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Abstract

We revisit decidability results for resource-bounded logics and use decision problems
on vector addition systems with states (VASS) in order to establish complexity charac-
terisations of (decidable) model checking problems. We show that the model checking
problem for the logic RB±ATL is 2EXPTIME-complete by using recent results on alter-
nating VASS (and in EXPTIME when the number of resources is bounded). Moreover,
we establish that the model checking problem for RBTL is EXPSPACE-complete. The
problem is decidable and of the same complexity for RBTL∗, proving a new decidabil-
ity result as a by-product of the approach. When the number of resources is bounded,
the problem is in PSPACE. We also establish that the model checking problem for
RB±ATL∗, the extension of RB±ATL with arbitrary path formulae, is decidable by a
reduction to parity games for single-sided VASS (a variant of alternating VASS). Fur-
thermore, we are able to synthesise values for resource parameters. Hence, the paper
establishes formal correspondences between model checking problems for resource-
bounded logics advocated in the AI literature and decision problems on alternating
VASS, paving the way for more applications and cross-fertilizations.

1 Introduction

Resource-bounded logics. Alternating-time temporal logics such as the logics ATL
and ATL∗ [6] extend the temporal logics CTL and CTL∗ respectively, by interpreting
the formulae on concurrent game structures, a sophisticated extension of labelled tran-
sition systems, and by allowing modalities to quantify over strategies for a given coali-
tion of agents. ATL significantly extends CTL but the computational complexity of the
model checking problem remains the same. In [6], the labeling algorithm for model
checking CTL is extended to ATL, establishing the P-completeness of the model check-
ing problem for ATL [6, Theorem 5.2]. In contrast, the model checking problem for
ATL∗ is 2EXPTIME-complete [6, Theorem 5.6] whereas the problem for CTL∗ is only
PSPACE-complete, see e.g. [23]. The logics ATL and ATL∗ are well-established for-
malisms to reason about multi-agent transition systems, and many variants have been
proposed over the years, see e.g. [35, 5]. We focus here on resource-bounded variants.

Resource-bounded logics [13, 12, 38, 4, 3, 14] extend alternating-time temporal
logics such as ATL [6] by adding transitions that produce and consume resources to
the models. As shown in [3], the introduction of implicit counters in the models (i.e.,
variables interpreted over natural numbers) and the ability to quantify over strategies
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for a given set of agents can lead to undecidability, or decidability with a very high
worst-case upper bound on the complexity of the model checking problem. The na-
ture of the strategy modalities means that reasoning about resources has similarities
to the analysis of runs of vector addition systems with states (a.k.a. VASS) [34], and
more specifically to games on VASS, see e.g. [11]. VASS, and more generally counter
machines, are well-known infinite-state systems with many applications in formal ver-
ification, see e.g. [10].

Model checking and games on VASS. This paper is an extended version of [2]. In
our work, we show how existing results on VASS can be used to analyse the model
checking problem for resource-bounded logics. As we recall below, model checking
problems on VASS based on temporal logics and games are not always decidable; when
they are decidable, they are quite difficult to solve, and complexity characterisations
often exist. We briefly recapitulate some of these results below.

Temporal logics on VASS often lead to undecidable model checking problems, see
e.g., [24, 25], and this is even more true with branching-time temporal logics such
as CTL [25], or when the atomic formulae can express properties about counter val-
ues [29]. There are exceptions, however. For instance, CTL model checking on one-
counter VASS is PSPACE-complete [43, 26] (see also [46]). The control state repeated
reachability problem for VASS is shown to be decidable in [30]; this result is gener-
alised to full LTL (for which the atomic formulae correspond exactly to the control
states), and the model checking problem for LTL on VASS is shown to be EXPSPACE-
complete in [28]. In [30], a strict fragment of LTL restricted to the “infinitely often”
temporal operator GF and atomic formulae stating properties on counter values is also
shown decidable by a reduction to the reachability problem for VASS.

As far as games for VASS are concerned, the situation is even less encouraging.
Indeed, two-player games on VASS in which each player can freely update the counter
values are undecidable [11], even with simple winning conditions such as the reach-
ability of a given control state. However, asymmetric VASS games in which at most
one player can freely update the counter values and the winning conditions are simple
are decidable [40]. For instance, the games on asymmetric VASS with reachability of
a control state is shown to be 2EXPTIME-complete in [17], decidable with parity con-
ditions in [1, 31] and very recently, a 2EXPTIME upper bound was shown in [16]. The
non-termination problem for games on asymmetric VASS is also 2EXPTIME-complete
(the upper bound is from [33] and the lower bound is from [17]).

Our motivation. Our main goal in this paper is to establish formal relationships be-
tween model checking problems for resource-bounded logics and decision problems
for VASS, so that new decidability results can be established for logical problems or
new complexity characterisations can be inherited from problems on counter machines.
Of course, this is not surprising; resource values and counter values are similar ob-
jects, and logics based on concurrent game structures inherently have games in their
semantics. Moreover, earlier work has already explored the connections with counter
machines, either to obtain undecidability results or to get complexity lower bounds,
see e.g. [3]. In this paper, we extend these results to give optimal complexity upper
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bounds and new decidability results, even for resource-bounded logics with enriched
path formulae such as those in CTL∗ [23] (see also [20]).

Our contributions. As explained above, our approach is to use results from decision
problems for alternating VASS (or for its variants with single-sided VASS) to establish
new decidability and complexity results for model checking problems on resource-
bounded logics. So far, the reductions were rather in the other direction to establish
undecidability results (for instance, by reducing the halting problem for Minsky ma-
chines).

• The model checking problem for RB±ATL is shown to be 2EXPTIME-comple-
te (see Theorem 2 and Theorem 3). The restriction to a bounded number of
resources is also shown to be in EXPTIME. The 2EXPTIME lower bound is ob-
tained by a reduction from the state reachability problem for alternating VASS
(AVASS) [17], where the upper bound is shown by a reduction to the state reach-
ability and the non-termination problem for AVASS. We need to consider both
target problems in order to reduce our logical problem to questions on AVASS,
since the logics can express both reachability and non-termination or invariant
properties. So far, the best known result was decidability established in [4] by
taking advantage of the well-quasi-ordering (Nr,�).

• The results for RB±ATL are obtained by using formal relationships between
strategies in resource-bounded concurrent game structures and proofs in alter-
nating VASS (the fact that only asymmetric VASS are needed here is the key
observation). These relationships are also used to show that the model check-
ing problem for RB±ATL∗ (a new logic extending RB±ATL as ATL∗ extends
ATL [6]), is decidable, by a reduction to the parity game problem on single-sided
VASS [1]. Note that the complexity characterisation of the parity game problem
on single-sided VASS was left open in [1, 17, 33] and it has been recently solved
in [16], which allows us to characterise the complexity of the model-checking
problem for RB±ATL∗. More importantly, we show that resource parameters
can be effectively computed in the parameterised version of RB±ATL∗ thanks
to the fact that the Pareto frontier for any parity game on single-sided VASS
is computable [1, Theorem 4]. To the best of our knowledge, this is the first
time that resource values have been synthesised in resource-bounded logics (see
also [32]), and this is done for the rich new logic RB±ATL∗.

• The model checking problem for RBTL [12] is shown to be EXPSPACE-complete.
The restriction to a bounded number of resources is also shown to be in PSPACE.
The model checking problem for RBTL∗ is shown to be decidable (a new result),
and also EXPSPACE-complete (see Theorem 5).

In addition, we also provide complexity characterisations for various fragments of
the logic that, e.g., bound the number the resources or the number of agents. For ex-
ample, the model checking problem for RB±ATL restricted to a single agent is shown
to be EXPSPACE-complete (Theorem 4).
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2 Logical Preliminaries

We writeN (resp. Z) for the set of natural numbers (including 0) (resp. integers)
and [m,m′] with m,m′ ∈ Z to denote the set { j ∈ Z : m ≤ j ≤ m′}. Given a dimension
r ≥ 1 and a ∈ Z, we write ~a ∈ Zr to denote the vector with all values equal to a. For
each ~x ∈ Zr, we write ~x(1), . . . , ~x(r) for the entries of ~x. For all ~x, ~y ∈ Zr, ~x � ~y def

⇔

for every i ∈ [1, r], we have ~x(i) ≤ ~y(i). We also write ~x ≺ ~y when ~x � ~y and ~x , ~y.

2.1 The logic RB±ATL and its variants
We consider the logics RB±ATL and RB±ATL∗. The logic RB±ATL was intro-

duced in [4, 5], and extends ATL [6] with resources. RB±ATL∗ extends RB±ATL to
allow path formulae to be any LTL-like formula (see Section 6 for a complete formal
definition).

Let PROP be a countably infinite set of atomic propositions. The models for the
logics RB±ATL and RB±ATL∗ are the structures introduced in Definition 1 below.
These are concurrent game structures for the logics ATL or ATL∗ (see e.g. [6]) but
enriched with a cost function that specifies how resources are produced or consumed.
Intuitively, a concurrent game structure is equipped with r counters and state transitions
update their values with increments or decrements.

Definition 1. A resource-bounded concurrent game structureM is a tuple

M = (Agt,S,Act, r, act, cost, δ,Lab)

such that:

• Agt is a non-empty finite set of agents (by default Agt = [1, k] for some k ≥ 1);

• S is a non-empty set of states;

• Act is a non-empty set of actions with a distinguished action idle;

• r ≥ 1 is the number of resources;

• act : S × Agt → P(Act) \ {∅} is the action manager function, such that for all
s and a, act(s, a) is non-empty and furthermore we have idle ∈ act(s, a) (some
variants of the main logic will give up the existence of idle while obeying the
non-emptiness of act(s, a));

• cost : S×Agt×Act→ Zr is the (partial) cost function; that is, cost(s, a, a) is
defined only when a ∈ act(s, a),1 and moreover, we stipulate cost(s, a, idle) =
~0;

• δ : S×(Agt→ Act)→ S is the (partial) transition function such that δ is defined
for a state s and a map f : Agt→ Act whenever for all agents a ∈ Agt, we have
f(a) ∈ act(s, a);

1Unlike in [4], we adopt the convention that positive costs correspond to resource production, and nega-
tive costs to resource consumption.
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Figure 1: A concurrent game structure (costs are omitted)

• Lab : PROP → P(S) is a labelling (the definition can be adapted when finite
subsets of PROP are involved).

The map δ is also viewed as a deterministic transition relation with transitions of

the form s
(a1,...,ak)
−−−−−→ s′ where δ(s, f) = s′ and for all i ∈ [1, k] = Agt, we have f(i) = ai.

We say thatM is finite whenever S and Act are finite sets and Lab is restricted to a finite
subset of PROP. The size of a finiteM is understood as the size of its encoding when
integers are encoded in binary and the maps and sets are encoded in extension, i.e.
without any succinct encoding. For example, the size of the part ofM dedicated to the
transition function δ is polynomial in O(card(S) × card(Act)card(Agt)

× card(S)). Here,
we use the standard encoding as in [6] and we do not consider compact encodings in
this paper. Figure 1 presents a finite concurrent game structure (costs are omitted).

The idle action was introduced in [4, 5], where motivations for requiring a distin-
guished~0-cost action can be found (in Section 6.5 below, we explain why the idle action
is not essential for decidability). Given a coalition A ⊆ Agt and a state s, a joint action
by A is a map f : A → Act such that for all agents a ∈ A, we have f(a) ∈ act(s, a).
The set of joint actions by A is denoted DA(s). A joint action by Agt is a special case
of a joint action by A ⊆ Agt. Given a state s, the set of joint actions by Agt is simply
denoted D(s) (instead of DAgt(s)) and the map δ is defined only for such joint actions.
We write f v g whenever g is a conservative extension of f (for agents a in the domain
of f, g(a) = f(a), and the domain of g contains at least the agents in the domain of f).

Given a joint action f ∈ DA(s), we write out(s, f) to denote the set below:

out(s, f) def
= {s′ ∈ S | there is g ∈ D(s) such that f v g and s′ = δ(s, g)}.

For instance, out(s, f) is a singleton set when f ∈ D(s), i.e. if an action is specified
for each agent, since δ is a map and not a relation. Given a joint action f ∈ DA(s) and
a state s, the cost of a transition from s by f (restricted to A by definition) is defined as
follows:

costA(s, f) def
=
∑
a∈A

cost(s, a, f(a)).
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Note that the value costA(s, f) does not depend on the costs of the actions by the agents
in the opponent coalition (Agt \ A) (or equivalently, the cost of actions by agents in
(Agt \ A) is zero). More generally, given g ∈ D(s), we have

costA(s, g) def
=
∑
a∈A

cost(s, a, g(a)).

So, the definition of costA(s, g) can be viewed as a generalisation of the definition of
costA(s, f) with f ∈ DA(s).

A computation λ is a finite sequence or an ω-sequence of the form s0
f0
−→ s1

f1
−→ s2 . . .

such that for all 1 ≤ i + 1 < |λ| we have si+1 = δ(si, fi).2 Here, |λ| denotes the length of

λ, each si is a state and each fi belongs to D(si). For instance, |s0
f0
−→ s1 · · ·

fn−1
−→ sn| = n+1

and |s0
f0
−→ s1 · · ·

fn−1
−→ · · · | = ω for any infinite computation. A strategy FA for the

coalition A is a map from the set of finite computations to the set of joint actions of A
such that

FA(s0
f0
−→ s1 · · ·

fn−1
−→ sn) ∈ DA(sn).

The notion of strategy we define here is somewhat stronger than in ATL, agents can
make their strategy dependent on actions. So, even if the sequence of states is the same,
actions assigned by a strategy can be different depending on the sequence of actions.
This does not make a difference if purely qualitative ATL formulae are considered.

A computation λ = s0
f0
−→ s1

f1
−→ s2 · · · respects the strategy FA iff for all i < |λ|,

we have, si+1 ∈ out(si,FA(s0
f0
−→ s1 . . .

fi−1
−→ si)). A computation λ that respects FA is

maximal whenever it cannot be extended further while respecting the strategy. Note that
maximal computations respecting FA are infinite. The set of all maximal computations
that respect the strategy FA that start at the state s is denoted by Comp(s,FA). So far,
no resource value has been involved in computations. Below, we shall quantify over
maximal computations that respect a strategy, and therefore for defining a strategy we
can restrict ourselves to finite computations that respect it so far.

Given a bound ~b ∈ (N ∪ {ω})r and a computation λ = s0
f0
−→ s1

f1
−→ s2 . . . in

Comp(s,FA), let the resource availability at step i < |λ| be defined as follows: ~v0
def
= ~b

and for all i+1 < |λ|, ~vi+1
def
= costA(si, fi)+~vi (assuming that n+ω = ω for any n ∈ Z).

Then, λ is~b-consistent iff for all i < |λ|, ~vi ∈ (N∪{ω})r. If~b(i) = ω, we have an infinite
supply of the ith resource and effectively disregard what happens on the ith resource.
Since the resource availability of the sequence depends only on the agents in A, this is
called the proponent restriction condition. This condition is very similar to that found
in runs of VASS with the sequence of update vectors costA(s0, f0), costA(s1, f1), . . ..
Note also that the above condition is slightly different from the one in [5] but equiva-
lent. We have decided to use our notation in order to more easily show the relationships
with VASS decision problems.

2Each transition between two successive states is labelled by a joint action: this is not strictly necessary
for the development below, but it provides a more general notion that might be used in other contexts (for
example, if the winning condition of strategies depends on the actions of all the agents and not only on those
for the agents in A or on the visited states).
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The set of all the ~b-consistent (infinite) computations is denoted by Comp(s,FA,~b).
A ~b-strategy FA with respect to s is a strategy such that Comp(s,FA) = Comp(s,FA,~b).
This definition also differs slightly from that given in [5]; the notion of ~b-strategy in
[5] is not relative to a state and therefore the equality should hold for all states.

With the main definitions of resource-bounded concurrent game structures and
strategies in hand, we can now present the logic RB±ATL. Given a set of agents
Agt = {1, . . . , k} and r ≥ 1, we write RB±ATL(Agt, r) to denote the resource-bounded
logic with k agents and r resources whose models are resource-bounded concurrent
game structures with the same parameters. Formulae of RB±ATL(Agt, r) are defined
according to the grammar below:

φ ::= p | ¬φ | φ ∧ φ | 〈〈A~b〉〉 Xφ | 〈〈A~b〉〉 Gφ | 〈〈A~b〉〉 φUφ,

where p ∈ PROP, A ⊆ Agt and ~b ∈ (N ∪ {ω})r.
The meaning of 〈〈A~b〉〉 Xφ is that A have a strategy which can be executed within

the resource bound ~b to enforce φ in the next state (essentially, A have a joint action
which consumes less than ~b resources and is guaranteed to achieve a φ-state whatever
the opponents do). 〈〈A~b〉〉 Gφ means that A have a strategy which can be executed
within the resource bound ~b to maintain φ forever. 〈〈A~b〉〉 φ1Uφ2 means that A have a
strategy which can be executed within the resource bound ~b to reach a φ2-state while
maintaining φ1. Since resource bounds may include ω, which means that there is
no resource bound on the strategy, RB±ATL includes ATL. Similarly to ATL, the
language of RB±ATL includes G rather than the release operator R, even though R
is not expressible in ATL [35] (hence also not in RB±ATL). The main reason for
the choice of operators is consistency with ATL as defined in [6] and RB±ATL as
defined in [4], and the fact that this choice of operators appears to be sufficient to
describe properties of interest in verification problems. An example property that can
be expressed in RB±ATL is ‘Agents a and b have a strategy which requires at most 100
units of energy to reach a position where a can stay in orbit forever without requiring
any additional energy, and while they are reaching this position they can also always
abort the mission, again with no energy requirement’. This can be expressed as

〈〈{a, b}100
〉〉(〈〈{a, b}0〉〉 X abort) U (〈〈{a}0〉〉 G orbit).

