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On Computing Multilinear Polynomials Using Multi-r -ic Depth Four Circuits

In this paper, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which polynomial computed at every node has a bound on the individual degree of r (referred to as multi-r -ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better and better bounds as the value of r increases.

Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing a multilinear polynomial on n O(1) variables and degree d = o(n), must have size at least

when r is o(d ) and is striclty less than n 1.1 . This bound however deteriorates with increasing r . It is a natural question to ask if we can prove a bound that does not deteriorate with increasing r or a bound that holds for a larger regime of r .

We here prove a lower bound which does not deteriorate with r , however for a specific instance of d = d (n) but for a wider range of r . Formally, we show that there exists an explicit polynomial on n O(1) variables and degree Θ(log 2 n) such that any depth four circuit of bounded individual degree r < n 0.2 must have size at least exp Ω log 2 n . This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).

Introduction

One of the major focal points in the area of algebraic complexity theory is to show that certain polynomials are hard to compute syntactically. Here, the hardness of computation is quantified by the number of arithmetic operations that are needed to compute the target polynomial. Instead of the standard turing machine model, we consider arithmetic circuits and formulas as models of computation.

Arithmetic circuits are directed acyclic graphs such that the leaf nodes are labeled by variables or constants from the underlying field, and every non-leaf node is labeled either by a + or ×. Every node computes a polynomial by operating on its inputs with the operand given by its label. The flow of computation flows from the leaf to the output node. We refer the readers to the standard resources [START_REF] Shpilka | Arithmetic circuits: A survey of recent results and open questions[END_REF][START_REF] Saptharishi | A survey of lower bounds in arithmetic circuit complexity version 8.0.4. Github survey[END_REF] for more information on arithmetic formulas and arithmetic circuits.

Valiant conjectured that the Permanent does not have polynomial sized arithmetic circuits [START_REF] Valiant | Completeness classes in algebra[END_REF]. Working towards that conjecture, we aim to prove superpolynomial circuit size lower bounds. However,

Motivation for this work

Raz and Yehudayoff [START_REF] Raz | Lower bounds and separations for constant depth multilinear circuits[END_REF] showed a lower bound of exp(Ω d log d ) against multilinear depth four circuits which compute a multilinear polynomial over n variables and degree d n (cf. [KST18,

Footnote 9]). Kayal, Saha and Tavenas [START_REF] Kayal | On the size of homogeneous and of depth-four formulas with low individual degree[END_REF] have shown a lower bound of

n r 1.1 Ω d r
for a multilinear polynomial over n O(1) variables and degree d that is computed by a multi-r -ic depth four circuit. This lower bound degrades with the increasing value of r and is superpolynomial only when r is o(d ) and is strictly less than n1.1 . This raises a natural question if the dependence on r could be improved upon.

In this work, we show that for a certain regime of d , we can prove a lower bound that does not deteriorate with increasing values of r .

Theorem 1. Let n and r be integers such that r < n 0.2 . There exists an explicit polynomial Q n of degree Θ(log 2 n), over n O(1) variables such that any syntactically multi-r -ic depth four circuit computing it must have size exp Ω(log 2 n) .

The explicit polynomial that we consider is a close variant of the polynomial considered by Kayal et al. [START_REF] Kayal | On the size of homogeneous and of depth-four formulas with low individual degree[END_REF]. By substituting these parameters into the bound from [START_REF] Kayal | On the size of homogeneous and of depth-four formulas with low individual degree[END_REF], their bound evaluates to n Ω log n r . Note that this bound is superpolynomial only when r = o(log 2 n). Our lower bound is quantitatively better in this regime of parameters.

If we can show superpolynomial size lower bounds against multi-r -ic depth four circuits for r = n c for any constant c, then we indeed have superpolynomial circuit size lower bounds against depth four circuits. We believe that by building on the work of [KST18, HS17], Theorem 1 is a step towards that direction.

In a subsequent work to this, we observed that by careful analysis and by building upon this work and work of Kumar and Saraf [START_REF] Kumar | On the power of homogeneous depth 4 arithmetic circuits[END_REF], we can in fact prove exponential lower bounds against depth four multi-r -ic circuits computing the Iterated Matrix Multiplication polynomial.

Proof overview:

Analogous to the work of Fournier et al. [START_REF] Fournier | Lower bounds for depth-4 formulas computing iterated matrix multiplication[END_REF], and Kumar and Saraf [START_REF] Kumar | On the power of homogeneous depth 4 arithmetic circuits[END_REF], we first consider multi-r -ic depth four circuits of low bottom support 2 and prove lower bounds against them.

