl3, CuSO4, CuCl2, and MnCl2) as well as iron and copper
solid powders with 0.5, 1, and 2 molar equivalents of hydrogen peroxide to substrate (Table 3).
These experiments showed no global tendency in the transformations of benzyl alcohol with various
salts as a function of the H2O2 amount. In fact, the optimal amount of H2O2 is specific to each salt.
The use of FeSO4 as catalyst under low-frequency US (20 kHz) led to the highest benzaldehyde yield
(30%) with an interesting selectivity of 60% at 1 molar equivalent of H2O2. In most cases, activation by
US slightly decreased benzyl alcohol conversion (by about −6%) and increased benzaldehyde yields
(by about +74%) compared to silent conditions. After 15 min under US activation, an emulsion was
observed contrary to the reaction medium without US, most likely provoked by the physical effects of
low-frequency US irradiation [35]. Experiments conducted with Cu(0) as catalyst under US led to 17%
conversion, which is similar to experiments conducted with Cu salts (CuSO4 and CuCl2: 11% and 16%,
respectively); whereas benzaldehyde yield with Cu(0) was two times lower compared to experiments
conducted with CuSO4 and CuCl2 salts as catalysts (4%, 8%, and 7% yield, respectively). For zero
valent iron powder, up to 3 molar equivalents of H2O2 were added, resulting in low conversion
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(11%) and low benzaldehyde formation (2% yield). The transformation did not lead to the same high
conversion rates (43% and 53%) and yields (26% and 17%) obtained with FeSO4 and FeCl3 salts.

Table 3. Oxidation of PhCH2OH according to nature of the catalyst and H2O2 concentration in silent
condition and under US irradiation (20 kHz). Reaction conditions: 571 mM PhCH2OH 1% molar eq.
catalyst, 5.610 mL H2O, 70 ◦C, 15 min. Silent conditions: Argon bubbling; US conditions: 20 kHz,
Pacous = 47.9 W L−1 h−1, 13 mm probe.

eq. Ox PhCH2OH
Conversion

PhCHO
Yield

PhCHO
Seletivity eq. Ox PhCH2OH

Conversion
PhCHO

Yield
PhCHO

Seletivity

FeSO4 CuSO4

Silent
0.5 26.2% 12.1% 46.1% 0.5 14.5% 2.9% 20.3%
1 40.4% 19.6% 48.5% 1 10.8% 4.6% 42.4%
2 70.9% 9.3% 13.2% 2 20.9% 5.4% 26.0%

US 0.5 28.4% 13.8% 48.5% 0.5 15.2% 5.3% 34.8%
(20 kHz) 1 43.3% 26.2% 60.5% 1 10.6% 8.1% 77.0%

2 75.4% 15.8% 21.0% 2 18.9% 7.9% 42.0%

FeCl3 CuCl2

Silent
0.5 25.5% 6.9% 26.9% 0.5 15.2% 3.4% 22.4%
1 50.2% 3.4% 6.8% 1 16.4% 4.6% 27.8%
2 74.5% 2.0% 2.6% 2 20.5% 5.3% 25.8%

US 0.5 25.0% 15.0% 60.2% 0.5 16.5% 5.2% 31.5%
(20 kHz) 1 52.6% 16.9% 32.2% 1 16.2% 6.8% 41.7%

2 66.1% 16.8% 25.4% 2 19.2% 7.8% 40.7%

Fe Cu

Silent
1 11.8% 0.4% 3.1% 0.5 8.8% 1.1% 13.0%
2 8.7% 0.4% 4.2% 1 25.8% 8.0% 30.9%
3 7.8% 0.4% 4.8% 2 15.0% 5.6% 37.3%

US 1 11.5% 2.1% 18.2% 0.5 22.6% 5.6% 24.5%
(20 kHz) 2 8.4% 1.0% 11.8% 1 17.1% 4.2% 24.7%

