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Experimental validation of deep-subwavelength diffusion by acoustic metadiffusers

(Dated: 2 August 2019) An acoustic metadiffuser is a subwavelength locally resonant surface relying on slow sound propagation. Its design consists of rigidly backed slotted panels, with each slit being loaded by an array of Helmholtz resonators (HRs). Due to the slow sound properties, the effective thickness of the panel can therefore be dramatically reduced when compared to traditional diffusers made of quarter-wavelength resonators. The aim of this work is to experimentally validate the concept of metadiffusers from the scattering measurements of a specific metadiffuser design, i.e., a Quadratic Residue Metadiffuser (QRM). The experimental results reported herein are in a close agreement with analytical and numerical predictions, therefore showing the potential of metadiffusers for controlling sound diffusion at very low frequencies.

a) corresponding author: balleste@lsbu.ac.uk / ballesteroeric@outlook.com 1 Scattering of waves is one of the most analysed phenomena in wave physics, and many applications using structures and surfaces that control the reflection of waves are exploited in several branches of science and technology. In acoustics, systems presenting a uniform scattering function, i.e., structures that reflect impinging waves in many different directions, have been largely developed since the pioneering work on acoustic diffusers by Schroeder in the 1970s 1 . These locallyreacting surfaces spread reflected waves into all directions, reducing the strength of the undesired specular reflections and audible echoes while sound energy is preserved in space. The spatiallydependent reflectivity of a sound diffuser is generally tailored following numerical sequences with a uniform spatial Fourier transform of their reflection coefficient such as the Quadratic Residue (QR), Maximum Length (MLS), Primary Root (PR) or Index sequences 2,[START_REF] Cox | Acoustic absorbers and diffusers: Theory, design and application[END_REF] . Traditionally, these structures, also called Schroeder diffusers, are designed using rigidly-backed slotted panels where each well acts as a quarter-wavelength resonator (QWR). Therefore, these phase-grating diffusers become thick and heavy structures when designed to manage low-frequency waves, e.g., the typical thickness of a quadratic residue diffuser (QRD) is half of the wavelength corresponding to the low cut-off frequency. In this way, their application is very limited in critical listening environments such as auditoria, professional broadcast and recording control rooms, recording studios or conference rooms to control low-frequency sound.

Several approaches have been proposed in the past to overcome these limitations. Well folding strategies were proposed to minimize the unused space between slots [START_REF] Mechel | [END_REF]5 . Later, Hunecke et.al. [START_REF] Hunecke | Schallstreuung und Schallabsorption von Oberfl: ahen aus mikroperforierten Streifen[END_REF] proposed to close the quarter wavelength resonators (QWRs) by perforated or microperforated sheets 2,[START_REF] Wu | [END_REF] , adding inertia to the impedance of the wells in order to lower the resonance frequencies and hence lower the design frequency. Recently, sonic crystals (SC) were used to construct volumetric acoustic diffusers 8,9 . In addition, optimized sound diffusers made of slotted panels incorporating two dimensional Helmholtz resonators (HRs) instead of QWRs are already commercialized [START_REF] Dantonio | Planar binary amplitude diffusor[END_REF] . By using HRs the resonance frequency of each well can be downshifted thus extending the diffusion bandwidth. This idea has recently been revisited by using metamaterials allowing the design of metasurfaces presenting simultaneously efficient diffusion properties and subwavelength dimensions. In 2017, Zhu et al. [START_REF] Zhu | [END_REF] revisited the problem to design an ultra-thin QRD using a planar array of HRs. The efficiency of this ultra-thin QRD is focused on the low frequency range. Also in 2017, the concept of metadiffusers was proposed by Jiménez et al. 12 . These sound diffusers are rigidly-backed slotted panels based on slow-sound metamaterials, i.e., each slit is loaded by an array of Helmholtz resonators. In essence, strong dispersion is intro- duced and the effective sound speed inside each slit is drastically reduced in the low frequency regime 13,14 due to the loading HRs. In this way, the quarter-wavelength resonance is shifted to the deep-subwavelength regime and, therefore, the effective thickness of the panel can be strongly reduced [15][16][17] . Various two-dimensional (2D) designs have been theoretically and numerically presented showing a strong reduction of the thickness of the panel of about a twentieth and a tenth of the thickness of traditional designs. As an example, a design of an optimized broadband metadiffuser panel of 3 cm thickness working from 250 Hz to 2 kHz was presented 12 , i.e., the panel is then 24 times thinner that the low cut-off wavelength of the intended sequence.

