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Trace class properties of the non homogeneous linear

Vlasov-Poisson equation in dimension 1+1

Bruno Després

Abstract. We consider the abstract scattering structure of the non homogeneous

linearized Vlasov-Poisson equations from the viewpoint of trace class properties which

are emblematic of the abstract scattering theory [13, 14, 15, 19]. In dimension 1+1,

we derive an original reformulation which is trace class. It yields the existence of the

Moller wave operators. The non homogeneous background electric field is periodic

with 4 + ε bounded derivatives.
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1. Introduction

It has been observed many times in the literature that linear Landau

damping for the linear Vlasov-Poisson equation presents many similarities

with abstract scattering theory: some references in this direction are

[2, 5, 9]. However it seems, let us refer to [17], that it is has rarely

been shown that the linear Vlasov-Poisson can be analyzed within abstract

scattering theory [13, 14, 15, 19]. A recent attempt is nevertheless [8] with

a technique based on a complicated Lipmann-Schwinger equation.

The purpose of this work is precisely to analyze the abstract scattering

structure of the non homogeneous linear Vlasov-Poisson equation from the

viewpoint of trace class structures which are emblematic of the abstract

scattering theory [13, 14]. We will show that the model Vlasov-Poisson

equation (rewritten in Vlasov-Ampère form) does not satisfy naturally the

trace class property, but an original reformulation (denoted as the reduced

equation) satisfies it. It yields the existence of the wave operators by means

of the Kato-Birmann theory, and consequently, shows that the absolutely
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continuous part of the spectrum is unitarily equivalent to the one of free

transport. One technical crux of proving the trace class property is the

Diperna-Lions Theorem of compactness by integration which provides the

required small gain of regularity. In this work, the techniques employed

to prove the trace class are strongly restricted to dimension 1+1, that

is one in space and one in velocity: in particular the derivation of the

reduced Vlasov equation is made possible by means of a specific Ricatti

equation which has no simple equivalent in higher dimensions; and also the

version of the Diperna-Lions Theorem of compactness used to provide the

required small gain of regularity is remark 6 page 741 in [10], which is an

one dimensional argument. An explicit form of the wave operators exists

[17, 7] in the special case of an homogeneous vanishing electric potential

(ϕ0 = 0), even if the notion of wave operators is not explicitly mentioned

in these references.

The original results summarized in Theorem 1.1 are general in the sense

that, for establishing the unitary equivalence of the absolutely continuous

part of the spectrum of the full problem with the one of free transport, no

structure on the background electric potential is needed expect that being

periodic and having 4 + ε bounded derivatives.

General considerations. The starting point is the Vlasov-Poisson equa-

tion for one species of negatively charged particle (electrons) in a plasma.

For simplicity we consider functions which are 1-periodic in space, that is

g(x + 1) = g(x) for all quantities g = f , E, ρref , . . . : the torus will be

denoted as T = [0, 1]. The kinetic density of electrons is f(t, x, v) ≥ 0. The

given stationary fluid density of static ions is ρref(x). The total mass of

electrons is
∫
T×R finidxdv =

∫
T ρref(x)dx. The electric potential is ϕ(t, x)

and the electric field is E(t, x) = −∂xϕ(t, x). As a consequence of a Vlasov

equation for electrons and of the Gauss law, one has the fundamental iden-

tity ∂x
(
∂tE −

∫
R fvdv

)
= ∂t∂xE−∂x

∫
R fvdv = −∂t

∫
R fdv−∂x

∫
R fvdv = 0.

So one can write the Ampère law under the form ∂tE = 1∗
∫
R vfdv where

we will note 1∗ : L2(T) → L2
0(T) the usual projection operator such that

1∗g = g −
∫
T g(x)dx. We introduce the operator 1∗ in the Vlasov-Ampère

system 
∂tf + v∂xf − E∂vf = 0, t > 0, (x, v) ∈ T× R,
∂tE = 1∗

∫
R vfdv, t > 0, x ∈ I,

∂xE = ρref(x)−
∫
R fdv, t > 0, x ∈ I.

(1)

The solutions of this system preserve the physical energy 1
2

∫
T
∫
R fv

2dvdx+
1
2

∫
TE

2dx. They also preserve the mass of electrons
∫
T
∫
R f(t, x, v)dxdv =
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T
∫
R fini(x, v)dxdv and the zero mean value of the electric field

∫
TE(t, x)dx =

0. In this work, the initial data (f,E) will be considered as a small per-

turbation of a stationary state (f0, E0) such that v∂xf0 − E0(x)∂vf0 = 0

with E0 = −ϕ′0. The natural Boltzmanian hypothesis to represent such

stationary states is f0(x, v) = exp
(
−v

2

2 + ϕ0 (x)
)

where ϕ0 is the refer-

ence electric potential: the Boltzmanian hypothesis is a strong hypothesis

that probably can be modified [3, 4, 11] or relaxed as in [16]: however

we keep it in this work for the simplicity of the physical interpretation.

Consider a linearization under the form f(t, x, v) = f0(x, v) + g(t, x, v) and

E(t, x) = E0(x) + F (t, x), inject in (1) and drop the quadratic terms. It

yields the system
∂tg + v∂xg − E0∂vg − F∂vf0 = 0, t > 0, (x, v) ∈ T× R,
∂tF = 1∗

∫
R vgdv, t > 0, x ∈ T,

∂xF = −
∫
R gdv, t > 0, x ∈ T.

Model problem. Define M(x, v) =
√
f0(x, v) = exp

(
−v

2

4 + ϕ0(x)
2

)
and

the function u = g
M . Using that (v∂x − E0∂v)M = 0, one gets the model

linear Vlasov-Ampère system studied in this work{
∂tu+ v∂xu− E0∂vu = −vMF, t > 0, (x, v) ∈ T× R,
∂tF = 1∗

∫
R uvMdv, t > 0, x ∈ T.

(2)

The initial data satisfies∫
T

∫
R
M(x, v)uini(x, v)dxdv = 0 and

∫
T
Fini(x)dx = 0. (3)

The energy is preserved

d

dt

(∫
T

∫
R
u2dvdx+

∫
T
F 2dx

)
= 0. (4)

The Gauss law

∂xF = −
∫
R
uMdv (5)

is understood as a constraint satisfied by the initial data and propagated

by the equation. It can be characterized in the weak sense∫
T×R

u(x, v)M(x, v)ϕ(x)dxdv −
∫
T
F (x)ϕ′(x)dx = 0 ∀ϕ ∈ H1(T). (6)

The integrals (3) and the energy (4) are integral invariants of the system

(2). The Gauss-law (5)-(6) is an integro-differential invariant.
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Functional setting. Define the space L2
0(T) :=

{
F ∈ L2(T) |

∫
T F (x)dx = 0

}
.

Define the space L2
0(T×R) :=

{
u ∈ L2(T× R) |

∫
T×RM(x, v)u(x, v)dxdv = 0

}
:

it expresses that the physical perturbation has zero mass. Consider the first

line of (2) where the operator vM ∈ L (L2
0(T), L2

0(T× R)) shows up. One

has the identity∫
T

∫
R
u(vMF )dvdx =

∫
T

1∗
(∫

R
uvMdv

)
Fdx

which shows that the adjoint operator of vM is

(vM)∗ : u 7→ 1∗
∫
R
vuMdv ∈ L

(
L2
0(T× R), L2

0(T)
)
.

Define for convenience the space of complex-valued functions

X = L2
0(T× R)× L2

0(T).

The subspace GL ⊂ X characterizes pairs which satisfy the Gauss law in

the weak sense

GL = {(u, F ) ∈ X, the weak Gauss law (6) holds} . (7)

We will need two hermitian products. The first one is the classical quadratic

product for square integrable functions

(u,w) =

∫
T

∫
R
u(x, v)w(x, v)dxdv, u, w ∈ L2(T× R).