Let T 1 , T 2 , . . . , T s be the terms corresponding to the product gates feeding into the output sum gate. The output polynomial is obtained by adding the terms T 1 , T 2 , . . . , T s . Note that each of these T i 's is a product of low support polynomials Q i , j , that is, every monomial in these Q i , j 's is supported on a small set of variables (say µ many). One major observation at this point is to see that there can be at most N • r many factors in any of the T i 's.

Kayal et al. [START_REF] Kayal | On the size of homogeneous and of depth-four formulas with low individual degree[END_REF] observed that the measure of shifted partial derivates [START_REF] Kayal | A super-polynomial lower bound for regular arithmetic formulas[END_REF][START_REF] Fournier | Lower bounds for depth-4 formulas computing iterated matrix multiplication[END_REF] does not yield any non-trivial lower bound if the number of factors is much larger than the number of variables itself. They worked around this obstacle by defining a hybrid complexity measure (refered to as Shifted Skew Partial Derivatives) where they first split the variables into two disjoint and unequal sets Y and Z such that |Y | |Z|, then considered the low order partial derivatives with respect to only the Y variables and subsequently set all the Y variables to zero in the partial derivatives obtained. This effectively reduces the number of factors in a partial derivative to at most |Z| • r . They then shift these polynomials by monomials in Z variables and look at the dimension of the polynomials thus obtained. This measure gave them a size lower bound of

n r 1.1 Ω d r
against multi-r -ic depth four circuits computing an explicit polynomial on n O(1) variables and degree d = o(n) when r = o(d ). To improve the dependence on r in the lower bound, we consider a variant of Shifted Skew Partial Derivatives that we call Projected Shifted Skew Partial Derivatives. Here, we project down the space of Shifted Skew Partials and only look at the multilinear terms. Since the polynomial of interest is multilinear, it makes sense to only look at the multilinear terms obtained after the shifts of the skew partial derivatives. This is analogous to the method employed by Kayal et al. [START_REF] Kayal | An exponential lower bound for homogeneous depth four arithmetic formulas[END_REF] to prove exponential lower bounds for Homogeneous depth four circuits, through the measure of Projected Shifted Partial Derivatives.

We first show that the dimension of Projected Shifted Skew Partial derivatives is not too large for small multi-r -ic depth four circuits of low bottom support. We then show that there exists an explicit polynomial whose dimension of Projected Shifted Skew Partial derivatives is large and thus cannot be computed by small multi-r -ic depth four circuits. We then lift this result to multi-r -ic depth four circuits for suitable set of parameters.

Preliminaries

Notation:

• For a polynomial f , we use ∂ =k Y ( f ) to refer to the space of partial derivatives of order k of f with respect to monomials of degree k in Y .

• We use z = and z ≤ to refer to the set of all the monomials of degree equal to and at most , respectively, in Z variables.

• We use z ≤ ML to refer to the set of all the multilinear monomials of degree at most in Z variables.

• We use z ≤ NonML to refer to the set of all the non-multilinear monomials of degree at most in Z variables.

• For a monomial m we use |MonSupp(m)| to refer to the size of the set of variables that appear in it.

• For a polynomial f , we use |MonSupp( f )| to refer to the maximum |MonSupp(m)| over all monomials in f .

Depth four circuits: A depth four circuit (denoted by ΣΠΣΠ) over a field and variables {x 1 , x 2 , . . . , x n } computes polynomials which can be expressed in the form of sums of products of polynomials. That is,

s i=1 d i j =1
Q i , j (x 1 , . . . , x n ) for some d i 's. A depth four circuit is said to have a bottom support of t (denoted by ΣΠΣΠ {t } ) if it is a depth four circuit and all the monomials in each polynomial Q i, j are supported on at most t variables.

Multi-r-ic arithmetic circuits:

Definition 2 (multi-r-ic circuits). Let r = (r 1 , r 2 , • • • , r n ). An arithmetic circuit Φ is said to be a syntac- tically multi-r-ic circuit if for all product gates u ∈ Φ and u = u 1 × u 2 × • • • × u t , each variable x i can appear in at most r i many of the u i 's (i ∈ [t ]
). Further the total degree with respect to every variable over all the polynomials computed at u

1 , u 2 , • • • , u t , is bounded by r , i.e. j ∈[t ] deg x i ( f u j ) ≤ r i for all i ∈ [n]. If r = (r, r, • • • , r
), then we simply refer to them as multi-r -ic circuits.

Complexity Measure: We shall now describe our complexity measure which we shall henceforth refer to as Dimension of Projected Shifted Skew Partial Derivatives. This is a natural extension of the Dimension of Shifted Skew Partial Derivatives as used by [START_REF] Kayal | On the size of homogeneous and of depth-four formulas with low individual degree[END_REF].