The size of a formula is computed from a DAG representation and the integers are
encoded in binary. Note that forthcoming hardness results do not use the conciseness
of the DAG representation (with respect to the tree representation). The satisfaction
relation |= is defined inductively as follows assuming that M is an RB±ATL(Agt, r)
model (we omit the obvious cases for the Boolean connectives):
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M, s |= p def
⇔ s ∈ Lab(p)

M, s |= 〈〈A~b〉〉Xφ def
⇔ there is a ~b-strategy FA w.r.t. s such that

for all s0
f0
−→ s1 . . . ∈ Comp(s,FA), we haveM, s1 |= φ

M, s |= 〈〈A~b〉〉Gφ def
⇔ there is a ~b-strategy FA w.r.t. s such that

for all λ = s0
f0
−→ s1 . . . ∈ Comp(s,FA), for all i < |λ|,

we haveM, si |= φ

M, s |= 〈〈A~b〉〉φ1Uφ2
def
⇔ there is a ~b-strategy FA w.r.t. s such that for all

λ = s0
f0
−→ s1 . . . ∈ Comp(s,FA), there is some i < |λ|

such thatM, si |= φ2 and
for all j ∈ [0, i − 1], we haveM, s j |= φ1.

Standard semantics for temporal operators. It is worth noting that since all the max-
imal computations are infinite, the index i involved for clauses related to 〈〈A~b〉〉G or
〈〈A~b〉〉U can take any value inN. The temporal operators X, G and U have their stan-
dard meaning from linear-time temporal logic LTL. CTL formulae can be expressed by
RB±ATL formulae (as it is also classically the case with ATL) if resources are omitted
from resource-bounded concurrent game structures thanks to correspondences of the
form 〈〈Agt~ω〉〉Gp ≈ EGp, 〈〈∅~ω〉〉p1Up2 ≈ A(p1Up2) and 〈〈∅~ω〉〉Gp ≈ AGp, etc.

Ability to safely extend any finite strategy. The presence of the idle action allows a
(partially defined) strategy to be extended to an infinite strategy as soon as a formula
is satisfied along the computations. For instance,M, s |= 〈〈A~b〉〉Xφ is equivalent to the
existence of f ∈ DA(s) such that for all g w f, we haveM, s′ |= φ with δ(s, g) = s′ and
~b + costA(s, f) � ~0.

Upward closure. Observe also that a strategy modality 〈〈A~b〉〉 reduces the impact of
the function cost in two ways. If the ith component of~b is equal toω, then there are no
constraints on the ith resource along the computation. Moreover, the restriction of cost
to proponent agents in A means that the actions of the opponents cost nothing and are
always available. In addition, it is worth noting that 〈〈A~b〉〉φUψ ⇒ 〈〈A~b′〉〉φUψ and
〈〈A~b〉〉Gφ ⇒ 〈〈A~b′〉〉Gφ are valid (with φ1 ⇒ ψ2 an abbreviation for ¬(ψ1 ∧ ¬ψ2))
whenever ~b � ~b′, and therefore whenever M, s |= 〈〈A~b〉〉φUψ there is a finite set of
minimal elements ~m ∈ (N ∪ {ω})r (with respect to �) such that M, s |= 〈〈A~m

〉〉φUψ,
similarly for 〈〈A~b〉〉Gφ (by Dickson’s Lemma [22] every upward closed set of (N ∪
{ω})r admits a finite basis of minimal elements; see also the notion of Pareto frontier
in Section 6).

Alternative semantics. In the definition of the satisfaction relation |= for RB±ATL,
in the clauses for a strategy modality followed by a temporal formula, there is an
existential quantification over a ~b-strategy FA with respect to a state s followed by
a universal quantification over all the computations in Comp(s,FA). By definition,
Comp(s,FA) = Comp(s,FA,~b), and therefore all the computations involved in the univer-
sal quantification are maximal and infinite, and, of course, all the underlying resource
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availabilities along the computations are non-negative. Alternative definitions have
been considered in the literature that separate maximality from infinity, leading some-
times to different decidability results. For instance, with the infinite semantics, the
existential quantification is over a strategy (that is not necessarily a~b-strategy), and the
universal quantification is made only over infinite computations that respect the strat-
egy (typically nothing is required on maximal and finite computations). Under certain
assumptions, this may lead to undecidability, see e.g. [5, Section 6]. Similarly, with
the finite semantics, the existential quantification is over a strategy (that is not neces-
sarily a ~b-strategy), and the universal quantification is made only over maximal (either
finite or infinite) computations that respect the strategy. In this paper, we shall not in-
vestigate logics with these alternative semantics, as from our technical developments
of alternating VASS, we can easily derive new decision problems on alternating VASS
that correspond to such logical variants. Another way to define alternative semantics is
to change the notion of resource-bounded concurrent game structures; for example, by
assuming that there is no distinguished idle action, or requiring that the action manager
function is of the form act : S×Agt→ P(Act), i.e. an agent may be unable to choose
an action from a given state (because the action manager returns an empty set of actions
in that state). In what follows, we shall investigate these variants by simply adapting
the techniques for RB±ATL with the standard semantics defined above.

The model checking problem for RB±ATL is defined as follows:

Input: k, r ≥ 1 (in unary), a formulaφ in RB±ATL([1, k], r), a finite RB±ATL([1, k], r)
modelM and a state s,

Question: M, s |= φ?

The encoding of the values in k and r in unary is not essential here, since, if transitions
are represented explicitly, the size ofM is greater than k + r.

Proposition 1. [4, Theorem 1] The model checking problem for RB±ATL is decidable.

A key contribution of this paper is characterising the computational complexity
of the model checking problem for RB±ATL. Obviously, RB±ATL is a quantitative
extension of ATL, and whereas the satisfaction of ATL formulae can be restricted to
positional strategies (i.e., actions are chosen based on the current state rather than his-
tories), the satisfaction of RB±ATL formulae may require non-positional strategies in
order to keep the amount of each resource above zero.

3 Problems on Vector Addition Systems with States (VASS)

In this section, we recall known complexity/decidability results for model checking
and games on VASS, and state necessary complexity characterisations that will be used
in the sequel. We then show that using optimal decision procedures for VASS problems
as black boxes leads to optimal decision procedures for model checking problems of
resource-bounded logics.
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3.1 Alternating VASS

A binary tree T, which may contain nodes with (only) one child, is a non-empty
subset of {1, 2}∗ such that, for all n ∈ {1, 2}∗ and i ∈ {1, 2}, n · i ∈ T implies n ∈ T
and, n · 2 ∈ T implies n · 1 ∈ T. The nodes of T are its elements. The root of T is ε,
the empty word. All notions such as parent, first child, second child, subtree and leaf,
have their standard meanings. The height of T is the length, i.e. the number of nodes,
of the longest simple path from the root to a leaf. An alternating VASS (AVASS) [17]
is a tupleA = (Q, r,R1,R2) such that:

• Q is a non-empty finite set of locations (a.k.a. control states) and r ≥ 0 is the
number of resource values;

• R1 is a finite subset of Q ×Zr
×Q (unary rules);

• R2 is a (finite) subset of Q3 (fork rules).

A derivation skeleton ofA is a labellingD : T→ (R1 ∪ R2 ∪ {⊥}) such that:

• T is a binary tree;

• if n has one child in T, thenD(n) ∈ R1;

• if n has two children in T, thenD(n) ∈ R2;

• if n is a leaf in T, thenD(n) =⊥;

• ifD(n) = (q, ~u, q′) andD(n · 1) ∈ R1 ∪ R2, then the first location ofD(n · 1) is
q′;

• if D(n) = (q, q1, q2) and D(n · i) ∈ R1 ∪ R2 for some i ∈ {1, 2}, then the first
location ofD(n · i) is qi.

A derivation ofA based onD is a labelling D̂ : T→ Q ×Zr such that:

• if n has one child n′ in T, D(n) = (q, ~u, q′) and D̂(n) = (q, ~v), then D̂(n′) =
(q′, ~u + ~v);

• if n has two children n′ and n′′ in T, D(n) = (q, q1, q2) and D̂(n) = (q, ~v), then
D̂(n′) = (q1, ~v) and D̂(n′′) = (q2, ~v).

Note that fork rules do not update the resources, and therefore there is an asymmetry
between unary rules and fork rules. This will be a very useful feature later, when
dealing with the proponent restriction condition in RB±ATL. Unlike branching VASS
(see e.g., [45, 21]), the fork rules have no effect on the counter values.

A derivation D̂ based on D is admissible whenever D̂ : T → Q ×Nr, i.e., only
natural numbers occur in it. An admissible derivation is also called a proof . Above,
we introduced the primitive notion of computations and their restriction to~b-consistent
computations. Similarly, the primitive notion of derivations can be restricted to proofs
(a kind of “~0-consistency”).

10



As an illustration, we present a proof from an alternating VASS having at least the

unary rules r1 = q1
(−1,+3)
−−−−→ q0 and r3 = q2

(+3,+3)
−−−−→ q3, and the fork rule r2 = q0 −→ q1, q2.

....
(q3, (4, 8))
(q2, (1, 5))

(r3)

....
(q0, (0, 8))
(q1, (1, 5))

(r1)

(q0, (1, 5))
(r2)

(q1, (2, 2))
(r1)

Before presenting the decision problems on AVASS, we state a simple property that
will be used in the sequel.

Lemma 1. Given a derivation skeletonD : T→ (R1 ∪ R2 ∪ {⊥}) such thatD(ε) is a
rule whose first location is q and (q,~b) ∈ Q ×Zr, there is a unique derivation D̂ ofA
based onD such that D̂(ε) = (q,~b).

Indeed, once the rules are provided by D, the root value (q,~b) determines all the
values of the derivation since the way D̂(n) is defined remains essentially deterministic.
The state reachability problem for AVASS is defined as follows:

Input: An alternating VASSA and control states q0 and q f .

Question: Is there a finite proof of A whose root is equal to (q0,~0) and each leaf
belongs to {q f } ×N

r?

WhenA has no fork rules,A is essentially a VASS [34] and the above problem is
an instance of the coverability problem known to be EXPSPACE-complete [37, 39] (see
also [8, 19]). The non-termination problem for AVASS is defined as follows:

Input: An alternating VASSA and a control state q0.

Question: Is there a proof of A whose root is equal to (q0,~0) and all the maximal
branches are infinite?

Proposition 2. [17, 33] The state reachability and non-termination problems for AVASS
are 2EXPTIME-complete.

The decidability of these problems was first established in [40] by using mono-
tonicity of the games. The 2EXPTIME upper bound is preserved if we assume that
the root is labelled by (q0,~b) with ~b ∈ Nr encoded with a binary representation (see
Lemma 7 below).

In the sequel, we shall also admit fork rules of any arity β ≥ 1 and therefore in such
slightly extended AVASS, the set of fork rules R2 is a finite subset of

⋃
β≥2 Qβ. The

notions of derivation skeleton, derivation and proof are also changed to refer to general
trees T ⊆ (N\ {0})∗. The set of finite words T ⊆ (N\ {0})∗ is a (not necessarily binary)
tree iff for all n ∈ (N \ {0})∗ and i ∈ (N \ {0}), n · i ∈ T implies n ∈ T, and n · i ∈ T and
i > 1 imply n · (i − 1) ∈ T. In the remainder of the paper, by AVASS we mean such an
extended AVASS with fork rules of arbitrary arity.

11



3.2 Model checking problems

A VASS can be defined as an alternating VASS without any fork rules, and therefore
we write it V = (Q, r,R) where R is a finite set of unary rules. Given a VASS V, its
transition system TS(V) def

= (W,−→,Lab) is such that:

• W def
= Q ×Nr;

• Lab is a labelling with elements of Q also understood as propositional variables
and Lab(q) def

= {q}×Nr (the truth value of the atomic formula q on a configuration
in Q ×Nr only depends on the control state);

• −→ is a binary relation on W such that (q, ~v) −→ (q′,~z) iff there is a unary rule
(q, ~u, q′) in R such that ~z = ~u + ~v where ‘+’ is the component-wise addition on
Nr.

As usual, we also write
∗
−→ to denote the reflexive and transitive closure of −→. Since

TS(V) is a Kripke-style structure, it can be used to interpret modal or temporal for-
mulae where the atomic formulae refer to locations, e.g., formulae of the temporal
logics LTL or CTL (see also [18]). Recall that LTL and CTL are both fragments of
CTL∗. Alternating-time temporal logics ATL or ATL∗ strictly extend CTL or CTL∗

respectively. Hence complexity hardness results for temporal logics can be lifted to
alternating-time logics. We adopt this approach.

We first recall some results that will be useful in the sequel.

Proposition 3. The model checking problem for LTL on VASS is EXPSPACE-complete
(the atomic formulae are control states) and it is in PSPACE for a fixed number of
resources [28].

EXPSPACE-hardness of model checking on VASS already follows from EXPSPACE-
hardness of the state reachability problem for VASS [37], as state reachability is a
subproblem of the model checking problem for VASS (consider the LTL formula Fq f ).

4 On the Complexity of RB±ATL

In this section, we show how to solve the model checking problem for RB±ATL
by solving instances of decision problems for alternating VASS using a labelling algo-
rithm. The size of the AVASS problem instance is linear in the input resource-bounded
concurrent game structure, and the number of calls to the algorithms solving instances
of decision problems for AVASS is also linear in the size of the input formulae. As far
as worst-case complexity bounds are concerned, this is probably the best we can hope
for. At a high level, our results relate model checking problems for resource-bounded
logics in AI and verification games. Even though this first correspondence, as stated,
does not provide a good intuition, at a technical level, this reduces to three key cor-
respondences. First, the proponent restriction condition in RB±ATL corresponds to
the fact that, in AVASS, only unary rules can update the counter values. This is cru-
cial to our results, but alone it is not sufficient. Second, each ~b-strategy FA generates
a set of computations that can be represented as a finitely branching tree with infinite
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branches, which corresponds precisely to the proofs in AVASS (see e.g., Theorem 1 be-
low). Third, roughly speaking, temporal formulae in the scope of a strategy modality
correspond to acceptance conditions on branches of the proofs (admissible computa-
tions) extracted from the AVASS. In the remainder of this section, we develop these
correspondences (summarised in the table below) in detail.

RB±ATL Alternating VASS
Logic in AI Verification games

proponent restriction condition updates in R1 / no update in R2

computation tree for FA proof

formulae in the scope of 〈〈A~b〉〉 monotone objectives

4.1 Structural analysis of strategies and proofs
We first establish the necessary formal relationships between strategies in resource-

bounded concurrent game structures, and proofs in alternating VASS. The technical
developments are not conceptually difficult, but they allow us to derive results that
are helpful in solving the model checking problem for RB±ATL using decision proce-
dures on AVASS. Our approach also allows us to pose and solve new model checking
problems (see e.g. Section 6 and Section 6.6).

LetM be a finite resource-bounded concurrent game structure, A ⊆ Agt be a coali-
tion and s? be a state. We construct an alternating VASS AM,A,s? such that the set of
computations starting in s? and respecting some strategy FA corresponds precisely to a
derivation skeleton whose root is labelled by a unary rule with first state s?. Moreover,
if FA is a ~b-strategy w.r.t. s?, then the derivation skeleton can be turned into a proof
whose root is labelled by (s?,~b). This implies that fork rules can have any arity greater
than one, and components can have the value ω, where ω is a value that remains con-
stant. Nevertheless, note that below, the construction of AM,A,s? does not depend on
any strategy.

GivenM = (Agt,S,Act, r, act, cost, δ,Lab) and a distinguished state s? ∈ S, the
AVASSAM,A,s?

def
= (Q, r,R1,R2) is built as follows:

Q def
= {s?}∪{(s′, f) | s′ ∈ S, f ∈ DA(s′)}∪{(g, s′) | s′, s′′ ∈ S, g ∈ D(s′′), δ(s′′, g) = s′}.

• The set of unary rules R1 contains the following elements:

– For all f ∈ DA(s?), (s?, costA(s?, f), (s?, f)).
– For all (g, s′) ∈ Q, for all f ∈ DA(s′), ((g, s′), costA(s′, f), (s′, f)).

• The set of fork rules R2 contains the following elements.

– For all (s′, f) ∈ Q, let {(g1, s1), . . . , (gα, sα)} = {(g, s′′) ∈ S | s′′ =
δ(s′, g), g ∈ D(s′), f v g}. This set is non-empty because an action man-
ager always returns a non-empty set of actions. We add the α-ary fork rule

((s′, f), (g1, s1), . . . , (gα, sα)).

In order to define the rule unambiguously, we assume an arbitrary linear
ordering on the set Q and on the set of joint actions g : Agt→ Act.