An experimental validation of the concept of acoustic metadiffusers is reported in this work.

A QR metadiffuser (QRM) has been 3D-printed, proving to scatter sound efficiently in one plane.

Diffusion properties of the QRM were characterized experimentally in an anechoic chamber following the procedure outlined in ISO 17497-2:2012 [START_REF] Organization | ISO 17497-2:2012 Acoustics -Sound-scattering properties of surfacespart 2: Measurement of the directional diffusion coefficient in a free field[END_REF] . Note that the original design 12 was purely two-dimensional, however, in practice the structure must be bounded and the final structure thus becomes finite in the three dimensional space. The experimental results of the QRM and a reference flat rigid reflector are compared with 3D numerical predictions of the finite structures using the Finite Element method (FEM) including thermoviscous losses. The experimental results reported herein are in close agreement with simulations and theory, therefore showing the potential of metadiffusers for controlling sound diffusion at the subwavelength scale.

The panel was manufactured using fused deposition modelling (FDM) techniques (Stratasys Fortus 450 MC), as shown in Figs. 1 (a-c). The squared panel, of L = 2 cm thickness and side Md = 35 cm, is composed of M = 5 slits and each slit is loaded with 2 identical HRs. This QRM mimics the behavior of a classical QRD made of M wells and a total thickness of L = 27.4 cm designed for a low cut-off frequency of 500 Hz. Note that the design frequency is normally set as the lower frequency limit of the diffuser, but it is not necessarily the lowest frequency at which the surface produces more scattering than a plane surface: the ratio between the size of the panel and the wavelength must be accounted for [START_REF] Cox | Acoustic absorbers and diffusers: theory, design and application[END_REF] . In this work, the response was evaluated at 2000 Hz to avoid the strong diffractive regime of the finite panel due to the small lateral size. The spatiallydependent reflection coefficient calculated from the QR sequence is given by s m = m 2 mod(M),

where mod(M) is the least non-negative remainder of the prime number M. For a classical QRD, the depth of the wells in the sequence is thus given by [START_REF] Cox | Acoustic absorbers and diffusers: theory, design and application[END_REF][START_REF] Cox | [END_REF] L m = s m λ 0 /2M, where λ 0 is the design wavelength. The dimensions of the slits and HRs of the QRM that mimics the reflection coefficient of the QRD are shown in the supplementary material 21 . The magnitude and phase of the reflection coefficient along the x-direction of the ideal QRD and the QRM, as calculated by using the transfer matrix method (TMM) 12 , are shown in Figs. 1 (d,e). Here, the reflection coefficient is evaluated considering the viscothermal losses existing in both the QRD and the QRM 22 . Notice that the thickness of the QRM is reduced by a factor of 13 with respect to the classical QRD one while both responses match.

The far-field pressure distribution at normal incidence, p s (θ , φ ), of a reflecting rectangular surface with a spatially dependent reflection coefficient, R(x, y), of size 2a and 2b in the x and y directions respectively, can be calculated using the Fraunhofer integral 23

p s (θ , φ ) = a -a b -b
R(x, y)e ik(x sin φ sin θ +y sin φ cos θ ) dxdy,

where θ and φ are the azimuthal and elevational angles, respectively. Figure 1 field calculations in the x-varying plane at 2000 Hz for a QRD, the QRM and a flat reference reflector of same dimensions. Excellent agreement is observed between the polar responses obtained by the direct integration of the Eq. ( 1) with the reflection coefficient profiles of the QRD and the QRM shown in Fig. 1 (d,e) with the full-wave numerical solution of the QRD problem using FEM (see further details of the methods in Jiménez et al. 12 ). Note viscothermal losses were accounted for in both cases.