The second one is, in view of the energy identity, the natural one for

(u, F ) ∈ X and (w,G) ∈ X

((u, F ), (w,G)) = (u,w) +

∫
T
F (x)G(x)dx. (8)

From now on, one systematically introduces the pure imaginary number

i2 = −1 to obtain compatibility with more standard notations in scattering

theory [13, 15, 19]. One recasts the linear Vlasov-Ampère equations (2)

as ∂tU(t) + iHU(t) = 0 where the unknown is U =

(
u

F

)
∈ GL and the

anti-symmetric operator is formally

iH =

(
v∂x − E0∂v vM

−1∗
∫
v
vM 0

)
.
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One has the decomposition of operators iH = iH0 + iK where

iH0 =

(
v∂x − E0∂v 0

0 0

)
and iK =

(
0 vM

−1∗
∫
v
vM 0

)
. (9)

In terms of the scattering theory, the main question is to explore the

dynamics of the full Hamiltonian e−iHt with respect to the dynamics of the

reduced Hamiltonian e−iH0t. However the dynamics attached to H0 does

not preserve the Gauss law (5) so one can expect troubles with this way of

writing the scattering structure in L2(T×R) instead of GL. And indeed, we

will show that this decomposition does not have the trace property, even if

it almost trace-class (this will be precized).

This is why another framework will be introduced in Section 3. The

idea is to consider a new kinetic function

w(x, v) = u(x, v) + γ(x)M(x, v)F (x)

and the 1-periodic function γ solution to the Ricati equation

∂xγ + α2γ2 expϕ0 = 1, α = (2π)
1
4 .

If the pair (u, F ) satisfies (2)-(5), then purely algebraic manipulations show

that w is solution to the autonomous equation

w′(t) = iHw(t), H = H0 +K

where iH0 = v∂x−E0∂v is the transport operator and iK is integral operator

defined by

iKw = γ

(
vM

∫
R
wMdv −M

∫
R
wvMdv

)
+γM

∫
R×T

wvMdv−
(∫

T×R
wγM

)
Mv

This is an equivalence, that is there is a bijection between GL (7) and

X :=
{
w ∈ L2(T× R), (w, γM) = 0

}
⊂ L2(T× R).

The function γM which enters in the definition of the space X will be shown

to be spectral, that is HγM = 0. The main result obtained in Section 4 is

that the trace class property holds for this decomposition. It yields the

Theorem 1.1. Assume the electric potential is smooth ϕ0 ∈ W 4+ε,∞(T).

Then the wave operators W±(H,H0) exist and are complete. In particular

one has the orthogonal decompositions between spaces associated to absolute

continuous, singular continuous and discrete parts of the spectrum

L2(T× R) = X ac
0 ⊕X sc

0 ⊕X
pp
0 = X ac ⊕X sc ⊕X pp (10)
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and there exists two complete wave operators W± isometric on X ac
0 .

A direct consequence is that the space Xac (associated to the absolute

continuous part of the spectrum of iH) is in bijection with a space isometric

to X ac
0 (associated to the absolute continuous part of the spectrum of the free

transport operator iH0).

This result describes the strong constraints on the absolutely continuous

part of the spectrum of the operators. Essentially, they are the same.

However more information on the singular continuous part and on the pure

point spectrum is needed to describe completely the decomposition (10).

As usual for problems which come from classical physics, one can expect

that the singular continuous part is empty, that is X sc
0 = X sc = ∅. Standard

explicit representation prove it is indeed the case for some reasonable

electric potential ϕ0. The pure point spectrum which corresponds to

classical eigenvectors of the operators can be studied by direct means which

are outside the scope of the present paper.

There are two cases where we know exactly the absolutely continuous

part of the spectrum of the different operators. The first one is the

homogeneous case E0, and the spectral decomposition of H0 and H is

explicitly calculated in Section 2, so one knows the absolutely continuous

part of the spectrum. The second case is in the recent work [8] where the

explicit and complete calculation of the spectral decomposition is performed

for a non homogeneous one-bump (in space) background electric field: a

phase portrait method gives the spectral decomposition of H0 and the

absolutely continuous part of the spectrum; then a method based on a

Lipmann-Schwinger equation gives the the spectral decomposition of H.

Organization. The plan of this paper is detailed below. After providing

in Section 2 the reader with elements of abstract scattering theory, we

will show in Proposition 2.9 that the operator iK is not a trace class

perturbation of iH0: this will be proved in the homogeneous case (ϕ0 = 0).

However, for homogeneous profiles, Fourier decomposition is available, and,

Fourier mode per Fourier mode, iK is shown to be a trace class perturbation

of iH0. The conclusion is that, in the general case for which simple Fourier

decomposition is not possible, iK is not a trace class perturbation of iH0. In

Section 3, one introduces a further reduction of the Vlasov-Poisson-Ampère

model (operators become iH, iH0 and iK). Then in the next Section,

one proves that iK is a trace class perturbation of iH0. This reduction is

written as a linear Boltzman operator where the integrals are only in the

velocity variable. The proof is based on an original reformulation (28) of
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the equations plus a careful study of the regularity of the operators. A key

instrument is the Diperna-Lions compactness by integration Theorem [10].

The main result is Proposition 4.8. The last part of the main Theorem is

proved and a classical technical result is provided in the appendix.

2. Elements of Kato-Birman theory

We use the definitions, notations and results from [19, 13, 15]. In this

section we work in the space X.

The operators H and H0 are understood in this section as operators

with domain in X and value in X. The transport operator is denoted as

D = v∂x − E0(x)∂v. The domain of H : X → X and H0 : X → X is

D =
{

(u, F ) ∈ X, Du ∈ L2(T× R)
}

. The condition Du ∈ L2(T × R) is

understood in the sense of distribution.

Lemma 2.1. The operators H0 and H are closed.

Proof. This is immediate by construction for H0 for which there is no

condition on F . Indeed let (un, an)→ (u, a) in L2
0(T×R)×L2

0(T×R) be such

that Dun = an in the sense of distributions. Passing to the limit in the sense

of distributions, one gets that Du = a. So H0 is closed. Concerning H,

write H

(
un
Fn

)
=

(
an
bn

)
in the sense of distributions against a pair (ϕ,ψ)

of smooth test functions with compact support in velocity for ψ. One gets

−i
∫
T×R un (Dϕ+ vMψ) + i

∫
T FnvMϕ =

∫
T×R anϕ+

∫
I
bnψ. Passing to the

limit (un, Fn, an, bn)→ (u, F, a, b) in L2
0(T×R)×L2

0(T)×L2
0(T×R)×L2

0(T),

one gets

− i
∫
T×R

u [Dϕ+ vMψ] + i

∫
T
FvMϕ =

∫
T×R

aϕ+

∫
I

bψ (11)

for all admissible test functions. There exists G ∈ H1(T) such that

F = −∂xG. One notices the identity D(MG) = GDM + MDG =

0− vMF = −vMF . Plug in (11) and take ψ = 0. One gets −i
∫
T×R uDϕ−

i
∫
TD(MG)ϕ =

∫
T×R aϕ, that is after integration by parts, −i

∫
T×R(u −

MG)Dϕ =
∫
T×R aϕ. So D(u −MG) = −ia ∈ L2(T × R) which turns into

Du ∈ L2(T× R). Therefore (u, F ) ∈ D(H) and the proof is ended. �

Lemma 2.2. The operators H0 and H are self-adjoint.
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Proof. The proof below uses the Stone’s theorem [15, 19] which is con-

venient for problems coming from transport equations. Since H is a

bounded perturbation of H0, it is sufficient to show that H0 is self-

adjoint. And actually it is sufficient to show that H0 = iD with do-

main D(H0) =
{
ψ ∈ L2(T× R), Dψ ∈ L2(T× R)

}
is self-adjoint. The proof

will be performed with the regularity assumption ϕ0 ∈ W 2,∞(T), which is

enough in view of Theorem 1.1.