13



s? s1

s0 Unary rules Fork rules

s2

s3

s? (s?, idle)

s? (s?, a1)

(s?, idle) ((idle, b1), s1)

((idle, idle), s0)

((idle, b2), s2)

(s?, a1) ((a1, b1), s2)

((a1, idle), s1)

((a1, b2), s3)

(idle,
idle

)

(a1, idle), (idle, b1)

(a1 , b1 ), (idle, b2 )

(a
1 , b

2 )

0

+1

Figure 2: Transitions and its associated unary and fork rules.

The following observations shall be useful in the sequel.

• card(Q) is quadratic in the size ofM, card(R1 ∪ R2) is polynomial in the size of
M and each vector in a rule of R1 has values at most exponential in the size of
M. Consequently, the size ofAM,A,s? is polynomial in the size ofM.

• s? has a special status in Q simply because any proof whose root configuration
contains s? has no predecessor configuration.

• By construction, any derivation skeleton from AM,A,s? has to alternate the rules
in R1 and the rules in R2. This property will be used to slightly simplify devel-
opments below.

• For every (s′, f) in Q, there is a unique fork rule starting from (s′, f).

• The construction also applies in degenerated cases, i.e., when A = Agt or when
A = ∅ (assuming that cost(s′, f) = ~0 for the unique f ∈ D∅(s′)).

In Figure 2, we illustrate how transitions from the state s? are turned into unary rules
and fork rules (in the example, Agt = {1, 2}, A = {1}, act(s?, 1) = {idle, a1},
act(s?, 2) = {idle, b1, b2}, and cost(s?, 1, a1) = +1).

Given an infinite computation λ = s0
g1
−→ s1

g2
−→ s2 . . . starting in s? = s0 and

respecting FA, we can associate it with an infinite sequence (which we call an extended
computation)

ext(λ,FA) def
= s0

~u0
−→ (s0, f0) −→ (g1, s1)

~u1
−→ (s1, f1) −→ (g2, s2)

~u2
−→ (s2, f2) −→ (g3, s3) · · ·

where s0 = s?, and for all n ≥ 0, FA(s0
g1
−→ s1 . . .

gn
−→ sn) = fn and costA(sn, fn) = ~un.

That is, every step si
gi+1
−→ si+1 in the computation λ is decomposed into two parts:

si
~ui
−→ (si, fi) −→ (gi+1, si+1). It is worth noting that the definition of ext(λ,FA) essentially
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uses the set of agents A. However, in the paper, such an infinite sequence is needed
only when the computation respects a strategy. That is why, we emphasize this with
the notation ext(λ,FA). Similar considerations are followed in the sequel.

The computations in Comp(s?,FA) can be organised as an infinite tree that corre-
sponds to a derivation skeleton for AM,A,s? . Below we define an infinite tree TFA , a
labelling function L : TFA → S and a partial map R : TFA × TFA → (

⋃
s′∈S D(s′)).

• L(ε) def
= s?.

• For all finite words w = k1 · · · kβ in TFA such that L(w) is already defined, we
add to TFA the values k1 · · · kβ · 1, . . . , k1 · · · kβ · α such that

– FA(L(ε)
R(ε,k1)
−−−→ L(k1)

R(k1,k1k2)
−−−−−→ L(k1k2) · · ·

R(k1···kβ−1,k1···kβ)
−−−−−−−−−−→ L(w)) = f

– {(g1, s1), . . . , (gα, sα)} = {(g, s′′) ∈ S | s′′ = δ(s′, g), g ∈ D(s′), f v g} with
s′ = L(w).

– For all j ∈ [1, α], we have L(k1 · · · kβ · j) def
= s j and R(w,w · j) def

= g j.

The tree TFA is defined by saturation of the above rules, and the maps L and R are
defined accordingly. The structure (TFA ,R,L) is a labelled transition system with a
tree-like structure encoding all the infinite computations respecting the strategy FA. A
maximal branch w of (TFA ,R,L) is understood as an element of (N \ {0})ω, such that
any (strict) finite prefix of w belongs to TFA . The label of w, written lab(w), is defined
as follows:

lab(w) def
= L(ε)

R(ε,k1)
−−−→ L(k1)

R(k1,k1k2)
−−−−−→ L(k1k2) · · ·

R(k1···kβ−1,k1···kβ)
−−−−−−−−−−→ L(k1 · · · kβ) · · ·

where w = k1k2k3 · · · . By construction, lab(w) is a maximal computation.

Lemma 2.

(I) For every maximal computation λ starting at s? and respecting FA, there is a max-
imal branch w in (TFA ,R,L) such that λ = lab(w).

(II) For every maximal branch w in (TFA ,R,L), there is a maximal computation λ
starting at s? and respecting FA such that lab(w) = λ.

The (omitted) proof simply reflects that (TFA ,R,L) contains all the computations
from s? that respect the strategy FA.

We build a derivation skeleton D : TFA → (R1 ∪ R2) as follows, where all the
maximal branches of TFA are infinite (we therefore do not need to include ⊥ in the
range ofD) .

• D(ε) = (s0, costA(s0,FA(s0)), (s0,FA(s0))) with s0 = s?.

• D(1) = ((s0,FA(s0)), (g1, s1), . . . , (gα, sα)) where 1, . . . , α ∈ TFA (but α + 1 <
TFA ), for all j ∈ [1, α], TFA ( j) = s j and R(ε, j) = g j. By construction ofAM,A,s? ,
D(1) is the unique fork rule starting from (s0,FA(s0)).

15



• Let n = 1k11 · · · 1kβ1 with k1, . . . , kβ ≥ 1 and such that

D(1k11 · · · kβ) = ((g, s′), costA(s′, f), (s′, f)) ∈ R1.

Then, D(n) = ((s′, f), (g1, s1), . . . , (gα, sα)) where k1 · · · kβ1, . . . , k1 · · · kβα ∈ TFA

(but k1 · · · kβ(α + 1) < TFA ), for all j ∈ [1, α],

– TFA (k1 · · · kβ · j) = s j and,

– R(k1 · · · kβ, k1 · · · kβ j) = g j.

By construction ofAM,A,s? ,D(n) is the unique fork rule starting from (s′, f).

• Let n = 1k11 · · · 1kβ. By construction we can assume that we already have that
D(1k11 · · · kβ−11) = ((s′, f′), (g1, s1), . . . , (gα, sα)). Let g′ be equal toR(k1 · · · kβ, k1 · · · kβ·
1) and f be the restriction of g′ to A (so f v g′). Then,

D(n) = ((gkβ , skβ ), costA(skβ , f), (skβ , f)).

Note thatD(n) is indeed a valid unary rule.

Given an infinite branch w of D (resp. w of the derivation D̂ based on D), say
w = 1k11k21k3 · · · ∈ Nω, we define the extended computation ext(w,FA) as follows.
Suppose that the label of such a branch is characterised by the values below:

• D(ε) = (s0, ~u0, (s0, f0));D(1) = ((s0, f0), (g1
1, s

1
1), . . . , (g1

α1
, s1
α1

)).

• . . .

• D(1k11 · · · ki) = ((gi
ki
, si

ki
), ~ui, (si

ki
, fi)).

• D(1k11 · · · ki1) = ((si
ki
, fi), (gi+1

1 , si+1
1 ), . . . , (gi+1

αi+1
, si+1
αi+1

)).

• . . .

• D(1k11 · · · kβ−1) = ((gβ−1
ki
, sβ−1

kβ−1
), ~uβ−1, (s

β−1
kβ−1
, fβ−1)).

• D(1k11 · · · kβ−11) = ((sβ−1
kβ−1
, fβ−1), (gβ1, s

β
1), . . . , (gβαβ , s

β
αβ )).

• · · ·

Then,

ext(w,FA) def
= s0

~u0
−→ (s0, f0) −→ (g1

k1
, s1

k1
)
~u1
−→ (s1

k1
, f1) −→ (g2

k2
, s2

k2
)
~u2
−→ (s2

k2
, f2) −→ (g3

k3
, s3

k3
) · · ·

Lemma 3.

(I) For every maximal computation λ starting at s? and respecting FA, there is a max-
imal branch w inD such that ext(λ,FA) = ext(w,FA).

(II) For every maximal branch w in D, there is a maximal computation λ starting at
s? and respecting FA such that ext(w,FA) = ext(λ,FA).
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The reduction can be easily verified. Note, however, that the proponent restriction
is essential for its correctness.

Theorem 1. There is a ~b-strategy w.r.t. s? in M iff there is a proof in AM,A,s? whose
root is labelled by (s?,~b) and every maximal branch is infinite.

Proof. First suppose that there is a ~b-strategy FA w.r.t. s? = s0 inM. Let us consider
the structures (TFA ,R,L) andD : T→ (R1∪R2) as defined above. By Lemma 1, there
is a unique derivation D̂ of AM,A,s? based on D such that D̂(ε) = (s?,~b). It remains
to show that D̂ is indeed a proof. Let w = 1k11k21 · · · be a maximal branch of D̂ (we
use the previous notations aboutD such as those about the ~ui’s). We have:

• D̂(ε) = (s0,~b).

• D̂(1) = ((s0, f0), ~u0 +~b) withD(ε) = (s0, ~u0, (s0, f0)).

• . . .

• D̂(1k11 · · · ki) = ((gi
ki
, si

ki
),
∑i−1

j=1 ~u j +~b) with

D(1k11 · · · ki−11) = ((si−1
ki−1
, fi−1), (gi

1, s
i
1), . . . , (gi

αi
, si
αi

)).

• D̂(1k11 · · · ki1) = ((si
ki
, fi),
∑i

j=1 ~u j+~b) withD(1k11 · · · ki) = ((gi
ki
, si

ki
), ~ui, (si

ki
, fi)).

• · · ·

By Lemma 3, there is a maximal computation λ starting at s? and respecting FA such
that ext(w,FA) = ext(λ,FA). Since FA is a ~b-strategy, λ is ~b-consistent and therefore
for all i ≥ 0, we have ~0 �

∑i−1
j=1 ~u j +~b, which implies that D̂ is a proof.

For the proof of the other direction, assuming that there is a proof D̂ whose root
is labelled by (s?,~b) and every maximal branch is infinite, we can extract from the
underlying derivation D a strategy FA (see the similar construction in the proof of
Theorem 3 below). Lemma 3 and the fact that D̂ is admissible entail that FA is a
~b-strategy w.r.t. s? (details are omitted). �

Transitions in M can be defined as triples (s′, g, s′′) such that δ(s′, g) = s′′. A
transition is also denoted by the expression s′

g
−→ s′′. The set of transitions of M is

denoted by ΣM. It is interpreted as a finite alphabet when M is finite. An infinite
computation λ = s0

g1
−→ s1

g2
−→ s2 . . . can be equivalently represented by the ω-word in

Σω
M

(with contiguous transitions)

(s0
g1
−→ s1) · (s1

g2
−→ s2) · (s2

g3
−→ s3) · · ·

An ω-word w ∈ Σω
M

is said to be with contiguous transitions whenever at any position,
the second state of the transition is equal to the first state of the next position.
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Given an infinite branch of the proof corresponding to the extended computation

s
~u0
−→ (s, f0) −→ (g1

k1
, s1

k1
)
~u1
−→ (s1

k1
, f1) −→ (g2

k2
, s2

k2
)
~u2
−→ (s2

k2
, f2) −→ (g3

k3
, s3

k3
) · · ·

its ΣM-projection is defined as the sequence

(s
g1

k1
−→ s1

k1
) · (s1

k1

g2
k2
−→ s2

k2
) · (s2

k2

g3
k3
−→ s3

k3
) · · ·

Lemma 4. Let L ⊆ Σω
M

and ~b ∈ (N ∪ {ω})r. The statements below are equivalent.

1. There is a~b-strategy FA w.r.t. s? inM such that the set of computations Comp(s?,FA)
is included in L.

2. There is a proof in AM,A,s? whose root is labelled by (s?,~b), every maximal
branch is infinite and its ΣM-projection belongs to L.

Lemma 4 is a consequence of Theorem 1, and Lemma 3 is key to establishing for-
mal correspondences between M and AM,A,s? . The main challenge is to determine
classes of languages for which decidability can be obtained by using only the decid-
ability (and complexity characterisation) of the state reachability and non-termination
problems for AVASS.

Given S′ ⊆ S with s? ∈ S′, let LS′ ⊆ Σω
M

be the set of all ω-words such that the
transitions use only states in S′. Let us define AS′

M,A,s? as a restriction of AM,A,s? in
which the unary and fork rules have no way to go out of S′. Alternatively, AS′

M,A,s?
can be understood as the restriction of AM,A,s? to rules that only involve states in S′

(assuming that s? is already in S′). We defineAS′
M,A,s?

def
= (Q, r,R1,R2) as follows:

Q def
= {s?}∪{(s′, f) | s′ ∈ S′, f ∈ DA(s′)}∪{(g, s′) | s′, s′′ ∈ S′, g ∈ D(s′′), δ(s′′, g) = s′}.

• The set of unary rules R1 contains the following elements.

– For all f ∈ DA(s?), (s?, costA(s?, f), (s?, f)).

– For all (g, s′) ∈ Q, for all f ∈ DA(s′), ((g, s′), costA(s′, f), (s′, f)).

• The set of fork rules R2 contains the following elements.

– For all (s′, f) ∈ Q, let {(g1, s1), . . . , (gα, sα)} = {(g, s′′) | s′′ = δ(s′, g), g ∈
D(s′), f v g}.
If {s1, . . . , sα} ⊆ S′, then we add the α-ary fork rule

((s′, f), (g1, s1), . . . , (gα, sα)).

(Otherwise, nothing is added.)

So, there is at most one fork rule starting from (s′, f) (possibly zero).

Lemma 5. Assuming that s? ∈ S′, the statements below are equivalent.
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1. There is a~b-strategy FA w.r.t. s? inM such that the set of computations Comp(s?,FA)
only visit states in S′.

2. There is a proof in AS′
M,A,s? whose root is labelled by (s?,~b) and every maximal

branch is infinite (a positive instance of the non-termination problem for AVASS).

Note that the way ~b-strategies are defined, in Lemma 5(1), FA generates maximal
and infinite computations in which only states in S′ are visited. Similarly, the proof
in Lemma 5(2) contains only maximal and infinite branches and its root is precisely
(s?,~b).

Proof. LetAM,A,s? = (Q, r,R1,R2) andAS′
M,A,s? = (Q′, r,R′1,R

′

2). By construction, we

have Q′ ⊆ Q, R′1 ⊆ R1 and R′2 ⊆ R2. We write Σ′
M

to denote the alphabet {s1
g
−→ s2 :

s1, s2 ∈ S′ and δ(s1, g) = s2} and L to denote the ω-regular language in (Σ′
M

)ω made of
infinite sequences of contiguous transitions such that only states in S′ can occur.

(1) → (2). Suppose there is a ~b-strategy FA w.r.t. s? in M such that the set of
computations Comp(s?,FA) only visit states in S′, which amounts to having the set of
computations included in L. By Lemma 4, there is a proof in AM,A,s? whose root is
labelled by (s?,~b), every maximal branch is infinite and it belongs to L. Since s? ∈ S′,
all the rules in R′1 ∪ R′2 only involve states in S′ and the above proof only visits such

states, we have that there is a proof in AS′
M,A,s? whose root is labelled by (s?,~b) and

every maximal branch is infinite.
(2) → (1). Suppose that there is a proof in AS′

M,A,s? whose root is labelled by

(s?,~b) and every maximal branch is infinite. Since AS′
M,A,s? is defined as a restriction

ofAM,A,s? with Q′ ⊆ Q, R′1 ⊆ R1 and R′2 ⊆ R2, there is also a proof inAM,A,s? whose

root is labelled by (s?,~b), every maximal branch is infinite and only states in S′ are
visited. Equivalently, there is a proof inAM,A,s? whose root is labelled by (s?,~b), every
maximal branch is infinite and it belongs to L. By Lemma 4, there is a ~b-strategy w.r.t.
s? in M such that the set of computations Comp(s?,FA) is included in L, hence only
states in S′ are visited. �

Lemma 5 is useful to handle formulae of the form 〈〈A~b〉〉Gφ. Let us consider
a similar treatment that will be useful to handle formulae of the form 〈〈A~b〉〉φ1Uφ2.
Given S1,S2 ⊆ S with s? ∈ S1∪S2, let LS1,S2 be the set of all ω-words with contiguous
transitions such that the projection under S belongs to S∗1 · S2 · Sω. As usual, the

projection of (s0
g1
−→ s1) · (s1

g2
−→ s2) · (s2

g3
−→ s3) · · · under S is understood as s0s1s2s3 · · · .

Lemma 6. The statements below are equivalent:

1. There is a ~b-strategy w.r.t. s? inM such that Comp(s?,FA) ⊆ LS1,S2 .

2. There is a finite proof in AS1∪S2
M,A,s? whose root is labelled by (s?,~b) and each leaf

contains a control state in {(g, s′) ∈ Q | s′ ∈ S2}∪(S2∩{s?}) (a positive instance
of the state reachability problem for AVASS).
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Note that S2 ∩ {s?} is {s?} if s? ∈ S2 and ∅ otherwise. The proof of Lemma 6
below relies on the fact that, in resource-bounded concurrent game structures, idle ∈
act(s, a) for all agents a and states s.

