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Abstract: The main aim of this paper is to extend to the case of a pseudomonotone operator Lewy-
Stampacchia’s inequality proposed by F. Donati [7] in the framework of monotone operators. For that, an
ad hoc type of perturbation of the operator is proposed.
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1 Introduction

The aim of this paper is to prove the existence of a solution to the parabolic variational inequality
T T
/<6tu, v-u)dt+ / a(t, x, u, Vu) - V(v — w)dxdt = /(f, v-u)dt
0 Q 0
and, especially, to give the associated inequality of Lewy-Stampacchia

0 < oeu — divla(-, -, u, VW) - f < g~ = (f - o¢yp + div[a(-, -, Y, V)],

where u — —div[a(t, x, u, Vu)] is a pseudomonotone operator under the constraint u > .

After the first results of H. Lewy and G. Stampacchia [14] concerning inequalities in the context of su-
perharmonic problems, many authors have been interested in the so-called Lewy-Stampacchia’s inequality
associated with obstacle problems. Without exhaustiveness, let us cite the monograph of J.F. Rodrigues [21]
and the papers of A. Mokrane and F. Murat [18] for pseudomonotone elliptic problems, A. Mokrane and G. Val-
let [19] in the context of Sobolev spaces with variable exponents, A. Pinamonti and E. Valdinoci [20] in the
framework of Heisenberg group, R. Servadei and E. Valdinoci [24] for nonlocal operators or N. Gigli and S.
Mosconi [11] concerning an abstract presentation.

The literature on Lewy-Stampacchia’s inequality is mainly aimed at elliptic problems, or close to elliptic
problems and fewer papers are concerned with other type of problems. Let us cite J. F. Rodrigues [22] for
hyperbolic problems, F. Donati [7] for parabolic problems with a monotone operator or L. Mastroeni and M.
Matzeu [17] in the case of a double obstacle.

There is a large literature on parabolic problems with constraints. To cite some recent ones, consider
[6, 13] where the main operator is monotone, associated with a nonlinear, possible graph, reaction term.
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Concerning Lewy-Stampacchia’s inequality, to the best of the author’s knowledge, F. Donati’s work [7] has
not been extended to pseudomonotone parabolic problems with a Leray Lions operator. In this paper, we
propose such a result, with very general assumptions on the Carathéodory function a, by using a method
of penalization of the constraint associated with a suitable perturbation of the operator. As proposed e.g. by
[12, p.102] and [4] for sub/super solutions to obstacle quasilinear elliptic problems, this perturbation is one
of the main new point of the proof. Indeed, without it, one is usually only concerned by Lewy-Stampacchia’s
inequality in the elliptic case, and one needs to assume, as in [18], some additional, now useless, Holder-
continuity assumptions for a with respect to u and Vu. Thus, this perturbation allows us on the one hand
to prove Lewy-Stampacchia’s inequality in the pseudomonotone parabolic case, and on the other hand to
reduce significantly the list of assumptions. Let us mention also that, with this method, one is to revisit Lewy-
Stampacchia’s inequality proposed in [18, 19] by assuming only basic assumptions. The second essential
result is an extension of the formula of time-integration by parts of Mignot-Bamberger[2] & Alt-Luckhaus][1]
to non-classical situations. Some information are given too about the time-continuity of an element u when
u and o¢u are not in spaces in duality relation.

The paper is organized in the following way: after giving the hypotheses and the main result (Theorem 2.2)
in Section 2, Section 3 is devoted to the proof of this result. A first step is devoted to the existence of a solution
to the penalized/perturbed problem associated with a parameter €; then, some a priori estimates and passage
to the limit with respect to € are considered when g~ is a regular non-negative element. A first proof of Lewy-
Stampacchia’s inequality is given when g~ is still regular; finally, the proof of Lewy-Stampacchia’s inequality
is extended to the general case. A last part, Section 4, presents an annex containing technical results used in
the proofs, in particular the time-integration by part and the time-continuity mentioned above.

2 Notation, hypotheses and main result

Let us denote by Q ¢ R a Lipschitz bounded domain, forany T > 0, by Q = (0, T) x Q and by p € (1, +o0).
As usual, p’ denotes the conjugate exponent of p, V = Wé’p Q)ifp=22and V = Wé’p (Q) N L?(Q) with the
graph-norm else. Then, the corresponding dual spaces are V' = wLp’ (Q)ifp=22and V' = W‘l’pl(Q) +L2(Q)
else (cf. e.g. [10, p.24]).

In this situation, the Lions-Gelfand triple [23, §. 7.2]

V o LXQ) — V
dense dense

holds and one denotes, as usually, by

W(O, T) = {u € LP(0, T; V), du € L¥' (0, T; V')}.

Assume in the sequel the following:
H, : A is a Leray-Lions pseudomonotone operator of the form

v Alv) = —div[a(t, X, V, Vv)} ,

which acts from WP(Q) into W1 (Q) where

Hi 1 a:(t,x,u, ‘,?) € QxRxR?— alt, x, u, f) cR%isa Carathéodory function on Q x RA*L
Hi,» a is strictly monotone with respect to its last argument:

V(t,x) € Qa.e., Yu € R, V&, 7j € RY,
E#1j = lalt, x,u, &) - at,x,u, )] - (-1 > 0.

Hi a is coercive and bounded: there exist constants & > 0, 8 > 0Oand y = 0, a function hin L(Q)
and a function k in LP(Q) and two exponents g, r < p such that, for a.e. (¢, x) € Q, for all
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u eRandforallfe ]Rd,

a(t, x, u, f) . ‘;c

v

&l ~ |Plul® + (¢, 0], )

IN

jatt, w5 Bk 0]+ ™+ 8] @

H, :assume that the obstacle ¥ belongs to LP(0, T; WP(Q)) n L?(0, T; L*(Q)); that 9,1 belongs to
L*'(0, T; V') and P < 0 on 0Q (See Section 4.4 for some comments on the time regularity of such
elements).

Hs : the right hand side f, which is assumed to be such that
g=f-o0p-A@)=g"-g
belongs to the order dual
IP(0,T; V) ={T=T,-Ts, Ty € IP (0, T; V'))*,i=1,2}

where (L' (0, T; V'))* denotes the non-negative elements of L (0, T; V).
H, :up e L%(Q)satisfies the constraint, i.e. ug > 1(0).

As usual concerning obstacle problems one denotes by
K@) :={uec W0, T), uzip}.
Remark 2.1. K (i) is a not empty convex set.

Proof. Indeed, if one denotes by v", the solution in W(0, T) to
dv" = Apv" = dap - Apyp € LP (0, T; V), V(£ =0) = 1(0).
-(v" =)™ € LP(0, T; V) is an admissible test-function and one has that
0=— (v — ), (V" — ) ) + / Ly ey [V P20V = [VpP203] - V(' - p)dx.
Q
Then, Corollary 4.5 with 8 = 1 and a = 1 yields for any ¢ € (0, T)

0=>- /<at(v* —y), (v* —-1) )ds =~ / (V'_/Ip)(t)s_dsdx + / (V*_/lp)(O)s_dsdx

0 Q 0 Q 0

o1 N Ol

since (v - 1)"(0) = 0. As a consequence, v" > and v" € K(i). O

Our aim is to prove the following result.