It is convenient to introduce the semi-group

U(t) : L2(T× R) −→ L2(T× R)

obtained by firstly constructing the characteristic lines and secondly trans-

porting datas at time t = 0 along the characteristic lines until time t > 0.

The characteristic lines are defined by t 7→ (Xt(x, v), Vt(x, v)) for t ∈ R
where d

dtXt(x, v) = Vt(x, v) and d
dtXt(x, v) = −E0(Xt(x, v)) with initial

data X0(x, v) = x and V0(x, v) = v. Let ψ ∈ L2(T × R), then the semi-

group is defined by

U(t)ψ(x, v) = ψ(X−t(x, v), V−t(x, v)).

By definition U(t)−1 = U(−t). One has the invariance of measure dXtdVt =

dxdv, so by construction, U(t) is unitary. The semi-group is also strongly

continuous (it is sufficient to verify this for data with compact support,

and this is evident). By the Stone’s theorem [15, 19], there exists a self-

adjoint operator A such that U(t) = eitA. More precisely, see Theorem

VIII.7 page 265 in [19], the domain of A (denoted as D(A)) is equal to the

set ψ ∈ L2(T× R) such that limt→0+
U(t)−I

t ψ = iAψ exists in L2(T× R) (a

similar reasoning is used in [6][Proposition 1, page 219]).

To identify this limit, one can perform the following calculation. Let us

take two smooth functions ψ and ϕ. One has(
U(t)ψ − ψ

t
, ϕ

)
=

1

t

∫
T

∫
R

(ψ(X−t(x, v), V−t(x, v))− ψ(x, v))ϕ(x, v)dxdv

= −1

t

∫ 0

−t

∫
T

∫
R

(Dψ) (X−s(x, v), V−s(x, v)ϕ(x, v)dxdvds.

By the invariance of measure, one gets the identity(
U(t)ψ − ψ

t
, ϕ

)
= −1

t

∫ 0

−t

∫
T

∫
R

(Dψ) (x, v)ϕ(Xs(x, v), Vs(x, v))dxdvds
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= −
(
Dψ,

1

t

∫ 0

−t
U(−s)ϕds

)
= − (Dψ,ϕ) +

(
Dψ,

1

t

∫ 0

−t
(ϕ− U(−s)ϕ)ds

)
.

(12)

• Let us now take ψ ∈ D(A), ϕ a smooth test function with compact support

and do an integration by parts in the right hand side of (12)(
U(t)ψ − ψ

t
, ϕ

)
= (ψ,Dϕ)−

(
ψ,

1

t

∫ 0

−t
(Dϕ−DU(−s)ϕ)ds

)
.

One can pass to the limit t→ 0+. Since E0 ∈W 1,∞(T), one can show that

‖Dϕ − DU(−s)ϕ‖L2(T×R) ≤ C(ϕ)s. It shows that lim
t→0+

U(t)ψ−ψ
t = −Dψ in

the sense of distributions. Therefore, in the sense of distributions, iA = −D
that is A = H0, and also D(A) ⊂ D(H0).

• Reciprocally, take ψ ∈ D(H0). From the identity (12), one derives

the estimate
∣∣∣(U(t)ψ−ψ

t , ϕ
)

+ (Dψ,ϕ)
∣∣∣ ≤ ‖Dψ‖1t ∫ 0

−t ‖ϕ−U(−s)ϕ‖ds which

makes sense for ϕ ∈ L2(T×R). Since the semi-group is strongly continuous,

one gets that U(t)ψ−ψ
t → Dψ in L2(T× R). Therefore ψ ∈ D(A).

• Therefore D(A) = D(H0) and the operators coincide in the sense of

distribution. So H0 = A is a self-adjoint operator.

• Finally H0 and H are self-adjoint operators. �

Therefore, [15, 13, 19], the spectrum of the operators can be decomposed

in terms of theory of measure. Below, we characterize the results for the

operator H0. There is a orthogonal decomposition of the Hilbert space X

into the orthogonal sum of invariant subspaces of the operator H0

X = Xac
0 ⊕Xsc

0 ⊕X
pp
0 (13)

where Xac
0 (resp. Xsc

0 , resp. Xpp
0 ) corresponds to the absolutely continuous

(resp. singular continuous, resp. pure point) part of the spectrum. The

pure point subspace Xpp
0 is spanned by the eigenvectors

Xpp
0 = Span {ϕ ∈ X, ϕ = λϕ for some λ ∈ R} .

The subspace Xac
0 is characterized by the existence of a dense set Dac ⊂ Xac

such that

ϕ ∈ Dac =⇒ ‖(H0 − λ± iε)−1ϕ‖ ≤
Cϕ,λ√
ε

for λ ∈ R and 0 < ε ≤ 1. (14)

This result is proved in [12](see also [13]). Mutatis mutandis, this charac-

terization hold also for H.

Let P0 be the projection operator onto the Xac
0 .
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Definition 2.3. The limit W± = s− limt→±∞ e
itHe−itH0P0 (if it exists) is

called the wave operator. If W± exists, it is isometric on Xac
0 .

Definition 2.4. If ran W± = Xac, then W± is said to be complete.

If the wave operators exist and are complete, then H0 and H are

unitarily equivalent and their absolutely continuous spectrum is the same

(as a subset of R). In the context of this study, it has the following

interesting consequence. Let f ∈ Xac, so there exists g± ∈ X such that

W±g± = f . It yields that f = limt→±∞ e
itHe−itH0P0g± which is rewritten

as limt→±∞
∥∥e−itHf − e−itH0P0g±

∥∥ = 0. In other words, the long time

dynamics of the full Hamiltonian applied to f ∈ Xac is identical to the

long time dynamics of the simplified Hamiltonian for g±. Linear Landau

damping is just a corollary of this property for initial data in the absolutely

continuous part of the spectrum.

However it is necessary to prove the existence and completeness of the

wave operator. The celebrated Kato-Birman theory brings a criterion, see

Theorem 2.5 below. It is based the trace class criterion for a compact

operator T

‖T‖1 =
∑

λj(T
∗T )

1
2 <∞ (15)

where the (λj)j∈N is the sequence of all non negative eigenvalues of the

compact operator T ∗T . Actually ‖ · ‖1 is a norm, refer to section X.1.3 in

[13]).

Theorem 2.5 (Kato-Birman). Suppose that (H−z)−n−(H0−z)−n is trace-

class for some n ∈ N∗ and all z with Im z 6= 0. Then the wave operators

W±(H,H0) exist and are complete.

Let us now derive a partially negative result which concerns the homo-

geneous case, that is E0 := 0 and M := exp(−v2/4). In this case one can

split the operators along a Fourier decomposition (mode k ∈ Z) so as to

define

Hk
0 =

(
vk 0

0 0

)
and Hk = Hk

0 − iδk

(
0 ve−

v2

4

−
∫
ve−

v2

4 · dv 0

)
(16)

where δ0 = 0 and δk = 1 for k 6= 0. In this case the orthogonal

decompositions are easy to determine.
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Lemma 2.6 (Operator H0
0 = H0 = 0, that is k = 0). The orthogonal

decomposition of the space L2
0(R) × {0} is given by (X0

0 )ac = (X0
0 )sc =

(X0)ac = (X0)sc = ∅ and (X0
0 )pp = (X0)pp = L2

0(R)× {0}.

