
On Temporal and Separation Logics

Stéphane Demri

CNRS, LSV, ENS Paris-Saclay

TIME’18

Warsaw, October 2018

The blossom of separation logics
• Separation logic: extension of Hoare-Floyd logic for

(concurrent) programs with mutable data structures.

• A family of logical formalisms:
• symbolic heap fragment,
• negation-closed standard propositional SL(∗, −∗),
• first-order separation logics,
• user-defined inductive predicates,
• reasoning about data values, etc.

• Provers handling SL, translations into SMT solvers,
separation logics verified in Coq,

• Prestigious awards.
• CAV award 2016 (Berdine, Calcagno, Distefano, Ishtiaq,

O’Hearn, Reynolds, Yang)
• Gödel prize 2016 for concurrent separation logic (O’Hearn,

Brookes)

2

Relating temporal logics with separation logics
• Tree-like models vs. heaps as finite “forests”.

• LTL models vs. sequences of memory states

{p,q} {q} ∅ {p}
. . .

(s0, h0) (s1, h1) (s2, h2) (s3, h3)

. . .

• Model-checking vs. deductive verification.

|= φ ?

{emp}
x = new()
{x 7→ −}

y = new()
{(x 7→ −) ∗ (y 7→ −)}
{x 7→ −} {y 7→ −}
free(x) free(y)
{emp} {emp}
{emp ∗ emp}
{emp}

3

Overview

1 Separation logic(s) in a nutshell

2 Relationships with temporal logics

3 Encoding linear structures

4 Modalities with separating connectives

5 Conclusion

4

Separation logic(s) in a nutshell

Separation logic(s) in a nutshell 5

Floyd-Hoare logic
• Hoare triple: {φ} C {ψ} (partial correctness).

[Hoare, C. ACM 69; Floyd, 1967]
• Precondition φ. Assertion language
• Postcondition ψ. Assertion language
• Command/program C. Programming language

• If we start in a state where φ holds true and the command
C terminates, then it yields a state in which ψ holds.

• Proof system with axioms and deduction rules to derive
new triples.

• Strengthening preconditions / weakening postconditions:
φ⇒ φ′ {φ′} C {ψ} ψ ⇒ ψ′

{φ} C {ψ′}
• Hoare’s assignment axiom:

{φ[e/x]} x := e {φ}
Separation logic(s) in a nutshell 6

The rule of constancy

{φ} C {ψ}
{φ ∧ ψ′} C {ψ ∧ ψ′}

where C does not mess with ψ′

{x = 3} x := 4;z := x {x = 4}
{x = 3 ∧ y = 8} x := 4;z := x {x = 4 ∧ y = 8}

Separation logic(s) in a nutshell 7

When separation logic enters into the play
x := cons(e)/new(e) allocation

x := [e] lookup
[e] := e′ mutation

dispose(e)/free(e) deallocation

Heap h: finite set of pairs made of a location and a value in Val

(s, h] {JeK 7→ n}), [e] := e′ ; (s, h] {JeK 7→ Je′K}),skip

• Rule of constancy:

{φ} C {ψ}
{φ ∧ ψ′} C {ψ ∧ ψ′}

where C does not mess with ψ′.

• Unsoundness of the rule of constancy with pointers:

{φ1} [x] := 4 {φ2}
{φ1 ∧ [y] = 3} [x] := 4 {φ2 ∧ [y] = 3} if x = y then [x] = [y]

Separation logic(s) in a nutshell 8

Frame rule and separating conjunction

• Frame rule:
{φ} C {ψ}

{φ ∗ ψ′} C {ψ ∗ ψ′}

where C does not mess with ψ′.

{[x] = 5} [x] := 4 {[x] = 4}
{[x] = 5 ∗ [y] = 3} [x] := 4 {[x] = 4 ∗ [y] = 3}

• (s, h) |= [x] = 5 ∗ [y] = 3 implies x 6= y.

• [z] = z′ written z ↪→ z′ in separation logic.

Separation logic(s) in a nutshell 9

A taste of separation logic

assertion logic + programming language + deduction rules

• Introduced by Ishtiaq, O’Hearn, Pym, Reynolds, Yang.
circa 1998-2000, see also [Burstall, MI 72]

• Extension of Hoare logic with separating connectives.
[O’Hearn, Reynolds & Yang, CSL’01; Reynolds, LICS’02]

• Separating conjunction ∗ and its adjunct −∗.

