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Abstract

In this paper for the first time the adaptive efficient estimation
problem for nonparametric autoregressive models has been studied.
First of all, through the Van Trees inequality the sharp bound for
the robust quadratic risks, i.e. the Pinsker constant (see, for exam-
ple, in [19]), in explicit form has been obtained. Then, through the
sharp oracle inequalities method developed in [4] for non parametric
autoregressions an adaptive efficient model selection procedure is pro-
posed, i.e. such for which the upper bound of its robust quadratic risk
coincides with the obtained Pinsker constant.
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1 Introduction

1.1 Model

In this paper we consider the nonparametric autoregression model defined as

yk = S(xk)yk−1 + ξk and xk = a+
k(b− a)

n
, (1.1)

where S(·) ∈ L2[a, b] is unknown function, a < b are fixed known constants,
1 ≤ k ≤ n, the initial value y0 is a constant and the noise (ξk)k≥1 is i.i.d.
sequence of unobservable random variables with Eξ1 = 0 and Eξ2

1
= 1. In

the sequel we denote by p the distribution density of the random variable ξ1.
The problem is to estimate the function S(·) on the basis of the observa-

tions (yk)1≤k≤n under the condition that the noise distribution p is unknown
and belongs to some noise distributions class P . There is a number of pa-
pers which consider these models such as [6], [7] and [5]. In all these papers,
the authors propose some asymptotic (as n → ∞) methods for different
identification studies without considering optimal estimation issues. Firstly,
minimax estimation problems for the model (1.1) has been treated in [2] and
[18] in the nonadaptive case, i.e. for the known regularity of the function
S. Then, in [1] and [3] it is proposed to use the sequential analysis method
for the adaptive pointwise estimation problem in the case when the Hölder
regularity is unknown.

1.2 Main contributions

In this paper we consider the adaptive estimation problem for the quadratic
risk defined as

Rp(Ŝn, S) = Ep,S‖Ŝn − S‖2 , ‖S‖2 =

∫ b

a

S2(x)dx , (1.2)

where Ŝn is an estimator of S based on observations (yk)1≤k≤n and Ep,S is the
expectation with respect to the distribution law Pp,S of the process (yk)1≤k≤n
given the distribution density p and the coefficient S. Moreover, taking into
account that the distribution p is unknown, we use the robust nonparametric
estimation approach proposed in [8]. To this end we set the robust risk as

R∗(Ŝn, S) = sup
p∈P
Rp(Ŝn, S) , (1.3)

where P is a family of the distributions defined in Section 2.
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To estimate the function S in model (1.1) we make use of the model selec-
tion procedures proposed in [4] based on the family of the optimal poinwise
truncated sequential estimators from [3] for which using the model selection
method developed in [9] a sharp oracle inequality is shown. In this paper,
using this inequality we show that the model selection procedure is efficient
in adaptive setting for the robust quadratic risks (1.3). To this end, first of
all we have to study the sharp lower bound for the these risks, i.e. we have
to study the best potential accuracy estimation for the model (1.1) which is
called the Pinsker constant. For this we use the approach proposed in [10] -
[11] which is based the Van-Trees inequality. It turns out that for the model
(1.1) the Pinsker constant has the same form as for the filtration signal prob-
lem in the ”signal - white noise” model studied in [19] but with new coefficient
which equals to the optimal variance given by the Hajek - Le Cam inequality
for the parametric model (1.1). This is the new result in the efficient non
parametric estimation theory for the statistical models with dependent ob-
servations. Then, using the oracle inequality from [4] and the weight least
square estimation method we show that for the model selection procedure
with the Pinsker weight coefficients the upper bound asymptotically coincides
with the obtained Pinsker constant without using the regularity properties
of the unknown functions, i.e. it is efficient in adaptive setting with respect
to the robust risks (1.3).

1.3 Plan of the paper

The paper is organized as follows. In Section 2 we give all conditions and
construct the sequential point-wise estimation procedures. to pass from the
auto-regression model to the corresponding regression model. In Section 3 we
construct the model selection procedure based on the sequential estimators
from Section 2. In Section 4 we announce the main results. In Section 5 we
show the Van - Trees inequality for the model (1.1). In section 6 we obtain the
lower bound for the robust risks. In Section 7 we obtain the upper bounds
for the robust risks. In Appendix A we give the all auxiliary and technic
tools.