Lemma 2.7 (Operator Hk
0 for k 6= 0). The orthogonal decomposition

of the space L2(R) × C is given by (Xk
0 )ac = L2(R), (Xk

0 )sc = ∅ and

(Xk
0 )pp = Ker(Hk

0 ) = {0} × C.

Proof. Characterization of the kernel Ker(Hk
0 ) = {0} × C is immediate.

Next u ∈ Y = L2(R) ∩ L∞(R) wich is a dense subset in L2(R). Then the

criterion (14) holds with Dac = Y × {0} because

∥∥(Hk
0 − λ+ iε)−1(u, 0)

∥∥2 =

∫
R

|u(v)|2

(vk − λ)2 + ε2
dv

≤
∫
R

‖u‖2L∞(R)

(vk − λ)2 + ε2
dv =

‖u‖2L∞(R)

|k|ε
.

Since L2(R) × {0} ⊕ Ker(Hk
0 ) = L2(R) × C is the full space, it is the

orthogonal decomposition of the claim. In passing it shows there is no

singular continuous part of the spectrum. �

Lemma 2.8 (Operator Hk for k 6= 0). The orthogonal decomposition of the

space is given by (Xk)ac =
(
(Xk)pp

)T
and (Xk)sc = ∅ where

(Xk)pp = Ker(Hk
0 ) = Span(uk) where uk = (i exp(−v2/4), k).

Proof. Note uk = (ak, Fk). The equation Hkuk = 0 reduces to vkak −
iv exp(−v2/4)Fk = 0 and

∫
v exp

(
−v

2

4

)
ak(v)dv = 0, which yields kak =

i exp(−v2/4)F . One obtains the eigenvector

uk = (i exp(−v2/4), k)t. (17)

Therefore Ker(Hk
0 ) = Span(uk).

Next take (u, F ) ∈ Ker(Hk
0 )⊥ in the orthogonal of the Kernel

− i
∫
T×R

u(x, v) exp(−v2/4)dxdv + Fk = 0. (18)

This identity is the translation in Fourier that the pair (u, F ) satisfies the

Gauss law. Let us consider a pair (g, h) ∈ Ker(Hk
0 )⊥ and a pair (u, F )
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(necessarily in Ker(Hk
0 )⊥) such that (Hk

0 − λ − iε)(u, F ) = (g, h). We try

to verify the criterion (14). Note that

(vk − λ− iε)u(v)− iFve−w
2

4 = g

and that F can be determined with the Gauss law under the form (18).

To check the criterion (14), one can use a method originally due to [18]

which has been adapted in [7] to the quadratic framework. It corresponds

to the definition of the operator Lk

(Lku)(v) = (k2 + q(v))u(v)− ve− v
2

4 P.V.

∫
R

1

w − v
u(w)e−

w2

4 dw

where q(v) = P.V.
∫
R

w
w−ve

−w2

2 dw. For k 6= 0, the operator Lk is bounded in

Hs(R)→ Hs(R) for all s ≥ 0, is invertible with inverse (Lk)−1 also bounded

in Hs(R) → Hs(R) for all s ≥ 0. Let z = Lku. With [7][page 2566-2567],

it is an algebraic exercise to show the identity (vk − λ− iε)z = Lkg. Take

g ∈ H1(R), then Lkg ∈ H1(R). Since H1(R) ⊂ Y (defined in the proof

of Lemma 2.7), then ‖z‖L2(R) ≤ C√
ε
. Invertibility of Lk and the Gauss

law show that a similar bound is satisfied by (u, F ) which is the searched

criterion (14). It shows that Ker(Hk
0 )⊥ ⊂ (Xk)ac which ends the proof. �

The negative result is the following.

Proposition 2.9. For all n ∈ N∗, the operator (H − z)−n − (H0 − z)−n is

not trace class.

Proof. If the the trace class property is proved for one z with Im(z) 6= 0,

then it holds for every non real z, see Lemma 4.11 page 547 in [13].

For practical convenience one can take z = iβ with β ∈ R∗, and note

T k = (Hk − z)−n − (Hk
0 − z)−n. Its maximal singular value µk =

√
λk is

given by

λk = sup
w 6=0

‖T kw‖2

‖w‖2
≥ ‖T

kuk‖2

‖uk‖2
, uk given in (17).

One has ‖T kuk‖2 =
∫
|(−z)−n − (vk − z)−n|2 e− v

2

2 dv and ‖uk‖2 =
∫
e−

v2

2 dv+

k2. Since z = iη with β ∈ R∗, one gets lim|k|→∞
(
k2|z|2n ‖T

kuk‖2
‖uk‖2

)
=
√

2π.

By definition (15) of the trace, one gets ‖T‖1 & (2π)
1
4

|z|n
∑
k 6=0

1
|k| = +∞ due

to the logarithmic divergence, so the proof is ended. �
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The conclusion is that the T is not globally trace-class because of the

logarithmic divergence. However, Fourier mode per Fourier mode, the

operators (T k)k∈Z are trace-class individually because the extra-diagonal

perturbation in (16) is of finite rank [7]. In this sense, T is ”almost” trace-

class. Inspection of the structure (16) of Hk − z shows that the lack of a

differential operator on the bottom right part of the matrix is involved in

the fact that the trace class property does not hold. This is also related to

the fact that the Gauss law is not preserved by the dynamics of H0, that

is H0(GL) 6⊂ GL.

3. The reduced Vlasov-Poisson-Ampère model

The reduced Vlasov-Poisson-Ampère model (also called the reduced equa-

tion) is obtained after a purely algebraic manipulation. Technically it al-

lows to hide the electric field F into a new kinetic function w (19) so the

compatibility issue with the Gauss law emphasized above is no more an

issue.

3.1. Reduction. Let (u, F ) ∈ X. The idea is to find a weight x 7→ γ(x) >

0 and a new function w

w(x, v) = u(x, v) + γ(x)M(x, v)F (x) (19)

such that ∫
T

∫
R
w2dvdx =

∫
T

∫
R
u2dvdx+

∫
T
F 2. (20)

Lemma 3.1. Assume the 1-periodic function γ is solution to the equation

∂xγ + α2γ2 expϕ0 = 1, α = (2π)
1
4 . (21)

Assume (u, F ) ∈ GL satisfies the Gauss law. Then the identity ( 20) holds.

Proof. One hasM2 = exp
(
−v

2

2 + ϕ0(x)
)

, so
∫
RM

2(x, v)dv = α2 exp(ϕ0(x)).

Therefore∫
T

∫
R
w2dvdx =

∫
T

∫
R
u2dvdx+ 2

∫
γF

∫
uMdvdx+α2

∫
γ2F 2 expϕ0(x)dx

=

∫
T

∫
R
u2dvdx+ 2

∫
γF (−∂xF )dx+ α2

∫
γ2F 2 expϕ0(x)dx
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=

∫
T

∫
R
u2dvdx+

∫
F 2∂xγdx+ α2

∫
γ2F 2 expϕ0(x)dx,

from which the result proceeds. �

Let γ > 0 be a solution to (21) (we do not know yet if it exists). Set

g = 1
γ > 0 which is a formal solution of the equivalent Ricati equation

g′(x) + g(x)2 = α2 exp (ϕ0(x)).

Lemma 3.2. There exists a 1-periodic positive solution g = 1
γ > 0 of the

Ricati equation.