• Automatic program analysis.
Tools: Infer, Slayer, Space Invader, Smallfoot, etc.

• Separation logic competitions SL-COMP’14 & ’18.

Separation logic(s) in a nutshell 10

Memory states with one record field

• Program variables PVAR = {x1,x2,x3, . . .}.

• Loc: countably infinite set of locations
Val: countably infinite set of values with Loc ⊆ Val.

• Memory state (s, h):
• Store s : PVAR→ Val.

• Heap h : Loc⇀fin Val (finite domain).
(richer models, e.g. with h : Loc⇀fin Val

k)

• In this talk, we assume Loc = Val = N.

Separation logic(s) in a nutshell 11

Graphical representation

x y

s(x) = l1
s(y) = l3

dom(h) = {l1, l2, l3}
h(l1) = l2
h(l2) = l3
h(l3) = l4

l1

x

l2 l3

y

l4

Separation logic(s) in a nutshell 12

Disjoint heaps

• Disjoint heaps: dom(h1) ∩ dom(h2) = ∅ (noted h1 ⊥ h2).

• When h1 ⊥ h2, disjoint heap h1] h2.

x1

x2x3

x4

=
x1

x2x3

x4

]
x1

x2x3

x4

Separation logic(s) in a nutshell 13

Syntax and semantics for 1SL
• Quantified variables FVAR = {u1,u2,u3, . . .}.

• Expressions and atomic formulae:

e ::= xi | uj π ::= e = e′ | e ↪→ e′ | emp

• Formulae:

φ ::= π | φ ∧ ψ | ¬φ | φ ∗ ψ | φ−∗ψ | ∃ u φ

• Models: memory states (s, h) + f : FVAR→ Val.

• (s, h) |=f emp
def⇔ dom(h) = ∅.

• (s, h) |=f e = e′
def⇔ JeK = Je′K, with JxK def

= s(x), JuK def
= f(u).

• (s, h) |=f e ↪→ e′
def⇔ JeK ∈ dom(h) and h(JeK) = Je′K.

Separation logic(s) in a nutshell 14

Binary modality: separating conjunction

(s, h) |=f φ1 ∗ φ2

def⇔

for some h1, h2 such that h = h1] h2,

(s, h1) |=f φ1 and (s, h2) |=f φ2

Separation logic(s) in a nutshell 15

−∗ universally quantifies over an infinite set !

(s, h) |=f φ1−∗φ2

def⇔

for all h′,

if h ⊥ h′ and (s, h′) |=f φ1,

then (s, h] h′) |=f φ2

• ∗ and −∗ are adjunct operators:

ϕ1 ∗ ϕ2 |= ϕ3 iff ϕ1 |= ϕ2−∗ϕ3

Separation logic(s) in a nutshell 16

Simple properties stated in 1SL

• The value of x is in the domain of the heap:
alloc(x)

def
= ∃u x ↪→ u (variant of (x ↪→ x)−∗ ⊥)

• The heap has a unique cell x 7→ x′:

x 7→ x′
def
= x ↪→ x′ ∧ ¬∃u′ (u′ 6= x ∧ alloc(u′))

• The domain of the heap is empty: emp def
= ¬∃ u alloc(u)

• x has at least n predecessors:

n times︷ ︸︸ ︷
(∃ u (u ↪→ x)) ∗ · · · ∗ (∃ u (u ↪→ x))

Separation logic(s) in a nutshell 17

Relationships with temporal logics

Relationships with temporal logics 18

Relating operators C, D, and T with ∗ and −~

• Interval temporal logics with C, D, and T on linear orders.
See e.g. [Venema, JLC 1991; Hodkinson et al., CSL’08]

C

D

T

+ π and propositional variables

=]

Septraction: φ−~ ψ def
= ¬(φ−∗¬ψ)

atomic formulae: emp, x = y, x ↪→ y.

Relationships with temporal logics 19

Separating conjunction and prop. quantification
• The separating connectives ∗ and −∗ correspond to

second-order quantifications.

• Separating conjunction is strongly related to second-order
quantification over propositions.

⇒p

p

p p

• Quantified CTL (QCTL) with tree semantics is decidable
with non-elementary satisfiability problem.