Theorem 2.2. Under the above assumptions (H1)-(H,), there exists at least u in K() with u(t = 0) = ug and
such that, for any v € L(0, T; V), v = y implies that

T T
/(atu,v—u)dt+/a(t,x,u,Vu)-V(v—u)dxdtz/(f,v—u)dt.
0

Q 0

Moreover, the following Lewy-Stampacchia’s inequality holds

0 < o¢u —divla(-, -, u, VW - f < g~ = (f - o¢y + div[a(-, -, Y, V)])~.
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3 Proof of Theorem 2.2

Theorem 2.2 will be proved in four steps.

In a first part, we establish the existence of a solution to a problem where the constraint u > i is penal-
ized. Moreover, the crucial point in the method developed in the present paper is to replace a(-, -, u, E) by
a(-, -, max(u, ), E). The aim of this additional perturbation is to ensure, formally, a monotone behavior of
the operator when u violates the constraint. This is the aim of Theorem 3.2.

For technical reasons, some a priori estimates and the passage to the limit will be obtained firstly by as-
suming that g~ is regular. This is the object of Lemmas 3.3, 3.4, 3.5 and Theorem 3.7. Then a proof of Lewy-
Stampacchia’s inequality, still with a regular g~, will be presented in Lemma 3.9.

Finally, one will be able to prove Lewy-Stampacchia’s inequality in the general case.

3.1 Penalization

Denote by § = min(p, 2) and let us define the function 6
0:R-R, xw— -[x]71,
and the perturbed operator
&(t,x,u,f):QxRde%Rd 3)

(x,t,u, E) — alt,x,u, f) = a(t, x, max(u, P(t, x)), E).

Remark 3.1. We wish to draw the reader’s attention to the fact that with the proposed perturbation:
a(t, x, u, &) = a(t, x, max(u, V), &), the idea is to make formally the operator monotone and not pseudomono-
tone any more on the free-set where the constraint is violated.

We define A : LP(0, T; V) — LP'(0, T; V') such that [Aw)](¢) := A(u(¢)) = —-div[a(t, x, u, Vu)]. Note that, the
above assumption H; still holds. Indeed,

a(t,x, u, f) . f > a|§|” - [)7| max(u, Y)|? + |h(t, x)\}, (4)
att, x,u, )| < B|k(t, 0] + | maxte, )P + 8] 5)

Since |max(u, Y)|7 < [u? + [|?, |max(u, P)|"’P < [u|’P + ||"’P, (1) and (2) are satisfied by replacing h by
h+yy|9 and k by k + |1|"/P.

For any positive €, a cosmetic modification of [23, Section 8.4] (see also [15, Chap. 3]) yields the following
result.

Theorem 3.2. There exists u € W(0, T) such that u(t = 0) = ug and
o¢u — div {&(t, X, u, Vu)} + %G(u -Y)=f, (6)

ie. o -—div {a(t, x, max(u, Y], Vu)] + %@(u -yP)=f.

3.2 Theregular case: g~ € L7 (Q) — L*'(Q)

Following Assumption Hs let us recall that f — 9, — AY = g = g* — g~ belongs to the order dual L?(0, T; V).
In this subsection we impose an additional regularity on g7, namely 0 < g~ € Ly Q) — 7 (Q).
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3.2.1 Apriori estimates with respect to £

Let us test the penalized problem (6) with ue - v,

1d * - *
5 dtHug v ||§2(9) +/a(t, X, Ue, VUe) - VUegdx + —/@(ug Y)(ue - v')dx
o) 0
=(f-0v  ue-v') + / a(t, x, ug, Vug) - Vv'dx.
Q

Thus, by using (1), for any positive 61, there exists Cs, depending on §; and Q such that

/El(t,x, Ue, VUe) - Vuedx 2 /&|Vug|p - y| max(ue, P)|? - |h|dx
o) 0

= a”u\‘-‘”p 1,p _J_/”uEng Q _J_/Hl/)ng o)~ W_IHLl(Q)
WyP(Q) @ (€0)]
= a”uSH 1.p 61Hu€||Lp Q )_/H'wngq Q) HEHU(Q) - Cﬁl'
WyP(Q) Q) Q)

For the third term, © < 0 and v" > 1 yield

% / Oue — ) —v')dx > % / Oue — ) (ue — P)dx.
Q [0}

By using (2), for any positive §,, there exists Cs, depending on §, and Q such that
" * = 5 p-1 *
/ a(t, x, ug, Vug) - Vv dx < /ﬁ[|k\ + | max(ue, lp)‘f/P + |Vug|} Vv |dx
Q Q
< Cs, V" ||Ww(m +62 [Hkum + 1Pl + el + el |
< 83 juell?

+Ca VI 1y + B2KI, 0 + o,

wir@) ”uEHLP(D) WiP(Q)

Finally, for any positive &3, there exists C5, depending on 63 and Q such that
(f =00V, ue = V') < S5 lllucllf + IV IF] + Cs, If = 0V |5,

In conclusion we have

1d
3 gilte =V e &l + + [ O =) )
Q
< Bt gy + B2 el + 82 )+ B e

+7191 00 +C52Hv 1P o+ B3IV I
Q) WyP(Q)

+ C,lIf = 0" I + 1Rll gy + 821K, )+ Cs, + Co, W lI7r()-

Then, using Young’s inequality and a convenient choice of the parameters 61, §,, 5 yield that for any
positive 6 there exists C depending on the listed parameters such that

%H@(ug - P)ue - P) Il

Sup ||u5||L2(Q)(t) + ||u£HLP(O T; Wl P(Q))
< C(8, HV lweo, ) 1PllLro,1;v)s HI_(HLP(Q)’ HEHD(Q)’ HfIILp/(O’T;V,)) + 5||“8H€p(oj;y)- @)

Lemma3.3. There exists a constant C; depending on ||V'|lwo.1 1®lr.1v)» 1kllzoys I1Rllziq and
Ifll e o, 7.vr) Such that, for any € > O,

Sup ”uSHLZ(.Q)(t) + ”uSHLp(o T; V) ”(uS - l/))_”ziz(g) < C1. (8)
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Proof. Ifp = 2, Wé’p (Q) = V so that Lemma 3.3 is a straightforward consequence of (7).
If p < 2, it is enough to remark that

ngwﬁmﬂﬂ+wmﬁ@ﬂw=mpumeM0+/mMamp@+uwummqmvm

IN

sup HuSHLZ(.Q)(t) + 2P 1 /[Hus(t)HLz(Q) + ”ue(t)”;/é’p(ﬂ)]dt

IN

2
Sup\l“el\u(m(t“zp 1/[*Hus Oty + =5+ P ue®IP et

wyP(Q)

<(1+2P° sz)sup ”ug”Lz(Q)(t +2P7 1/\|u‘g(t)||wlp(mdt+2”’2T(2—p).