Proof. The proof of the existence is by a shooting method. Consider the

solution given by the Cauchy-Lipshitz theorem of the equation{
g′a(x) = α2 exp (ϕ0(x))− ga(x)2, 0 < x ≤ 1,

ga(0) = a

and define the function Z(a) = ga(1). The objective is to find a solution to

the equation Z(a) = a. Take K > 0 sufficiently large. For a ∈ [0,K]

then ga(x) ∈ [0,K] for all x: this is evident since if ga(x) = 0 then

g′a(x) > 0, and if ga(x) = K then g′a(x) < 0 (because K is large). Therefore

Z[0,K] ⊂ [0,K]. Since Z is a continuous function, there exists b ∈ [0,K]

such that Z(b) = b. Therefore the trajectory such that gb(0) = b is periodic.

Of course b cannot be equal to zero, nor to K. The trajectory is globally

positive (it can be proved it is unique). �

Note that ‖γM‖L2(T×R) = 1: indeed

‖γM‖2L2(T×R) =

∫
T

∫
R
γ(x)2M(x, v)2dvdx =

∫
T
γ(x)2α2eϕ0(x)dx =

∫
T
(1−∂xγ)dx = 1.

Assume the Gauss law (19) and take w = Λ(u, F ). One has
∫
RwMdv =∫

R uMdv + γα2eϕ0F = −∂xF + 1
γ (1− ∂xγ)F . So one can write

γ

∫
R
wMdv = −∂x(γF ) + F. (22)

Using that F has zero mean value and is periodic, one gets the orthogonality

identity
∫
T
∫
RwγMdxdv = 0 by integration with respect to x. It shows that

Λ(GL) ⊂ X :=
{
w ∈ L2(T× R), (w, γM) = 0

}
where

Λ : GL −→ X
(u, F ) 7→ w defined by (19).

.

One has more precisely the following.
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Lemma 3.3. Λ is a bijective isometry from GL into X . An explicit form of

the inverse given in ( 23-24).

Proof. One has ‖Λ(u, F )‖X = ‖(u, F )‖X in view of (20). It remains to prove

that Λ is onto: that is one takes w ∈ X and tries to solve the equation (19)

where u and F are the unknowns. One has∫
R
wM(x, v)dv =

∫
R
uM(x, v)dv + γα2 exp (ϕ0(x))F

= −∂xF + α2γ(x) exp (ϕ0(x))F = −∂xF +
1

γ
(1− ∂xγ)F

where one recognizes (22). One obtains an equation for F which is

∂x(γF ) − F = −γ
∫
RwM(x, v)dv. This equation is solvable for F ∈ L2

0(T)

due the hypothesis
∫
T
(
γ
∫
RwM(x, v)dv

)
= 0. Set for convenience G = γF

which is introduced to write explicitly the form of the solution F . One has

G− 1
γ∂xG = −γ(x)

∫
RwM(x, v)dv and

∂x

(
exp

(
−
∫ x

0

dy

γ(y)

)
G

)
= − exp

(
−
∫ x

0

dy

γ(y)

)
γ(x)

∫
R
wM(x, v)dv.

One gets(
e−

∫ 1
0

dy
γ(y) − 1

)
G(0) = −

∫ 1

0

(
exp

(
−
∫ x

0

dy

γ(y)

)
γ(x)

∫
R
wM(x, v)dv

)
dx.

Since exp
(
−
∫ 1

0
dy
γ(y)

)
< 1 as a consequence of γ > 0, the Cauchy data

G(0) is uniquely determined, which is enough to construct G. So F can be

written as

F (x) =

∫
T
K(x, y)

(∫
R
wM(y, v)dv

)
dy (23)

where the kernel K ∈ L∞(T × R) is explicitly calculable. After that u is

recovered as

u = w − γ(x)M(x, v)F. (24)

By construction, it satisfies
∫
uMdv =

∫
wMdv−α2γeϕ0F = −∂xF + 1

γ (1−
∂xγ)F − α2γeϕ0F = −∂xF , and u ∈ L2

0(T× R). The proof is ended. �

3.2. Construction of an autonomous equation for w = Λ(u, F ).

Since the system (2) preserves the quadratic norm of the pair (u, F ) (which

is equal to the quadratic norm of w), it is not surprising w is the solution of

an autonomous equation where the operator is closed, self-adjoint and can
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be decomposed in two operators which are also closed and self-adjoint over

X . The construction of the corresponding operator is performed in several

steps.

By symmetry with the usual notation in scattering, let us note iH0 =

D = v∂x − E0(x)∂v and let us define the operator Htrunc by

iHtruncw = iH0w + γ

(
vM1∗

∫
wMdv −M

∫
wvMdv

)
.

The subscript ·trunc indicates that the operator is truncated with respect

to the complete definition (25).

Lemma 3.4. Assume (u, F ) ∈ GL satisfies ( 2). Then w = Λ(u, F ) satisfies

∂tw + iHtruncw = 0.

Proof. Indeed

∂tw +Dw = ∂tu+Du+ γM(x, v)1∗
∫
uvMdv +D(γ(x)FM(x, v))

= −vMF + γ(x)M(x, v)1∗
∫
uvMdv +MD(γ(x)F )

= −vMF+γM(x, v)1∗
∫
wvMdv−γM(x, v)1∗

∫
(γFM)vMdv+Mv∂x(γF ).

One has that
∫
R vM

2(x, v)dv = 0. So

∂tw +Dw = −vMF + γM1∗
∫
wvMdv +Mvγ∂xF +MvF∂xγ

= −vMF + γM1∗
∫
wvMdv −Mvγ

∫
uMdv +MvF (1− α2γ2 exp (ϕ0))

= γM(x, v)1∗
∫
wvMdv −Mvγ

∫
uMdv −MvFα2γ2 exp (ϕ0)

= γM(x, v)1∗
∫
wvMdv − γvM

∫
wMdv

+γvM

∫
(γMF )Mdv−MvFα2γ2 exp (ϕ0) = γM(x, v)1∗

∫
wvMdv−γvM

∫
wMdv,

which yields the claim. �

Lemma 3.5. Consider that w satisfies ∂tw + iHtruncw = 0. One has the

identity d
dt(w(t), γM) = 0.
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Proof. It is sufficient to show that
∫
T×R γM(Htruncw)dvdx = 0.

One has ∫
T×R γMDwdvdx =

∫
T×R γD(Mw)dvdx

= −
∫
T×RMwDγdvdx

= −
∫
T×RMwv∂xγdvdx

= −
∫
I
∂xγ

(
1∗
∫
RMwv

)
dvdx.

A trivial identity is
∫
T×R γM (γ (vM

∫
wM)) dvdx =

∫
T γ

2 (
∫
wM) (

∫
M2v) dx =

0. A third identity is
∫
T×R γM (γ (M1∗

∫
wvM)) dvdx =

∫
T γ

2α2eϕ0(x) (1∗
∫
wvM) dx.

So by summation∫
T×R γM(iHtruncw)dvdx = −

∫
I
∂xγ

(
1∗
∫
RMwv

)
dvdx

−
∫
T γ

2α2eϕ0(x) (1∗
∫
wvM) dx

= −
∫
T (1∗

∫
wvM) dx

= 0,

which ends the proof. �

Define for convenience the bounded operator

iKtruncw = γ

(
vM

∫
wMdv −M1∗

∫
wvMdv

)
so that one has the decomposition Htrunc = H0 +Ktrunc.

Lemma 3.6. The operator Ktrunc is closed and self adjoint in X .

Proof. The closedness of the bouded operator Ktrunc is immediate. It is

sufficient to check its symmetry. For w, z ∈ X , one has

(Ktruncw, z) = −i
∫
T
(∫

R γwMdv
) (∫

zvMdv
)
dx

+i
∫
T
(
1∗
∫
RwvMdv

) (∫
γzMdv

)
dx

= −i
∫
T
(∫

R γwMdv
) (∫

zvMdv
)
dx

+i
∫
T
(∫

RwvMdv
) (∫

γzMdv
)
dx

=
∫
T
(∫

R γwMdv
) (
i1∗
∫
zvMdv

)
dx

−
∫
T
(∫

RwvMdv
) (
i
∫
γzMdv

)
dx

= (w,Ktruncz).

