Spectroscopic study of collisions in the 2³P state of ³He and ⁴He in low pressure gas discharges

DIA Ali^{1,2}, NACHER Pierre-Jean¹, ABBOUD Marie², and TASTEVIN Geneviève¹

¹ Laboratoire Kastler Brossel, ENS-PSL University, CNRS, Sorbonne Univ., Coll. de France, Paris, France
² Physics Department, Faculty of Science, Saint Joseph University, Beyrouth, Liban

Spin-polarized ³He gas has extensive applications^{*}. Metastability exchange optical pumping (MEOP) can indirectly orient the nuclear spin with high efficiency in low pressure gas. A weak discharge excites a small fraction of the atoms to the 2³S metastable state. OP operates on the 2³S-2³P transition and ME collisions transfer polarization to the ground state (gs). In practice MEOP performance is limited by OP-induced polarization loss, as systematically evidenced at high pump light power. Collision-induced population transfer between 2³P sublevels and excitation transfer to the gs are suspected to contribute to the loss.

In this work, we use tunable single mode diode lasers (DL) for sensitized absorption measurements and polarization spectroscopy in ⁴He, ³He, or gas mixture cells in the mbar range. A 1083 nm DBR DL selectively pumps atoms from the 2³S level and a 707 nm ECDL probes populations in the 2³P sublevels (see Fig.). Probe absorption signals yield rate constants for velocity-, J-, and F-changing collisions, as well as for excitation transfer between 2³P and gs atoms. Results will be reported and discussed with respect to MEOP efficiency.

*T.R. Gentile et al, Rev. Mod. Phys. 89 (2017) 045004.

Figure 1: a, b) Computed $2^{3}P-3^{3}S$ line structures and Doppler broadened spectra for He isotopes; c) Detection scheme and ⁴He levels; d) Absorption signal in a mixture cell.