3 11.2% 0.7% 6.2% 2 16.5% 10.1% 61.5%

MnCl2

Silent
0.5 6.1% 0.3% 4.9%
1 6.4% 0.5% 7.2%
2 8.8% 1.1% 13.0%

US 0.5 9.8% 1.8% 17.9%
(20 kHz) 1 7.9% 2.5% 30.9%

2 6% 1% 14%

2.3.2. Effect of the Catalyst Amount

We investigated the influence of catalyst amount (from 0.001 to 0.02 molar equivalent relative
to substrate) on the transformation yield of benzyl alcohol to benzaldehyde (Figure 3). Increasing
the catalyst amount (from 0.001 to 0.01 molar ratio) led to higher conversion and higher yields with
or without US activation. From 0.01 to 0.02 molar ratio, in silent conditions, benzaldehyde yield
decreased as catalyst concentration increased, whereas under US irradiation, benzaldehyde yield was
not affected by the amount of catalyst. In these conditions, activation by low-frequency US increases
the selectivity of the transformation to benzaldehyde (58% under US vs. 26% under silent conditions
with 0.02 FeSO4/PhCH2OH molar ratio).
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Figure 3. Oxidation of PhCH2OH as a function of molar ratio catalyst/substrate in silent condition and
under US irradiation (20 kHz). Reaction conditions: 571 mM PhCH2OH, 1 molar eq. H2O2; 5.61 mL
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2.4. Effect of pH

The effect of pH was studied for the transformation of benzyl alcohol to benzaldehyde. The pH of
the reaction medium was measured, before and after the catalyst introduction. An acidification of
the medium from 6.5 to 5.2 occurred when FeSO4 was added to water and benzyl alcohol. A further
decrease in pH value from 5.2 to 2.7 was noted when H2O2 was introduced. During the reaction,
pH remained at 2.7.

To test the influence of pH in the conversion of benzyl alcohol to benzaldehyde, aqueous acidic
and basic buffers were prepared at pH = 1, 2, 3, 6, and 9 and replaced water in the transformation
(Figure 4). It appears that acidic media (pH 1–2) led to high conversion (60%) and yields (up to 30%
at pH 1 under US activation) whereas at pH = 3, conversion was lower (10%) and did not lead to
benzaldehyde. At pH = 6, the benzyl alcohol conversion rate reached 20% but with no formation of
the desired benzaldehyde for both US and silent conditions. At pH = 9, the conversion rate was higher
in silent conditions (40% vs. 20% under US activation) while benzaldehyde yield was evaluated at 5%
in both conditions.
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The effect of pH can be related to potential-pH diagrams as chemical predominant species are
determined by the medium conditions [36]. For pH values above 4, ferrous ions (Fe(II)) are unstable
and form ferric ions (Fe(III)) that tend to bind into mineral metal oxide structures and are thus not
available as ions to participate in radical species formation [37]. Medium pH values also acts on H2O2

stability [38], since in basic media, H2O2 decomposes to water and oxygen (Equation (7), explaining
very low yields obtained at pH 9 (Figure 5).

2 H2O2 + 2 HO−
 2 HOO− + 2 H2O→ O2 + 2 HO− + 2 H2O (7)

2.5. Effect of Temperature

The oxidation of benzyl alcohol was tested under different temperatures ranging from 10 to 70 ◦C.
It was observed that benzyl alcohol conversion and benzaldehyde yield increased with temperature.
Below 20 ◦C, only low conversion rates were observed (<10%). At 50 ◦C and 70 ◦C, US conditions led
to higher selectivity for benzaldehyde in the oxidation of benzyl alcohol (Figure 5).
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Figure 5. Oxidation of PhCH2OH as a function of temperature in silent condition and under US
irradiation (20 kHz). Reaction conditions: 571 mM PhCH2OH, 1 molar eq. H2O2; 1% molar eq. FeSO4,
5.61 mL H2O, 15 min. Silent conditions: Argon bubbling; US conditions: 20 kHz, Pacous = 47.9 W L−1

h−1, 13 mm probe.