O

It is worth noting that Lemma 3.3 gives that % fQ((ug - 1)")4dxdt is bounded (with respect to €) so that we

cannot expect to have a bound of the penalized term %O(ug -Y)in i (Q)norin L? ' (0, T; V).
Using the additional regularity g~ € L7 (Q) we prove in the following lemma more precise estimates on

(ue - l/))_

Lemma 3.4. There exists a constant C, depending on C; of Lemma 3.3, such that for any € > 0,

sup ||(ue = $) (Ol7:(0) < €118 1 @™ 9)
te(0,T)
/ ’Zz(t, X, Ue, Vite) - a(t, X, P, Vi) - Ve - )" |dxds < Co|1g7 |l o 8" ?, (10)
Q
1 -
2 Iue =) 1220y = C2lIg Il - (1)

Proof. With the admissible test-function (ue — )7, one gets that

~ (g e =), ae =) = . [ O~ )~ ) dx

Q

- / {Ez(t, X, U, VUe) — a(t, x, P, Vl/))} - V(ue - ) dx
QN{u.-P<0}

= —(f- o +div [a(t, X, P, vlp)} , (e — ) )dt

Then, since (ue — )~ € LP(0, T; V) with (us — )~(0) = 0, Corollary 4.5 yields: for any ¢ € (0, T),
t
1 _ 1 _
S0t =0 Ol = 3 [ [ Oue = e - ) dxds
0 0

+ /t /{Ez(t, X, U, VUe) — a(t, x, P, Vl/))} - V(ug — Y)dxds
0 {u~-p<0}

t
- /(f — 0 + div [a(t, X, ¥, wp)} , (ue — ) )dt
0
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In view of the definition of @ we have af(t, x, ue, Vue) = alt, x, P, Vue) in the set {ue < }. Therefore
using assumption H; , we obtain

t
2 te =) @y + / / att, x, ue, Vue) - (e, %, , VI - Ve - )" |dxds
0 Q

m\r—l

/ 10 - )1te - $) 130y

t T
< - O/g, -¥)) /(g (ue —y)7) +0//g(u‘S )" dxdt.

We recall that Lemma 3.3 yielded ||(u¢ - l/))_||zq(0) < Cy& so that

t
%\|(ug—lp)_(t)|\%2(m+ / / ’[Ez(t,x, ug,Vug)—&(t,x,l/),le)].V(ug—l/))_’dxds
0 Q

1
- / ute = )17 s

t

t T
< [ (g e p1) - —O/<g*,(us—¢)‘> +0//g (e - ) dxdt

0

< HgiﬂLa’(Q)H(ue - P) o < v Ciellg [l
and Lemma 3.4 holds. O

Gathering Lemmas 3.3 and 3.4 we prove the following estimates

Lemma 3.5. There exists a constant C5 depending on C1, C; and |8 || () Such that for any € > 0
10cttel| v (0, 73y + 1@, X, e, VUe) || 1 ) + 1AW 1o o, 751 < C3-

Proof. The growth condition (5) on @ and Lemma 3.3 imply that
la(t, x, ue, Vug)\pl = |a(t, x, max(ug, V), Vug)|”/
< BP' (1Kl + luel P+ 191777 + Vel
< C[IKP + uel” + 1P + [Vuel? +1]

and then a(t, x, ue, Vue)is bounded in L' (Q)?. The boundedness of | Aue)|| 1 (0,1;v) 1S @ direct consequence
of the above inequality.

Recalling that o;ue = f - A(ue) - 1O(ue - ) it remains to estimate 10(ue - ¥) in L' (0, T; V'). We
distinguish the two casesp > 2and 1 < p < 2.

If p > 2 then G = 2. From Lemma 3.4 we have 1||(us - ¥)"||12(g < C and since

1 1 _
||*@(us 'wb)HLp "0,V = sup (=0 -y),v) < EH(us - ) 2@ lIVliz2q) < €
[Vllp 0,11
it follows that 1 6(ue — ¥) is bounded in L (0, T; V).
If1 < p < 2 then g = p. From Lemma 3.4 we have 1||(ue - ¢)” HLP(Q) < C and we have

1 1
HE@(ME - l/))HLp’(o,T;V/) = sup <E@(u£ -P),v) <

IVllzpo.7sm=1

||(Ue ¥) HLp(Q)—

€

which concludes the proof of Lemma 3.5. O
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3.2.2 Atthelimitwhen e — 0.

The sequence (u¢) is bounded in W(0, T), therefore, up to a subsequence denoted the same, there exists
u € W(0, T) such that ur converges weakly to u in W(0, T). In particular, one gets that u(t = 0) = ug.

Then, by classical compactness arguments of type Aubin-Lions-Simon [26], the convergence is strong in
LP(Q), and a.e.in Q".

Therefore, (us-1)” — (u-1)” in LP(Q) and thanks to Lemma 3.4, one gets that (u-)” = 0i.e. u € K().
Moreover from Lemma 3.5 there exists 2 er” (0)? such that
a(-, -, ug, Vue) converges weakly to gin i Q). (12)
By (2), the following estimate holds for any v € LP(0, T; V),
la(t, x, u, Vv)|p/ <C|1+ kP +ufP + [P+ |Vv]P|,

so that, since u € R — a(t, x, u, Vv) is a continuous function, the theory of Nemytskii operators gives that

a(t, x, us, Vu) — a(t, x, u, Vu) in Lp'(Q)d (13)
and
/Ez(t, X, Ue, Vu) - V(ue — u)dxdt — 0. (14)
Q

Testing the penalized equation (6) introduced in Theorem 3.2 by u¢ — u yields
t t t t
/<atu€, Ug —u)ds + / / a(t, x, ue, Vue) - V(ue — u)dxds = /(f, Ue —u)ds - % / / O(us - Y)(ue — w)dxds.
0 0 0 0 0 Q
Since fot (f, us — u)ds — 0, the following decomposition

t ¢ ¢
_% / / @(ue - ';b)(ue - Ll)dXdS = —% / / @(us - lp)(us - ll))dXdS —% / / @(us — 1’[))(4) _ u)dxds
0 Q0 00 o o

<0 <0

leads to
t
limsup /aﬂlg,ug ds+//a(t X, Ue, Vue) » V(ug — u)dxds} <0
¢ 0
Using (14) we obtain

t ¢
lim sup |:/<at(Ug —u),us —u)ds + / /[Zz(t, X, Ug, Vue) — a(t, x, ue, Vu)] - V(ue — u)dxds} <0
&
0 0 0

The monotone character of the operator a(x, t, u, f ) with respect to g (see Assumption H; , and (3)) im-
plies
t

= hmsup I|(ue - u)(t)HLz(Q) hmsup/@t(ug - u),us —u)ds <0
0

t Some arguments are given in Annex 4.2 when p < 2.