2 Sequential procedures.

As in [3] we assume that in the model (1.1) the i.i.d. random variables (ξk)k≥1

have a density p (with respect to the Lebesgue measure) from the functional
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class P defined as

P :=

{
p ≥ 0 :

∫ +∞

−∞
p(x) dx = 1 ,

∫ +∞

−∞
x p(x) dx = 0 ,

∫ +∞

−∞
x2 p(x) dx = 1 and sup

k≥1

∫ +∞
−∞ |x|

2k p(x) dx

ςk(2k − 1)!!
≤ 1

}
, (2.1)

where ς ≥ 1 is some fixed parameter, which may be a function of the number
observation n, i.e. ς = ς(n), such that for any b > 0

lim
n→∞

ς(n)

nb
= 0 . (2.2)

Note that the (0, 1)-Gaussian density belongs to P . In the sequel we
denote this density by p0. It is clear that for any q > 0

m∗
q

= sup
p∈P

Ep |ξ1|q <∞ , (2.3)

where Ep is the expectation with respect to the density p from P . To obtain
the stable (uniformly with respect to the function S ) model (1.1), we assume
that for some fixed 0 < ε < 1 and L > 0 the unknown function S belongs to
the ε - stability set introduced in [3] as

Θε,L =
{
S ∈ C1([a, b],R) : |S|∗ ≤ 1− ε and |Ṡ|∗ ≤ L

}
, (2.4)

where C1[a, b] is the Banach space of continuously differentiable [a, b] → R
functions and |S|∗ = sup

a≤x≤b |S(x)|.
We will use as a basic procedures the point wise procedure from [3] at

the points (zl)1≤l≤d defined as

zl = a+
l

d
(b− a) , (2.5)

where d is an integer value function of n, i.e. d = dn, such that

lim
n→∞

dn√
n

= 1 . (2.6)

So we propose to use the first ιl observations for the auxiliary estimation of
S(zl). We set

Ŝl =
1

Aιl

ιl∑
j=1

Ql,j yj−1 yj , Aιl =

ιl∑
j=1

Ql,j y
2
j−1

, (2.7)
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where Ql,j = Q(ul,j) and the kernel Q(·) is the indicator function of the
interval [−1; 1], i.e. Q(u) = 1[−1,1](u). The points (ul,j) are defined as

ul,j =
xj − zl
h

. (2.8)

Note that to estimate S(zl) on the basis of the kernel estimate with the
kernel Q we use only the observations (yj)k1,l≤j≤k2,l from the h - neighbor of

the point zl, i.e.

k1,l = [nz̃l − nh̃] + 1 and k2,l = [nz̃l + nh̃] ∧ n , (2.9)

where z̃l = (zl − a)/(b − a) and h̃ = h/(b − a). Note that, only for the last
point zd = b the k2,d = n. We chose ιl in (2.7) as

ιl = k1,l + q and q = qn = [(nh̃)µ0 ] (2.10)

for some 0 < µ0 < 1. In the sequel for any 0 ≤ k < m ≤ n we set

Ak,m =
m∑

j=k+1

Ql,j y
2
j−1

and Am = A0,m . (2.11)

Next, similarly to [1], we use a some kernel sequential procedure based on
the observations (yj)ιl≤j≤n. To transform the kernel estimator in the linear
function of observations and we replace the number of observations n by the
following stopping time

τl = inf{ιl + 1 ≤ k ≤ k2,l : Aιl,k ≥ Hl} , (2.12)

where inf{∅} = k2,l and the positive threshold Hl will be chosen as a positive
random variable measurable with respect to the σ - field {y1, . . . , yιl}.
Now we define the sequential estimator as

S∗
l

=
1

Hl

 τl−1∑
j=ιl+1

Ql,j yj−1 yj + κlQ(ul,τl) yτl−1 yτl

1Γl
, (2.13)

where Γl = {Aιl,k2,l−1 ≥ Hl} and the correcting coefficient 0 < κl ≤ 1 on this

set is defined as
Aιl,τl−1 + κ2

l
Q(ul,τl)y

2
τl−1

= Hl . (2.14)
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Note that, to obtain the efficient kernel estimate of S(zl) we need to use the
all k2,l − ιl − 1 observations. Similarly to [15], one can show that τl ≈ γlHl

as H →∞, where
γl = 1− S2(zl) . (2.15)