One explanation of better conversion and yields at a higher temperature is that the enhanced
agitation and molecule movement increase the probability for radical species and benzyl alcohol to
meet. The decrease in selectivity for benzaldehyde from 50 ◦C to 70 ◦C is caused by a higher increase
in conversion (+68% in silent conditions and +188% under US irradiation) compared to yield (+51%
in silent conditions and +155% under US irradiation). The higher increase in conversion than in
yield may be due to benzyl alcohol conversion into other undetected products or the conversion
of benzyl alcohol into benzaldehyde followed by a degradation of the product, leading to a lower
yield. Several studies described that the transformation of benzyl alcohol into benzaldehyde under
temperature ranging from 39 ◦C to reflux [16–19,32,33,39–43] and at a low temperature (15 ◦C) led
to much slower formation of benzaldehyde [39]. Even though H2O2 degrades faster in higher
temperatures, which eventually decreases oxidizing power of the medium, it is not the case in our
tested conditions. Experiments on temperature effects were conducted at 1 molar equivalent relative
to substrate (about 2% wt. concentration in water). In this condition, the adiabatic decomposition
temperature is inferior to 89 ◦C [38], which explains why no negative effect was observed on benzyl
alcohol conversion and benzaldehyde production in the studied range of temperatures of 10 to 70 ◦C.
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2.6. Kinetics of Benzyl Alcohol Transformation: Effect of Reaction Time

To investigate the effect of reaction duration on benzyl alcohol transformation, it is important to
consider the moderate solubility of the substrate, benzyl alcohol, and its main product, benzaldehyde,
in water, respectively 397 mM (42.9 g L−1 in water at 25 ◦C) and 65.6 mM (6.95 g L−1 in water at
25 ◦C) [44]. Because the benzyl alcohol initial concentration is superior to the solubility threshold in
water and benzaldehyde’s maximum solubility in water at 25 ◦C corresponds only to 11.5% yield,
samplings of the aqueous medium would not allow for accurate representation of the transformation
state. Therefore, the whole transformation medium was fully solubilized in acetonitrile (1:1 v/v) to
ensure reliable analysis. Sacrificial monitoring was performed at 0, 5, 10, 15, 20, 30, and 60 min.
Benzyl alcohol conversion increased with time from 0% to an average of 48% at 60 min under silent
conditions and 41% under US irradiation (Figure 6, left). Results with and without US irradiation are
similar, where only a slight increase in benzyl alcohol conversion is observable under US conditions.
Benzaldehyde yield increased over the course of 15 min in both conditions with superior values under
US (20% in silent conditions vs. 29% under US irradiation, which corresponds to a +45% increase
in yield when the reaction medium is under US irradiation). After 15 min, different trends were
observed for both silent and US conditions. (i) In silent conditions using a 6.366 mL reaction volume,
benzaldehyde yield decreased and reached 4% at 60 min. This is due to further transformation of
formed benzaldehyde in other compounds (which is discussed later in the study). (ii) Under US
irradiation, benzaldehyde yield remained stable (29% at 15 min and 31% at 60 min).

The effect of low-frequency US is clearly observable in this study. In silent conditions, formed
benzaldehyde could be transformed into other products, while under 20 Hz US irradiation, it was
protected from degradation. Since the conversion rate for benzyl alcohol remained stable from 15 to
60 min, it excluded the possibility of simultaneous production and degradation. Chakma et al. studied
the individual mechanisms of sonolysis and the Fenton process in the hybrid sono-Fenton process [35].
They concluded that only physical effects contributed to improvement in organic dye degradation and
identified intense mixing as the cause of the positive synergy. Microagitation, turbulence, and other
physical phenomena are critical for efficient mixing, since they lead to a better homogeneous repartition
of hydroxyl radical species and higher probabilities for radical and organic species to meet, compared to
the Fenton process for which radical distribution depends on agitation created by argon bubbling.
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Figure 6. Oxidation of PhCH2OH as a function of time in silent condition and under US irradiation (20 kHz).
Reaction conditions: 571 mM PhCH2OH, 1 molar eq. H2O2, 1% molar eq. FeSO4, 5.61 mL H2O, 70 ◦C
(left) and monitoring of H2O2 over time. Reaction conditions: 584 mM H2O2; 5.5 mM FeSO4; 5.988 mL
water (right). Silent conditions: Argon bubbling; US conditions: 547 kHz, Pacous = 55.5 W L−1 h−1.
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In order to evaluate the role of US on H2O2 decomposition rate, H2O2 concentration was
monitored in the reaction medium without the substrate by indirect titration with MnO4

− according to
the following equation:

2 MnO4
− + 6 H+ + 5 H2O2→ 2 Mn2+ + 8 H2O + 5 O2. (8)

Results of hydrogen peroxide titration are presented in Figure 6 (right). No difference in concentration
of H2O2 could be observed under US irradiation or in silent conditions, indicating that low-frequency
US does not impact H2O2 decomposition.