An experimental procedure based on the ISO 17497-2:2012 [START_REF] Organization | ISO 17497-2:2012 Acoustics -Sound-scattering properties of surfacespart 2: Measurement of the directional diffusion coefficient in a free field[END_REF] was developed here to determine the sound scattering properties of the metadiffusers. As such, measurements consisted in placing the physical sample (e.g., the QRM or the flat reference panel) at the centre of a virtual concentric arc of evenly-spaced microphone positions, all within an anechoic environment and keeping unwanted acoustical contributions from the measurement system as minimal as possible, as shown in Fig. 1 (a). Microphone positions ranged from φ = 0 • to φ = 90 • around the surface with a spacing of 6 • between each and along an arc radius of 1 m. The sample was placed on a rotating table, thus allowing a complete hemispherical characterization of the surface's scattering along the polar circle in the θ direction. Measurements were performed for normal incidence by locating the source 2.5 m away from the surface. The system was excited using a broadband Maximum Length Sequence (MLS) signal and impulse responses (IRs) at each microphone position were obtained by deconvolution. Each IR was subtracted to the one obtained from the anechoic background and windowed to extract the scattered sound field [START_REF] Organization | ISO 17497-2:2012 Acoustics -Sound-scattering properties of surfacespart 2: Measurement of the directional diffusion coefficient in a free field[END_REF] . Then the polar distribution of the scattered field was obtained after Fourier transformation.

The experimental, analytical and simulated scattered field distributions at θ = 90 • cross-section are shown in Fig. 2 for both the QRM and the flat reference panel. Analytical solutions of Eq. ( 1) for a finite rigid panel of dimensions a = b = 35 cm can be found in the literature [START_REF] Rossing | Springer Handbook of Acoustics[END_REF] . Here, we show frequencies ranging from 700 Hz to 3.4 kHz. On the one hand, the simulated scattered field of the flat panel agrees with the analytical one (continuous-red and thick-grey, respectively). Slight deviations are observed at 2.4 kHz and 3.4 kHz, mainly caused by the finite thinness of the panel in the simulation. The measured scattered field of the flat panel (red triangles) also shows a strong agreement with the simulated and theoretical ones, except at grazing angles (φ > 60 • ) where higher scattering values are observed. This occurs because the weak reflected energy by the panel at grazing angle is comparable to the spurious reflections of the anechoic chamber grid that covers the floor. However, this effect has a very low impact on the diffusion coefficient values, as we will see later. On the other hand, measured scattered field values for the QRM (blue circles) are in close agreement to the far-field ones (continuous-blue) obtained through FEM simulations.

Note the dips observed in the simulations are smoothed in the experimental data and the overall distribution shape is conserved. At low frequencies, e.g., 700 Hz, simulated curves for the flat panel and QRM illustrate the fact that the QRM behaves in a similar manner to that of the flat panel, showing the need of normalization to estimate the diffusion performance of the sample.

Ultimately, the directional diffusion coefficient [START_REF]Acoustics -Sound-scattering properties of surfaces -Part 2: Measurement of the directional diffusion coefficient in a free field[END_REF] produced when the diffuser is radiated by a plane wave at the incident angle (θ , φ ), δ θ ,φ , can be estimated from the hemispherical distributions as

δ θ ,φ = I s (θ , φ )dS 2 - I 2 s (θ , φ )dS I 2 s (θ , φ )dS , (2) 
where I s (θ , φ ) = |p s (θ , φ )| 2 is proportional to the scattered intensity. The integration is performed over a hemispherical surface (-π/2 ≤ φ ≤ π/2 and θ = 2π) where dS = dθ dφ . In this work we analyse the case of a normal incident wave, i.e., θ = 0 and φ = 0. Therefore, δ θ ,φ ≡ δ . This coefficient must be normalized to that of a plane reflector, δ flat , to eliminate the effect of the finite size of the structure as δ n = (δ 0δ flat )/(1δ flat ). However, when approaching the frequency f ≈ 1000 Hz the dispersion in the slits progressively changes and the impedance of each deep-subwavelength slit is hence modified. The complex reflection coefficient thus becomes spatially dependent and, following Eq. ( 1), the scattering distribution starts to be modified resulting in higher values of the normalized diffusion coefficient δ 0 .