This is analogous to the work of [START_REF] Kayal | Super-polynomial lower bounds for depth-4 homogeneous arithmetic formulas[END_REF] where they study a shifted partials inspired measure called Shifted Projected Partial derivatives and then [START_REF] Kayal | An exponential lower bound for homogeneous depth four arithmetic formulas[END_REF] where they study Projected Shifted Partial derivatives.

Since the polynomial of interest is multilinear, it does make sense for us to only look at those shifts of the partial derivatives, that maintain multilinearity. At the same time, since the individual degree of the intermediate computations in the multi-r -ic depth four circuit is large and non-multilinear terms "cancel" out to generate the multilinear polynomial, we can focus on the multilinear terms generated after the shifts by projecting our linear space of polynomials down to them. We describe this process formally, below.

Let the variable set X be partitioned into two fixed, disjoint sets Y and Z such that |Y | is a magnitude larger than

|Z|. Let σ Y : [Y Z] → [Z] be a map such that for any polynomial f (Y, Z), σ Y ( f ) ∈ [Z]
is obtained by setting every variable in Y to zero by it and leaving Z variables untouched. Let mult : [Z] → [Z] be a map such that for any polynomial f (Y, Z), mult( f ) ∈ [Z] is obtained by setting the coeficients of all the non-multilinear monomials in f to 0 and leaving the rest untouched. We use

z ≤ • σ Y (∂ =k Y f
) to refer to the linear span of polynomials obtained by multiplying each polynomial in σ Y (∂ =k Y f ) with monomials of degree at most in Z variables. We will now define our complexity measure, Dimension of Projected Shifted Skew Partial Derivatives (denoted by Γ k, ) as follows.

Γ k, ( f ) = dim -span mult z ≤ • σ Y ∂ =k Y f
This is a natural generalization of Shifted Skew Partial Derivatives of [START_REF] Kayal | On the size of homogeneous and of depth-four formulas with low individual degree[END_REF]. The following proposition is easy to verify. Proposition 3 (Sub-additivity). Let k and be integers. Let the polynomials f ,

f 1 , f 2 be such that f = f 1 + f 2 . Then, Γ k, ( f ) ≤ Γ k, ( f 1 ) + Γ k, ( f 2 ) .
Monomial Distance: We recall the following definition of distance between monomials from [START_REF] Chillara | Depth-4 lower bounds, determinantal complexity: A unified approach. computational complexity[END_REF].

Definition 4 (Definition 2.7, [START_REF] Chillara | Depth-4 lower bounds, determinantal complexity: A unified approach. computational complexity[END_REF]). Let m 1 , m 2 be two monomials over a set of variables. Let S 1 and S 2 be the multisets of variables corresponding to the monomials m 1 and m 2 respectively. The distance dist(m 1 , m 2 ) between the monomials m 1 and m 2 is the min{|S

1 | -|S 1 ∩ S 2 |, |S 2 | -|S 1 ∩ S 2 |}
where the cardinalities are the order of the multisets.

For example, let

m 1 = x 2 1 x 2 x 2 3 x 4 and m 2 = x 1 x 2 2 x 3 x 5 x 6 . Then S 1 = {x 1 , x 1 , x 2 , x 3 , x 3 , x 4 }, S 2 = {x 1 , x 2 , x 2 , x 3 , x 5 , x 6 }, |S 1 | = 6, |S 2 | = 6 and dist(m 1 , m 2 ) = 3.
It is important to note that two distinct monomials could have distance 0 between them if one of them is a multiple of the other and hence the triangle inequality does not hold.

The following beautiful lemma (from [START_REF] Gupta | Approaching the chasm at depth four[END_REF]) is key to the asymptotic estimates required for the lower bound analyses.

Lemma 5 (Lemma 6, [GKKS14]). Let a(n), f (n), g (n) : ≥0 → ≥0 be integer valued functions such that ( f + g ) = o(a). Then, ln (a + f )! (a -g )! = ( f + g ) ln a ± O ( f + g ) 2 a
We use the following strengthening of the Principle of Inclusion and Exclusion in our proof.