2.7. Effect of US Frequecy

Ultrasound frequency was tested as another parameter for benzyl alcohol transformation to
benzaldehyde. High-frequency US (547 kHz) was provided by a cup horn device that required
at least 60 mL volume to operate. For this reason, the reaction volume was adapted to 63.66 mL,
which corresponded to a proportional increase by a factor of 10 for each reagent compared to low
frequency operating conditions (6.366 mL). Benzyl alcohol (571 mM), H2O2 (1 molar equivalent),
and FeSO4 (1% molar equivalent) were introduced in the exact same proportions as in previously
described reactions. Sacrificial experiments were set up according to parameters explained above.
The reaction was analyzed until 120 min instead of 60 min to reach stable values for conversion and
yield (Figure 7).
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Figure 7. Oxidation of PhCH2OH as a function of time in silent condition and under US irradiation
(547 kHz). Reaction conditions: 571 mM PhCH2OH, 1 molar eq. H2O2; 1% molar eq. FeSO4,
56.1 mL H2O, 70 ◦C (left) and monitoring of H2O2 over time. Reaction conditions: 584 mM H2O2;
5.5 mM FeSO4; 5.988 mL water (right). Silent conditions: Argon bubbling; US conditions: 547 kHz,
Pacous = 55.5 W L−1 h−1.

The benzyl alcohol conversion profiles in silent conditions and under US irradiation at 547 kHz
are very similar to the conversion profiles under 20 kHz US irradiation (Figure 7, left). In silent
conditions, a higher reaction volume (63.66 mL) did not show degradation of the formed benzaldehyde
after obtaining the maximum yield, contrary to the trends observed in a smaller volume (6.366 mL).
This suggests that volume has an effect in benzaldehyde transformation.
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The decomposition of H2O2 was studied by indirect titration as previously described (Figure 7,
right). No difference in H2O2 concentration was observed, leading to the conclusion that high-frequency
US does not impact the decomposition of hydrogen peroxide.

2.8. Study of the Transformation Mechanism

2.8.1. Radical Species Involvement in the Transformation Mechanism

In this study, the effect of low-(20 kHz) and high-(547 kHz) frequency US irradiations were tested
on the simple system composed of benzyl alcohol, the substrate to be converted; water as the solvent;
H2O2 as the oxidant; and FeSO4 as the catalyst. Fenton reagents are known to generate hydroxyl
radicals HO• [45–47] that react quickly with other radicals or organic compounds such as benzyl
alcohol and benzaldehyde (k = 8.4 × 109 mol L−1 s−1 and 4.4 × 109 mol L−1 s−1, respectively) [13].
On the other hand, US and, more specifically, high-frequency US have been described to generate
radical species such as hydroxyl radicals in water [7]. The quantification of HO• in our systems was
estimated by KI dosimetry method. The reaction presented in Equation (8) was monitored by UV-vis
spectrophotometry [48].

2 HO• + 3 I−→ 2 HO− + I3
− (9)

During irradiation at 547 kHz, we evaluated that 2.4 × 10−4 mol L−1 h−1 of HO• were produced
compared to 7.6 × 10−8 mol L−1 h−1 at 20 kHz (3200 times less). Tert-butanol is a known HO• scavenger
according to Equation (10) [49,50], which we used in our system to assess the role of radical species in
the transformation mechanism.