DE GRUYTER 0. Guibé et al., Lewy-Stampacchia’s inequality for a pseudomonotone parabolic problem = 599

and

¢
lign / /[&(t, X, U, Vue) — alt, x, ug, Vu)] - V(ue — u)dxds = 0.
0 0

It follows that
ue(t) — u(t) in L2(Q) for any t
and in view of (14)

¢
lign//&(t, X, Ug, VUe) - V(ue — u)dxds = 0.
0 0

Set vV € LP(Q)?. Since
0 s/[&(t, X, Ue, VUue) — alt, x, ug, V)] - [Vue — V]dxds
Q
- / [a(t, x. ue, Vue) - a(t, x, e, V)] - V(e — wdxds
Q
+ /[Zz(t, X, Ug, VUe) — a(t, x, ug, V)] - [Vu — V]dxds
Q
= /[&(t, X, Ue, VUe) — d(t, x, ueg, Vu)] - V(ue — u)dxds
Q
+ /[a(t, X, Ug, Vu) — a(t, x, ue, V)] - V(ue — u)dxds
Q

+ /[a(ta X, Ue, vué‘) - a(t’ X, Ue, ]7)] : [vu - V]dXdS’
Q

using (15) and information similar to (14) allow one to pass to the limit and to conclude that

0 s/[z- a(t, x, u, )] - [Vu - Vdxds.
Q

By the classical Minty’s trick, considering vV = Vu + Aw, w € L?P (Q)4 and A € R, we have necessarily

0 = lim /[E’ —a(t, x,u, Vu + Aw)] - wdxds.
A—0
Q

(15)

(16)

17)

Thus, a classical property of radial continuity coming from the assumptions on a yields, for any w € L?(Q)?,

/E-deds = /Ez(t,x,u,Vu)-vT/dxds = /a(t,x,u,Vu)-vT/dxds,
Q Q Q

ie.&=a(t,x,u,vu) = al(t, x, u, Vu), since u = .

Remark 3.6. Note that, following [3, Proof of Lemma 1] , (15) yields the convergence in measure, then the a.e.
convergence of Vue to Vu (up to a subsequence if needed), so that this is also a way to identify ¢ has being

a(t, x, u, Vu).
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We are now in a position to pass to the limit in the penalized problem and to conclude the existence of a
solution to the obstacle problem under the additional regularity on g~.
Let us consider v € LP(0, T; V), v = i as a test function in the penalized problem (6),

T T
/(()tug, V—ug)+ / a(t, x, ug, Vug) - V(v — ug)dxdt + % / O(ue — Y)(v — ug)dxdt = /(f, v -ug)dt. (18)
0 ) ) 0

In view of (16) we have

T T
1 1
/<atus, V- ug)dt = /<atug, vydt - §\|u£(T)||§Z(Q) + E|\uo||§2(m
0 0

T T

1 1
= [ (o vidt =3 IuD + 5 ol = [ @ v-w)de.
0 0

From (17) and the identification .,? =a(t, x,u, Vu) = a(t, x, u, Vu) it follows that

/El(t, X, Ue, VUe) - V(v — ue)dxdt = / a(t, x, us, Vue) - V(v — u)dxdt + / a(t, x, ug, Vug) - V(u — ug)dxdt
Q Q Q
— /Zz(t, x,u, vu) - V(v - u)dxdt = /a(t, x,u, vu) - V(v - u)dxdt.
Q Q
The weak convergence of ue to u in LP(0, T; V) yields that

T

T
/(f,v—ug>—>0/(f,v—u>.

0

At last splitting the penalized term in the following way

! / Oue - Y - u)dxdt = / (e = )1 v - p)xdt - 1| ee = ) g

—0 thanks to (11)

<0
allows one to pass to the limit in (18). One concludes that a solution exists, i.e.

Theorem 3.7. Assume Hy — Hy, f-0) - Ap=g=g" -g € LP(0,T; V)" whereg™ ¢ Lp/(Q) N L%(Q). There
exists at least u € X() with u(t = 0) = ug such that, for any v € LP(0, T; V) withv = ),

T T
/<a,u, v-u)dt+ / a(t, x, u, Vu) - V(v — w)dxdt > /(f, v -u)dt.
0 Q 0
Remark 3.8. Note that the pseudomonotone assumption of the operator doesn’t ensure the uniqueness of the
solution. Observe that under additional assumptions on the operator a, namely a local Lipschitz continuity with

respect to the third variable, standard arguments allow one to prove the uniqueness of the solution obtained in
Theorem 3.7.

3.3 Lewy-Stampacchia’s inequality for a regular g~.

Notethat yg := oiue—divlac(., -, ue, Vue)l-f = %[(ug—lp)’]q’1 > 0, so that the limit y := o,u-div{ac(., -, u, Vu)]-
f is a non-negative Radon measure which is by Lemma 3.5 an element of L? ' (0, T; V).
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Using an idea from A. Mokrane and F. Murat [18], denote by z¢ := g~ — %[(us - 1/))’]‘7’1, we have

Otue +Alug) +ze = g + o) + A(Y) ie. Or(ue — )+ Alue) - A@W) +ze = g°.

Observing that
Otus + Alue) ~f = -ze + g

as in [18] in the elliptic case and under more restrictive assumptions on the operator a, proving that z; con-
verges to 0 in an appropriate space leads to the Lewy-Stampacchia’s inequality. Due to the time variable and
the weak assumption on a we have to face to additional difficulties. For technical reasons, we will assume in
this section only that, on top of g~ € 1 (Q) N LP(0, T; V), g~ >0, thato;,g” € L7(Q). Roughly speaking it
allows one to use a test function depending on g~ and together with Lemma 4.3 to perform an integration by
part formula and then the convergence analysis of z.

The general case will be obtained in the next section by a regularization argument based on Lemma 4.1
of the Annex.

Our aim is now to show the convergence of z; to 0 in L2(Q) to prove the following lemma.

Lemma 3.9. Under the assumptions of Theorem 3.7 and assuming moreover that g~ ¢ LPI(Q) NLP(0, T; V),
g >20withoig™ € L7 (Q), the solution u satisfies

0 < ou —divla(-, -, u,Vu)]-f< g in ¥ (0, T; V).

A priori, following Lemma’s 4.3 notations, one should denote by
A
Wit ) = (¢ - LY and A x ) = / W(t, x, 0)do.
0

For that, we need ¥(t, x, u) to be a test-function.

Since x +— [x7]47 is not a priori a Lipschitz-continuous function (e.g. if p < 2¥), therefore, for any posi-
tive k, we will denote by n;(x) = (§ - 1) f(;‘ min(k, s72)ds, ¥ (t, x,A) = (g~ - 1ni(A7))" and Ai(¢, x, A) =
f(f ¥ (t, x, 0)do.

Note that ¥ (t, x, 0) = 0 and 9; ¥ (t, x, A) = atg-1{g,_%nku,)<o} so that, since ¥ (t, x, u) is a test-function, by
Lemma 4.3, for any ¢,

t
- / /atAk(s,x, ue — P)dxds + /Ak(t,x, ug(t)—l/J(t))dX—/Ak(O,X, u:(0) - Y(0))dx
- .