Proof. The proof is similar to the proof of Lemma 5 except that we need to relate finite
proofs to infinite ones, and in doing so we take advantage of the presence of the idle
action in concurrent game structures.

Let AM,A,s? = (Q, r,R1,R2) and AS1∪S2
M,A,s? = (Q′, r,R′1,R

′

2). By construction, we
have Q′ ⊆ Q, R′1 ⊆ R1 and R′2 ⊆ R2.

(1)→ (2). Suppose there is a~b-strategy FA w.r.t. s? inM such that the computations
in Comp(s?,FA) visit a state in S1 until a state in S2 is visited, which amounts to having
the set of computations included in LS1,S2 . By Lemma 4, there is a proof D̂ inAM,A,s?
whose root is labelled by (s,~b), every maximal branch is infinite and it belongs to LS1,S2 .
Let D̂′ be the finite proof obtained from D̂ by pruning any subtree as soon as a node
is labelled by a control state in S2. Existence of such a finite proof is guaranteed by
König’s Lemma. It is easy to check that D̂′ is a finite proof in AS1∪S2

M,A,s? whose root

is labelled by (s?,~b) and each leaf contains a control state in {(g, s′) ∈ Q | s′ ∈
S2} ∪ (S2 ∩ {s?}).

(2)→ (1). Suppose that there is a finite proof D̂ inAS1∪S2
M,A,s? whose root is labelled

by (s?,~b) and each leaf contains a control state in {(g, s′) ∈ Q | s′ ∈ S2} ∪ (S2 ∩ {s?}).
One can extend D̂ in order to obtain an infinite proof D̂′ such that every maximal
branch is infinite and it belongs to LS1,S2 . Any leaf labelled by the control state (g, s′)

is further extended by application of the unary rule (g, s′)
~0
−→ (s′, f) where f is the idle

joint action (with the control state s?, a similar method applies). Similarly, any leaf
labelled by the control state (s′, f) is further extended by application of the unique fork
rule starting by (s′, f). It is easy to check that this not only leads to a derivation but also
to a proof, because the extension only deals with the update vector ~0. By Lemma 4,
there is a ~b-strategy w.r.t. s? in M such that the set of computations Comp(s?,FA) is
included in LS1,S2 . �

4.2 2EXPTIME upper bound

The upper bound is established by giving a labelling algorithm as done in [5] or
for standard temporal logics such as CTL and CTL∗. The main difference with [5] is
that the treatment of the cases with strategy modalities is not performed in an ad-hoc
fashion using the fact that (Nr,�) is a well-quasi-ordering by Dickson’s Lemma [22]
but rather we explicitly call subroutines that solve decision problems on AVASS. The
existence of such subroutines is due to [40] for monotonic games, and their complexity
upper bounds are due to [33, Theorem 3.4] and [17, Theorem 3.1]. The proof of the
2EXPTIME upper bound is divided into three main steps:

1. we introduce a slight extension of AVASS such that the decision problems remain
in 2EXPTIME;
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2. we show that the cases for the strategy modalities can be faithfully reduced to
subroutines for problems on such extended AVASS (a consequence of develop-
ments from Section 4.1);

3. finally, we design a labelling algorithm and establish the complexity upper bound
from it.

First, let us introduce a slight extension of decision problems for AVASS.

Lemma 7. In the following extension of AVASS the state reachability and non-termination
problems remain in 2EXPTIME:

• Fork rules can be α-ary for any α ≥ 1 (but there is only a finite number of them).

• Reachability is related to a subset Q f ⊆ Q (instead of a singleton set).

• The initial configuration is (q0,~b) with ~b ∈Nr instead of the fixed tuple ~0.

• The value ω in~b is allowed and absorbs any other value inZ (a means to ignore
components, i.e. to reduce the dimension).

The proof is fairly standard, and consists in using Proposition 2 by simulating a
non-binary fork by a linear-size gadget made of unary and binary forking rules, and by
adding binary forking rules from states in Q f to a new single final state.

Proof. The lemma states four ways to extend the decision problems on AVASS, either
by slightly extending the notion of AVASS, or by considering more general inputs for
the problems. For each extension, we show how this can be encoded into the state
reachability and the non-termination problems on AVASS using only polynomial-time
reductions. The proof of the lemma is then obtained by composition of the reductions
(polynomial-time reductions are also known to be closed under compositions) and by
invoking Proposition 2 to get the 2EXPTIME upper bound.

• LetA = (Q, r,R1,R2) be an alternating VASS, q0, q f ∈ Q, and r = (q1, . . . , qα+1)
be an (extended) α-ary rule. If α = 1, the rule can be treated as a unary rule with
the update vector ~0, whereas if α = 2, it can be treated as a standard binary fork
rule. So assume α ≥ 3. Let R′2 be the following set of binary fork rules derived
from r where q′2, . . . , q

′

α−1 are new control states:

R′2 = {(q1, q2, q′2)} ∪ {(q′j, q j+1, q′j+1) | j ∈ [2, α − 2]} ∪ {(q′α−1, qα, qα+1)}.

It is easy to show that the statements below are equivalent:

– there is a finite proof in (Q, r,R1,R2]{r}) whose root is equal to (q0,~0) and
each leaf belongs to {q f } ×N

r;

– there is a finite proof in (Q ] {q′j | j ∈ [2, α − 1]}, r,R1,R2 ] R′2) whose

root is equal to (q0,~0) and each leaf belongs to {q f } ×N
r.
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If there is more than one extended fork rule, we apply the above reduction as
many times as necessary, leading eventually to a reduction to an instance of the
state reachability problem for AVASS. The same reduction also works for the
non-termination problem.

• LetA = (Q, r,R1,R2), q0 ∈ Q and Q f = {q1, . . . , qβ}.

LetA′ = (Q ] {qnew
f }, r,R

′

1,R2) be defined fromA such that

R′1
def
= R1 ] {qi

~0
−→ qnew

f | i ∈ [1, β]}.

It is easy to show that the statements below are equivalent:

– there is a finite proof in A whose root is equal to (q0,~0) and each leaf
belongs to Q f ×N

r;

– there is a finite proof in A′ whose root is equal to (q0,~0) and each leaf
belongs to {qnew

f } ×N
r.

• LetA = (Q, r,R1,R2), q0, q f ∈ Q and ~b ∈Nr andA′ = (Q] {q′0}, r,R1 ] {q′0
~b
−→

q0},R2). It is easy to show that the statements below are equivalent:

– there is a finite proof in A whose root is equal to (q0,~b) and each leaf
belongs to {q f } ×N

r;

– there is a finite proof in A′ whose root is equal to (q′0,~0) and each leaf
belongs to {q f } ×N

r.

Similarly, the statements below are equivalent:

– there is a proof in A whose root is equal to (q0,~b) and all the maximal
branches are infinite;

– there is a proof in A′ whose root is equal to (q′0,~0) and all the maximal
branches are infinite.

• Let A = (Q, r,R1,R2), q0, q f ∈ Q and ~b ∈ (N ∪ {ω})r. We are looking for

proofs whose root is labelled by (q0,~b) and any occurrence of ω in ~b remains in
the proof for all the descendant nodes, which amounts to ignoring some compo-
nents. Indeed, if ω occurs in a component at the root of the proof, the value ω is
propagated to all descendant nodes in that component.

Suppose that ω occurs at least once in ~b and let {i1, . . . , iβ} ⊆ [1, r] be the set

of positions where ω occurs in ~b. Let γ = r − β and let j1 < · · · < jγ be the
indices in [1, r] \ {i1, . . . , iβ}. Let h : [1, γ] → { j1, · · · , jγ} be the bijection such
that h(n) def

= jn. We define the alternating VASS A′ = (Q, γ,R′1,R2) obtained
from A by removing the components in positions in {i1, . . . , iβ}. The map h is
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extended to h̄ : (Z ∪ {ω})r
→ Zγ such that for all ~u ∈ Zr, n ∈ [1, γ] we have

h̄(~u)(n) def
= ~u( jn). The set of unary rules R′1 is defined from R1 as follows:

R′1
def
= {q

h̄(~u)
−→ q′ | q

~u
−→ q′ ∈ R1}.

It is easy to show that the statements below are equivalent:

– there is a finite proof in A whose root is equal to (q0,~b) and each leaf
belongs to {q f } ×N

r;

– there is a finite proof in A′ whose root is equal to (q0, h̄(~b)) and each leaf
belongs to {q f } ×N

γ.

The same reduction also works for the non-termination problem. �

Lemma 8 below relates the satisfaction of a formula with the outermost connective
〈〈A~b〉〉U and the state reachability problem for AVASS.

Lemma 8. The statements below are equivalent:

(I) M, s? |= 〈〈A~b〉〉φ1Uφ2.

(II) there is a finite proof inAS1∪S2
M,A,s? whose root is equal to (s?,~b) and each leaf has a

control state in {(g, s′) ∈ Q | s′ ∈ S2} ∪ (S2 ∩ {s?}) with Si = {s′ | M, s′ |= φi},
i ∈ {1, 2}.

This is a direct consequence of Lemma 6.
Lemma 9 relates to the satisfaction of a formula with outermost connective 〈〈A~b〉〉G

and the non-termination problem for AVASS.

Lemma 9. Assuming thatM, s? |= φ1, the statements below are equivalent:

(I) M, s? |= 〈〈A~b〉〉Gφ1.

(II) there is a proof in AS′
M,A,s? with S′ = {s′ | M, s′ |= φ1} whose root is equal to

(s?,~b) and every maximal branch is infinite.

(III) AS′
M,A,s? , (s?,~b) is a positive instance of the non-termination problem for AVASS.

This is a direct consequence of Lemma 5.

Theorem 2. The model checking problem for RB±ATL is in 2EXPTIME.

Proof. Algorithm 1 is a global model checking algorithm that takes as input a resource-
bounded concurrent game structureM and a formula φ (both built on the same set of
agents and with the same number of resources) and returns the set of states that satisfies
the formula. By structural induction, one can show that GMC(M, ψ) = {s ∈ S | M, s |=
ψ} by using Lemma 8 and Lemma 9. We use the fact that the state reachability and the
non-termination problems for extended AVASS are decidable by [40] and by Lemma 7
(for the extension). Let us show how the proof by induction works.
Case ψ = 〈〈A~b〉〉Gψ′

The statements below are equivalent:
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Algorithm 1 – RB±ATL model checking –
1: procedure GMC(M, φ)
2: case φ of
3: p: return {s ∈ S | s ∈ Lab(p)}
4: ¬ψ: return S \ GMC(M, ψ)
5: ψ1 ∧ ψ2: return GMC(M, ψ1) ∩ GMC(M, ψ2)
6: 〈〈A~b〉〉Xψ: return {s | ∃ f ∈ DA(s),~0 � costA(s, f) + ~b, for all f v g ∈

D(s), δ(s, g) ∈ GMC(M, ψ)}
7: 〈〈A~b〉〉Gψ: S1 := GMC(M, ψ);

return {s? ∈ S1 | A
S1
M,A,s? , (s

?,~b) is a positive instance of non-termination pb.}

8: 〈〈A~b〉〉ψ1Uψ2: return {s? | AS1∪S2
M,A,s? , (s,

~b),S′2 is a positive instance of state
reachability } with S1 = GMC(M, ψ1), S2 = GMC(M, ψ2), S′2 = {(g, s′) ∈ Q |

s′ ∈ S2} ∪ (S2 ∩ {s?})
9: end case

10: end procedure

• M, s |= ψ.

• there is a ~b-strategy FA w.r.t. s such that the computations in Comp(s,FA) only
visit states in S′1 = {s′ | M, s′ |= ψ′} (by definition of |=).

• s ∈ S′1 and there is a proof in A
S′1
M,A,s whose root is equal to (s,~b) and every

maximal branch is infinite (by Lemma 9).

• s ∈ S1 and there is a proof in AS1
M,A,s whose root is equal to (s,~b) and every

maximal branch is infinite with S1 = GMC(M, ψ′) (by induction hypothesis).

• s ∈ S1 and AS1
M,A,s, (s,~b) is a positive instance of the non-terminating problem

for AVASS (by definition).

Case ψ = 〈〈A~b〉〉ψ1Uψ2. The statements below are equivalent:

• M, s |= ψ.

• there is a ~b-strategy FA w.r.t. s such that for all λ = s0
f0
−→ s1 . . . ∈ Comp(s,FA),

there is some i < |λ| such that M, si |= ψ2 and for all j ∈ [0, i − 1], we have
M, s j |= ψ1.

• there is a finite proof in AS1∪S2
M,A,s whose root is equal to (s,~b) and each leaf has a

control state in {(g, s′) ∈ Q | s′ ∈ S2} ∪ (S2 ∩ {s}) with Si = {s | M, s |= ψi},
i ∈ {1, 2} (by Lemma 8).

• there is a finite proof in AS1∪S2
M,A,s whose root is equal to (s,~b) and each leaf has

a control state in {(g, s′) ∈ Q | s′ ∈ S2} ∪ (S2 ∩ {s}) with Si = GMC(M, ψi)
i ∈ {1, 2} (by the induction hypothesis).
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• AS1∪S2
M,A,s , (s,

~b), S′2 is a positive instance of the state reachability problem for AVASS
with Si = GMC(M, ψi) i ∈ {1, 2} and S′2 = {(g, s′) ∈ Q | s′ ∈ S2} ∪ (S2 ∩ {s}).

Case ψ = 〈〈A~b〉〉Xψ′

The statements below are equivalent:

• M, s |= ψ.

• there is a ~b-strategy FA w.r.t. s such that for all s0
g0
−→ s1 . . . ∈ Comp(s,FA), we

haveM, s1 |= ψ′ (by definition of |=).

• there is a ~b-strategy FA w.r.t. s such that for all s0
g0
−→ s1 . . . ∈ Comp(s,FA), we

have M, s1 |= ψ′, and for any finite computation extending s0
g0
−→ s1, FA returns

the constant map idle (thanks to the properties of the action idle).

• there is f ∈ DA(s) such that for all s1 ∈ out(s, f), we have M, s1 |= ψ′ and
~0 � costA(s, f) +~b.

• there is f ∈ DA(s) such that for all g w f, we have M, δ(s, g) |= ψ′ and ~0 �
costA(s, f) +~b.

• there is f ∈ DA(s) such that for all g w f, we have δ(s, g) ∈ GMC(M, ψ′) and
~0 � costA(s, f) +~b (by induction hypothesis).

As far as complexity is concerned, GMC(M, ψ) can be solved by using a recursion
depth that is linear in the size of ψ, and the state reachability and the non-termination
problems for AVASS can be solved in 2EXPTIME by [33, Theorem 3.4] and [17, The-
orem 3.1]. Note also the instances of such problems can be built in polynomial time
in the respective sizes of M and φ. Consequently, the model checking problem for
RB±ATL is in 2EXPTIME. �

4.3 2EXPTIME-hardness

In this section, we show a 2EXPTIME-hardness result by reduction from the state
reachability problem for AVASS. This improves the EXPSPACE-hardness result in [5].

Theorem 3. The model checking problem for RB±ATL is 2EXPTIME-hard.

Proof. The proof is by reduction from the state reachability problem for AVASS (see
Proposition 2 or [17, Theorem 4.1]). It is divided into three main parts.

(1) We consider a restriction of the state reachability problem for AVASS that remains
2EXPTIME-hard but that simplifies the definitions in the second part of the proof.
Roughly speaking, the set of control states is divided in two disjoint sets, one
from which unary rules start, and the other one from which fork rules start.

(2) We then define the reduction from the restriction, taking care of the details of
the resource-bounded concurrent game structures; essentially, we follow ideas
similar to those in the proof of [5, Lemma 6].
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(3) Finally, we establish the correctness of the reduction.

(1) Given an instance A = (Q, r,R1,R2), q0, q f of the state reachability problem, we
further assume that there is a partition Q = Q1 ]Q2 such that

• q0, q f ∈ Q1,

• R1 ⊆ Q1 ×Zr
×Q2 and R2 ⊆ Q2 ×Q1 ×Q1,

• there is no rule starting from q f and there is at least one unary rule starting from
q0.

The strict alternation between the control states in Q1 and those in Q2 can be obtained
by duplicating the control states (in case a control state can start both a unary rule and
a fork rule), and by adding new intermediate rules to enforce the alternation. In order
to have no rule from q f , it is sufficient to duplicate it, leading to the new state q′f . So,
q′f behaves now as q f in the original AVASS and in the new AVASS, no rule starts by
q f . The details follow.

Let A = (Q, r,R1,R2) be an alternating VASS. Without loss of generality, we can
assume that no rule starts from q f . Otherwise, we can introduce a new control state
qnew

f that behaves almost as q f : copy all the rules where q f occurs in second or in
third position by replacing q f by qnew

f but no rule starting from q f is copied (details are

omitted). We can guarantee that (?) there is a finite proof whose root is equal to (q0,~0)
and each leaf belongs to {q f }×N

r iff with the new AVASS there is a finite proof whose
root is equal to (q0,~0) and each leaf belongs to {qnew

f } ×N
r. Similarly, without loss of

generality, we can assume that there is a rule in R1 that starts from q0. Otherwise, we
add the dummy unary rule (q0,~0, q0).