Lemma 6 (Strong Inclusion-Exclusion

[KS14]). Let W 1 ,W 2 , • • • ,W t be subsets of a finite set W . For a parameter λ ≥ 1, let i, j ∈[t ] i = j W i ∩ W j ≤ λ i∈[t ] |W i | . Then, ∪ i∈[t ] W i ≥ 1 4λ i ∈[t ] |W i | .
Polynomial Families: Let n, α, k be positive integers. We define the polynomial family P n,α,k n,α,k≥0 as follows. Let the variable set X = {x 1 , . . . , x N 0 } be partitioned into two fixed, and disjoint sets Y and Z. We first define the polynomial family f n,α,k (Y, Z) as follows (as it was defined in [START_REF] Kayal | On the size of homogeneous and of depth-four formulas with low individual degree[END_REF]).

f n,α,k = k i=1 g i (Y i , Z i ) where g i (Y i , Z i ) = a,b ∈[n] y (i) a,b c∈[α] z (i,1) a,c z (i,2) c+α,b .
It is easy to see that |Y | is n 2 k and |Z| is 2αnk. We shall henceforth use m to refer to |Z|. Thus,

N 0 = |X | = |Y | + |Z| = k(n 2 + 2αn).
Let c be a fixed constant in (0, 1). We shall now define another polynomial family P n,α,k based on the definition of f n,α,k . Let p = N -c 0 . Let X = {x 1,1 , x1,2 , . . . , x1,t , . . . , xN 0 ,1 , xN 0 ,2 , . . . , xN 0 ,t } be a variable set distinct from X such that t = N 0 log N 0 p

. Let Lin p : X → X be a linear map such that x i → t j =1 xi,j for all i ∈ [N 0 ]. Then the polynomial P n,α,k ( X ) be defined to be f n,α,k • Lin p ( X ). That is,

P n,α,k = f n,α,k t j =1 x1,j , t j =1 x2,j , • • • , t j =1
xN 0 , j where t = N 0 log N 0 p .

Note that P n,α,k is a polynomial on N = N 2+c 0 log N 0 many variables.

We will now recall the following lemma which in the mentioned form is due to Kumar and Saptharishi [START_REF] Saptharishi | A survey of lower bounds in arithmetic circuit complexity version 8.0.4. Github survey[END_REF].

Lemma 7 (Analogous to Lemma 20.5, [START_REF] Saptharishi | A survey of lower bounds in arithmetic circuit complexity version 8.0.4. Github survey[END_REF]). Let ρ be a random restriction on the variable set X that sets each variable to zero with a probability of at least (1 -p) where p = N -c 0 for some constant c ∈ (0, 1) . Then f n,α,k (X ) is a projection of ρ(P n,α,k ( X )) with a probability of at least (1 -2 -N 0 ).

Multi-r -ic Depth Four Circuits of Low Bottom Support

For some carefully chosen parameters k and , we shall first show that if a multi-r -ic depth four circuit C of bottom support µ is small then Γ k, (C ) is not too large. We shall then show that Γ k, ( f n,α,k ) is large and thus it cannot be computed by C .

Upper Bound on Γ k, (C )

Recall that C is a sum of at most s many products of polynomials T (1) + • • • + T (s) where each T i is a syntactically multi-r -ic product of polynomials of low monomial support.

We shall first prove a bound on Γ k, (T i ) for an arbitrary T i and derive a bound on Γ k, (C ) by using sub-additivity of the measure (cf. Theorem 3).

Let T be a syntactic multi-r -ic product of polynomials Q1 (Y, Z)

• Q2 (Y, Z) • . . . • QD (Y, Z) • R(Y )
such that MonSupp( Qi ) ≤ µ. We will first argue that D is not too large since T is a syntactically multi-r -ic product. We shall first pre-process the product T by doing the following procedure.

Repeat this process until all but at most one of the factors in T (except R) have a Z-support of at least µ 2 .

1. Pick two factors Qi 1 and Qi,2 such that they have the smallest

Z-support amongst Q 1 , • • • , Q D .
2. If both of them have support strictly less than µ 2 , merge these factors to obtain a new factor. Else, stop.

In the afore mentioned procedure, it is important to note that the monomial support post merging will still be at most be µ since the factors being merged are of support strictly less than µ 2 . Henceforth, W.L.O.G we shall consider that every product gate at the top, in any multi-r -ic depth four circuit to be in a processed form.

Let T = Q 1 (Y, Z) • Q 2 (Y, Z) • . . . • Q t (Y, Z) • R(Y )
be the product obtained after the preprocessing. Each of the Q i has a Z-support of at least µ 2 . The total Z-support is at most |Z| r = m r since T is a syntactically multi-r -ic product. Thus t could at most be 2m r µ .

Lemma 8. Let n, k, r, and µ be positive integers such that

+ kµ < m 2 . Let T be a processed syntactic multi-r -ic product of polynomials Q 1 (Y, Z) • Q 2 (Y, Z) • . . . • Q t (Y, Z) • R(Y ) such that |MonSupp(Q i )| ≤ µ. Then, Γ k, (T ) is at most t k • m +kµ • ( + kµ).
Before proving Theorem 8, we shall first use it to show an upper bound on the dimension of the space of Projected Shifted Skew Partial derivatives of a depth four multi-r -ic circuit of low bottom support.