Therefore, one needs to chose H as (k2,l − ιl − 1)/γl. Taking into account
that the coefficients γl are unknown we define the threshold Hl as

Hl =
1− ε̃
γ̃l

(k2,l − ιl − 1) and ε̃ =
1

2 + lnn
, (2.16)

where γ̃l = 1− S̃2
ιl

and S̃ιl is the projection of the estimator Ŝιl in the interval

]− 1 + ε̃, 1− ε̃[, i.e.

S̃ιl = min(max(Ŝιl ,−1 + ε̃), 1− ε̃) . (2.17)

To obtain the uncorrelated stochastic terms in the kernel estimators for S(zl)
we chose the bandwidth h as

h =
b− a

2d
. (2.18)

As to the estimator Ŝιl , we can show the following property.

Proposition 2.1. The convergence rate in probability of the estimator (2.17)
is more rapid than any power function, i.e. for any b > 0

lim
n→∞

nb max
1≤l≤d

sup
S∈Θε,L

sup
p∈P

Pp,S

(
|S̃ιl − S(zl)| > ε0

)
= 0 , (2.19)

where ε0 = ε0(n)→ 0 as n→∞ such that limn→∞ n
δ̌ε0 =∞ for any δ̌ > 0.

Now we set
Yl = S∗H,h(zl)1Γ and Γ = ∩d

l=1
Γl . (2.20)

Using the convergence (2.19) we study the probability properties of the set
Γ in the following proposition.

Proposition 2.2. For any b > 0 the probability of the set Γ satisfies the
following asymptotic equality

lim
n→∞

nb sup
S∈Θε,L

Pp,S (Γc) = 0 . (2.21)
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In view of this proposition we can negligible the set Γc. So, using the esti-
mators (2.20) on the set Γ we obtain the discrete time regression model

Yl = S(zl) + ζl and ζl = ξ∗
l

+$l , (2.22)

in which

ξ∗
l

=

∑τl−1

j=ιl+1
Ql,j yj−1 ξj + κlQ(ul,τl) yτl−1 ξτl

Hl

(2.23)

and $l = $1,l +$2,l, where

$1,l =

∑τl−1

j=ιl+1
Ql,j y

2
j−1

∆l,j + κ2
l
Q(ul,τl) y

2
τl−1

∆l,τl

Hl

, ∆l,j = S(xj)− S(zl)

and

$2,l =
(κl − κ2

l
)Q(ul,τl) y

2
τl−1

S(xτl)

Hl

.

Note that in the model sec:In.1-11-1R the random variables (ξ∗
j
)1≤j≤d are

defined only on the set Γ. By the technical reasons we need the definitions
for these variables on the set Γc was well. To this end for any j ≥ 1 we set

Q̌l,j = Ql,j yj−1 1{j<k2,l} +
√
HlQl,j 1{j=k2,l} (2.24)

and Ǎιl,m =
∑m

j=ιl+1
Q̌2
l,j

. Note, that for any j ≥ 1 and l 6= m

Q̌l,j Q̌m,j = 0 . (2.25)

and Ǎιl,k2,l ≥ Hl. So we can modify now stopping time (2.12) as

τ̌l = inf{k ≥ ιl + 1 : Ǎιl,k ≥ Hl} . (2.26)

Obviously, τ̌l ≤ k2,l and τ̌l = τl on the set Γ for any 1 ≤ l ≤ d. Now similarly
to (2.14) we define the correction coefficient as

Ǎιl,τ̌l−1 + κ̌2
l
Q̌2
l,τ̌l

= Hl . (2.27)

It is clear that 0 < κ̌l ≤ 1 and κ̌l = κl on the set Γ for 1 ≤ l ≤ d. Using this
coefficient we set

ηl =

∑τ̌l−1

j=ιl+1
Q̌l,j ξj + κ̌l Q̌l,τ̌l

ξτ̌l
Hl

. (2.28)
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Note that on the set Γ for any 1 ≤ l ≤ d the random variables ηl = ξ∗
l
.