(CH3)3COH + OH•→ (CH3)2CH2
•COH + H2O (10)

Under low-frequency US (20 kHz), tert-butanol had a significant effect on benzyl alcohol conversion
and benzaldehyde production, where conversion rates dropped from 43% to 5% and yield dropped
from 34% to 5% (Figure 8). A similar drop in conversion rates and yield was observed for the
transformation in silent conditions (from 37% to 5% for conversion, and from 29% to 5% for yield),
suggesting that radical species are involved in the conversion of benzyl alcohol into benzaldehyde.

Under high-frequency US irradiation (547 kHz), tert-butanol also prevented transformations,
with experimental results showing a decrease in conversion and benzaldehyde yield, respectively,
from 39% to 5.0% and from 29% to 5.0%, as shown in Figure 8. The radical inhibitor prevented
the transformation to occur, which indicates that radical species are involved in the mechanism.
Since tert-butanol prevented transformations in silent conditions (drop in conversion and yield from
39% and 29% to 5% and 5%, respectively), this result shows that the radical species, which allow the
transformation of benzyl alcohol to benzaldehyde, do not originate from low- or high-frequency
US irradiation but rather from the Fenton system composed of FeSO4 and H2O2. The maximum
theoretical hydroxyl production from the Fenton reagent reveals that 1.2 M of HO• could be produced
during the transformation as the reaction medium contains 584 mM of H2O2. This is approximately
20,000 times the concentration of hydroxyl radicals produced from a 547 kHz device in water for
15 min. This shows that tert-butanol inhibits benzyl alcohol oxidation to benzaldehyde in silent
conditions as well as under US irradiation.
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2.8.2. Side Products and Transformation Pathways 

Benzyl alcohol transformation leads to the production of benzaldehyde as the main product in 
the studied conditions. In some conditions under US, the selectivity for benzaldehyde is high (73%) 
with 41% benzyl alcohol conversion (1 molar equivalent of H2O2, 1% molar equivalent of catalyst, 
5.61 mL H2O, 70 °C, 60 min). However, under silent conditions (1 molar equivalent of H2O2, 1% molar 
equivalent of catalyst, 5.61 mL H2O, 70 °C, 60 min) the transformation led to only 9% selectivity, with 
the reaction producing molecules other than benzaldehyde. Among organic products, benzoic acid 
represents less than 1% of benzyl alcohol conversion. To confirm benzaldehyde and benzoic acid 
production during the transformation, mass spectra obtained by GC-MS are presented in Figure 9. 

Figure 8. Oxidation of PhCH2OH with tert-butanol as radical inhibitor in silent condition and under
US irradiation (20 kHz and 547 kHz). Reaction conditions under 20 kHz and silent conditions;
571 mM PhCH2OH, 1 molar equivalent of H2O2, 1% molar equivalent of catalyst, 5.61 mL H2O,
70 ◦C, 15 min. Silent conditions: Argon bubbling; US conditions: 20 kHz, Pacous = 47.9 W L−1 h−1,
13 mm probe; under 547 kHz and in silent conditions: 571 mM PhCH2OH, 1 molar eq. H2O2;
1% molar eq. FeSO4, 56.1 mL H2O, 70 ◦C. Silent conditions: Argon bubbling; US conditions: 547 kHz,
Pacous = 55.5 W L−1 h−1.

2.8.2. Side Products and Transformation Pathways

Benzyl alcohol transformation leads to the production of benzaldehyde as the main product in
the studied conditions. In some conditions under US, the selectivity for benzaldehyde is high (73%)
with 41% benzyl alcohol conversion (1 molar equivalent of H2O2, 1% molar equivalent of catalyst,
5.61 mL H2O, 70 ◦C, 60 min). However, under silent conditions (1 molar equivalent of H2O2, 1% molar
equivalent of catalyst, 5.61 mL H2O, 70 ◦C, 60 min) the transformation led to only 9% selectivity,
with the reaction producing molecules other than benzaldehyde. Among organic products, benzoic acid
represents less than 1% of benzyl alcohol conversion. To confirm benzaldehyde and benzoic acid
production during the transformation, mass spectra obtained by GC-MS are presented in Figure 9.
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Figure 9. Oxidation of benzyl alcohol GC chromatogram (A) in silent conditions and (B) under US
irradiation. (C) mass spectra of identified peaks obtained by electronic impact (70 eV). Reaction conditions
under 20 kHz and silent conditions; 571 mM PhCH2OH, 1 molar equivalent of H2O2, 1% molar equivalent
of catalyst, 5.61 mL H2O, 70 ◦C, 90 min. Silent conditions: Argon bubbling; US conditions: 20 kHz,
Pacous = 47.9 W L−1 h−1, 13 mm probe.