Q0 Q Q

t
- [ (A - AW, (& - el =)Dt~ [ zele” - Snillue - D) dxds
0 Q

t
-~ (8" & - Fnaltue - 9y )ds <. 19)
0

We now pass to the limit first as k — oo and then as € — 0. Since g~ = 0, one has that ¥;(t,x,A) =0ifA = 0
and as ug(0) = up = P(0), one gets that

/ At %, () - p(O)dx - / A4(0, X, uz(0) - h(0))dx = / At %, () - p(B)dx.

Q Q Q

¥ ¢ = min(2, p)
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Note that (¥(t, x, A)); is a non-increasing sequence of functions with non-positive values so that by
monotone convergence theorem

PO
/Ak(t, X, ug(t) — Y(t))dx 7 —/ / (g - %[0‘]‘7"1d0)"dx >0
Q Q 0

since the integration holds on the set of negative values of ug(t) — (t).
Due to the definition of z; we have

- /Zs(g7 - %rlk[(us - ) D) dxdt

Q
—— (& = Hllue =y~ gelue - ) )
Q

€
-1 g1y~ 1 -
= [ (&~ e =) 1" ) ("~ Snul(ue —9)]) dxat
Q
-1 —1g-1y+ - 1 -
- [ - flue = T = e - )] e,
Q

from which it follows using again the monotone convergence theorem

T
-1 - -
- [ zte - Tualtwe -y axde — [ Izl b e
Q 0

As far as the first term of (19) is concerned we obtain

U~
— / a[Ak(t’ X, Ug — l,b)dXdS = —/a[g_ / 1{g,_;nk(r)<0}deXdS
Q Q 0
—(us—lll)’
__ / g / gt iryeopdTdxds = - / 008" (e -~ )" dxds —» 0.
Q 0 Q

For the fourth term of (19) we have the following equality
T
' -1 -
- [t - AW (6" - pnaltue -y ) )ae
0

N . _ 1 ,
= / Lig— tniltue-yy1<0) [a(t, X, Ue, Vue) - alt, x, 1, Vzl))]V[g = 2l (ue = 9)Ildxdt
Q

_ / g Lnulugy oy |86 %0, Vte) = (e, x, 9, V)| VIg™ = millue - ) Tidxdt,
Q

since in this situation, the integration holds in the set where u, < 1. Thus,

{a(t, X, ll), Vua‘) - a(t’ X, ll’, V'I))} V[g7 - %nk[(ue - ¢)7]]
nil(ue - 9) 1[ate, x, y, Vue)
- a(t, x, ¥, V)| Ve - ) -

>~ [alt, x, p, Vue) - alt, x, §, V)|V .

>

M|

fl(t,X, ll), Vue) - &(t, X, l/)’ le) |Vg7|
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We now claim that estimate (10) of Lemma 3.4 which gives
{&(t, X, P, Vue) —a(t, x, P, Vip) | V(ue - ) —»0in LY(Q)

and Assumptions H; ; to Hy 3 imply that, up to a subsequence (still denoted by €), V(ue — 1)~ converges to 0
a.e.in Q.

Indeed, up to a subsequence (still denoted by &), us converges to u a.e. in Q with u > ¥ a.e. and
‘Ez(t, X, Vue) - alt, x, ¥, Vl/))‘ IV (ue - )| — Oa.e. in Q.

Consider (¢, x) such that the above limits hold. Since,

(e, %, , Vite) - Ve =) = [@Vuel” = 1|’ - Rl - alt, x, , Vute).- V| 1y,
> &Vl - 7| - |h| - B|IK| + |7 + |Vus|}”_1|vwl}1{u£<¢}
> [a/zwug\p - C(p, b, K, v:,b)} Luepys
and

~ -1 rliz rlp p-1
@t x, Y, V) - Ve = )| < B[IK|+ [P17P + (V1| [IVuel + V1] ey

one gets that (V(ue — )7 (¢, X)) is a bounded sequence.

Since V(ue — ) (t, x) = -V (ue - P)(t, x)l{u£<,l,}(t, X), it converges to 0 if u(t, x) > (¢, x).
Else, at the limit, one has that u(t, x) = (¢, x). If one assumes that V(us—1) (¢, x) is not converging to 0, then
there exists a subsequence ¢’ (depending on (¢, x)) and a positive & such that ||V (u. ) (¢, x)|| = § > 0. Then,
necessarily -V (u. — )~ (t, x) = V(u. —p)(t, x) and, since it is a bounded sequence in R, there exists f cRY
and a new subsequence still labeled &’ such that Vu,(t, x) converges to f , with the additional information:
1€ = Vip(t, x)|| = 6 > 0. Therefore, since & # Vij(t, x)

[a(e, x, %, Vue (6, 0) = @t %, 1, V(e )] - Viater =) (6,)
= - [a(t %, W, Vue (6, 0) -l x, , VYU, )] - Ve - Y)(E %)
— ~|att,x . &)~ att, x, ., Vit 0)] - [E - Vb, 0] < 0.
But, this is in contradiction with the convergence of the same sequence to 0 and the result holds.
Note that (¢, x) € Q a.e.,
[Ez(t, X, Vue) - alt, x, vlp)} Lueepy = [a(r, X W, Vited gy py) — At X, Y, v¢1{u€<¢})]

and Vuely,, <y — VPl oy converges to O with Vip1y, .y bounded. Then, the continuity of a with respect

to its fourth argument can be assumed uniform and [&(t, X, P, Vue) - a(t, x, P, Vz/z)} 1y, <y} converges a.e.
to 0.
Since it is bounded in L?'(Q), it converges weakly to 0 in I?'(Q) and

/ a(t, %, 9, Vue) - e, x, §, V)| [V8 71y, cpp dxdt - 0.
Q

As a conclusion, z; converges to 0 in L2(Q). On the one hand we have
0 < pe = o [(we =) = duute - diVIaC, -, ue, Vuo)] - f
= 0<owu-divla(,-,u, Vu)l - f;
On the other hand

Ze=8 - %[(ue Nk

Yo 2+ due — divIaC, -, ue, V) - f = g+ 2z
= 0 < ou —div[a(-,-,u, Vu)l-f=g".

Since a(-, -, u, vu) = a(-, -, u, Vu), Lemma 3.9 is proved.
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Remark 3.10. Note that, for any ¢ € LP(0, T; V),

T
/ (Oce — diV[aC, -, ue, Vue)] - £, @) dt
0

T

T
= /<afu8 - div[&('y *y Ug, Vu&‘)] _f’ (P+>dt - /(atué' - div[&(', 5 Ug, qu)] _f’ (P7>dt
0 0

T T
< /<atu8 —divla(-, -, us, Vue)l - f, *)dt < /(g_, p*)dt.
0 0

Insuch away, ||0¢ue - divlal, -, ue, Vue)l = fll o o.7,v7) < 18 | 0,137

3.4 Proof of the main result

In this section, H; is assumed and g = f-0:p-A(p) = g*—g~ whereg*, g™ € (LP' (0, T; V'))* are non-negative
elements of P’ (0, T; V).