Moreover (see Lemma A.2 in [4]), for any 1 ≤ l ≤ d and p ∈ P

Ep,S (ηl |Gl) = 0 , Ep,S

(
η2
l
|Gl
)

= σ2
l

and Ep,S

(
η4
l
|Gl
)
≤ m̌σ4

l
, (2.29)

where σl = H
−1/2
l , Gl = σ{η1, . . . , ηl−1, σl} and m̌ = 4(144/

√
3)4 m∗

4
. It is

clear that
σ0,∗ ≤ min

1≤l≤d
σ2
l
≤ max

1≤l≤d
σ2
l
≤ σ1,∗ , (2.30)

where

σ0,∗ =
1− ε2

2(1− ε̃)nh
and σ1,∗ =

1

(1− ε̃)(2nh− q− 3)
.

Now, taking into account that |$1,l| ≤ Lh, for any S ∈ Θε,L we obtain that

sup
S∈Θε,L

Ep,S1Γ$
2
l
≤
(
L2h2 +

υ̌n
(nh)2

)
, (2.31)

where υ̌n = sup
p∈P sup

S∈Θε,L
Ep,S max1≤j≤n y

4
j
. The behavior of this coeffi-

cient is studied in the following Proposition.

Proposition 2.3. For any b > 0 the sequence (υ̌n)n≥1 satisfies the following
limiting equality

lim
n→∞

n−b υ̌n = 0 . (2.32)

Remark 2.1. It should be noted that the property (2.32) means that the
asymptotic behavior of the upper bound (2.31) approximately almost as h−2

when n→∞. We will use this in the oracle inequalities below.

Remark 2.2. Note, that to estimate the function S in (1.1) we use the
approach developed in [11] for the diffusion processes. To this end we use
the efficient sequential kernel procedures developed in [1, 2, 3]. It should be
emphasized that to obtain an efficient estimator, i.e. an estimator with the
minimal asymptotic risk, one needs to take only indicator kernel as in (2.13).

Remark 2.3. Ii should be noted also that the sequential estimator (2.13)
has the same form as in [3], but except the last term, in which the correction
coefficient is replaced by the square root of the coefficient used in [14]. We
modify this procedure to calculate the variance of the stochastic term (2.23).
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3 Model selection

In this section we consider the nonparametric estimation problem in the
non asymptotic setting for the regression model sec:In.1-11-1R for some set
Γ ⊆ Ω. The design points (zl)1≤l≤d are defined in (2.5). The function S(·) is
unknown and has to be estimated from observations Y1, . . . , Yd. Moreover, we
assume that the unobserved random variables (ηl)1≤l≤d satisfy the properties
(2.29) with some nonrandom constant m̌ > 1 and the known random positive
coefficients (σl)1≤l≤d satisfy the inequlity (2.30) for some nonrandom positive
constants σ0,∗ and σ1,∗ Concerning the random sequence $ = ($l)1≤l≤d we
suppose that

Ep,S1Γ‖$‖2
d
<∞ . (3.1)

The performance of any estimator Ŝ will be measured by the empirical
squared error

‖Ŝ − S‖2
d

= (Ŝ − S, Ŝ − S)d =
b− a
d

d∑
l=1

(Ŝ(zl)− S(zl))
2 . (3.2)

Now we fix a basis (φj)1≤j≤d which is orthonormal for the empirical inner
product:

(φi , φj)d =
b− a
d

d∑
l=1

φi(zl)φj(zl) = 1{i=j} . (3.3)

For example, we can take the trigonometric basis (φj)j≥ 1 in L2[a, b], i.e.