No other significant organic compound was detected through LC-MS and GC-MS analyses, so the
possibility for gas production was considered. Usingγ-rays on 14C-labelled sodium benzoate, Matthews
and Sangsters demonstrated that 14CO2 production, corresponding to benzoate decarboxylation,
was initiated by hydroxyl radicals [51]. In another study, decarboxylation of benzoic acid at a
concentration of 6.25 mM in aqueous medium at pH = 3 was obtained in the presence of hydrogen
peroxide (1.68 molar equivalent relative to benzoic acid) and transition metal catalysts (FeSO4 and
CuSO4; 4% molar equivalent) [52]. In our reaction conditions, benzoic acid can be decarboxylated
leading to carbon dioxide production [53]. The release of CO2 to the atmosphere was studied by
bubbling the reaction atmosphere in limewater. The lime water became cloudy, indicating that CO2

was produced during the transformation; no CO2 quantification was carried out. GC-MS analyses
were conducted to look for benzene as a resulting product of decarboxylation, but no traces of this
compound could be detected. Other peaks in the chromatograms with very low intensity could be
detected but no further identification was applied in these cases.

2.8.3. Comparison with Reported Mechanisms for the Oxidation of Benzyl Alcohol to Benzaldehyde

In literature, several mechanisms are described for the transformation of benzyl alcohol to
benzaldehyde [17,19,32,40,43]. Narayanan et al. and Jia et al. propose three-step mechanisms involving
ZMS-5 zeolite as a catalyst. [19,43]. They include a first activation step, the oxidation of the zeolite
catalyst with H2O2 to peroxometal, which leads to a loss of a water molecule coming from the
hydroperoxyl group and a proton of benzyl alcohol. A second loss of a proton from benzyl alcohol
enables regeneration of the zeolite catalyst to its initial structure while benzaldehyde is generated.
The major difference emerging from these two mechanisms is the origin of the proton implied in the
formation of water and regeneration of the zeolite catalyst. Jia et al. proposed that the water molecule
is formed notably from the alcohol moiety proton and the catalyst is regenerated from the methyl
proton, whereas Narayanan et al. proposes the opposite. Others proposed a similar mechanism as Jia
et al. but with tungstic acid as the catalyst [16].

Kamonsatikul et al. and Xiao et al. proposed similar mechanisms in which stabilizing ligands
increase the adsorption of hydrogen peroxide on iron oxide catalysts to form hydroxyl radical species
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according to Fenton-like reactions [32,40]. The oxidation of benzyl alcohol would then occur through a
simultaneous abstraction of protons from alcohol and methyl groups by hydroxyl radicals.

A system with conditions approaching ours, was described by Ahmad et al., involving 3 mmol
of benzyl alcohol in 5 mL of water, 3 molar equivalents of H2O2, and 1%mol CuSO4 [17]. However,
the reaction was not neutralized by a radical inhibitor, and UV-spectra measured during the reaction
led the author to conclude that a single oxidation state CuII complex operated the transformation of
benzyl alcohol to benzaldehyde through an ionic pathway.

Besides the implication of oxidizing radical species and catalyst stabilization, Mahamuni et
al. considered the role of ultrasonic irradiation on benzyl alcohol transformation mechanisms to
benzaldehyde [39]. They identified that gravitational collapse could enhance reactions because of the
extreme temperature and pressure inside the bubble, but also by the increase of radicals in the bulk
and the interface of the bubble. This interface is considered as a supercritical region where reactions
can also take place. Ultrasonic irradiation of water also increases the concentration of hydroxyl radical
species and increases the turbulence phenomenon that agitates the medium and raises the probabilities
for radicals and benzyl alcohol to meet. In our case, the increased concentration of radical species was
already discussed and it is not likely that the low concentration of radical species generated through
US is the cause of the 45% increase in benzaldehyde yield. Negative synergism was described in
sono-Fenton processes between chemical effects of US irradiation and Fenton processes because of HO•

scavenging from H2O2 [35]. The improvement for benzaldehyde selectivity under US is not clearly
determined in our case but we could identify that low- and high-frequency US do not impact H2O2

decomposition and that at low frequency, US irradiation prevents benzaldehyde degradation.