Lemma 9. Let n, k, r, and µ be positive integers such that + kµ < m 2 . Let C be a processed syntactic multi-r -ic depth four circuit of bottom support µ and size s. Then,

Γ k, (C ) is at most s • 2m r µ k • m +kµ •( +kµ).
Proof. W.L.O.G we can assume that C be expressed as s i T (i) such that T (i) is a processed syntactically multi-r -ic product of bottom support polynomials at most µ. From Theorem 3, we get that Γ k, (C ) ≤ s i =1 Γ k, (T (i) ). From the afore mentioned discussion we know that the number of factors in T (i) with a non-zero Z-support is at most 2m r µ . From Theorem 8, we get that Γ k, (T (i) ) is at most

2m r µ k • m +kµ • ( + kµ)
. By putting all of this together, we get that

Γ k, (C ) ≤ s • 2m r µ k • m + kµ • ( + kµ) .
Proof of Theorem 8. We will first show by induction on k, the following.

∂ =k Y T ⊆ -span    S∈( t t -k ) i∈S Q i (Y, Z) • z ≤kµ ML • [Y ]    -span    S∈( t t -k ) i∈S Q i (Y, Z) • z ≤k r µ NonML • [Y ]   
The base case of induction for k = 0 is trivial T is already in the required form. Let us assume the induction hypothesis for all derivatives of order < k. That is, ∂ =k-1 Y T can be expressed as a linear combination of terms of the form

h(X , Y ) = i∈S Q i (Y, Z) • h 1 (Z) • h 2 (Y )
where S is a set of size t -(k -1), h 1 (Z) is a polynomial in Z variables of degree at most (k -1)r µ, and h 2 (Y ) is some polynomial in Y variables. In fact, h 1 (Z) can be expressed as a linear combination of multilinear monomials of degree at most (k -1)µ, and non-multilinear monomials of degree at most (k -1)r µ.

For some u ∈ [|Y |] and some fixed i 0 in S,

∂ h(Y, Z) ∂ y u =     j ∈S i∈S i = j Q i (Y, Z) • ∂ Q j (Y, Z) ∂ y u • h 1 (Z) • h 2 (Y )     + i∈S Q i Q i 0 • Q i 0 (Y, Z) • h 1 (Z) • ∂ h 2 (Y ) ∂ y k ∈ -span      i∈S i = j Q i (Y, Z) • ∂ Q j (Y, Z) ∂ y u • h 1 (Z) • [Y ] | j ∈ [S]      -span i∈S Q i Q i 0 • Q i 0 (Y, Z) • h 1 (Z) • [Y ] ⊆ -span      T ∈( S |S|-1 ) i∈T Q i (Y, Z) • z µ ML • h 1 (Z) • [Y ]           T ∈( S |S|-1 ) i∈T Q i (Y, Z) • z ≤r µ NonML • h 1 (Z) • [Y ]      ⊆ -span    T ∈( t t -k ) i∈T Q i (Y, Z) • z ≤kµ ML • [Y ]    -span    T ∈( t t -k ) i∈T Q i (Y, Z) • z ≤k r µ NonML • [Y ]   
The last inclusion follows from the fact that h 1 (Z) is a linear combination of multilinear monomials of degree at most (k -1)µ, and non-multilinear monomials of degree at most (k -1)r µ. From the discussion above we know that any polynomial in ∂ k Y (T ) can be expressed as a linear combination of polynomials of the form

∂ h ∂ y u
. Further every polynomial of the form

∂ h ∂ y u belongs to the set W = -span    T ∈( t t -k ) i∈T Q i (Y, Z) • z ≤kµ ML • [Y ]    -span    T ∈( t t -k ) i∈T Q i (Y, Z) • z ≤k r µ NonML • [Y ]    .
Thus, we get that ∂ =k T is a subset of W . This completes the proof by induction.