[Laroussinie & Markey, LMCS 2014]

• Restriction to QCTL(EX) is still TOWER-hard.
(work in progress with B. Bednarczyk)

Relationships with temporal logics 20

Encoding linear/tree-like structures

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Relationships with temporal logics 21

Encoding linear structures

Encoding linear structures 22

Reachability predicate in 1SL2(∗)
• u has a successor: alloc(u)

def
= ∃ u u ↪→ u

• u has at least k predecessors:

]u ≥ k def
=

k times︷ ︸︸ ︷
(∃ u (u ↪→ u)) ∗ · · · ∗ (∃ u (u ↪→ u))

• Non-empty path from u to u and nothing else except loops:

reach′(u,u)
def
=]u = 0 ∧ alloc(u) ∧ ¬alloc(u) ∧
∀ u ((alloc(u) ∧]u = 0)⇒ u = u) ∧
∀ u ((]u 6= 0 ∧ u 6= u)⇒ (]u = 1 ∧ alloc(u)))

• There is a path from u to u:

reach(u,u)
def
= u = u ∨ (> ∗ reach′(u,u))

Encoding linear structures 23

Fishbone heaps
• h is a fishbone heap

(fb1) dom(h) 6= ∅.

(fb2) There is a location reachable from all the
locations of dom(h) that is not in dom(h).

(fb3) there are no distinct locations l1, l2, l3, l4, l5
such that l1 → l2 → l3 ← l4 ← l5 in the heap
h.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Encoding linear structures 24

(α, β)-fishbone heap
(C1) the first location on the main path has a number of

predecessors in [1 + 2, α + 2].

(C2) on the main path, a location with a number of
predecessors in [3, α + 2], is followed by β
locations with at least α + 3 predecessors, and

(C3) the number of locations on the main path is a
multiple of β + 1.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Encoding linear structures 25

Encoding data words by fishbone heaps
• Data word:

a1 a2 a3 · · ·
d1 d2 d3 · · ·

• Each ai belongs to a finite alphabet Σ.
• Each di belongs to an infinite domain D.

• Data word

dw = (a1, d1
1, . . . , d

1
β) · · · (aL, dL

1, . . . , d
L
β) ∈ ([1, α]× Nβ)+

(2,1)(1,2)(2,2) ∈ ([1,2]× N)+

≈

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Encoding linear structures 26

PITL and the fragment 1SL2(∗)

• Propositional Interval Temporal Logic (PITL).
[Moszkowski, PhD 83]

• Models: non-empty finite words over alphabet Σ = [1, α].
(data words with β = 0)

• φ ::= a | pt | ¬φ | φ ∧ φ | φCφ

• Chop (with overlap):

chops
def
= {(w1,w2,w3) ∈ (Σ+)3 | ∃ a,w′,w′′ such that

w1 = w′ a w′′,w2 = w′ a,w3 = a w′′}

Encoding linear structures 27

Semantics for PITL

• w |= a def⇔ w[1] = a (locality cond.) ; w |= pt
def⇔ |w| = 1.

• w |= φCψ
def⇔ there are w1,w2 s.t. (w,w1,w2) ∈ chops,

w1 |= φ and w2 |= ψ.

• Given α ≥ 1 and Σ = [1, α], the problem SAT(PITLΣ) is
decidable, but with α ≥ 2 is not elementary recursive.

[Halpern, Kozen, Moszkowski, 80’s]

• Chop in PITL can be encoded with separating conjunction
in 1SL2(∗).

• The satisfiability problem for 1SL2(∗) is TOWER-complete.
[Demri & Deters, ToCL 15; Schmitz, ToCT 16]

Encoding linear structures 28

Clean cuts are needed!

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

q
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

q
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Encoding linear structures 29

Pointer to a pointer about separation logic

Concurrent Separation Logic – Temporal Separation
Tony Hoare, Microsoft Research, Cambridge
Peter O’Hearn, Queen Mary, University of London

Separation Logic already has a notion of spatial separation.

Hoare and O’Hearn consider separation in time in the article

Separation Logic Semantics for Communicating Processes.

They use state sequences and sequential operator similar to ITL’s.

Quote from Zhou Chaochen in recent book:

Moreover, in a personal communication, Tony Hoare drew
my attention to the possible correspondence between the
chop operator in Interval Logic and the separating (spatial)
conjunction in Separation Logic. I believe that Interval
Logic deserves an important role in computing science.