It yields the claim. �
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A simple transformation of Ktrunc yields a formulation which is fully

symmetric in L2(T × R) (not only in X ) , it reveals more convenient for

further manipulations. Set

iKw = iKtruncw − (iH0 + iKtrunc)

(∫
T×R

wγM

)
γM (25)

and define two bounded and symmetric integral operators:

iK1w = γ

(
vM

∫
R
wMdv −M

∫
R
wvMdv

)
(26)

and

iK2w = γM

∫
R×T

wvMdv −
(∫

T×R
wγM

)
Mv. (27)

Lemma 3.7. One has the identity K = K1 + K2 and K is self-adjoint in

L2(T× R).

Proof. One has the identity (iH0 + iKtrunc)γM = Mv which comes from

iH0γM = iMH0γ = Mv∂xγ and iKtruncγM = γvM
∫
γM2 = Mvγ2α2eϕ0 .

So

iKw = iKtruncw−i(H0+Ktrunc)

(∫
T×R

wγM

)
γM = iKtruncw−

(∫
T×R

wγM

)
Mv

= γ

(
vM

∫
R
wMdv −M1∗

∫
R
wvMdv

)
−
(∫

T×R
wγM

)
Mv

= γ

(
vM

∫
R
wMdv −M

∫
R
wvMdv

)
+γM

∫
T×R

wvMdv−
(∫

T×R
wγM

)
Mv

which yield the claim. �

Define iH : L2(T × R) → L2(T × R) with iH = iH0 + iK. For

w = Λ(u, F ) ∈ GL which satisfies (2), one finally obtains the formulation

∂tw + iHw = 0. (28)

The interesting point is that K is bounded and self-adjoint operator in

L2(T×R). Of course only physically sound initial conditions w0 ∈ X make

sense. Since the equation propagates w(t) ∈ X , we can work with the

operators H, H0 and K viewed as unbounded or bounded operators defined

either in the space X or in the space L2(T× R).

Two technical properties which will be used later follow.
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Lemma 3.8. One has H = Λ−1HΛ : GL→ GL.

Proof. Since Λ(GL) = X , it is sufficient to interpret the equality to

understand H as an operator in X . The equation (28) is rewritten as

Λ∂t(u, F ) + iHΛ(u, F ) = 0 for all (u, F ) ∈ GL which satisfy ∂t(u, F ) +

iH(u, F ) = 0. So (Λ−1HΛ−H) (u, F ) = 0 for all (u, F ) ∈ GL. That is

(Λ−1HΛ−H) Λ−1 = 0 from which is the claim. �

Lemma 3.9. One has H(γM) = 0.

Proof. The proof can be deduced from the previous material, but a more

direct path is possible. Set w(x, v) = γ(x)M(x, v). One has
iK1w = γ (vM

∫
γM2dv − 0) = vMγ2eϕ0α2,

iK1w = 0− vM
∫
T×R(γM)2 = −vM,

iH0w = (v∂x − E0∂v)(γM) = M(v∂x − E0∂v)γ = vM∂xγ.

Using (21), the sum of these three term cancels. �

4. Trace class properties of (H,H0)

Now that the Gauss law is hidden inside the definition of K, one is free to

study trace class properties of the pair (H,H0) understood as unbounded

operators in the space L2(T× R), by means of standard techniques.

Take z ∈ C with Im(z) 6= 0. Let us study the trace of (H− z)−1− (H0−
z)−1. The complex number z ∈ C is arbitrary: that is if the the trace class

property is proved for one z with Im(z) 6= 0, then it holds for every non

real z, see Lemma 4.11 page 547 in [13]. For practical convenience we will

take z = iβ with β ∈ R∗ and |β| large enough, typically

|β| > C
(
‖E0‖W 2,∞(T) + 1

)
for some C > 0, (29)

to have the benefit of the elementary regularity result of Lemma 4.5.

One has the identity

(H− z)−1 − (H0 − z)−1 = (H0 − z)−1(H0 −H)(H− z)−1
= −(H0 − z)−1K(H− z)−1
= −(H0 − z)−1K(H0 − z)−1 ((H− z)−K) (H− z)−1
= −(H0 − z)−1K(H0 − z)−1 (I −K(H− z)−1)
= −(T + S)C
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where 
T = (H0 − z)−1K1(H0 − z)−1,
S = (H0 − z)−1K2(H0 − z)−1,
C = I −K(H− z)−1.

(30)

The operator C is bounded in L(X ), since ‖I − K(H − z)−1‖ ≤ 1 +

‖K‖/|Im(z)|. So by inequalities (1.17) and (1.20) from section X.1.3 in

[13], one gets

‖(T + S)C‖1 ≤ ‖T ‖1‖‖C‖+ ‖S‖1‖C‖.

Therefore it is sufficient to study the trace of T and S separately to obtain

the trace class property of the pair (H,H0). By definition (27) of K2, the

operator S has finite rank so has a finite trace, Lemma 4.9. All efforts must

concentrate on the analysis of T , and the main result will be that T is trace

class, see Proposition 4.8. It will prove Theorem 1.1.

4.1. Operator T in (30). The trace class property of T is proved in this

section, after a careful study the kernel of T and the construction of an origi-

nal integral equation. For technical convenience, we will consider the family

of Hermite functions (ψn)n∈N, refer to [1, 7]. The family is orthonormal and

complete in L2(R): u(v) =
∑
n≥0 anψn(v) and ‖u‖2L2(R) =

∑
n≥0 |an|2. In

particular, one has ψ0(v) = exp(−v2/4)/α, ψ1(v) = v exp(−v2/4)/α and

ψn ∈ H1(R) for all n. One can rewrite K1 as

K1w = −iα2γeϕ0(x)

(
ψ1(v)

∫
R
ψ0(v)w(x, v)dv − ψ0(v)

∫
R
ψ1(v)w(x, v)dv

)
.

4.1.1. The kernel of T . Eigenvectors of T ∗T associated to non zero

eigenvalues are the ones involved in the calculation of the trace of T . Since

T ∗T is a symmetric operator, such eigenvectors belong to Ker(T ∗T )⊥.

Lemma 4.1. One has Ker(T ∗T ) = Spann≥2
{

(H0 − z)anψn, an ∈ H1(T)
}

.

Proof. In this notation, anψn means the function (x, v) 7→ an(x)ψn(v). Take

n ≥ 2 and an ∈ H1(T). One has

(H0 − z)anψn = (v∂x − E0∂v)(anψn)− zanψn ∈ L2(T× R).

One has K1(H0 − z)−1 ((H0 − z)anψn) = K1anψn = 0 in view of definition

(26). So (H0 − z)anψn ∈ Ker (K1(H0 − z)−1) ⊂ Ker(T ).
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Reciprocally take w ∈ Ker(T ) = Ker(K1(H0 − z)−1). Using (26) one

gets for almost all x ∈ I∫
R

(
(H0 − z)−1)w

)
(x, v)ψ0(v) =

∫
R

(
(H0 − z)−1)w

)
(x, v)ψ1(v) = 0.