Thanks to Lemma 4.1, there exists positives (g,) C LP '(Q) such that gn — g inLP' (0, T; V). Then, by a
regularization procedure, one can assume that g; € LY (Q) N LP(0, T; V), gn 2 0 with 9,85, € L7 (Q). Then,
the corresponding sequence f, converges to f in L? 0, T; V).

Remark 3.11. In fact, since D(Q)" is dense in L? /(Q)*, one can consider g, as regular as needed.

Associated with g5, Theorem 3.7 and Lemma 3.9 provide the existence of u, € X(i) with un(t = 0) = up and
such that, for any v € LP(0, T; V), v = y implies that

T
/atun,v Un dt+/a(t X, Un, VUn) - V(v - un)dxdt>/<fn,v un)dt
0 Q

and satisfying the Lewy-Stampacchia’s inequality
0 < o¢un — divla(:, -, un, Vun)l - fn < gn-

Since this solution comes from the above penalization method, and as C; of Lemma 3.3 can be chosen inde-
pendent of n, one gets that

2
Sl'tlp Hu"HLZ(Q)(t) + Hunnip(o,]";v) < Cy.

Thus, a(-, un, Vuy) is bounded in Lp,(Q)d and, thanks to the above Lewy-Stampacchia’s inequality, o¢un is
bounded in L¥ (0, T; V').

Up to a subsequence denoted similarly, u, converges weakly to an element u € X(y) in W(0, T) and
strongly in L?(Q); and a(:, un, Vun) converges to an element gin L' (Q).
Finally, the embedding of W(0, T) in C([0, T], L?(Q2)) yields the weak convergence of un(t) to u(t) in L?(Q),
for any ¢.

Since u € K(y),

T
/(c)tun, U - up)dt + / a(t, x, un, Vun) - V(u — up)dxdt = /(fn, U - up)dt.
0 Q
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Therefore, passing to the limit with respect to n in

T
/(atun, u}dt+/a(t, X, Un, VUn) - Vudxdt + %HUOH%Z(Q)
0 Q

T
1
z/(fn, u - up)dt + EHun(T)HfZ(Q) +/a(t, X, Un, VUn) - Vupdxdt
0 Q

yields

T
/(c)tu, u)dt +/g Vudxdt + %Hu()”%}m)
Q

0
z%”u(T)Hfz(Q) + limnsup/a(t, X, Un, VUn) + Vupdxdt.
Q

T
. 1 1
Since /(atu, u)dt = z\|u(T)||%2(Q) - §||u0\|%2(9), one gets that
0

limsup/a(t,x, un,Vun)-Vundxdts/?-Vudxdt.
n
Q Q

Thus, (2) and the continuity property of Nemytskii’s operator ensure the following limit argument:

0< /[a(t, X, Un, VUun) — a(t, x, un, Vu)] - V(un — w)dxdt

Q
=/a(t, X, un,Vun)-Vundxdt—/a(t,x, Un, Vun) - Vudxdt
Q Q
—/a(t,x, Un, Vu) - V(un — w)dxdt,
Q

thus

0 slimninf/a(t, X, Un, VUn) - Vundxdt—/g-Vudxdt.
Q Q

Then, lirrln / a(t, x, un, Vun) - Vupdxdt = / 2’ - Vudxdt and arguments already developed previously based
Q

Q
on Minty’s trick for the pseudomonotone operator A yield the identification 3 = a(t, x, u, Vu) and one has

11'11n / a(t, x, un, Vun) - V(un — v)dxdt = /a(t, x,u, vu) - V(u - v)dxdt.
Q Q
From the weak lower semicontinuity of | - [;2(g), one has

T

T
limsup/<atun, vV —Up)dt < /(r)tu, v —u)dt.
n

0 0

Since fOT (fn, v —un)dt — fOT(f , v — u)dt, we deduce the existence result of Theorem 2.2 for general f. At last
the Lewy-Stampacchia’s inequality is a consequence of passing to the limit in the one satisfied by uy.
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4 Annex

4.1 Positive cones in the dual

Lemma 4.1. The positive cone of LP(0, T; V) N L%(Q) is dense in the positive cone of V', the dual set of V =
LP(0, T; V).
By a truncation argument, the same result holds for the positive cone of LP(0, T; V) N )52 (Q) whenp < 2.

Proof. This result is given in [7, Lemma p.593]. We propose here a sketch of a proof following the idea of [18].

Consider f € Lp/(O, T; V') such that f > 0 in the sense: Vo € LP(0, T; V), ¢ 20 = {f, @) 2 0.
Let us construct a sequence (fz) C LP(0, T; V) with fz = 0 such that fe — fin L? (0, T; V').
Consider the following operator B : LP(0, T; V) — Lp/(O, T; V') defined, for any u, v € LP(0, T; V) by

T
(Bu, v) =/|Vu|P‘2vu.Vv dxdt + /||u(t)|\f;(2m /uv dx dt. (20)
Q 0 Q

T
B = D] where ] : u — I% / |VulP dxdt + %/””(t)”fzm) dt, is a G-differentiable, hemi continuous convex
Q 0

function, and, B is a strictly monotone, bounded, continuous and coercive operator from LP(0, T; V) into
73 (0, T; V). Then ([23, section 2.1]), denote by v the unique solution to Bv = f.

For any € > 0 and n € N, denote by v the solution to Bvy + %Tn(v'g -v) =0in L?(0, T; V) where T, is the
truncation at the height n.

Using v§ - v as test function, one has J(v¢) + %H Tn(VE - v)||%Z(Q) < J(v).

Thus, there exists v, weak limit in L? (0, T; V) of a subsequence (denoted similarly) of v} satisfying: J(v¢) +
%Hvs - VH%Z(Q) < J(v) and, by classical monotony arguments, solution in L?(0, T; V) to the problem:

(Bre,w) + © / (ve—Wwdxdt =0 vw € IP(0, T; V) N L2(Q). 1)
Q

Then, up to a subsequence, ve — v — 0in L?(Q), ve — vin LP(0, T; V) and

(Bve = Bv, (ve - V)") + % / |(ve = v)"|2dxdt = —(f, (ve = v)*") <0, (22)
Q

so that f; = —%(vs -v) € LP(0, T; V) n L?(Q) is non-negative.
Finally, as limsup, J(ve) < J(v), an argument of uniform convexity yields the convergence of v to v in
L?(0, T; V) and —%(v£ ~v)=Bve — Bv=finL? (0, T; V). O

4.2 Compactness whenp < 2.

Concerning the compactness argument in LP(Q) when p < 2: note that there exists an integer k > 1 such that
WEP(Q) — LP'(Q)so that
dense

whP(Q) o Voo 1P(Q) = (2P (Q)] < WP (Q)and V' — WP (Q).

ense dense

Remark 4.2. Let us justify that the identification LP(Q) = ¥ Q) is possible if L?(Q) is already chosen as
the pivot-space.
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Indeed, one has: LP (Q) < L2(Q) — LP(Q) with reflexive B-spaces, so that LP(Q) — L2(Q) <
dense dense dense dense

().