φ1 =
1√
b− a

, φj(x) =

√
2

b− a
Trj (2π[j/2]l0(x)) , j ≥ 2 , (3.4)

where the function Trj(x) = cos(x) for even j and Trj(x) = sin(x) for odd
j, [x] denotes integer part of x. and l0(x) = (x − a)/(b − a). Note that, in
this case to obtain the property (3.3) the numbers of points d must be odd.
To obtain the property (2.6) we can choose, for example, d = 2[

√
n/2] + 1,

where [a] is the integer part of a ∈ R.
Note that, using the orthonormality property (3.3) we can represent for

any 1 ≤ l ≤ d the function S as

S(zl) =
d∑
j=1

θj,d φj(zl) and θj,d =
(
S, φj

)
d
. (3.5)
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So, to estimate the function S we have to estimate the Fourrier coefficients
(θj,d)1≤j≤d. To this end we reply the the function S by the observations, i.e.

θ̂j,d =
b− a
d

d∑
l=1

Ylφj(zl) . (3.6)

From sec:In.1-11-1R we obtain immediately the following regression shceme

θ̂j,d = θj,d + ζj,d with ζj,d =

√
b− a
d

ηj,d +$j,d , (3.7)

where

ηj,d =

√
b− a
d

d∑
l=1

ηlφj(zl) and $j,d =
b− a
d

d∑
l=1

$l φj(zl) .

Note that the upper bound (2.30) and the Bounyakovskii-Cauchy-Schwarz
inequality imply that

|$j,d| ≤ ‖$‖d ‖φj‖d = ‖$‖d .

Now we set
Bn = n‖$‖2

d
. (3.8)

Note here that Proposition 3.3 from [4] implies directly that for any b > 0

lim
n→∞

1

nb
sup
p∈P

sup
S∈Θε,L

Ep,SBn 1Γ = 0 . (3.9)

We estimate the function S on the sieve (2.5) by the weighted least squares
estimator

Ŝλ(zl) =
d∑
j=1

λ(j) θ̂j,d φj(zl)1Γ , 1 ≤ l ≤ d , (3.10)

where the weight vector λ = (λ(1), . . . , λ(d))′ belongs to some finite set
Λ ⊂ [0, 1]d, the prime denotes the transposition. We set for any a ≤ t ≤ b

Ŝλ(t) =
d∑
l=1

Ŝλ(zl)1{zl−1<t≤zl} . (3.11)

Denote by ν be the cardinal number of the set Λ and

Λ∗ = max
λ∈Λ

d∑
j=1

λ(j) .
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A1) For any δ̌ > 0

lim
n→∞

φ∗
n

+ νn

nδ̌
= 0 and lim

n→∞

Λ∗(n)

n1/6+δ̌
= 0 , (3.12)

where φ∗
n

= max1≤j≤n maxx0≤x≤x1
|φj(x)|.

In order to obtain a good estimator, we have to write a rule to choose a
weight vector λ ∈ Λ in (3.10). We define the empirical squared risk as

Errd(λ) = ‖Ŝλ − S‖2
d
.

Using (3.5) and (3.10) we can rewire this risk as

Errd(λ) =
d∑
j=1

λ2(j)θ̂2
j,d
− 2

d∑
j=1

λ(j)θ̂j,d θj,d +
d∑
j=1

θ2
j,d
. (3.13)

Since the coefficient θj,d is unknown, we need to replace the term θ̂j,d θj,d by
some its estimator which we choose as

θ̃j,d = θ̂2
j,d
− b− a

d
sj,d with sj,d =

b− a
d

d∑
l=1

σ2
l
φ2
j
(zl) . (3.14)

Note that from (2.30) - (3.3) it follows that

sj,d ≤ σ1,∗ . (3.15)

Finally, we define the cost function of the form

Jd(λ) =
d∑
j=1

λ2(j)θ̂2
j,d
− 2

d∑
j=1

λ(j) θ̃j,d + δPd(λ) , (3.16)

where the penalty term is defined as

Pd(λ) =
b− a
d

d∑
j=1

λ2(j)sj,d (3.17)

and 0 < δ < 1 is some positive constant which will be chosen later. We set

λ̂ = argmin
λ∈Λ

Jd(λ) and Ŝ∗ = Ŝλ̂ . (3.18)

To study the efficiency property we specify the weight coefficients (λ(j))1≤j≤n
as it is proposed, for example, in [10]. First, for some 0 < ε < 1 introduce
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the two dimensional grid to adapt to the unknown parameters (regularity
and size) of the Sobolev bull, i.e. we set