9

c© Ben Moszkowski 2010

Encoding linear structures 30

Another TOWER-hard variant [Mansutti, FST&TCS’18]

• Formulae:

φ ::= T (u) | G(u) | φ ∧ φ | ¬φ | ∃u φ | φ ∗ φ

• Models (T ,G) where T is a tree with root ρ and G is the
garbage heap.

T G

ρ

• T (u) holds true when u is on tree whereas G(u) holds true
when u is in the garbage heap.

• TOWER-hardness by reduction from PITL.
Encoding linear structures 31

Undecidability of 1SL2 [Demri & Deters, ToCL 2015]

• 1SL2 formulae:

e ::= xi | u0 | u1 π ::= e = e′ | e ↪→ e′

φ ::= π | φ ∧ ψ | ¬φ | φ ∗ ψ | φ−∗ψ | ∃ u0 φ | ∃ u1 φ

• Reduction from the halting problem for Minsky machines.

• Runs of a machine with α instructions can be encoded as
(α,2)-fishbone heaps.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• Limit conditions and instructions are easy to take care of.

• The main difficulty is to encode in 1SL2 comparisons
between number of predecessors:

]̃l =]̃l′ or]̃l =]̃l′ + 1.
Encoding linear structures 32

Modalities with separating connectives

Modalities with separating connectives 33

Two-dimensional models or not ?
• Two-dimensional models:

• To combine an assertion language from separation logic
with linear-time/branching-time temporal logics.

• Recently, interval temporal logics for memory states in
[Lu & Tian & Duan, IJCAI’17].

(s0, h0) (s1, h1) (s2, h2) (s3, h3)

. . .

• Uniform framework
• Modal/temporal separation logics: Kripke-style semantics

with modalities and separating connectives.

y

x

E.g.: (ls(x,y) ∗ >) ∧ @xEFy

• To design modal/temporal logics with separating
connectives as an alternative to FO separation logics.

Modalities with separating connectives 34

Modal separation logics

Modalities with separating connectives 35

Modal separation logic MSL(∗,3, 〈6=〉)
• Fascinating realm of logics updating models:

• sabotage modal logics [van Benthem, 2002]
• relation-changing modal logics [Fervari, PhD 2014]
• modal separation logic DMBI

[Courtault & Galmiche, JLC 2018]
• logics with reactive Kripke semantics [Gabbay, AMAI, 2012]
• etc.

• Formulae:

φ ::= p | emp | ¬φ | φ ∨ φ | 3φ | 〈6=〉φ | φ ∗ φ

• Models M = 〈N,R,V〉:
• R ⊆ N× N is finite and weakly functional (deterministic),
• V : PROP→ P(N).

• Disjoint unions M1]M2.

Modalities with separating connectives 36

Semantics

M, l |= p def⇔ l ∈ V(p)

M, l |= 3φ
def⇔ M, l′ |= φ, for some l′ ∈ N such that (l, l′) ∈ R

M, l |= 〈6=〉φ def⇔ M, l′ |= φ, for some l′ ∈ N such that l′ 6= l

M, l |= emp
def⇔ R = ∅

M, l |= φ1 ∗ φ2
def⇔ 〈N,R1,V〉, l |= φ1 and 〈N,R2,V〉, l |= φ2,

for some partition {R1,R2} of R

Modalities with separating connectives 37

Towards lower bounds: encoding linear structures
• Linear model:

l0 l1 . . . ln

• There is a formula φ∃ls in MSL(∗,3, 〈6=〉) such that
M |= φ∃ls iff M is linear.

• Star-free expressions

e ::= a | ε | e ∪ e | ee | ∼ e

• Nonemptiness problem is TOWER-complete.
[Meyer & Stockmeyer, STOC’73; Schmitz, ToCT 2016]

• Encoding words by linear models.

a1 a2 a1 �
l0 l1

p1

l2

p2

l3

p1

, l0

• MSL(∗,3, 〈6=〉) satisfiability problem is TOWER-hard.
[Demri & Fervari, AiML’18]Modalities with separating connectives 38

Two-dimensional models

Modalities with separating connectives 39

Constrained LTL for memory states

• To design temporal languages to specify the behaviors of
pointer programs.

• To combine an assertion language from separation logic
with linear-time/branching-time temporal logics.

• To evaluate the borders for decidability.

• In the spirit of description/temporal logics over concrete
domains.