From the afore mentioned discussion, we can now derive the following expressions. (1)

σ Y ∂ =k Y T ⊆ -span      S∈( [t ] t -k ) i∈S σ Y (Q i ) • z ≤kµ ML      -span      S∈( [t ] t -k ) i∈S σ Y (Q i ) • z ≤k r µ NonML      z ≤ σ Y ∂ =k Y T ⊆ -span      S∈( [t ] t -k ) i∈S σ Y (Q i ) • z ≤ +kµ ML      -span      S∈( [t ] t -k ) i∈S σ Y (Q i ) • z ≤ +k r µ NonML      =⇒ -span mult z ≤ • σ Y ∂ =k Y T ⊆ -span      S∈( [t ] t -k ) i ∈S mult(σ Y (Q i )) • z ≤kµ+ ML      . Thus we get that dim -span mult z ≤ • σ Y (∂ =k Y T ) is at most dim    -span      S∈( [t ] t -k ) i∈S mult(σ Y (Q i )) • z ≤kµ+ ML         ≤ dim   -span    S∈( t t -k ) i∈S mult(σ Y (Q i ))      • dim -span z ≤kµ+ ML ≤ t t -k • kµ+ i=0 m i ≤ t k • m + kµ • ( + kµ) (Since + kµ < m/2).

Lower

a 1 ,b 1 y (2) a 2 ,b 2 • • • y (k) a k ,b k
that is used to derive f n,α,k with. For every ∆ 0 < k, there is a subset 

∆ 0 ⊂ [n] 2k of size n 2k-∆ 0 ∆ 0 ( 2k ∆ 
≥ ∆ 0 . Then dist ∂ k (a,b) f n,α,k , ∂ k (a ,b ) f n,α,k ≥ α∆ 0 .
Let m 1 , m 2 , . . . , m t be the monomials in the set 0 (= ∂ =k ∆ 0 f n,α,k ), over Z variables such that dist(m i , m j ) ≥ ∆ ≥ α∆ 0 for all i = j . Further, σ Y ( 0 ) = 0 . Let be the set of mutlilinear monomials of the form m i m over Z-variables for some 1 ≤ i ≤ t where m is a monomial of length .

It is important to note that the set now corresponds to the set

z = • σ Y ∂ =k ∆ 0 f n,α,k . We shall now
show that the cardinality of the set is large enough for a suitable setting of parameters α, ∆ 0 and k. Proof. For all i ∈ [t ], Let B i be the set of multilinear monomials of the form m i m where m is a multilinear monomial of degree . From the previous discussion, it follows that | | = ∪ t i=1 B i . Using the principle of Inclusion and Exclusion, we get that

∪ t i=1 B i ≥ t i=1 |B i | - t i = j ∈[t ] B i ∩ B j . Claim 14. For all i ∈ [t ], |B i | = m-(d -k) . Proof. Since deg(m i ) is equal to d -k, the cardinality of B i is equal to m-(d -k) .
Claim 15. For all i, j ∈

[t ] such that i = j , B i ∩ B j ≤ m-(d -k)-∆ -∆ .
Proof. Consider any two monomials mi and mj from B i and B j respectively. For mi and mj to be identical, mi should contain at least ∆ variables from mj \ mi and similarly mj should contain at least ∆ variables from mi \ mj . The rest of the at most ( -∆) many variables should be the same both in mi and mj . The number of such multilinear monomials over Z variables is at most

m-(d -k)-∆ -∆
.

Putting Theorem 14 and Theorem 15 together, we get the following.

| | = ∪ t i=1 B i ≥ t m -(d -k) - t 2 2 m -(d -k) -∆ -∆ . Let T 1 = t m-(d -k) and T 2 = t 2 2 m-(d -k)-∆ -∆
. Let us consider the case where T 2 = λT 1 where λ ≥ 1 for some setting of the parameters ∆, α, and k.

λ = T 2 T 1 = t 2 2 m-(d -k)-∆ -∆ t m-(d -k) = t 2 • (m -(d -k) -∆)! ( -∆)!(m --(d -k))! • (m --(d -k))! ! (m -(d -k))! = t 2 • (m -(d -k) -∆)! (m -(d -k))! • ! ( -∆)! = t 2 • (m -(d -k) -∆)! m! • m! (m -(d -k))! • ! ( -∆)! = t 2 • m (d -k) • ∆ m (d -k)+∆ (Using Theorem 5) = t 2 • m ∆ .
The math block above crucially uses the fact that

∆ 2 = o( ) and (d -k) 2 = o(m) while invoking Theorem 5. Since λ ≥ 1, we get that t 2 • m ∆ ≥ 1.
For some suitably fixed constants δ and , let ∆ 0 be set to δk and be set to

m 2 (1 -). Recall that for a fixed ∆ 0 , t = n 2k-∆ 0 ∆ 0 ( 2k ∆ 0 ) and ∆ = α∆ 0 = δαk. Thus, n 2k-∆ 0 2 2k ∆ 0 • m ∆ ≥ 1 n 2k-∆ 0 ≥ 2∆ 0 m ∆ 2k ∆ 0 n 2k-∆ 0 ≥ 2 1 - ∆ 2k ∆ 0 ∆ 0 n (2-δ)k ≥ 2 1 - αδk 2k ∆ 0 δk and hence, α ≤ (2 -δ) log n -δ log 2 δ δ log 2 1- .
Invoking Theorem 6 with the previous discussion, we get that

| | ≥ T 1 4λ = t m-(d -k) 4λ = 1 2 m ∆ • m -(d -k) = 1 2 2 1 - δαk • m -(d -k) .
Lemma 16. Let m, k, d , r, and µ be positive integers such that + kµ < m 2 , ∆ 0 = δk and = m 2 (1 -) for some fixed constants δ and . Then,