So ((H0 − z)−1w) (x, v) ∈ Span {ψ0(v), ψ1(v)}⊥ for almost all x. One gets

the representation ((H0 − z)−1w) (x, v) =
∑
n≥2 an(x)ψn(v), that is

w ∈ Spann≥2
{

(H0 − z)anψn, an ∈ H1(T)
}

and the proof is ended. �

4.1.2. An integral equation. A technical lemma is the following.

Lemma 4.2. Assume w ∈ X is even (resp. odd) w.r.t. the velocity v. Then

(H2
0 + |z|2)−1w is even (resp. odd) w.r.t. the velocity v.

Proof. The operator H0 = v∂x − E0(x)∂v is odd w.r.t. v. So its square is

an even operator which preserves the parity w.r.t. v. It ends the proof. �

Lemma 4.3. Let λ ∈ R∗. The equation (T ∗T )w = λw for w 6= 0 is equivalent

to two decoupled integral equations(
γeϕ0T2γeϕ0T1a
γeϕ0T1γeϕ0T2b

)
= λ

(
a

b

)
, (a, b) 6= (0, 0), (31)

where T1, T2 : L2(T)→ L2(T) are integral operators{
T1a(x) = α2

∫
R ψ0(v) [(H2

0 + |z|2)−1(aψ0)] (y, v)dv,

T2b(x) = α2
∫
R ψ1(v) [(H2

0 + |z|2)−1(bψ1)] (y, v)dv.
(32)

Proof. Take w = (H0−z)−1 (a(x)ψ0(v) + b(x)ψ1(v)), so that w ∈ Ker(T ∗T )⊥

in view of Lemma 4.1. Then this representation shows that

T ∗T w = (H0−z)−1K1(H2
0 + |z|2)−1K1(H2

0 + |z|2)−1 (a(x)ψ0(v) + b(x)ψ1(v))

and that λw = λ(H0 − z)−1 (a(x)ψ0(v) + b(x)ψ1(v)). So the spectral

problem T ∗T w = λw is equivalent to

K1(H2
0 + |z|2)−1K1(H2

0 + |z|2)−1 (a(x)ψ0(v) + b(x)ψ1(v)) (33)

= λ (a(x)ψ0(v) + b(x)ψ1(v)) .
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Take b = 0 and d(x, v) = a(x)ψ0(v). By construction one has

K1(H2
0 + |z|2)−1d = iα2ψ1(v)γeϕ0

∫
R ψ0(H2

0 + |z|2)−1aψ0

− iα2ψ0(v)γeϕ0
∫
R ψ1(H2

0 + |z|2)−1aψ0

= iα2ψ1(v)γeϕ0
∫
R ψ0(H2

0 + |z|2)−1aψ0

= iγeϕ0ψ1T1a

because the term
∫
R ψ1(H2

0+|z|2)−1aψ0 vanishes due to the parity of Lemma

4.2. A similar annulation argument shows that

(K1(H2
0 + |z|2)−1)2 d = −ψ1γe

ϕ0
∫
R ψ0(H2

0 + |z|2)−1(T1a)ψ1

+ψ0γe
ϕ0
∫
R ψ1(H2

0 + |z|2)−1(T1a)ψ1

= ψ0γe
ϕ0
∫
R ψ1(H2

0 + |z|2)−1(T1a)ψ1

= ψ0γe
ϕ0T2(γeϕ0T1a).

Plugging in (33) and simplification by ψ0(v) yield the reduced eigenvalue

equation γeϕ0T2γeϕ0T1a = λa. A similar algebra holds starting from

d(x, v) = b(x)ψ1(v), but the operators T1 and T2 commute in the result.

The proof is ended. �

Lemma 4.4. The operators T1,2 : L2(T) → L2(T) are self adjoint, bounded,

positive and injective.

Proof. We perform the proof for T2 only (it is the same for T1). The operator

T2 is symmetric since

(a, T2b) =
∫
T×R(aψ1)(y, v)(H2

0 + |z|2)−1(bψ1)(y, v)dydv

=
∫
T×R [(H0 − z)−1(aψ1)] (y, v)(H0 − z)−1(bψ1)(y, v)dydv

=
∫
T×R(H2

0 + |z|2)−1(aψ1)(y, v)(bψ1)(y, v)dydv

= (a, T2b) ∀ a, b ∈ L2(T).

The operator T2 is also bounded with ‖T2‖ ≤ 1
|z|2 . So it is self-adjoint. It

is injective because (a, T2a) =
∥∥(H0 − z)−1(aψ1)

∥∥2
L2(T×R) > 0 for a 6= 0. It

ends the proof. �

We will use the following elementary result.

Lemma 4.5. Assume E0 ∈ W s,∞(T) for s ≥ 0. Take z = iβ with

|β| large enough (for example |β| > ‖E0‖W1,∞(T)+1

2 ). Take d ∈ Hs(T)

and a smooth function ϕ exponentially decreasing at infinity and denote

u(x, v) = d(x)ϕ(v). Then (H0 ± iβ)−1 preserve the regularity with respect

to x:
∥∥(H0 ± iβ)−1u

∥∥
Hs(T×R) ≤ C

ϕ
s ‖d‖Hs(T).
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Proof. Consider (H0 ± iβ)u(x, v) = d(x)ϕ(v). One gets by differentiation

(H0 ± iβ)(∂xu) +iE′0(x)∂vu = d′(x)ϕ(v),

(H0 ± iβ)(∂vu) −i∂xu = d(x)ϕ′(v).

Multiply the first equation by ∂xu, the second equation by ∂vu and integrate

in space-velocity. One gets the natural bound

|α| |u|2H1(T×R) ≤ ‖dϕ‖H1(T×R) |u|H1(T×R) +
‖E0‖W 1,∞(T) + 1

2
|u|2H1(T×R)

where |u|H1(T×R) is the H1 semi-norm. The hypothesis yields the control

of the semi-norm and ends the claim for s = 1. For higher derivatives

s = n ∈ N, s ≥ 2, the result is proved after successive derivation. For s > 0,

interpolation ends the proof. �

Lemma 4.6. Assume ( 29) and E0 ∈ W s+1,∞(T) for s ≥ 0. Then there

exists Cs > 0 such that ‖T2b‖Hs+2(T) ≤ Cs‖b‖Hs(T).

Proof. We notice to ψ1(v) = ve−
v2

4 contains the monomial v and that this

function enters twice in the definition of T2. The key remark is that it

is possible to convert v into a gain of regularity of one order. Since v is

present twice, it explains the gain of 2 orders of regularity.

Let b ∈ Hs(T). The definition (32) recasts as T2b =
∫
R e
− v24 v(D −

β)−1(D + β)−1vb(x)e−
v2

4 dv. One has

v∂x(D − β)−1 = 1 + β(D − β)−1 + E0(x)∂v(D − β)−1.

So one deduces

∂x(T2b) =
∫
R e
− v24 (1 + β(D − β)−1) (D + β)−1vb(x)e−

v2

4 dv

+
∫
R e
− v24 E0(x)∂v(D − β)−1(D + β)−1vb(x)e−

v2

4 dv

=
∫
R e
− v24 (1 + β(D − β)−1) (D + β)−1vb(x)e−

v2

4 dv

+
∫
R
v
2e
− v24 E0(x)(D − β)−1(D + β)−1vb(x)e−

v2

4 dv

=
∫
R e
− v24

[
1 + β(D − β)−1 + v

2E0(x)(D − β)−1
]

(D + β)−1vbe−
v2

4 dv

where an integration by part w.r.t. v is used to transform the integral which

contains a ∂v. One notices that the right hand side of this identity belongs

to Hs(T) for for b ∈ Hs(T), so one has already T2b ∈ Hs+1(T) .

To gain one more order of integration, decompose b = c+∂xd with c the

mean value of b and d ∈ Hs+1(T) with zero mean value: |c|+ ‖d‖Hs+1(T) ≤
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‖b‖Hs(T). One has the identity which is somehow dual of the previous one

(D + β)−1vbe−
v2

4 = (D + β)−1vce−
v2

4

+ de−
v2

4 − (D + β)−1βde−
v2

4 − (D + β)−1E0(x)dv2e
− v24 .