See e.g., [Lutz et al., TIME’08; Demri & D’Souza, IC 07]

Modalities with separating connectives 40

The logic LTLmem
[APAL 2009]

• Syntax

e ::= x | null | Xe (expressions)
π ::= e = e′ | e + i ↪→ e (atomic formulae)
φ ::= π | φ ∧ ψ | ¬φ | (classical fragment)

φ ∗ ψ | φ−∗ψ | emp (spatial fragment)
φ ::= φ | Xφ | φUφ′ | φ ∧ φ′ | ¬φ (temporal formulae)

• Examples

G (alloc(x) ⇒ F alloc(y))

GF(size ≥ 2) (Xx = x)U(y ↪→ z)

Modalities with separating connectives 41

Semantics

Models are sequences of memory states: M = (st , ht)t≥0.

M, t |= e = e′ iff JeKM,t = Je′KM,t with JXeKM,t = JeKM,t+1

M, t |= e + i ↪→ e′ iff ht (JeKM,t + i) = Je′KM,t

M, t |= φ1 ∗ φ2 iff ∃ h1, h2 s.t. ht = h1 ∗ h2,
M[ht ← h1], t |= φ1,
and M[ht ← h2], t |= φ2.

M, t |= φ1−∗φ2 iff ∀h′, if ht⊥h′ and M[ht ← h′], t |= φ1
then M[ht ← h ∗ h′], t |= φ2.

M, t |= Xφ iff M, t + 1 |= φ.

M, t |= φ1Uφ2 iff ∃t ′ ≥ t such that M, t ′ |= φ2,
and ∀t ′′, t ≤ t ′′ < t ′, M, t ′′ |= φ1.

Modalities with separating connectives 42

Satisfiability problems

• Satisfiability problem SAT(Frag): restriction to the fragment
Frag.

• Satisfiability problem SATct (Frag) with constant heap.
→ temporal language allows us to explore the heap.

• Satisfiability problem SATinit (Frag) with a fixed initial heap.

Modalities with separating connectives 43

A class of programs manipulating pointers

• Set of instructions

instr ::= x := y | skip

| x := [y] | [x] := y
| x := cons(x1) | dispose(x)

| x := y[i] | x[i] := y
| x = malloc(i) | dispose(x + i)

• Programs are finite-state automata with transitions labelled
by instructions and equality tests.

• A program without destructive update admits runs with
constant heap.

Modalities with separating connectives 44

Model-checking problems

• MC(Frag):
input: formula in Frag, and program PROG of the

associated fragment.
question: is there an infinite computation M of PROG

such that M,0 |= φ?

• MCct
init (Frag): idem with fixed initial memory state and no

destructive update.

Modalities with separating connectives 45

Fragments with decidable temporal reasoning

• SL fragments:
Classical fragment (CL)
φ ::= e = e′ | x + i ↪→ e

| φ ∧ φ | ¬φ

Record fragment (RF)
φ ::= e = e′ | x ↪→ e

| φ ∗ φ | φ−∗φ | emp
| φ ∧ φ | ¬φ

• The satisfiability problems for LTLmem(CL) and
LTLmem(RF) are PSPACE-complete.

• Decidable model-checking problems.
• MCct

init (RF) is PSPACE-complete.
Proof by reduction into SATct

init (RF).

• MCct
init (SL) is PSPACE-complete.

Proof by reduction into LTL model-checking.

Modalities with separating connectives 46

Undecidability

• SAT(SL \ −∗) are Σ1
1-complete.

• Reduction from the recurrence problem for
non-deterministic Minsky machines.

[Alur & Henzinger, JACM 94]

• Incrementation is encoded thanks to

(Xx ↪→ y ∧ x + 1 ↪→ y) ∧ ¬ (Xx ↪→ y ∗ x + 1 ↪→ y)

Modalities with separating connectives 47

Concluding remarks
• Separation logics share many features with

modal/temporal logics.

• Close relationships with interval temporal logics.

• See also relationships with ambient logic on trees.
[Calcagno et al., TLDI’03; Calcagno et al., POPL’05]

• More to be done and to be understood.
• Design of adequate temporal separation logics is still open.

• How to add fixpoint operators in temporal separation logics?
(for instance to tame reachability predicates such as 〈∗〉)

• Design of proof systems.
(axiomatisation for MSL(∗,3): work in progress with R.
Fervari and A. Mansutti).

Conclusion 48

	Separation logic(s) in a nutshell
	Relationships with temporal logics
	Encoding linear structures
	Modalities with separating connectives
	Conclusion