Let us build the alternating VASS A′ = (Q′, r,R′1,R
′

2) verifying the above condi-
tions with Q′ = Q′1 ]Q′2 such that (?) iff there is a finite proof whose root is equal to
((q0, 1),~0) and each leaf belongs to {(q f , 1)} ×Nr. The set Q′ is a subset of Q × {1, 2}
defined by the clauses below plus auxiliary states introduced with the definition for
rules:

• (q, 1) ∈ Q′ def
⇔ there is a rule in R1 that starts from q or q = q f . So (q0, 1), (q f , 1) ∈

Q′.

• (q, 2) ∈ Q′ def
⇔ there is a rule in R2 that starts from q.

• Q′1 ⊇ {(q, i) ∈ Q′ | i = 1} and Q′2 ⊇ {(q, i) ∈ Q′ | i = 2} (the inclusions are
in the right direction since Q′1 and Q′2 may contain auxiliary states). Obviously,
(q0, 1), (q f , 1) ∈ Q′1.

We now define the sets of rules R′1 and R′2.

• For all q
~u
−→ q′ ∈ R1 such that (q′, 2) ∈ Q′, we add the rule (q, 1)

~u
−→ (q′, 2) to R′1.
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• For all (q1, q2, q3) ∈ R2 such that (q2, 1), (q3, 1) ∈ Q′, we add the fork rule

((q1, 2), (q2, 1), (q3, 1))

to R′2.

• For all r = q
~u
−→ q′ ∈ R1 such that (q′, 1) ∈ Q′ (alternation needs to be enforced),

we add the rules below: (q, 1)
~u
−→ qnew

∈ R′1 (qnew is new and depends on r)
and (qnew, (q′, 1), (q′, 1)) ∈ R′2. Moreover, qnew

∈ Q′2. This amounts to adding
an intermediate fork rule leading twice to (q′, 1) in order to guarantee that R′1 ⊆
Q′1 ×Z

r
×Q′2.

• For all r = (q1, q2, q3) ∈ R2 such that either (q2, 2) ∈ Q′ or (q3, 2) ∈ Q′ (again,
alternation needs to be enforced). If (q2, 2), (q3, 2) ∈ Q′, then we add the rules
below:

– ((q1, 2), qnew
2 , qnew

3 ) ∈ R′2 where qnew
2 and qnew

3 are new and depend on the
fork rule r. Moreover, these two new control states belong to Q′1.

– qnew
2

~0
−→ (q2, 2) and qnew

3

~0
−→ (q3, 2) belong to R′1.

Again, we add intermediate unary rules in order to guarantee that R′2 ⊆ Q′2 ×
Q′1 × Q′1. If (q2, 2), (q3, 1) belong to Q′ or if (q2, 1), (q3, 2) belong to Q′, the
above construction can be easily adapted.

One can show thatA′ = (Q′, r,R′1,R
′

2) satisfies the above assumption and (?) iff there
is a finite proof whose root is equal to ((q0, 1),~0) and each leaf belongs to {(q f , 1)}×Nr.

(2) Given an instance A = (Q, r,R1,R2), q0 and q f with the restriction above, we
build the game structureM = (Agt,S,Act, r, act, cost, δ,Lab) with Q1 ⊆ S such that
M, q0 |= 〈〈{1}

~0
〉〉>Uq f iff there is a finite proof of AVASS whose root is equal to (q0,~0)

and each leaf belongs to {q f } × N
r. Here, q f is also understood as a propositional

variable.
Before providing a formal definition of M, we illustrate the construction using a

simple example. Assume that A contains the unary rule r1 = q1
(−1,+3)
−−−−→ q0 and the

binary rule r2 = q0 −→ q3, q2. M contains two agents. An inference with r1 followed by
an inference with r2 is simulated using the transitions shown in Figure 3, where the cost
of the action (r1, r2) is precisely equal to (−1,+3) and both idle and its twin action
idle′ have no cost. So, two subsequent rule applications are encoded by one action,
which is relevant as the set of control states is made of two disjoint sets of control states
that determine striclty whether a unary rule or a fork rule can be applied from them.
Note also the presence of a bad state that forbids the choice of the idle action by the
first agent, assuming that the objective is to reach the state q f (with q2 = q f presently).

The complete definition ofM is as follows.

• Agt def
= {1, 2}. So, the number of agents is independent of the input AVASS.
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q1 q2q3

bad

((r1, r2), idle′)

(idle,−)

(idle,−)

((r1, r2), idle)

(idle, idle)

Figure 3: Partial description ofM

• A pair of rules (r1, r2) ∈ R1 × R2 is connected iff the last control state of r1 is
equal to the first control state of r2. The set of actions Act is equal to the set of
connected pairs of rules plus the action idle and its twin action idle′.

• S = Q1 ] {bad}.

• For each control state q in Q1, act(q, 1) is the set of connected pairs of rules
whose unary rule starts from q plus the idle action. So agent 1 can choose a
unary rule immediately followed by a fork rule. act(q f , 1) is restricted to {idle},
because no rule starts from q f inA.

• As far as agent 2 is concerned, for all q ∈ Q1, act(q, 2) def
= {idle, idle′}. So

agent 2 can perform two actions that have no effect on resources, which amounts
to simulating the effects of fork rules.

• Only the idle action can be performed from the state bad:
act(bad, 1) def

= act(bad, 2) def
= {idle}.

• The cost of the action (r1, r2) is simply the update vector of the unary rule r1.
Formally, for all q ∈ Q1, we have cost(q, 1, (r1, r2)) def

= ~u when r1 = (q, ~u, q′)
for some q′. Furthermore, cost(q, a, idle) def

= cost(bad, a, idle) def
= ~0 for all

a ∈ {1, 2}, and cost(q, 2, idle′) def
= ~0.

• When δ can be defined, we have

– δ(q f , f)
def
= q f ; δ(bad, f) def

= bad (f is the constant map idle).

– Whenever q ∈ (Q1 \ {q f }), f(1) = (r1, r2) with r1 starting from q and r2 =
(qinter, q′, q′′),

δ(q, f) def
=

{
q′ if f(2) = idle
q′′ otherwise, i.e. f(2) = idle′.

– δ(q, f) = bad whenever f(1) = idle for all q ∈ Q1 \ {q f }.

• There is a unique propositional variable q f and Lab(q f )
def
= {q f }.
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(3) We now establish the correctness of the construction.
Without loss of generality, we can assume q0 , q f .

First, suppose that M, q0 |= 〈〈{1}
~0
〉〉>Uq f . So, there exists a ~0-strategy F{1} such

that, for all λ = s0
g0
−→ s1 . . . ∈ Comp(q0,F{1}), there is an i ≥ 0 such that qi = q f (so by

construction ofM, for all j ≥ i, we have q j = q f and bad does not occur in λ). Since
{1} is a singleton set, we assume below that F{1} returns an action for agent 1 (instead
of returning a joint action with respect to the single agent 1) and D{1}(q) is viewed as
an action.

From M, q0 and F{1}, let (TF{1} ,R,L) be the labelled transition system defined in
Section 4.1. We have TF{1} ⊆ {1, 2}

∗, L : TF{1} → Q1 (because bad does not occur
in computation from Comp(q0,F{1})), and R is partial map TF{1} × TF{1} →

⋃
q∈Q1

D(q).
Note the specific structure of (TF{1} ,R,L):

• For all w ∈ TF{1} such that L(w) = q f , w · 1 is the unique successor of w,
L(w · 1) = q f and R(w,w · 1) is the constant joint action equal to idle.

• For all w ∈ TF{1} such that w has exactly two successors w · 1 and w · 2, there are
qinter ∈ Q and ~u ∈ Zr such that

R(w,w · 1) = ((

r1︷           ︸︸           ︷
(L(w), ~u, qinter),

r2︷                        ︸︸                        ︷
(qinter,L(w · 1),L(w · 2))), idle)

R(w,w · 2) = (((L(w), ~u, qinter), (qinter,L(w · 1),L(w · 2))), idle′)

and (r1, r2) is connected.

Now, let us build a finite derivation skeleton D : T → (R1 ∪ R2 ∪ {⊥}) such that its
unique derivation with root labelled by (q0,~0) is a finite proof with leaves labelled by
q f . The finite tree T can be uniquely defined from TF{1} by using the map c : {1, 2}∗ →
{1, 2}∗, where c(w) is obtained fromw by simultaneously replacing every occurrence of
1 by 11 and every occurrence of 2 by 12. So, for instance, c(ε) def

= ε and c(12) def
= 1112.

We stipulate that T is the set of words of the form c(w) or c(w) · 1 where w ∈ {1, 2}∗

and there is v ∈ TF{1} such that w is a (non necessarily strict) prefix of v, L(v) = q f and
no strict prefix of v is labelled by q f . The derivation skeletonD is defined as follows.
For all w ∈ TF{1} :

• If L(w) , q f and R(w,w · 1) = ((r1, r2), idle), thenD(c(w)) def
= r1 andD(c(w) ·

1) def
= r2.

• If L(w) = q f and c(w) ∈ T, thenD(c(w)) =⊥.

Similarly to Lemma 3, we can show the following properties:

(I) For every computation λ starting at q0, ending at q f , visiting q f only once and
respecting F{1}, there is a maximal branch w in D such that ext(λ,F{1}) =
ext(w,F{1}).

(II) For every maximal branchw inD, there is a computation λ starting at q0, ending at
q f , visiting q f only once and respecting F{1} such that ext(w,F{1}) = ext(λ,F{1}).
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Consequently, the unique derivation based onD with root labelled by (q0,~0) is a finite
proof with leaves labelled by q f . Indeed, by construction for all q ∈ Q1, we have
cost(q, 1, (r1, r2)) = ~u when r1 = (q, ~u, q′) for some q′.

For the converse direction, let us assume the existence of a finite proof D̂ based on
the derivation skeleton D : T → (R1 ∪ R2 ∪ {⊥}) such that D̂(ε) = (q0,~0) and each
leaf is labelled by a pair in {q f } ×N

r. Let us define a strategy F{1}. First, we require the
following properties:

• F{1}(q0) def
= (D(ε),D(1)). Since q0 , q f , we know that 1 ∈ T.

• For all the finite computations λ ending at the state q f (we have Q1 ⊆ S and
q f ∈ Q1), F{1}(λ) def

= idle.

Let λ = q0
g0
−→ q1

g1
−→ q2 · · ·

gn−1
−→ qn be a finite computation respecting (so far) F{1}

and qn , q f (since this case is already treated above). Below we define F{1}(λ).
First, we assume that bad does not occur in λ. Each joint action g j can be written

((r j1, r
j
2), b(k j)) with k j

∈ {1, 2} and b : {1, 2} → {idle, idle′} with b(1) def
= idle and

b(2) def
= idle′. The derivation skeletonD verifies the properties below:

• D(ε) = r01 with r01 = (q0, ~u0, q0
inter).

• D(1) = r02 with r02 = (q0
inter, q

0
1, q

0
2) and q0

k0 = q1.

• D(1k0) = r11 with r11 = (q0
k0 , ~u1, q1

inter).

• D(1k01) = r12 with r12 = (q1
inter, q

1
1, q

1
2) and q1

k1 = q2.

• . . .

• D(1k01 · · · k j) = r
j+1
1 with r j+1

1 = (qk j , ~u j+1, q
j+1
inter).

• D(1k01 · · · k j1) = r
j+1
2 with r j+1

2 = (q j+1
inter, q

j+1
1 , q j+1

2 ) and q j+1
k j+1 = q j+2 .

• . . .

• D(1k01 · · · kn−21) = rn−1
2 with rn−1

2 = (qn−1
inter, q

n−1
1 , qn−1

2 ) and qn−1
kn−1 = qn.

Since qn is different from q f , 1k01 · · · kn−21kn−1 and 1k01 · · · kn−21kn−11 exist. We stip-
ulate F{1}(λ) def

= (D(1k01 · · · kn−21kn−1),D(1k01 · · · kn−21kn−11)). Consequently, any ex-
tension q0

g0
−→ q1

g1
−→ q2 · · ·

gn−1
−→ qn

gn
−→ qn+1 respecting (again so far) F{1} verifies the above

correspondence withD and the state bad cannot be visited. So, the strategy F{1} can be
defined by using the approach above (more formally, an induction hypothesis should
be stated and we should prove that after each step, the property is preserved). One can
also check that F{1} is ~0-consistent w.r.t q0, and, for all λ = s0

g0
−→ s1 . . . ∈ Comp(q0,F{1}),

there is i ≥ 0 such that qi = q f . The ~0-consistency is due to the fact that D̂ is a proof
and the reachability condition is a consequence of the fact that every leaf of D̂ is la-
belled by q f because of the correspondences between computations respecting F{1} and
nodes in T. �
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The hardness proof above would also work if the proponent restriction is not satis-
fied, or if no distinguished idle action is assumed in the game structures, or if act may
return an empty set of actions. Indeed, the construction ofM in the proof of Theorem 3
assumes the proponent restriction condition but this condition is actually useless as all
the actions for the agent 2 have zero cost. Similarly, the construction of M takes into
account the existence of a special action idle (and this entails a few complications) but
more generally, idle can be also viewed as a non-distinguished action and therefore
the hardness proof is not sensitive to the existence of a distinguished idle action. Last
but not least, allowing that act may return an empty set of actions is compatible with
the current construction ofM (this extra freedom is therefore not used to buildM). By
construction of M, it is also worth observing that one propositional variable and two
agents are sufficient to get 2EXPTIME-hardness.

In the corollary below, we use [33, Theorem 3.4] and [17, Theorem 3.1], which
show that for a bounded number of resources, the state reachability and the non-
termination problems for AVASS can be solved in EXPTIME. When r ≥ 4, the state
reachability problem for AVASS is EXPTIME-hard [33], which leads to the result be-
low.

Corollary 1. For any fixed r ≥ 1, the model checking problem for RB±ATL restricted
to at most r resources is in EXPTIME. For r ≥ 4, the problem is EXPTIME-hard.

Moreover, if r is fixed but greater than two, then the model checking problem for
RB±ATL restricted to at most r resources is PSPACE-hard, since the state reachability
problem for VASS of dimension two is PSPACE-complete [9]. When r = 1, the model
checking problem for RB±ATL is NP-hard since the state reachability for VASS of
dimension one is NP-complete [27]. (Note that the NP-completeness result does not ap-
ply because the model checking problem for RB±ATL involves not just the reachability
problem but also the non-termination problem.)

We have seen that the model checking problem for RB±ATL restricted to two
agents is 2EXPTIME-hard; below we show that the restriction to a single agent is only
EXPSPACE-complete.

Theorem 4. The model checking problem for RB±ATL restricted to a single agent is
EXPSPACE-complete.

Proof. In order to show the EXPSPACE upper bound, we sketch how to solve the model
checking problem for RB±ATL restricted to a single agent, by solving instances of
the model checking problem for LTL on VASS or instances of the model checking
problem for CTL, known to be EXPSPACE-complete (see e.g. [28]) and P-complete
(see e.g. [42]) respectively. The labelling algorithm has exactly the same form as the
algorithm for full RB±ATL. The size of the instances of the problems is linear in the
size of the input resource-bounded concurrent game structures, and the number of calls
is also linear in the size of the input formulae. This leads to the EXPSPACE upper bound.

The following two properties are essential for the proof. Given a path formula Φ

of the form Xp, Gp or p1Up2, one can show that M, s |= 〈〈∅~b〉〉Φ iff M′, s |= AΦ
in CTL, where M′ is obtained from M by removing the costs and actions from the
transitions. Note that the empty coalition ∅ allows us to quantify over all computations,
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and therefore the value of the bound~b is irrelevant. Similarly, one can show thatM, s |=
〈〈{1}~b〉〉Φ iff there is an infinite run from the initial configuration (s,~b) in the VASSV
that satisfies the LTL formula Φ, whereV is obtained fromM by removing the actions
while keeping the costs in Zr on the transitions. If ~b has components with the value
ω, then we reduce the dimension in ~b and inV so that only the components with finite
values in ~b remain.

In order to get the EXPSPACE lower bound, we reduce the state reachability prob-
lem for VASS to the model checking problem for RB±ATL restricted to a single
agent, and use the EXPSPACE-hardness established in [37]. Let V = (Q, r,R) be a
VASS and q0, q f be locations. One can show that there is a run from (q0,~0) to some

configuration of the form (q f , ~x) for some ~x ∈ Nr iff M, q0 |= 〈〈{1}
~0
〉〉>Up, where

M = (Agt,S,Act, r, act, cost, δ,Lab) is defined fromV as follows (for all q, q′ ∈ Q):

• Agt = {1}, S = Q ] {bad} and Act = R ] {idle}.

• Lab is defined so that p holds true exactly on q f and cost(1, q
~u
−→ q′) = ~u.

• act(q, 1) = {idle} ] {q
~u
−→ q′ | q

~u
−→ q′ ∈ R}, act(bad, 1) = {idle}.

• Finally, δ(q, q
~u
−→ q′) = q′, δ(q, idle) = bad and δ(bad, idle) = bad. �

5 Resource-bounded temporal logics RBTL and RBTL∗

In this section, we present the logic RBTL introduced in [12] and its extension
RBTL∗ and we characterise the computational complexity of the model-checking prob-
lem. The proof can be seen as a simpler version of the proof for RB±ATL and a more
complex version of the standard proof for CTL∗.