Consider T € LP (Q) and T € L2(Q) such that Ty — T in L?' (Q)'. Then, by the pivot-space identification,

there exists un € L?(Q) such that Tn = uy, in the sense of Riesz-identification.

Then, forany v € 7 (Q) with norm 1,

I/uanXI STl @y * 11Tn = Tl gy -
Q

[un|?
llunl?,'
subsequence if needed, it converges weakly to a given u in L? (Q).
Thus, forany v e LP/(Q),

By considering v = Sgn(un) one has that the sequence (uy) is bounded in LP(Q) and that, up to a

(T,v) =lim(Tn, V) =lim/unvdx= /uvdx.
Q Q

Since this element u is unique in its way, the identification holds.

Then, since the embedding of V is compact in L?(Q), by Aubin-Lions-Simon [26] compactness theorems, if
a sequence is bounded in W(0, T), it is also bounded in {u € L?(0, T; V), ou € LP'(0, T; W‘k’p/(()))} and
relatively compact in L?(Q).

4.3 On Mignot-Bamberger -Alt-Luckhaus integration by part formula

We propose in next Lemma a time integration by part formula adapted to our situation. Its proof has been
inspired by [9].

Lemma 4.3.

Consider u € LP(0, T; WHP(Q)) N LP(0, T; L2(Q)) such that deu € LP (0, T; V).

Let ¥ : QxR — R be a function such that (t, x) — ¥(t, x, A) is measurable, A — ¥(t, x, A) is non-decreasing (it
can be cadlag® or caglad”) and denote byA: QxR — R,(t,x,A) — f: ¥(t, x, T)dT where a is any arbitrary
real number. Assume moreover that 0,V exists with |¥(A = 0)| + |0, ¥| < h € L*(Q). If ¥(t, x, u) € LP(0, T; V),
then, forany B € W*°(0, T)and anyO <s < t < T,

t
/ (O, ¥(0, x, u))Bdo - / Alt, x, u(®)B(E)dx - / Als, x, u(s))B(s)dx

0 oy
t t
—//A(o,x, u),B’dxdo—//atA(o,x, u)Bdxdo.
s Q s Q

Proof. Thanks to the assumptions on ¥, it is a measurable function on QxR and A is a Carathéodory function
on Q x R. Moreover,

t
Wt x, )| s/|at‘{’(s,x,/l)|dss T.h(t, ),
0

IA(t, x, D)| <|A - a|T.h(t, x) < |A]> + T*h*(t, x)/4 + |a| T.h(t, x),

§ continu a droite et limite a gauche: right continuous with left limit
q continu a gauche et limite a droite : left continuous with right limit
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sothatA, ¥ € leo (R, L?(Q)) and the Nemytskii operator associated with A is continuous from L2(Q) to L1 (Q).
Moreover, 0:A(t, x, A) = f; 0:¥(t, x, T)dt and
)atA(t, x, )| < |A=alh(t, x) < |A]? + h?(t, x)/ 4 + |a|h(t, x) so that the Nemytskii operator associated with 0,4

is also continuous from L?(Q) to L*(Q).

By assumption, u € C([0, T], L?(Q)) and one extends u to i1 in R by i1(t) = ug if t < 0 and at(t) = u(T) si t > T.
Therefore, if I; = (-1, T + 1), ii € LP(I;, WP(Q)) n C(I,, L*(Q)) such that d;i1 € LP (I, V') with ot = 0
whent<Oort>T.

Similarly to u, denote by ¥ the extension to I; of ¥ in the same way and by A the corresponding integral as
introduced in the Lemma.

For any fixed 0 < h << 1, let us denote by

u(t+h)-u(t) e s £y ﬂ(t)—a(t—h).

Vhitl—> h h h

Consider € D(I;) and h, small enough so that suppp + [-h, h] C I,. Then, in L*(Q),

/ Va(OB(Odt & / wa(DB(Odt
I

I
T+1

T
2= [ 10B©dt -~ [ uop ©de+ uDBD) - uopl0)
0

-1

Thus, vj, and w;, converge to d,i1in D’[I1, L2(Q)] and D’[I;, V'], and to d¢u in D’[0, T; L2(Q)] and D’[0, T; V'].
Moreover, by [5, Corollary A.2 p.145], the properties of Bochner integral and since o;it = 0 outside (0, T),

t+h
’ 1 _ /
[ it ae- [ o1 [ aaasiae
11 Il t

t+h T

1 _ ’ ’
s/ﬁ/Hatu(s)H“'},dsdts/||atu(s)||1",,ds.

Lot 0
Therefore, v, converges weakly to o;it in L? "[I1, V'] and to d;u in LP[0, T; V'] (as well as for wp).
For any 8 € D(I;), one has ¥(:, #)B € LP(I;, V), and

/ wy (., a(0)Bdxdt & / VPG, u(O)pdxdt / (0.1, W(-, ) Bdt.
I

11><Q 11><Q

Let us recall that a is a given real and A(¢, x, A) = / ; ¥(t, x, T)dt. Since ¥ is a non-decreasing function of its
third variable, for any real numbers u and v, one has

(v -wP(t, x,u) < A(t, x,v) - A(t, x, u) = / W(t, x, 7)dt < (v - W)¥(t, x, V).

Thus, assuming moreover that 8 is non-negative,

[a(t + hy x) - a(t, )]P(E, x, a(t)B <[A(t, x, u(t + h)) - A(t, x, u(t))]B
< [u(t + h, x) - a(t, )¥(t, x, u(t + h))B,

[a(t, x) - a(t - h, )P, x, u(t - h))B <[A(t, x, a(t)) - A(t, x, u(t - h))]B
< [u(t, x) - at(t - h, ) ¥(t, x, u(t)B.
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and, for h small enough to have suppp + [-h, h] C I;,

/ viBY(-, u(t))dxdt < / A("a(Hh)’z_/—l(.’a(t))ﬁdxdt

leQ 11><Q

5 / VBEC, alt + h))dxdt,
I xQ

/ wpBY¥(-, u(t — h))dxdt < / AC, u(0) - ;_ll(.’ G h))ﬂdxdt

I;1xQ I,xQ

< / Wi B, a(t)dxdt,

Il><Q

so that

T

limhinf/ A("‘_‘(”h)’z_ﬁ("ﬂ(t))ﬁdxdtz/<ata,l¥f(.,a)>ﬁdt=/<atu, ¥(-, u)pdt,
I1xQ I 0

I - T
/ A("u(t))_ﬁ("u(t_h))ﬁdxdts/<ata, ‘P(-,a))ﬁdt=/(atu,‘l’(-,u»ﬁdt.