Γ k, ( f n,α,k ) ≥ | | ≥ 1 2 2 1- δαk • m-(d -k) .
Proof. Recall that corresponds to the set

z = • σ Y ∂ =k ∆ 0 f n,α,k .
Since is a bag of multilinear monomials over just the Z variables

| | = dim -span mult z = • σ Y ∂ =k ∆ 0 f n,α,k Since ∂ =k ∆ 0 f n,α,k ⊆ ∂ =k f n,α,k and z = ⊆ z ≤ , we get that dim -span mult z = • σ Y ∂ =k ∆ 0 f n,α,k ≤ dim -span mult z ≤ • σ Y ∂ =k Y f n,α,k = Γ k, ( f n,α,k ) . Thus, Γ k, ( f n,α,k ) ≥ | | ≥ 1 2 2 1- δαk • m-(d -k) .
We shall now a size lower bound on the depth four multi-r -ic circuits of low bottom support that compute f n,α,k . • (m -

) (d -k)-kµ = 1 2( + kµ) • 2 1 - δαk • kµ 2e m r k • m - kµ • m - m d -k = 1 2( + kµ) • 2 1 - δαk • µ 4eαn r k • 1 - 1 + kµ • 1 + 2 d -k = 1 2( + kµ) • 2 1 - δαk • µ 4eαn r k • 1 - 1 + kµ • 1 + 2 2αk = 1 2( + kµ) • 2 1 - δ • 1 + 2 2 αk • µ 4eαn r k • 1 - 1 + kµ = exp αk log 2 1- δ • 1+ 2 2 -k log n -k log r -k log 4eα µ + kµ log 1- 1+
2( + kµ) .

In the above math block, we use Theorem 5 to simplify the terms along with the fact that k 2 µ 2 = o(m -), (dk) 2 = o(m) and k 2 µ 2 = o( ). To get a meaningful lower bound, we need On the other hand, from Theorem 17 we know that any multi-r -ic ΣΠΣΠ {µ} circuit that computes f n,α,k must be of size exp(Ω(k log n)). Thus, it must be that exp(Ω(k log n)) ≤ s ≤ N γ µ . We can choose c to be a small enough constant such that the aforementioned expression is satisfied. Thus, s must at least be exp Ω(log 2 n) . The explicit polynomial Q n is P n,α,k where α = 

  Bound on Γ k, ( f n,α,k ) First we recall the generalized Hamming bound [GRS19, Section 1.7]. Claim 10. Let the vectors a = (a 1 , a 2 , . . . , a k ) and b = (b 1 , b 2 , . . . , b k ) correspond to the indices of the Y -monomial y

  0 ) such that for all (a, b), (a , b ) ∈ , dist((a, b), (a , b )) ≥ ∆ 0 . Observation 11. It is important to note that ∂ k f n,α,k y of (a, b) ∈ [n] 2k is a multilinear monomial over just the Z variables. Claim 12. Let (a, b) and (a , b ) be such that dist((a, b), (a , b ))

Lemma 13 .

 13 Let m, k, d , r, ∆ 0 , ∆, and µ be positive integers such that +kµ < m 2 , (d -k) 2 = o(m), ∆ 2 = o(m), ∆ 0 = δk and = m 2 (1 -) for some fixed constants δ and . Then, | | ≥

Theorem 17 ..

 17 Let δ = 0.25 and = 0.8. Let n, r, α, k and µ be positive integers such that r ≤ n 0.2 , Let C be a depth four multi-r -ic circuit of low bottom support µ and size s.If C computes the polynomial f n,α,k then s must be exp(Ω(k log n)).Proof. Recall that the polynomial f n,α,k is defined on the variable sets Y and Z such that |Z| = m = 2αnk. Let be an integer such that = m 2 (1 -) and + kµ < m 2 . Let ∆ 0 = δk. Let us assume that the polynomial f n,α,k is computed by a depth four multi-r -ic circuit C of low bottom support µ and size s. Then it must be the case that Γ k, ( f n,α,k ) = Γ k, (C ).