One gets another identity

∂x(T2b)(x) =
∫
R e
− v24

[
1 + β(D − β)−1 + v

2E0(x)(D − β)−1
]

(D + β)−1vce−
v2

4 dv

+
∫
R e
− v24

[
1 + β(D − β)−1 + v

2E0(x)(D − β)−1
]

[1− β(D + β)−1] de−
v2

4 dv

−
∫
R e
− v24

[
1 + β(D − β)−1 + v

2E0(x)(D − β)−1
]

(D + β)−1E0(x)dv2e
− v24 dv.

We notice that: in these integrals the last terms vce−
v2

4 , de−
v2

4 and

E0(x)dv2e
− v24 are Hs+1 with respect to x (the hypothesis E0 ∈ W s+1,∞(T)

is used); the operators (D± β)−1 preserve the regularity the Hs regularity

with respect to x (cf. Lemma 4.5). Therefore ‖∂x(T2b)‖Hs+1(T) ≤ C‖b‖Hs(T)
which ends the proof of the claim. �

Lemma 4.7. Under the same assumptions, there exists a constant Cs > 0

such that ‖T1a‖
Hs+

1
4 (T)
≤ Cs‖a‖Hs(T).

Proof. One has T1a =
∫
R ψ0(v)u(x, v)dv with

(D − β)u = g = −(D + β)−1(aψ0)(x, v).

By construction ‖g‖Hs(T×R) + ‖u‖Hs(T×R) ≤ C‖a‖Hs(T). Therefore one can

write

v∂xu = g + βu︸ ︷︷ ︸
=g1

+∂v(E0(x)u︸ ︷︷ ︸
=g2

).

Note that ‖g1‖Hs(T×R) ≤ C1
s‖a‖Hs(T) and ‖g2‖Hs(T×R) ≤ C2

s‖a‖Hs(T).
For s = 0, the Diperna-Lions Theorem of compactness by integration

[10][remark 6 page 741] yields the claim. For higher s, the result holds

after differentiation w.r.t. x and the regularity of E0. �

Proposition 4.8. Assume E0 ∈ W 3+ε,∞(R) with ε > 0. Then T is trace

class.

Proof. We study the eigenvalues 6= 0 of the operators in (31). Set T3 the

multiplication operator by γeϕ0 . By definition and hypothesis T3 : Hs(T)→
Hs(T) for 0 ≤ s ≤ 4 + ε. The two problems (31) can be reduced to the

same eigenproblem(
T

1
2

1 T3T2T3T
1
2

1

)
cn = λncn, 0 6= cn ∈ L2

0(T), λn > 0.
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It is better for technical reasons to consider the square of this operator

T
1
2

1 T3 (T2T3T1T3T2) T3T
1
2

1 cn = µncn, µn = λ2n.

Using Lemmas 4.6-4.7, the operator R = T2T3T1T3T2 is self-adjoint and

compact from L2(T) into H4+ε(T) for some ε > 0

R : L2(T)
T2→ H2(T)

T3→ H2(T)
T1→ H2+ε(T)

T3→ H2+ε(T)
T2→ H4+ε(T).

For n ∈ N∗, we consider Vn ⊂ L2
0(T) any subspace such that dim(Vn) = n

and note V ∗n = Vn − {0}. The min-max principle [13, 19] yields

µn = max
Vn

min
c∈V ∗n

(S∗RSc, c)
‖c‖2

, S = T3T
1
2

1 .

Since S is a bounded operator, one gets

(S∗RSc, c)
‖c‖2

=
‖Sc‖2

‖c‖2
(R(Sc), Sc)

‖Sc‖2
≤ ‖S‖2 (Rd, d)

‖d‖2
.

Since S is injective, then d = Sc 6= 0. So µn ≤ ‖S‖2 maxVn mind∈V ∗n
(Rd,d)
‖d‖2 ,

that is µn ≤ ‖S‖2σn where σn > 0 is the n-th eigenvalue (counted in

decreasing order). Since R = R∗ > 0 is a compact hermitian operator from

L2
0(T) into H4+ε(T), the technical Lemme A.1 yields 0 < µn ≤ C 1

n4+ε for

n ∈ N and ε > 0. Finally
∑
n λ

1
2
n =

∑
n µ

1
4
n ≤ C̃

∑
n

1
n1+ε/4 <∞, so the trace

class estimate holds. �

4.2. Operator S in (30). The analysis of S is much simpler.

Lemma 4.9. One has (evident)

Ker(S∗S) =
{
w ∈ L2(T× R),

∫
T×RwvMdxdv =

∫
T×RwγMdxdv = 0

}
= Span {vM, γM}⊥ .

So the spectral problem S∗Sw = λw can be reduced by looking only

at w = αvM + βγM . It is a finite dimensional spectral problem, so the

full operator S∗S is trace class and one obtains Theorem 1.1 about the

existence of wave operators.

5. Last part of the Theorem 1.1

One easily transfers Theorem 1.1 to the original Vlasov-Poisson equation.

One starts from the decomposition, where the orthogonal product (8)
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is GL = Xac ⊕ Xsc ⊕ Xpp. The operator Λ is an isometric bijection

from GL onto X = L2(T × R) ∩ {(w, γM) = 0} = (γM)⊥. Since γM

is in the kernel of H (Lemma 3.9), one gets the decomposition X =

X ac ⊕ X sc ⊕
(
X pp ∩ (γM)⊥

)
. Lemma 3.8 yields that Λ(Xac) = X ac,

Λ(Xsc) = X sc and Λ(Xpp) = X pp ∩ (γM)⊥. Since X ac is isometric to

X ac
0 due to the existence of the wave operators, then Xac is in bijection

with a space isometric to X ac
0 . It ends the proof of the last part.

A. A technical lemma

Lemma A.1. Let R = R∗ > 0 be a positive hermitian operator defined in

L2(T). Assume R is also bounded as an operator from L2(T) into Hα(T),

α > 0. Then there exists a constant C > 0 such that the eigenvalues of R

counted in decreasing order satisfy 0 < σn+1 ≤ σn ≤ C
nα+1 for n ∈ N.

Proof. Define the operator hermitian A : L2(T) −→ Hα(T) by

Av(x) =
∑
n∈Z

1

|n|α + 1
(v, en)en(x)

where en(x) = e2iπnx is the Fourier mode and (v, en) =
∫ 1

0
v(x)en(x)dx is the

corresponding coefficient of the Fourier decomposition v =
∑
n∈Z(v, en)en.

The inverse operator A−1 : Hα(T) −→ L2(T) is defined by A−1w(x) =∑
n∈Z(|n|α + 1)(w, en)en(x). By construction ‖Av‖Hα(T) ≤ ‖v‖L2(T) and

‖A−1w‖L2(T) ≤ ‖w‖Hα(T). Take v ∈ L2(T) and u ∈ L2(T). One has∣∣(Av,A−1Ru)
∣∣ ≤ C‖Av‖L2(T)‖u‖L2(T) =⇒ |(Rv, u)| ≤ C‖Av‖L2(T)‖u‖L2(T).

Since this inequality holds for all u ∈ L2(T), it yields ‖Rv‖L2(T) ≤
C‖Av‖L2(T). The min-max principle immediately gives an estimate of the

eigenvalues σn of R with respect to the eigenvalues τn of A, that is σn ≤ Cτn
for n ∈ N. Since τ2n+1 = τ2n+2 = 1

nα+1 for n ≥ 0, it proves the claim. �
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