5.1 The logic RBTL∗ and its variants

The models of the logic RBTL∗ are structures of the form (Q, r,R,Lab) where
(Q, r,R) is a VASS and Lab is a labelling built on elements of Q understood as propo-
sitional variables, so that Lab(q) = {q} (see e.g., [12, Section 3]). “RBTL” stands
for ‘resource-bounded temporal logic’ and the logic RBTL defined below (a frag-
ment of RBTL∗) has been introduced in [12]. For consistency with standard termi-
nology, an infinite proof in (Q, r,R) is called a path or run, and is represented by
λ = (q0, ~v0) −→ (q1, ~v1) . . .. We write λ(i) to denote the ith configuration (qi, ~vi), and
λ[+i,+∞) to denote the suffix of λ starting from (qi, ~vi).

The state formulae φ and the path formulae Φ of RBTL∗ are defined mutually
recursively by the following grammar (relative to a set of locations Q and number of
resources r, which is not a significant restriction since we are only interested in model
checking)

φ ::= q | ¬φ | (φ ∧ φ) | 〈~b〉 Φ

Φ ::= φ | ¬Φ | (Φ ∧Φ) | X Φ | (ΦUΦ) | GΦ,
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where q ∈ Q. Syntactically, every state formula is also a path formula according to
this grammar, reflecting the fact that a path uniquely identifies a location in which a
formula is interpreted (its starting location).

In presenting the semantics of RBTL∗, we make an explicit distinction between
state formulae and path formulae. The two satisfaction relations |=s and |=p are defined
as follows (standard clauses for the Boolean connectives are again omitted):

M, q |=s q′ def
⇔ q′ = q

M, q |=s 〈~b〉Φ
def
⇔ there is an infinite run λ starting at (q,~b)

such thatM, λ |=p Φ

M, λ |=p φ
def
⇔ M, λ(0) |=s φ for state formulae φ

M, λ |=p XΦ
def
⇔ M, λ[1,+∞) |=p Φ

M, λ |=p ΦUΨ
def
⇔ there is i ≥ 0 such thatM, λ[i,+∞) |=p Ψ and

for every j ∈ [0, i − 1], we haveM, λ[ j,+∞) |=p Φ.

As usual, we write [~b]φ to denote the formula ¬〈~b〉¬φ, and thereforeM, q |=s [~b]Φ iff
for all the infinite runs λ starting at (q,~b), we haveM, λ |=p Φ.

The model checking problem for RBTL∗ is defined as follows:

Input: A modelM = (Q, r,R,Lab), a control state q and a state formula φ.

Question: M, q |=s φ?

As CTL is a syntactic fragment of CTL∗, RBTL is defined as the syntactic frag-
ment of RBTL∗ in which any subformula with an outermost connective in {U,X,G}
is immediately preceded by a modality of the form either 〈~b〉 or [~b]. Observe that the
model checking problem for RBTL is already EXPSPACE-hard, since the state reach-
ability problem for VASS can be reduced to a question of the form M, q0 |= 〈~0〉 q f .
We consider the computational complexity of the model checking problems for RBTL∗

and RBTL in Section 5.2.
It is worth noting that the definition of RBTL above is taken from [12] and other

variants would be possible, for instance to interpret the formulae on other classes of
counter machines (arbitrary transition systems are not possible as 〈~b〉 provides initial
conditions based on counter values). As for CTL∗, path quantifiers quantify over all
possible paths but path formulae are interpreted on a single path, which explains why
the notion of runs in VASS is essential to define the semantics of RBTL∗.

5.2 On the complexity of the model-checking problem for RBTL∗

In this section, we study the model checking problem for resource-bounded logics
in which the path formulae are arbitrary, i.e., they can be any LTL-like formulae rather
than being restricted to path formulae of the form Gψ, Xψ and ψ1 U ψ2 as in RB±ATL.
We have already seen that the model checking problem for RBTL is EXPSPACE-hard
(see Section 5.1) and therefore the lower bound also applies to RBTL∗. Below, we
show that the model checking problem for RBTL∗ is not only decidable (a new result)
but also in EXPSPACE. The arguments for establishing the EXPSPACE upper bound
for RBTL and RBTL∗ are identical, and the EXPSPACE lower bound for the model
checking problem for RBTL can be matched with the upper bound for RBTL∗.
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Theorem 5. The model checking problem for RBTL∗ is in EXPSPACE.

In [12], the problem for RBTL is shown to be decidable by reduction to the reach-
ability problem for VASS. However the best known upper bound for the reachability
problem is quite high, see e.g. [36]. Hence, the EXPSPACE upper bound is a substantial
improvement. Moreover, the decidability of the model checking problem for RBTL∗

was left open in [12].
The proof of Theorem 5 is inspired from the proof of the PSPACE upper bound for

CTL∗ model checking based on LTL model checking. The main difference rests on the
fact that, herein, the subroutine involving LTL is performed for VASS instead of for
finite-state transition systems.

Proof. (sketch) The algorithm to obtain the EXPSPACE upper bound first computes the
states in which subformulae hold before dealing with larger formulae. The algorithm
is a renaming algorithm. However, there is a caveat: when dealing with subformulae of
the form 〈~b〉Ψ where Ψ is an LTL formula, we are entitled to use the model checking
algorithm for LTL formulae on VASS that is in EXPSPACE [28] (having ω in one com-
ponent amounts to ignoring that position). However, in order to systematically consider
such subformulae 〈~b〉Ψ when the outermost connective is a path quantifier, we need to
perform renamings on-the-fly.

Let us provide a simple example with the formula

φ = 〈~b0〉 GF 〈~b1〉 qUq′

and an arbitrary model M. Let us consider some innermost state formula prefixed by
a path quantifier, say 〈~b1〉(qUq′) (actually here there is only one such a subformula).
With the help of a decision procedure for solving the LTL model checking problem on
VASS, we determine for which control states q′′ we have M, q′′ |=s 〈~b1〉(qUq′). Say,
we obtain the set {q1, . . . , qα}. Now, in φ, we replace 〈~b1〉(qUq) by q1∨· · ·∨qα, and we
get φ1 = 〈~b0〉 GF (q1 ∨ · · · ∨ qα). So, we have performed a renaming step by replacing
a subformula by a disjunction of propositional variables. This process can be repeated
until there are no more path quantifiers. To do this, we substitute some innermost
state formula prefixed by a path quantifier in φ1, say 〈~b0〉GF (q1 ∨ · · · ∨ qα), by a
new disjunction of locations (possibly empty) with the help of a decision procedure for
solving the LTL model checking problem on VASS. We obtain the manageable formula

φ2 = q′1 ∨ · · · ∨ q′β.

Since φ2 is a propositional formula, we are done with the renaming process and it
is easy to show that for every control state q′′, we have M, q′′ |=s φ iff M, q′′ |=s
q′1 ∨ · · · ∨ q′β. The above example can be easily generalised to any state formula. Note
that the number of renamings is bounded by the size of the input formula, and at each
step a subroutine is invoked at most card(Q) times and requires EXPSPACE, whence we
obtain the EXPSPACE upper bound. �

Corollary 2. For any fixed r ≥ 1, the model checking problem for RBTL∗ restricted to
at most r resources is in PSPACE.
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The PSPACE upper bound is a consequence of [28]. The model checking problem
for LTL on VASS is in PSPACE when the number of counters is bounded [28, Theorem
4.1], and the renaming algorithm briefly described in the proof of Theorem 5 makes
only a linear number of calls to the model checking problem for LTL on VASS and the
number of counters is preserved when such calls are performed. If r is fixed but greater
than two, then the model checking problem for RBTL∗ restricted to at most r resources
is PSPACE-hard, since the state reachability problem for VASS of dimension two is
PSPACE-complete [9]. When r = 1, the model checking problem for RBTL∗ is NP-hard,
since the state reachability problem for VASS of dimension one is NP-complete [27].

6 The Logic RB±ATL∗ and its Parameterised Variant

We have seen that the model checking problem for RB±ATL is 2EXPTIME-comple-
te. Below, we show that the model checking problem for RB±ATL∗ is also decidable.
The arguments for establishing the respective decidability of RB±ATL and RB±ATL∗

both rest on the decidability of decision problems for alternating VASS. However for
the model checking problem for RB±ATL∗ we need to invoke the decidability of parity
games on alternating VASS, which is stronger than the decidability of the state reacha-
bility and non-termination problems for AVASS. This more complex reduction, which
uses ingredients such as the standard equivalence of expressive power of Büchi au-
tomata and deterministic parity automata on ω-words, is nevertheless rewarding, as it
allows us to synthetise concrete values for resource parameters, something which has
heretofore not been possible for resource-bounded logics.

Below, we introduce RB±ATL∗, an extension of RB±ATL in which the path for-
mulae are unconstrained, i.e. they can be any LTL-like formula. Although RB±ATL∗

is a new logic, its definition follows a standard schema for branching-time temporal
logics.

6.1 Definition
Given a set of agents Agt = {a1, . . . , ak} and r ≥ 1, we write RB±ATL∗(Agt, r)

to denote the resource-bounded logic with k agents and r resources whose models are
resource-bounded concurrent game structures with the same parameters. Formulae
of RB±ATL∗(Agt, r) are defined according to the grammar below (as in CTL∗ or for
RBTL∗, we distinguish between state formulae φ and path formulae Φ)

φ ::= p | ¬φ | φ ∧ φ | 〈〈A~b〉〉 Φ

Φ ::= φ | ¬Φ | (Φ ∧Φ) | X Φ | (ΦUΦ) | GΦ,

where p ∈ PROP, A ⊆ Agt and ~b ∈ (N ∪ {ω})r. The set of state formulae φ for
RB±ATL∗(Agt, r) extends the set of formulae for RB±ATL(Agt, r).3 In presenting the
semantics for RB±ATL∗, we make an explicit distinction between state formulae and
path formulae. The two satisfaction relations |=s and |=p are defined as follows.

3G can be encoded using U and ¬, but we retain it to emphasize that we are dealing with an extension of
RB±ATL(Agt, r).
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M, s |=s p def
⇔ s ∈ Lab(p)

M, s |=s 〈〈A
~b
〉〉 Φ

def
⇔ there is a ~b-strategy FA w.r.t. s such that

for all λ = s0
f0
−→ s1 . . . ∈ Comp(s,FA), we haveM, λ |=p Φ

M, λ |=p φ
def
⇔ M, λ(0) |=s φ for state formulae φ

M, λ |=p ¬Φ
def
⇔ M, λ 6|=p Φ

M, λ |=p Φ ∧Φ′
def
⇔ M, λ |=p Φ andM, λ |=p Φ′

M, λ |=p XΦ
def
⇔ M, λ[1,+∞) |=p Φ

M, λ |=p GΦ
def
⇔ M, λ[i,+∞) |=p Φ for all i < |λ|

M, λ |=p ΦUΨ
def
⇔ there is i < |λ| such thatM, λ[i,+∞) |=p Ψ and

for every j ∈ [0, i − 1], we haveM, λ[ j,+∞) |=p Φ.

Again, all the maximal computations are infinite, i.e., the index i in the clauses for G
or U can take any value inN. The model checking problem for RB±ATL∗ is defined as
follows:

Input: k, r ≥ 1 (in unary), a state formula φ in RB±ATL∗([1, k], r), a finite modelM
and a state s,

Question: M, s |=s φ?

Below, we show that the model checking problem for RB±ATL∗ is decidable by
reduction to the parity game problem for single-sided VASS [1, Corollary 2]. The
latter problem will play a role similar to LTL model checking in CTL∗ model checking,
see e.g. [42, 20]. In addition, [1, Theorem 4] allows us to synthetise resource bounds.
We begin by defining a variant of the problem.

6.2 A parameterised variant

We first introduce a parameterised version of RB±ATL∗, denoted by ParRB±ATL∗.
The formulae of ParRB±ATL∗ are the same as those of RB±ATL∗, except that the
concrete values ~b ∈ (N∪ {ω})r that decorate strategy modalities are replaced by tuples
of variables taken from the set VAR = {x1, x2, . . .}, for example:

〈〈{1}(x1,x2)
〉〉>Uq f ∧ 〈〈{2}(x2,x3)

〉〉>Uq′f .

Given a parameterised (state or path) formula φ with variables x1, . . . , xn and a
map v : {x1, . . . , xn} → (N ∪ {ω}) (sometimes called a concretisation), we write v(φ)
to denote the formula in RB±ATL∗ obtained from φ by replacing each occurrence of
a variable x by v(x). The parameterised model checking problem for ParRB±ATL∗ is
defined as follows:

Input: k, r ≥ 1 (in unary), a parameterised state formula φ in ParRB±ATL∗([1, k], r),
a finite RB±ATL∗([1, k], r) modelM and a state s,

Question: Compute the set of maps v such thatM, s |=s v(φ).
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By ‘compute the set of maps’, we mean being able to characterise the set of maps
v such thatM, s |=s v(φ), by using a symbolic representation with nice computational
properties. More precisely, we shall consider constrained formulae following the gram-
mar below:

ψ ::= x ≥ c | x = ω | ¬ψ | ψ ∨ ψ | ψ ∧ ψ,

where x ∈ VAR and c ∈ N. Given such contraints, it is easy to check non-emptiness
or to check the satisfaction of M, s |=s v(φ) for a specific map v. To synthetise such
parameters we use a remarkable result from single-sided VASS: the Pareto frontier for
any parity game on single-sided VASS is computable [1, Theorem 4].

6.3 Parity acceptance condition
Below, we consider AVASS with a finite set of fork rules included in

⋃
β≥2 Qβ, and

where the proofs are trees with nodes labelled by elements in Q × (N ∪ {ω})r. Given
an AVASSA = (Q, r,R1,R2), a colouring col (a.k.a. a priority function) is defined as
a map Q→ [0, p− 1] for some p ≥ 1 (number of priorities). The parity game problem
for AVASS is defined as follows:

Input: An alternating VASS A, a control state q0, ~b ∈ (N ∪ {ω})r and col : Q →
[0, p − 1].

Question: Is there a proof whose root is equal to (q0,~b), all the maximal branches are
infinite and the maximal colour that appears infinitely often is even (the colour
of each configuration is induced by col) ?

Proposition 4. [1, Corollary 2] The parity game problem for alternating VASS is de-
cidable.

To be precise, [1, Corollary 2] states the result for single-sided VASS. A single-
sided VASS can be viewed as an alternating VASS where the set Q of control states
can be partitioned into Q = Q1 ] Q2, unary rules start from states in Q1, fork rules
start from states in Q2 and there is at most one fork rule starting from the same control
state (necessarily, it belongs to Q2). The construction of two disjoint sets Q1 and Q2
with alternation of unary rules and fork rules can be done as in part (1) in the proof of
Theorem 3. However, the colour of the new control states is equal to zero so that it has
no influence on the acceptance parity condition. In order to guarantee the uniqueness
of fork rules starting from a given control state, it is sufficient to replace any unary rule

q
~u
−→ q′ and fork rule r = (q′, q1, q2) by the unary rule q

~u
−→ (q′, r) and the fork rule

((q′, r), q1, q2). The colour of (q′, r) is the colour of q′. With such a transformation,
decidability for single-sided VASS can be lifted to alternating VASS (this also implies
a reduction for the computation of the Pareto frontier below).

It is not difficult to show that the state reachability and non-termination problems
for AVASS are subproblems of the parity game problem, and therefore their decid-
ability also follows from [1]. The decidability result for the parity game problem for
AVASS is strenghtened in [1] with the computation of Pareto frontiers, as briefly ex-
plained below. GivenA, q0 and col : Q→ [0, p − 1], the set of tuples ~b ∈ (N ∪ {ω})r

for which there is a proof such that the root is equal to (q0,~b), all the maximal branches
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are infinite, and for each infinite branch the maximal colour that appears infinitely of-
ten is even, is upward closed and computable. This means that it can be represented
effectively by a Boolean combination of atomic constraints of the form xi ≥ c where
i ∈ [1, r] and c ∈N, and xi = ω. Since the set is upward closed, by Dickson’s Lemma,
it has a finite set of minimal elements (with respect to the well-quasi-ordering� slightly
extended to accommodate the addition of the valueω), allowing the symbolic represen-
tation in terms of atomic constraints of the form x ≥ c to be easily defined. The Pareto
frontier ofA, q0 and col : Q→ [0, p − 1] is defined as the set of minimal elements in
(N ∪ {ω})r for which there is a positive solution to the parity game problem.

Proposition 5. [1, Theorem 4] The Pareto frontier for any parity game on single-sided
VASS is computable.

6.4 A synchronised product

Before defining the reduction from the model checking problem for RB±ATL∗ to
the parity game problem, we need to introduce a few more definitions, and in particular
a notion of synchronisation that will be useful in the sequel.

LetM = (Agt,S,Act, r, act, cost, δ,Lab) be a resource-bounded concurrent game
structure. Given the propositional variables p1, . . . , pn, we write Σn

def
= P({p1, . . . , pn})

to denote the finite alphabet and Labn(s′) def
= {pi | i ∈ [1,n], s′ ∈ Lab(pi)} for all s′ ∈ S.