3. Materials and Methods

3.1. Materials

Acetonitrile (HPLC grade) and manganese(IV) oxide (99%) were purchased from Fisher Scientific.
Sodium sulfite, manganese(II) chloride, copper(II) chloride, and iron(III) chloride (all analysis grade)
were purchased from Prolabo. Benzyl alcohol (99%), benzaldehyde (98%), iron powder 352 mesh
(99%), sulfuric acid (96% in water), and potassium permanganate (98%) were procured from Acros.
Iron(III) oxide (99.998%), iron(II, III) oxide (97%), iron(II) oxide (99.5%), manganese(II) oxide (99%),
and manganese(II) titanium oxide (99.9%) were procured from Alfa Aesar. Copper(II) chloride (≥98%)
and copper(II) sulfate (≥98%) came from Roth. Cobalt iron oxide (99%) was obtained from Aldrich.
Benzoic acid (>99.5%), copper powder (grain size > 63 µm), and soda lime (both analysis grade) were
obtained from Merck. Ultra-high-quality (UHQ) water obtained from Elga Maxima system was used
for the experiments.

3.2. Equipement

Reactions under low-frequency US and controls were set up in 10 mL single neck round bottom
flasks with a 20 kHz microtip device (Branson Digital Sonifier, nominal power of 200 W, 13 mm
probe) operating at an acoustic power of 47.9 W L−1 h−1 according to calorimetric measurements with
UHQ water. Reactions under high-frequency US were set up in cup horn reactors of 200-mL capacity.
A NexTgen Ultrasonic Platform (SinapTec) device was used to generate US at 547 kHz. The acoustic
power measured of water was 55.0 W L−1 h−1. Temperature was controlled during the transformation
by a thermowell (SynapTec).

Carbon dioxide production was assessed using a two-neck, round bottom flask of 25-mL capacity
related to argon bubbling and connected to a single-neck round bottom flask. Saturated limewater
(23.3 mM) was used in the case of CO2 production assessment.
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3.3. Experimental Procedures

For reactions under 20 kHz US irradiation, predetermined amounts of water, benzyl alcohol,
and solid powder catalyst were introduced in the round-bottom flask. A predetermined volume
of hydrogen peroxide 30% wt. was introduced as US irradiation started. Under silent conditions,
argon bubbling was set up at an average flow rate of 6 L h−1. According to the desired hydrogen
peroxide molar equivalent to substrate ratio, water volume was adapted to reach 6.366 mL as the
final volume. Reactions under 547 kHz were directly set up in the cup-horn reactor. The introduction
of reagents is similar to reaction under 20 kHz with a final volume of 63.66 mL.

At the end of each experiment, the whole volume of reaction medium is solubilized in acetonitrile
(1:1 acetonitrile to reaction medium) and 200 µL of this mix is quenched with 200 mg of sodium sulfite.

Quenched samples were filtered with 0.22 µm PTFE filters (13 mm, Grosseron) and 1-mL luer
syringes (Norm-Ject, Henke Sass Wolf) to remove solid particles.

H2O2 concentration monitoring in the medium was performed by indirect titration with KMnO4

at 2.5 × 10−3 M. For the experiment run under 20 kHz US irradiation and the associated silent control,
the reaction medium was composed of 5.988 mL of water, 5.3 mg of FeSO4, and 378 µL of H2O2 30% wt.
The medium temperature was held at 70 ◦C and 300 µL were collected at 0, 5, 10, 15, 30, and 60 min.
The sample was solubilized in 10 mL of water and 500 µL of H2SO4 (96% in water). The solution of
KMnO4 at 2.5 × 10−3 M was added in the sample preparation, and the volume used to reduce MnO4

−

to Mn2+ was identified to calculate H2O2 concentration. For the experiment run under 547 kHz and
the silent associated control, the medium was composed of 59.88 mL of water, 53.0 mg of FeSO4,
and 3.78 mL of H2O2 30% wt. The same procedure as described above was performed. Hydrogen
peroxide concentration was monitored over 120 min in this case.