Eventually the spatially-dependent reflection coefficient matches the one of a QRD at f = 1500 Hz. At this frequency, the experimental diffusion coefficient takes a value of δ 0 = 0.783, while the corresponding simulation is placed at a very close value of δ 0 = 0.786. The normalized diffusion coefficient takes a value of δ n = 0.708 in the experiment and δ n = 0.712 in the simulation, keeping these values in the range of those reported for classical QRDs [START_REF] Cox | Acoustic absorbers and diffusers: theory, design and application[END_REF] . Note the normalized diffusion coefficient using 1D theory (see Fig 1 (f)) is very similar (δ n = 0.69). However, the latter 1D diffusion value must not be directly compared with results in Fig. 3 (a) as oblique and transversal modes along the y-direction are not included in the 1D theory. The presence of such modes will affect the impedance of the slits and will thus result in a change of the scattering properties of the surface. The experimental and simulated and theoretical scattering distributions at f = 1500

Hz at a distance of 1 m from the sample are shown in Fig. 3 (b-e). For the QRM the waves are reflected evenly for the azimuthal plane, θ = ±90 • , corresponding to the cross-section of the slits as R(x, y) only shows variations in the x-direction. This is an expected behaviour observed in any 1D phase grating diffuser and particularity useful to anisotropically control reflections in critical listening spaces [START_REF] Cox | Acoustic absorbers and diffusers: theory, design and application[END_REF] . In contrast, the flat panel mainly scatters waves in the specular direction. Both, experimental and numerical scattering distributions agree away from grazing angles as explained above. Complementary 3D plots at other frequencies and animated videos illustrating the simulated behavior of the QRM and flat panel are available in the supplementary material.

We have experimentally demonstrated the efficiency of metadiffusers, i.e., deep-subwavelength metasurfaces with uniform scattering distribution in the subwavelength regime. The scattering distributions observed experimentally using 3D panels are in close agreement with simulated and measured ones, and agree to the theoretical designs 12 . A remarkable high diffusion performance is demonstrated by the experimental normalized diffusion coefficient of δ n > 0.7 at 1500 Hz. The results demonstrate the possibility of metadiffusers to be applied in many practical situations where the classical solutions are limited due to the lack of space and structure weight. This includes applications ranging from opera pits 2 to aerospace applications [START_REF] Garcia-Raffi | [END_REF] . This study allows to push forth towards situation-specific designs of optimized metadiffusers and to continue measuring their scattering characteristics in order to solidify the knowledge of such subwavelength metasurfaces.

SUPPLEMENTARY MATERIALS

See supplementary materials for more details of the calculations as well as animation of sound scattering by acoustic metadiffusers.

FIG. 1 .

 1 FIG. 1. (Color online) (a) Experimental setup and coordinate system. (b) Photograph of the QRM, (c) detail of the first slit (m = 1) showing the definition of the geometrical parameters. (d) Phase and (e) magnitude of the spatially-dependent reflection coefficient for an ideal QRD (continuous lines) and the tailored QRM (markers). (f) Far-field polar distribution at 2kHz of an ideal QRD (continuous-blue), QRM obtained theoretically by TMM (circles), numerically by FEM (dashed red) and a plane reference reflector with same dimensions (thick-grey).

FIG. 2 .

 2 FIG. 2. (Color online) Scattered field distribution, p s (90 • , φ ), for normal sound incidence at different frequencies obtained experimentally in the near-field (markers) and numerically for the QRM (blue) and the flat reference panel (red) in the far-field. Theoretical far-field pressure distributions for the flat panel are shown in thick-grey lines.

  FIG. 3. (Color online) (a) Diffusion coefficients of the QRM and a flat reference panel. Scattered field distribution, p s (θ , φ ), for the QRM at 1500 Hz (b) measured experimentally and (c) by FEM simulations. (d-e) Corresponding scattered field distribution for the flat reference panel.

Figure 3 (

 3 Figure 3 (a) shows the frequency-dependent directional diffusion coefficients, δ 0 , for the QRM and the flat panel. First, the experimental diffusion coefficient for the flat panel is in close agreement with the analytical one and, as expected, higher diffusion values are achieved in the low frequency regime due to the diffraction of the finite sample. The same phenomenon can be observed for the QRM (blue continuous) in this low frequency regime as it matches values obtained for the flat panel. This is mainly due to the lack of any slit resonance within the metasurface, and is thus illustrated by the normalized diffusion coefficient of the QRM taking values around zero.
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