So, by definition Labn(s′) ∈ Σn.
Let AM,A,s? = (Q, r,R1,R2) be the AVASS defined from M, A and s? (see Sec-

tion 4.1), andA = (Q′, q′0,∆ : Q′×Σn → Q′, col : Q′ → [0, p−1]) be a deterministic
parity automaton over the alphabet Σn. We recall that inA,

• Q′ is a finite set of states,

• q′0 is the initial state,

• ∆ : Q′ × Σn → Q′ is the transition function and,

• col : Q′ → [0, p − 1] is the priority function that induces the acceptance condi-
tion and p is the number of priorities.

An ω-word σ = a0a1a1 · · · ∈ Σω
n is accepted by A (also written σ ∈ L(A)) iff there is

a run q′0
a0
−→ q′1

a1
−→ q′2 · · · for which for all i ≥ 0, we have ∆(q′i , ai) = q′i+1 and

max{c ∈ [0, p − 1] | {i ∈N | col(q′i ) = c} is infinite}

is even.
The principle of the synchronised productAM,A,s? ⊗A defined below is the follow-

ing. Any (infinite) branch of a proof ofAM,A,s? contains control states of the form s?,
(s′, f) or (g, s′) where s? is a distinguished state ofM, s′ is any state, f ∈ DA(s′) and g
is joint action in D(s′′) with δ(s′′, g) = s′. By construction, (s′, f) is preceded by a state
of the form either (g, s′) or s′ (if s′ = s?). So an infinite branch of the form

(s0, ~u0) ((s0, f0), ~u1) ((g1, s1), ~u1) ((s1, f1), ~u2) ((g2, s2), ~u2) · · ·
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leads to the ω-word
Labn(s0) Labn(s1) Labn(s2) · · ·

that corresponds to a unique run in A (because A is deterministic and complete and
Labn(s0) Labn(s1) Labn(s2) · · · is in Σω

n ).4 The control states of AM,A,s? ⊗A are pairs
in Q × Q′ and the second components are therefore control states in Q′ for the run on
Labn(s0) Labn(s1) Labn(s2) · · · .

Let us define the AVASSAM,A,s? ⊗A
def
= (Q′′, r,R′1,R

′

2) such that:

• Q′′ def
= Q ×Q′.

• For each unary rule s?
~u
−→ (s?, f) ∈ R1, in R′1 we have the unary rule (s?, q′0)

~u
−→

((s?, f), q′0).

• For each unary rule (g, s′)
~u
−→ (s′, f) ∈ R1 and each q ∈ Q′, in R′1 we have the

unary rule ((g, s′), q)
~u
−→ ((s′, f), q). So, firing a unary rule fromAM,A,s? does not

change the second component.

• For each fork rule ((s′, f), (g1, s1), . . . , (gα, sα)) ∈ R2, and for each q ∈ Q′, in R′2
we have the fork rule

(((s′, f), q), ((g1, s1), q′), . . . , ((gα, sα), q′)),

with q′ = ∆(q,Labn(s′)). So, firing a fork rule from AM,A,s? does change the
second component in a unique way depending on q and on the letter Labn(s′).
Again, there is a unique fork rule starting from the control state ((s′, f), q).

Let us define the colouring col′ : Q′′ → [0, p − 1] such that for all (q, q′) ∈ Q′′, we
have col′((q, q′)) def

= col(q′). This is the most natural way to inherit colours fromA to
AM,A,s? ⊗A.

Lemma 10. Let (s?,~b) ∈ Q × (N ∪ {ω})r. The statements below are equivalent.

(I) AM,A,s? has a proof whose root is equal to (s?,~b), all the maximal branches are
infinite and the Labn-projection of each infinite branch belongs to L(A).

(II) AM,A,s? ⊗ A has a proof whose root is equal to ((s?, q′0),~b), all the maximal
branches are infinite and for all infinite branches, the maximal colour that ap-
pears infinitely often is even (based on the colouring function col′)

In Lemma 10, let us explain what we mean by ‘Labn-projection’. Given an infinite
branch

s0
~u0
−→ (s0, f0) −→ (g1, s1)

~u1
−→ (s1, f1) −→ (g2, s2)

~u2
−→ (s2, f2) −→ (g3, s3) · · ·

in a proof ofAM,A,s? , its Labn-projection is simply defined as the ω-word in Σω
n below:

Labn(s0) Labn(s1) Labn(s2) Labn(s2) · · ·

4We slightly abuse notation by identifying a branch with its label.
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Proof. (I)→ (II) Let D̂ : T→ Q×Nr be a proof ofAM,A,s? such that D̂(ε) = (s?,~b),
all the maximal branches are infinite and their Labn-projections belong to L(A). This
means that for any label

s0
~u0
−→ (s0, f0) −→ (g1, s1)

~u1
−→ (s1, f1) −→ (g2, s2)

~u2
−→ (s2, f2) −→ · · ·

of an infinite branch, we have Labn(s0) Labn(s1) Labn(s2) Labn(s3) · · · ∈ L(A).
Let D̂′ : T → (Q × Q′) ×Nr be the map defined below. D̂′ will turn out to be

a proof ofAM,A,s? ⊗A built over the same infinite tree T. Let i1i2i3 · · · be an infinite
branch with the label above such that

Labn(s0) Labn(s1) Labn(s2) Labn(s3) · · · ∈ L(A).

Since A is deterministic, there is a unique (accepting) run q′0
Labn(s0)
−−−−→ q′1

Labn(s1)
−−−−→ q′2 · · · ;

hence the maximal colour that appears infinitely often is even. For any finite prefix
w @ i1i2i3 · · · of length N, we have

D̂
′(w) def

= ((q, q′
b

N
2 c

), ~v) where D̂(w) = (q, ~v).

SinceA is deterministic, the map D̂′ can be defined uniquely. Indeed, classically, ifA
were nondeterministic, we cannot guarantee that two infinite words in L(A) sharing a
common non-empty prefix have the same subrun for that prefix. SinceAM,A,s? ⊗A is
also the synchronised product betweenAM,A,s? andA, we can check that D̂′ is indeed
a proof of AM,A,s? ⊗A, such that D̂′(ε) = ((s?, q′0),~b) and all the maximal branches
are infinite. Consider below the label of any infinite branch:

(s0, q′0)
~u0
−→ ((s0, f0), q′0) −→ ((g1, s1), q′1)

~u1
−→ ((s1, f1), q′1) −→ ((g2, s2), q′2)

~u2
−→ · · ·

Since q′0
Labn(s0)
−−−−→ q′1

Labn(s1)
−−−−→ q′2 · · · is an accepting run of A, the maximal colour that

appears infinitely often on the branch is even.
(II)→ (I) Let D̂ : T → (Q × Q′) ×Nr be a proof of AM,A,s? ⊗A whose root is

((s?, q′0),~b), all the maximal branches are infinite and the maximal colour that appears
infinitely often is even. Let D̂′ : T → Q ×Nr be the map defined below. D̂′ will
turn out to be a proof of AM,A,s? , and can be viewed as D̂ where the component in
Q′ is omitted. For all w ∈ T, D̂′(w) def

= (q, ~v) where D̂(w) = ((q, q′), ~v). We have
D̂(ε) = (s?,~b) and all the maximal branches are infinite. Consider below the label of
an infinite branch i1i2i3 · · · :

s0
~u0
−→ (s0, f0) −→ (g1, s1)

~u1
−→ (s1, f1) −→ (g2, s2)

~u2
−→ (s2, f2) −→ · · ·

Since D̂′ is obtained from D̂ by projection, the label of i1i2i3 · · · in D̂ is of the form

(s0, q′0)
~u0
−→ ((s0, f0), q′0) −→ ((g1, s1), q′1)

~u1
−→ ((s1, f1), q′1) −→ ((g2, s2), q′2)

~u2
−→ · · ·
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By assumption on D̂, the maximal colour that appears infinitely often is even, and

therefore q′0
Labn(s0)
−−−−→ q′1

Labn(s1)
−−−−→ q′2 · · · is an accepting run ofA and

Labn(s0) Labn(s1) Labn(s2) Labn(s3) · · · ∈ L(A),

which concludes the proof. �

6.5 Decision procedures for RB±ATL∗ model checking
In this section, we provide an analysis leading to optimal decision procedures for

solving the model checking problem for RB±ATL∗, as far as worst-case computational
complexity is concerned.

Theorem 6. The model checking problem for RB±ATL∗ is decidable.

Proof. The model checking problem for RB±ATL∗ is solved by using the algorithm for
the parity game problem for alternating VASS (with a simple renaming technique) as a
subroutine. The algorithm uses a dynamic programming approach that first computes
in which states the subformulae hold before dealing with larger formulae. However,
there is a caveat: when dealing with subformulae of the form 〈〈A~b〉〉 Φ where Φ is
a path formula without any strategy modality, we are entitled to use the algorithm to
solve the parity game problem for alternating VASS. However, in order to systemati-
cally consider such subformulae 〈〈A~b〉〉 Φ when the outermost connective is a strategy
modality, we need to perform renamings on-the-fly.

Let φ be a formula built over the propositional variables {p1, . . . , pn} and 〈〈A~b〉〉 Φ
be one of its subformulae such that no strategy modality occurs in Φ. Without loss of
generality, we can assume that there is an injective map nom : S→ [1,n], such that for
every s ∈ S, Lab(pnom(s)) = {s}. As a result, each propositional variable pnom(s) is true in
a single state, namely in s. So, even though we assume that φ is built over {p1, . . . , pn},
we do not require that all the propositional variables in {p1, . . . , pn} necessarily occur
in φ (some of the propositional variables are only used to name states). Given a finite
concurrent game structure M, it is always possible to enrich it so that each state can
be named by a dedicated propositional variable (also called a nominal in hybrid logics,
see e.g. [7]). This can be done in linear time.

Since Φ is an LTL formula built over {p1, . . . , pn}, there is a Büchi automaton A
over the alphabet Σn such that L(A) is equal to the set of models of Φ (over the set of
propositional variables {p1, . . . , pn}), see e.g. [44]. Say that A has N states and N ≤
2|Φ|. Since Büchi automata and deterministic parity automata both recognize the set of
ω-regular languages, there is deterministic parity automaton B with initial location q′0,
O(N!2) states and 2N priorities such that L(A) = L(B) [41]. The automaton B can be
effectively computed fromA.5

Let X ⊆ S be the set of states s? such that AM,A,s? ⊗ B has a proof whose root is
equal to ((s?, q′0),~b), all the maximal branches are infinite and the maximal colour that

5A similar construction to that for B was used recently in [15] for model checking pushdown multi-agent
systems.
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appears infinitely often is even. We update the formula φ by replacing every occurrence
of 〈〈A~b〉〉 Φ by ψ =

∨
s′∈X pnom(s′). The set X can be computed thanks to Proposition 4,

and this is a correct step thanks to Lemma 10 and Lemma 4. Indeed, for all s′ ∈ S,
we have M, s′ |=s 〈〈A

~b
〉〉 Φ iff M, s′ |=s

∨
s′∈X pnom(s′), and, therefore, for all s′ ∈ S,

we have M, s′ |=s φ iff M, s′ |=s φ[ψ/〈〈A~b〉〉 Φ], where φ[ψ/〈〈A~b〉〉 Φ] is obtained
from φ by substituting every occurrence of 〈〈A~b〉〉 Φ by ψ. We update φ until there
are no more strategy modalities, and therefore eventually φ is a Boolean combination
of propositional variables, which is then easy to evaluate on a given state. It is worth
noting that the total number of calls to the parity game problem for AVASS is linear in
the size of the formula, each instance of the problem has a doubly-exponential number
of locations, and the colouring map has an exponential number of priorities in the size
of the input formula. �

The proof of Theorem 6 uses a synchronised product between an alternating VASS
and a deterministic parity automaton recognising ω-words. This is reminiscent of the
proof of a 2EXPTIME upper bound for ATL∗ model checking problem [6, Theorem
5.6]. However, the Rabin tree automata in the proof of [6, Theorem 5.6] are replaced
by deterministic parity automata for encoding the LTL formulae, and by alternating
VASS (with counters) as outcome of the synchronisation.

Moreover, using the very recent developments in [16], a 2EXPTIME upper bound
can be obtained too.

Theorem 7. The model checking problem for RB±ATL∗ is in 2EXPTIME.

Proof. The complexity upper bound is obtained by using the algorithm described in the
proof of Theorem 6, by analysing the size of the instances solved for the parity game
problem for AVASS and then to invoke [16, Corollary 5.7], briefly recalled below.

Let us make a few simple observations from the proof of Theorem 6.

1. The number of calls to the subroutine solving the parity game problem for AVASS
is linear in the size of the input formula.

2. Each AVASS AM,A,s? ⊗ B built in the proof verifies the following quantitative
properties.

(a) The size ofAM,A,s? is polynomial in the size of the input concurrent game
structureM.

(b) As far as the deterministic parity automaton B is concerned, the number of
states is doubly-exponential in the size of the input formula and the number
of priorities is exponential in the size of the input formula.

(c) The number of states inAM,A,s?⊗B is doubly-exponential in the size of the
inputs (includingM and φ) and each vector has values at most exponential
in the size ofM.

We have seen that instances of the parity game problem for AVASS can be reduced
to instances of the parity game problem for single-sided VASS, which itself can be
turned into instances of the energy parity game, see e.g. [1, Lemma 4] and these two
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reductions can be performed without changing significantly the size of the instances as
well as the maximal values in vectors.

According to [16, Corollary 5.7], an instance of the energy game problem with
initial credit ~c, with game graph (V,E, r) (V = V1 ] V2 and E is a finite set of edges
in V × Zr

× V) and priority function π : V → N with p = card({π(v) | v ∈ V}), is
solvable in time

(card(V)× || E ||)2O(r×log(r+p))
+ O(r × log || ~c ||),

where

• || ~w ||= max{| ~w(i) | : i ∈ [1, r]} for all ~w ∈ Zr,

• || E ||= max{|| ~w || : v
~w
−→ v′ ∈ E}.

So, all the instances of the energy parity games that we consider in the decidability
satisfy the following properties:

• card(V) is doubly-exponential in the size of the inputs,

• || E || is exponential in the size of the input concurrent game structure,

• r is unchanged,

• p is exponential in the size of the input formula,

• || ~c || is exponential in the size of the input formula.

Consequently, each instance of the energy parity game problem can be solved in doubly-
exponential time, and therefore each instance of the parity game problem for AVASS
can be solved in doubly-exponential time, which leads to a total doubly-exponential
time since the number of calls is linear in the size of the input formula. �

Note that although RB±ATL and RB±ATL∗ have identical worst-case computa-
tional complexity (namely 2EXPTIME-completeness) in order to solve the model-che-
cking problem for RB±ATL, we only need to call subroutines for the state reachability
and non-termination problems for AVASS whereas RB±ATL∗ requires calls to subrou-
tines to the more general parity game problem for AVASS. The restriction to a single
agent also leads to an EXPSPACE upper bound and this is optimal.

Theorem 8. The model checking problem for RB±ATL∗ restricted to a single agent is
EXPSPACE-complete.

The proof is similar to the proof of Theorem 4. Again, the upper bound is obtained
by solving instances of the model checking problem for LTL on VASS (when the coali-
tion is a singleton set) or instances of the model checking problem for CTL∗ (when the
coalition is the empty set), which are known to be EXPSPACE-complete (see e.g. [28])
and PSPACE-complete (see e.g. [42]) respectively.

Note also that resource-bounded concurrent game structures can be seen as gen-
eralisations of VASS and, the logic RB±ATL∗ is clearly a generalisation of CTL∗, by
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using the correspondences 〈〈Agt~ω〉〉 Φ ≈ E Φ, and 〈〈∅~ω〉〉 Φ ≈ A Φ. It may seem
surprising that the model checking problem for RB±ATL∗ is decidable, given that the
model checking problem for CTL∗ on VASS is known to be undecidable, see e.g. [25].
However this can be explained by the different satisfaction relations in the two prob-
lems. In the case of RB±ATL∗, formulae are evaluated on states of a concurrent game
structure, not on configurations made of states and counter values, and this makes all
the difference.

It is also remarkable that the proof of Theorem 6 does not use the fact that the
idle action is always among the action(s) returned by the action manager. In contrast,
the proofs in Section 4 use the idle action in order to extend finite computations to
infinite ones, by choosing the idle action for all the agents after the finite part of the
computation that, e.g., witnesses the satisfaction of a next or an until formula (see,
e.g., Lemma 8). This difference can be explained by the fact that to solve the model-
checking for RB±ATL∗, we use a subroutine to a more general decision problem (the
parity game problem for alternating VASS) and therefore one can be a bit more liberal
on the conditions satisfied by the concurrent game structures. As a consequence, we
get the following decidability result (and the results in Section 6.6 below also hold for
RB±ATL∗ without idle actions).

Corollary 3. The model checking problem for the variant of RB±ATL∗ in which no idle
action is assumed in the resource-bounded concurrent game structures (and the action
manager always returns a non-empty set of actions) is in 2EXPTIME.

The proof is the same as for Theorem 6 and Theorem 8. The restriction to a single
agent can be also shown EXPSPACE-complete, by using analogous arguments from the
proof of Theorem 8 (EXPSPACE-hardness proof is even simpler).