leQ Il 0

lim sup
h

On the other hand,

/ At x, at + h)}z ~ A% 10) gy gy

11><.Q

-1 / At~ h,x, OBt - hdxdt - / Alt, x, w(©)B()dxdt

I1xQ I;1xQ

- / Ale—h, x, uo) - ALX 8O gy _ pyaxat + / PE=R = PO 4 e, x, at)axat

I1xQ I;1xQ

and

/ Alt, x, a(0)) - il(t, X 0= 1) g ) dxat

I1xQ

_ / A(t, x, u(t)) - At + h, x, ﬂ(t))ﬁ(t+h)dxdt+ / wﬂ(t’ x, a(t))dxdt.

h
leQ le.Q

Then, one gets by passing to the limit when h — 0, and thanks to the time-extension procedure,

lim inf / Alt=h, x, uo)- AX1O) gy pyaxar

Il><Q

T
> / (e, W(-, w)Bdt + / AC, m)p'dt
0

I1‘><Q

T

_ / (O, W, w)Bdt + / AG, wp'de + / A0, X, uo)B(0)dx - / A(T, x, u(T)B(T)dx
0 Q Q 0

>lim sup / Alt, x, u(t)) - At + h, x, a(t))ﬁ(t + h)dxdt

h h
I1xQ

— 609
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Note that
/ A(t-h, x, u(t)}z - A(t, x, a(t))ﬁ(t _ R)dxdt
I xQ
_ / / 3A(s, x, (D)t - h)dsdxdt.
ILxQ  t-h
Since,

10¢A(s, X, @(O)B(E - )| < [|Bloi(t, X) - alh(s, x)

is an integrable function, the properties of the point of Lebesgue (Steklov average) yields

/ Alt-h,x, f‘(t)g‘/_‘(t”"ﬂ(t))/z(t mdxdt —» - / 3A(t, x, a()B(Ddxdt
I;1xQ I1xQ

- / d:A(t, x, u()B(Ddxdt.
Q

A(t, x, u(t)) - A(t + h, x, u(t))
h

Since the same holds for lifrln /
11 x0Q

B(¢ + h)dxdt, ¥B € D*([0, T),

(o¢u, P(-, u))pdt

[A(Ta ’ u(T))B(T) - A(O5 ) uO)B(O)]dX - /[A('9 i) u)ﬁ/ + atA('a ) u)ﬁ]dth
Q

b\ o

Since f is involved in linear integral terms, a classical argument of regularization yields the result for any
non-negative elements of W'*°, then for any elements of whee,

Note that T being arbitrary, the result holds for any t and s = 0, then for any ¢ and s by subtracting the integral
from O to s to the one from O to ¢. O

Remark 4.4. As a consequence,

5t[//l(t X, u)dx} = (0¢u, P(t, x, u)) /at/l(t x, u)dxin D’(0, T)
Q

and t — fQ A(t, x, u)dx is absolutely-continuous in [0, T).

Corollary 4.5. Consider u € L¥(0, T; W“P(Q)) n L=(0, T; L2(Q)) such that d,u € L¥ (0, T; V'), a € L2(Q),
> 0and ¥ : R — R a given non-decreasing function. Assume that ¥(u)a € LP(0, T; V), then, for any
BeWh=0,T)andanyO<s<t<T,

t

t u
/<atu,‘l’(u)a>ﬁd0= —S/!a/‘l’(r)dmﬁ dxdo

S

u(t) u(s)
/ / Y(t)dtaB(t)dx - / / Y(t)dtap(s)dx,
where a is any arbitrary real number.

Remark 4.6. Note that, by linearity, the same result holds if « = ay — a, with ¥(u)a; € LP(0, T; V) (i =1,2)
orif ¥ =¥, - ¥, and ¥; (i = 1, 2) satisfies the assumptions.
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4.4 Strong continuity in L2(Q)

We consider the following notations in the sequel: V(Q) = WP(Q) n L%(Q), Vo(Q) = WiP(Q) n L2(Q) and
V(Q) = WP (Q) + L2(Q).
Let us prove in this section the following result of continuity.

Lemma 4.7. Let Q c RN be a bounded domain with Lipschitz boundary 0Q, then we have

uc LP(0, T; V(Q)), osu € Lp/(O, T; V'(Q)) = u € C([0, T], L*(Q)).

Remark 4.8. This result is not the usual one since u and 0:u are not in spaces being in duality relation and few
words are needed concerning the time-derivative.

Note that both V(Q) and Vo(Q) are dense subspaces of the chosen pivot space L*(Q) so that it can be iden-
tify to a subspace of V'(Q) or (V(Q))'. Therefore, u, as an element of LP(0, T; V(Q)) — LP(0, T, L*(Q)) —
LP (0, T; V/(Q)), has a time derivative in the sense of distributions in D’(0, T, V'(Q)) and it is assumed to be-
long to ¥ (0, T; V'(Q)).

Proof. This result is based on a classical method: firstin RY thenin the half-space RN and finally in Q thanks
to an atlas of charts.

Obviously, if @ = RV, we have W, (RY) = W'P(RY), and the result holds by classical arguments (e.g. [25,
Prop. 1.2 p. 106)).

IfQ = Ri\’/resp_f ={(x',xy) € RY; xy > 0/resp. < 0}, the method is based on a suitable extension of u to
RN, Following a recommendation of F. Murat, we consider the following extension, proposed in [16, (12.21-22)

p.83] and revisited in [8, p.2]:

. u(t, x', xy); Xy >0
t,x', xy) =
(e, X', xw) { =3u(t, x', —xy) + 4u(t,x’, -2xy); xy <O.
Note that &t € LP(0, T; V(R")) and, thanks to a change of variables, that for any ¢ € €°(]0, T[xRY), one gets
10 dxdt
(0, T)xRN
= / [=3u(t, x', —xy) + 4u(t, x', —2xn)]0:p(t, x', xy) dxdt + / udp dxdt
(0, T)xRN (0,T)xRN
= / e(p(t, X', xy) = 30(t, X', —xp) + 2¢(t, X,:_XTN))u(t,X,XN) dxdt
(0, T)xRY
Then
T
//ﬂ(t, x)o¢p(t, x)dxdt
0 RN
T
=//(6t(<p(t, X', xn) = 3¢(t, X', —xy) + 2¢(t, X', —%N))u(t, X, xy)dxdt.
0 RY
By construction, (t, x) = @(t, x’, xy) - 3¢(t, X', -xy) + 2¢(t, X', —XTN = 0if xy = 0, as well as 9., and

¥ € WH(0, T3 Vo(®Y)) with 1150, 11,29 = CI#@llr(0, vz for a given constant C.

T

Therefore, \//ﬂat(pdxdﬂ < C||atu|\Lp/(0,T;V,(RI+V))H(pHLp(O,T;V(RN)), and o:ii € LP' (0, T; V/(RN)). Then, one
0 RN

concludes that &t € C([0, T], L2(RY)) i.e. u € C([0, T], L2(RM)).

Finally, the result holds in the general case by considering an atlas of charts as proposed e.g. in [8, p.3]. [
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