Agrawal and Vinay [AV08], Koiran, and Tavenas[START_REF] Tavenas | Improved bounds for reduction to depth 4 and depth 3[END_REF] showed that any general circuit can be depth reduced to a depth four circuit of non-trivial size.

That is, all the product gates at the bottom are supported on small set of variables.

This reduces to showing that there exist constants δ, and ν such that

(1)

Let us fix the constants as follows: = 0.8, δ = 0.25 and ν = 0.23. Through some calculations, it can be verified that Equation 1 gets satisfied. Thus,

50 and r ≤ n 0.2 , we get that s ≥ exp (Ω (k log n)).

Multi-r -ic Depth Four Circuits

To prove the main theorem, we also need the following lemma.

Lemma 18 (Analogous to Lemma 20.4, [START_REF] Saptharishi | A survey of lower bounds in arithmetic circuit complexity version 8.0.4. Github survey[END_REF]). Let P be a multi-r -ic polynomial that is computed by a syntactically multi-r -ic depth 4 circuit C of size s ≤ N γ µ for some γ > 0 . Let ρ be a random restriction that sets each variable to zero independently with probability (1 -N -2γ ) . Then with probability at least (1 -N -γ µ ) the polynomial ρ(P ) is computed by a multi-r -ic depth four circuit C of bottom support at most µ and size s .

Proof of Theorem 1. Let n be a large positive integer. Let us set some relevant parameters in terms of n or otherwise as follows.

Let X = {x 1,1 , x1,2 , . . . , x1,t , . . . , xN 0 ,1 , xN 0 ,2 , . . . , xN 0 ,t } be a set of variables over which the polynomial P n,α,k is defined. Let ρ : X → {0, * } be a random restriction such that a variable is set to zero with a probability of (1 -N -2γ ), and is left untouched otherwise. Let C be a syntactically multi-r -ic depth four circuit of size s ≤ N γ µ that computes P n,α,k . Theorem 18 tells us that C = ρ(C ) is a multi-r -ic depth four circuit of size s and bottom support at most µ with a probability of at least (1 -N -γ µ ).

Conditioned on this probability, ρ(P n,α,k ) has a multi-r -ic ΣΠΣΠ {µ} size at most s.

Theorem 7 tells us that f n,α,k is a p-projection of ρ(P n,α,k ) with a probability of (1-2 -N 0 ) and hence f n,α,k also has a multi-r -ic ΣΠΣΠ {µ} of size at most s with a probability of at least (1-N -γ µ -2 -N 0 ). In other words, there is a random restriction σ such that f n,α,k is a p-projection of ρ(P n,α,k ) and C = ρ(C ) is a multi-r -ic ΣΠΣΠ {µ} circuit.

Missing Proofs:

Proof of Theorem 10. There are n 2k elements in . It is easy to see that the volume of a Hamming Ball of radius ∆ 0 for vectors of length 2k is at most

n ∆ 0 and thus there are at most 2k ∆ 0 n ∆ 0 many vectors (a, b) in that Hamming ball. Thus, there exists a packing of these Hamming balls in with at least

many balls.

Proof of Theorem 12. For a vector (a, b)

is at least α. Similar is the case when b i = b i . Thus, if dist((a, b), (a , b )) ≥ ∆ 0 ), there are at least ∆ 0 many locations where either

The following proofs are a step by step adaptation, rather a replication of proofs Lemma 20.4 and Lemma 20.5 respectively in [START_REF] Saptharishi | A survey of lower bounds in arithmetic circuit complexity version 8.0.4. Github survey[END_REF].

Proof of Theorem 18. Let C be a multi-r -ic depth four circuit of size s. Let m 1 , m 2 , • • • , m t be the set of monomials computed at the lower product gate of C , that have at least µ distinct variables in their support. Note that t is at most s. For all i ∈ [t ], Pr[ρ(m i ) = 0] ≤ N -2γ µ . By taking an union bound, the probability that there exists in a monomial amongst m 1 , m 2 , • • • , m t which is not set to 0 by ρ is at most t • N -2γ µ ≤ s • N -2γ µ ≤ N -γ µ . Thus with a probability of at least (1 -N -γ µ ), all the monomials at the bottom product gate have at most µ distinct variables in their support.

Proof of Theorem 7. For all i ∈ [N 0 ],

By union bound, probability that there exists an i ∈ [N 0 ] such that all the variables of the form xi,j for j ∈ [t ] are set to zero is at most 1 2 N 0 . Thus, with a probability of at least (1 -2 -N 0 ), for each i, there exists at least one j such that ρ(x i, j ) = 0.It is easy to see that the polynomial f n,α,k can be written as a p-projection of ρ(P n,α,k ) in such a case.