By combining our results from previous sections and those from [1], we have shown
that the model checking problem for RB±ATL∗ is decidable. However, by exploiting
techniques for the effective computation of the Pareto frontiers from [1], we can go
further, and actually synthesise values for parameters. This is the subject of the next
section.

6.6 Symbolic representations for sets of resource values

LetM = (Agt,S,Act, r, act, cost, δ,Lab) be a resource-bounded concurrent game
structure and φ be a ParRB±ATL∗ formula such that its resource variables are among
x1, . . . , xm and its propositional variables are among p1, . . . , pn.

We write ϕ1 = 〈〈At1
1 〉〉φ1, . . . , ϕα = 〈〈Atαα 〉〉φα to denote the subformulae of φ

whose outermost connective is a strategy modality. The subformulae are arranged in
order of increasing size. So, φ1 does not contain a strategy modality, and it can be
viewed as an LTL formula built over {p1, . . . , pn}. Each expression ti is a tuple of r
variables, say ti = (t1

i , . . . , t
r
i ). By definition, a variable can occur more than once in

ti, and two distinct tuples ti and t j can share variables. This provides great flexibility in
the logical formalism. Below, for each state s ∈ S and i ∈ [1, α], we build a constrained
formula ϕ̂s

i over x1, . . . , xm following the grammar:

ψ ::= x ≥ c | x = ω | ¬ψ | ψ ∨ ψ | ψ ∧ ψ,
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where x ∈ VAR and c ∈ N. Such formulae are interpreted over valuations v : VAR →
N∪{ω}with semantics based on the satisfaction relation v |= ψ, and have the following
key property:

for all v, we have v |= ϕ̂s
i iffM, s |=s v(〈〈Ati

i 〉〉φi).

Note that φi may contain variables in x1, . . . , xm. So, ϕ̂s
i characterizes exactly the set

of parameter values so that 〈〈Ati
i 〉〉φi is satisfied on the state s.

Before explaining how to construct the formulae ϕ̂s
i , we first explain how to con-

struct from such formulae ϕ̂s
i a constrained formula ψs such that for all v, we have

v |= ψs iffM, s |=s v(φ). Let ϕi1 , . . . , ϕiz be the maximal subformulae of φ such that
their outermost connective is a strategy modality (with {i1, . . . , iz} ⊆ [1, α]). Given a
propositional valuation h : {ϕi1 , . . . , ϕiz } → {⊥,>}, we define M, s |= h(φ) iff h(φ)
obtained from φ by replacing simultaneously each ϕi j by h(ϕi j ) is true in s (h(φ) may
also contain propositional variables). The constrained formula ψs is defined as follows:∨

h s.t. M,s|=h(φ)

(
∧

` s.t. h(ϕi` )=>

ϕ̂s
i`
) ∧ (

∧
` s.t. h(ϕi` )=⊥

¬ϕ̂s
i`
).

The generalised disjunction considers all possible valuations h that make h(φ) true in s,
and the subsequent conjunction ensures that if h(ϕ`) = > then ϕ̂s

` is satisfied, otherwise
¬ϕ̂s

` has to be satisfied.
Now, we explain how to build ϕ̂s

i . Let ϕ j1 , . . . , ϕ jβ be the maximal subformulae of
φi where the outermost connective is a strategy modality. By assumption, the formulae
are arranged in order of increasing size, so we have { j1, . . . , jβ} ⊆ [1, i − 1] ⊂ [1, α],
and, possibly, there may be no such subformulae in the case where φi has no strategy
modality (for instance this happens when i = 1).

Given S1, . . . ,Sβ ⊆ S and I ⊆ [1, r], let ψs
I,S1,...,Sβ

be the formula encoding the
Pareto frontier of AM,Ai,s ⊗A with initial state (s, q′0), the ω-components are exactly
in I. Furthermore, A is a deterministic parity automaton such that L(A) is the ω-
regular language over the alphabet P({p1, . . . , pn}) defined by the LTL formula φ′i that
is obtained from φi by replacing every occurrence of ϕ j by

(
∨
s′∈S j

pnom(s′)) ∧ (
∧

s′∈S\S j

¬pnom(s′)).

The formula ϕ̂s
i is then defined as the following disjunction:∨

S1,...,Sβ⊆S,I⊆[1,r]

ψs
I,S1,...,Sβ ∧ (

∧
γ∈[1,β]

(
∧
s′∈Sγ

ϕ̂s′
jγ

) ∧ (
∧

s′∈S\Sγ

¬ϕ̂s′
jγ

)).

The proof of Lemma 11 below provides the formal justification for such a construction.
However, intutively, in the generalised disjunction each Sγ allows us to guess where
ϕ jγ is true, and therefore s′ ∈ Sγ should be equivalent to the satisfaction of ϕ̂s′

jγ
. Since
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{ j1, . . . , jβ} ⊆ [1, i − 1], each formula ϕ̂s′
jγ

is already defined, and therefore the formula

ϕ̂s
i can be safely built. (Below, a valuation v is also called a concretisation.)

Lemma 11. For all i ∈ [1, α], for all s ∈ S, for all concretisations v, we have v |= ϕ̂s
i

iffM, s |=s v(〈〈Ati
i 〉〉φi).

Proof. The proof is by induction on i.
Base case: there is no strategy modality in φi (this includes the case where i = 1).
Recall that ϕi = 〈〈Ati

i 〉〉φi where Ai ⊆ Agt and ti = (t1
i , . . . , t

r
i ). Since there is no

strategy modality in φi, the formula φi is simply an LTL formula built over proposi-
tional variables in {p1, . . . , pn}. LetA be a deterministic parity automaton such that the
models of φi on Σn are precisely L(A). It is known thatA can be effectively computed
from φi such that the number of states inA is doubly-exponential in the size of φi, and
the number of priorities is (only) exponential in the size of φi.

Given I ⊆ [1, r], we can construct a constrained formula ψs
I characterising the

Pareto frontier of AM,A,s ⊗ A with initial state (s, q′0) and the values at the positions
in I are equal to ω at the root (see [1, Theorem 4]). Consequently ψs

I is equivalent to

ψs
I ∧ (
∧

j∈I t
j
i = ω) ∧ (

∧
j<I t

j
i , ω). This means that for all ~b ∈ (N ∪ {ω})r such

that (CI) for all j ∈ [1, r], ~b( j) = ω iff j ∈ I, we have ~b |= ψs
I (meaning v |= ψs

I with

v(t j
i )

def
= ~b( j) for all j ∈ [1, r]) iff there is a proof ofAM,A,s ⊗A whose root is ((s, q′0),~b)

and the proof satisfies the parity condition.
This is the place where we use all the previous results.

• By Lemma 10, for all ~b ∈ (N ∪ {ω})r such that (CI), we have ~b |= ψs
I iffAM,Ai,s

has a proof whose root is (s,~b), all the maximal branches are infinite and the
Labn-projection of each infinite branch belongs to L(A).

• By Lemma 4, for all ~b ∈ (N ∪ {ω})r such that (CI), we have ~b |= ψs
I iff there

is a ~b-strategy FAi w.r.t. s inM such that the set of computations Comp(s,FAi ) is
included in L(A).

• So, for all ~b ∈ (N ∪ {ω})r such that (CI), we have ~b |= ψs
I iffM, s |=s 〈〈A

~b
i 〉〉φi.

Consequently, for all concretisations v such that for all j ∈ [1, r] v(t j
i ) = ω iff j ∈ I,

we have v |= ψs
I iff M, s |=s v(〈〈Ati

i 〉〉φi). The formula ϕ̂s
i is defined as a generalised

disjunction parameterised by all the possible values for I, i.e. ϕ̂s
i

def
=
∨

I⊆[1,r] ψ
s
I , and it is

easy to check that for all v, we have v |= ϕ̂s
i is equivalent toM, s |=s v(〈〈Ati

i 〉〉φi).

Induction step. ϕi = 〈〈Ati
i 〉〉φi and ϕ j1 , . . . , ϕ jβ are the maximal subformulae of φi

(β ≥ 1) such that its outermost connective is a strategy modality and for all γ ∈ [1, β],
for all s′ ∈ S, for all v, we have v |= ϕ̂s′

jγ
iffM, s′ |=s v(〈〈A

t jγ

jγ
〉〉φ jγ ).

The proof for the induction step is quite similar to the proof for the base case, except
that we need to show that the renaming mechanism we use is correct. First, let us state
a few basic properties. Given a state formula φ in RB±ATL∗, we writeM |= φ

def
⇔ for

all s′ ∈ S, we haveM, s′ |=s φ, i.e. φ is valid inM.
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(P1) Let φ,ψ,ψ′ be state formulae in RB±ATL∗ such that ψ occurs in φ and M |=
ψ ⇔ ψ′. Then M |= φ ⇔ φ[ψ′/ψ], where φ[ψ′/ψ] is defined from φ by
replacing every occurrence of ψ by ψ′.

(P2) Let γ ∈ [1, β] and S′ ⊆ S. For all v, the statements below are equivalent.

(P2.1) M |= [(
∨

s′∈S′ pnom(s′)) ∧ (
∧

s′<S′ ¬pnom(s′))]⇔ v(ϕ jγ ).

(P2.2) For all s′ ∈ S, v |= ϕ̂s′
jγ

iff s′ ∈ S′.

The proof of (P1) is quite standard but it is worth noting that the formulae φ, ψ and
ψ′ need to be state formulae. The proof of (P2) uses the induction hypothesis in a
straightforward way.

Let S1, . . . ,Sβ ⊆ S and I ⊆ [1, r]. We write φ′i to denote the formula obtained from
φi replacing every occurrence of the formula ϕ jγ by

ϕ?jγ
def
= (
∨
s′∈Sγ

pnom(s′)) ∧ (
∧

s′∈S\Sγ

¬pnom(s′)).

So, even though this is not explicit in the notation, the formula φ′i obviously depends on
S1, . . . , Sβ. Like the base case, the formula φ′i is an LTL formula built over {p1, . . . , pn},
and one can compute a deterministic parity automaton A such that the models of φ′i
on Σn are precisely L(A). Again, we can construct a constrained formula ψs

I,S1,...,Sβ
characterising the Pareto frontier ofAM,Ai,s⊗A, with initial state (s, q′0) and the values
at the positions in I are equal to ω at the root, see [1, Theorem 4].

Reasoning in the same way as in the base case (basically replace φi by φ′i ), we can

show that, for all concretisations v such that for all j ∈ [1, r] v(t j
i ) = ω iff j ∈ I, we

have v |= ψs
I,S1,...,Sβ

iffM, s |=s v(〈〈Ati
i 〉〉φ

′

i ) (†). However, the formula that is important

to us is 〈〈Ati
i 〉〉φi (rather than 〈〈Ati

i 〉〉φ
′

i ), and this is the place where the induction
hypothesis is again invoked.

First, let us introduce an auxiliary notion. A concretisation v is said to be compati-
ble with I,S1, . . . ,Sβ iff the conditions below hold:

1. I = {γ ∈ [1, r] | v(tγi ) = ω}.

2. For all γ ∈ [1, β], Sγ = {s′ ∈ S | M, s′ |=s v(ϕ jγ )}.

Assuming that v is compatible with I,S1, . . . ,Sβ, we have that:

• By induction hypothesis, for all γ ∈ [1, β], Sγ = {s′ ∈ S | v |= ϕ̂s′
jγ
}.

• By (P2), for all γ ∈ [1, β],M |= [(
∨

s′∈Sγ pnom(s′)) ∧ (
∧

s′<Sγ ¬pnom(s′))]⇔ v(ϕ jγ ).

• By (P1) and the newly established property (†) –see above,–

v |= ψs
I,S1,...,Sβ

iffM, s |=s v(〈〈Ati
i 〉〉φ

′

i )[ϕ j1/ϕ
?
j1
, . . . , ϕ jβ/ϕ

?
jβ

].

• Since v(φ′i )[ϕ j1/ϕ
?
j1
, . . . , ϕ jβ/ϕ

?
jβ

] = v(φi), v |= ψs
I,S1,...,Sβ

iffM, s |=s v(〈〈Ati
i 〉〉φi).
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• By using the compatibility of v, we get that v |= ψs
I,S1,...,Sβ

∧(
∧
γ∈[1,β](

∧
s′∈Sγ ϕ̂

s′
jγ

)∧

(
∧

s′<Sγ ¬ϕ̂
s′
jγ

)) iffM, s |=s v(〈〈Ati
i 〉〉φi).

The formula ϕ̂s
i is defined as a generalised disjunction parameterised by all the possible

values for I, S1, . . . , Sβ, and it is easy to check that for all v, we have v |= ϕ̂s
i equivalent

toM, s |=s v(〈〈Ati
i 〉〉φi). �

Theorem 9. The parameterised model checking problem for ParRB±ATL∗ can be sol-
ved.

It is worth noting that the size of the symbolic representations is very large in the
worst case since the construction of the representation of the Pareto frontier for parity
games on single-sided VASS in [1] is based on some algorithm that is similar to Karp-
Miller algorithm for Petri nets.

Proof. Let φ be a state formula in ParRB±ATL∗([1, k], r), M be a resource-bounded
concurrent game structure and s ∈ S. We write ϕ1 = 〈〈At1

1 〉〉φ1, . . . , ϕz = 〈〈Atz
z 〉〉φz to

denote the maximal subformulae of φ such that the outermost connective is a strategy
modality. By Lemma 11, for all j ∈ [1, z], for all valuations v : VAR → N ∪ {ω}, we
have v |= ϕ̂s

j iff M, s |=s v(〈〈A
t j

j 〉〉φ j), where ϕ̂s
j is a constrained formula that can be

built from φ,M and s. Let ψs be the formula defined by:∨
h:{ϕ1,...,ϕz}→{⊥,>} s.t. M,s|=h(φ)

(
∧

j s.t. h(ϕ j)=>

ϕ̂s
j) ∧ (

∧
j s.t. h(ϕ j)=⊥

¬ϕ̂s
j).

Each expression ϕ̂s
j and ¬ϕ̂s

j is a constrained formula, andM, s |= h(φ) can be decided
for any valuation h. Consequently, ψs defined above is a constrained formula that can
be effectively computed.

Let v be a concretisation such thatM, s |=s v(φ). There exists h0 : {ϕ1, . . . , ϕz} →

{⊥,>} such that M, s |= h0(φ) and for all j ∈ [1, z], we have h0(ϕ j) = > iff M, s |=s
v(ϕ j). By Lemma 11, for all j ∈ [1, z], we have h0(ϕ j) = > iff v |= ϕ̂s

j. So,

v |= (
∧

j s.t. h0(ϕ j)=>

ϕ̂s
j) ∧ (

∧
j s.t. h0(ϕ j)=⊥

¬ϕ̂s
j),

which entails v |= ψs.
Conversely, assuming that v |= ψs for some concretisation v, there is a map h

such that v |= (
∧

j s.t. h(ϕ j)=> ϕ̂
s
j) ∧ (

∧
j s.t. h(ϕ j)=⊥ ¬ϕ̂

s
j) and M, s |= h(φ). Again by

Lemma 11, and by Boolean reasoning we obtain M, s |= v(φ). Consequently, the
formula ψs can be computed and it is a symbolic representation for all the maps v such
thatM, s |=s v(φ). �

7 Concluding Remarks

We have related model checking problems for resource-bounded logics and deci-
sion problems for alternating VASS, such as state reachability, non-termination, and,
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more generally, parity game problems. While the existence of such relationships is
perhaps not surprising, we have been able to obtain several new complexity and decid-
ability results, as recalled below.

1. The model checking problem for the logic RB±ATL introduced in [4, 5] is 2EX-
PTIME-complete. No complexity upper bound was previously known. The com-
plexity upper bound is obtained by using the subroutines to solve respectively
the state reachability and non-termination problems for AVASS.

2. We have introduced a new logic RB±ATL∗ that extends RB±ATL (as ATL∗ ex-
tends ATL), and we have shown that its model checking problem is decidable by
using the subroutine for the parity game problem for AVASS. Recent develop-
ments in [16] allowed us to refine this result to an 2EXPTIME upper bound too.
For the parameterised version ParRB±ATL∗, givenM, s and φ in ParRB±ATL∗,
we have explained how we can synthetise a formula ψ such that M, s |= v(φ)
iff v |= ψ for all interpretations v for the resource parameters. Moreover, ψ is
a Boolean combination of atomic constraints of the form x ≥ k and x = ω. A
summary of the main complexity results for the model-checking problems can
be found below.

No restriction card(Agt) = 1 fixed r = 2 fixed r ≥ 4
RB±ATL 2EXPTIME-c. EXPSPACE-c. PSPACE-h., in EXPTIME EXPTIME-c.
RB±ATL∗ 2EXPTIME-c. EXPSPACE-c. PSPACE-h. EXPTIME-h.

3. The model checking problem for RBTL∗ introduced in [12] is EXPSPACE-comp-
lete and when the number of resources r is fixed and greater to 2, the problem
is PSPACE-complete (see details in Section 5.2). The decidability of the model
checking problem for RBTL∗ and the complexity upper bound for RBTL were
not previously known.

We have been also able to provide complexity results for fragments and variants of
these resource-bounded logics, and we believe that the simple framework we have pro-
posed may be used to obtain further results for new resource-bounded logics. However
this is future work.
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