3.4. Experimental Analysis

An HPLC system (Perkin Elmer Series 200) equipped with a diode array UV-visible detector
(Perkin Elmer Series 200, λ = 258 nm) and a 3 µm Surf C18 TriF 100A (ImChem, 33 × 4.6 mm) column
was used to monitor benzyl alcohol, benzaldehyde, and benzoic acid concentrations. Mobile phase was
composed of water with 0.1% acetic acid and acetronitrile and started with 10% of acetonitrile (1 min),
reaching 100% within 20 min (5 min). Pure samples of benzyl alcohol, benzaldehyde, and benzoic
acid of known concentrations were prepared for calibration and quantification. For benzaldehyde,
a non-linear response was observed in the studied range and calibration curves were defined for
several ranges of concentrations with good reliability (R2 > 0.95). Benzyl alcohol and benzoic acid
response to concentration was linear (R2 > 0.95) in the studied range.

GC-MS analyses were conducted on a Clarus 600 gas chromatograph and a Clarus 600 T mass
spectrometer (Perkin Elmer) using an Optima 5 MS accent column (30 m × 0.25 mm i.d., 0.25 µm film
thickness, Macherey–Nagel). The column oven temperature started at 50 ◦C and was held for 5 min.
The temperature was increased at a rate of 8 ◦C/min until it reached 180 ◦C and was then held for
5 min. Then, it was increased at a rate of 10 ◦C/min until it reached 340 ◦C and was held for 1 min.
The total run time was 42.25 min. Injection and transfer line temperatures were set up at 200 ◦C and
300 ◦C, respectively. Mass spectrometry was obtained by electronic impact ionization in positive mode
detection, with the ion source at 250 ◦C and the detector voltage set at 70 eV.

4. Conclusions

In this study, we investigated simple and environmentally sustainable reaction conditions to
selective oxidize benzyl alcohol into benzaldehyde. Various parameters such as substrate concentration,
oxidant nature and amount, catalyst nature and amount, temperature, pH, reaction duration, and US
frequency were studied over wide ranges to identify optimal conditions for the transformation.
We identified that a concentration of 571 mM of benzyl alcohol in acidic water at 70 ◦C for 15 min in
the presence of 1% molar equivalent of FeSO4 as catalyst and 1 molar equivalent of H2O2 as oxidizing



Molecules 2019, 24, 4157 16 of 18

agent, enabled 39% conversion of benzyl alcohol and 20% yield of benzaldehyde, which corresponds
to 51% selectivity for benzaldehyde. The irradiation under 20 kHz US led to a significant increase in
selectivity of 73% with a similar conversion rate of 39%. Study of the mechanism indicated that radical
species such as HO•, produced by Fenton reagents, are implied in the oxidation of benzyl alcohol to
benzaldehyde. Low-frequency US irradiation led to stable concentrations of benzaldehyde over time,
presumably by preventing benzaldehyde degradation in the reaction medium. After 60 min under
547 kHz US irradiation, benzyl alcohol conversion was increased by +3% and benzaldehyde yield by
+23%, confirming a beneficial effect of US irradiation of either low or high frequency on benzaldehyde
selectivity (+43% after 15 min and +19% after 120 min, respectively) in the oxidation of benzyl alcohol.

This simple system implemented green oxidizing agent and catalyst and was developed to
improve selective oxidation of benzyl alcohol as a well-known substrate in the model transformation to
benzaldehyde. An exciting method to improve the system in an environmentally responsible manner
would be to combine US irradiation with UV-light irradiation. Synergistic effects have already been
described in several fields such as organic pollutant mineralization [54,55], biomass treatment [56],
and green organic chemistry [57]. Beneficial effects on selective oxidation could emerge from the
association of US and UV as green techniques and have yet to be studied.
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