A = {1, . . . , k∗} × {ε, . . . ,mε} , (3.19)

where m = [1/ε2]. We assume that both parameters k∗ ≥ 1 and ε are
functions of n, i.e. k∗ = k∗(n) and ε = ε(n), such that

limn→∞ k∗(n) = +∞ , limn→∞
k∗(n)

lnn
= 0 ,

limn→∞ ε(n) = 0 and limn→∞ nδ̌ε(n) = +∞
(3.20)

for any δ̌ > 0. One can take, for example, for n ≥ 2

ε(n) =
1

lnn
and k∗(n) = k∗

0
+
√

lnn , (3.21)

where k∗
0
≥ 0 is some fixed constant. For each α = (β, l) ∈ A, we introduce

the weight sequence
λα = (λα(j))1≤j≤p

with the elements

λα(j) = 1{1≤j<j∗} +
(
1− (j/ωα)β

)
1{j∗≤j≤ωα}, (3.22)

where j∗ = 1 + [lnn], ωα = ($β ln)1/(2β+1),

$β =
(β + 1)(2β + 1)

π2ββ
=

2β

π2βιβ
and ιβ =

2β2

(β + 1)(2β + 1)
.

Now we define the set Λ as

Λ = {λα , α ∈ A} . (3.23)

Note, that these weight coefficients are used in [16, 17] for continuous time
regression models to show the asymptotic efficiency. It will be noted that in
this case the cardinal of the set Λ is ν = k∗m. It is clear that the properties
(3.20) imply the condition (3.12).
In [4] we shown the following result.

Theorem 3.1. Assume that the conditions (2.2) and (3.12) hold. Then for
any n ≥ 3, any S ∈ Θε,L and any 0 < δ ≤ 1/12, the procedure (3.18) with
the coefficients (3.23) satisfies the following oracle inequality

R∗(Ŝ∗, S) ≤ (1 + 4δ)(1 + δ)2

1− 6δ
min
λ∈Λ
R∗(Ŝλ, S) +

D∗
n

δn
, (3.24)
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where the term D∗
n

is such that for any b > 0

lim
n→∞

D∗
n

nb
= 0 .

Remark 3.1. It sjhould be noted that the weight least square estimators
(3.10) with the weight coefficients (3.23) is efficient for the Sobolev ball (see,
for example, [? 19]). So, Theorem 3.1 means that this model selection proce-
dure is best among all the effective procedures in the sharp oracle inequality
sense (3.24) and below we will use this property to show the efficiency prop-
erty in adaptive setting, i.e. in the case, when the regularity property of the
function S (1.1) is unknown.

4 Main results

For any fixed r > 0 and k ≥ 1 we define the Sobolev ellipse as

Wk,r = {f ∈ Θε,L :
k∑
j=0

aj θ
2
j
≤ r} , (4.1)

where aj =
∑k

l=0
(2π[j/2])2l, (θj)j≥1 are the trigonometric Fourier coeffi-

cients, i.e.

θj =

∫ b

a

f(x)φj(x)dx

and (φj)j≥1 is the trigonometric basis defined in (3.4). It is clear we can
represent this functional class as

Wk,r = {f ∈ Θε,L :
k∑
j=0

‖f (j)‖2 ≤ r} , (4.2)

In order to formulate the asymptotic results we define the following nor-
malizing coefficients. First, for any r > 0 we set

l∗(r) = ((1 + 2k)r)1/(2k+1)

(
k

π(k + 1)

)2k/(2k+1)

(4.3)

and

ς(S) =

∫ b

a

(1− S2(u))du . (4.4)

13



It is well known that for any S ∈ Wk,r the optimal rate of convergence is

n−2k/(2k+1). First we study the lower bound for the asymptotic risks in the
class of all estimators En, i.e. any measurable function with respect to the
observations σ{y1, . . . , yn}.

Theorem 4.1. For the model (1.1) with the noise distribution from the class
P defined in (2.1)

lim inf
n→∞

inf
Ŝn∈En

n2k/(2k+1) sup
S∈Wk,r

υ(S)R∗(Ŝn, S) ≥ l∗(r) , (4.5)

where υ(S) = (ς(S))−2k/(2k+1).

Now we stady the asymptotic upper bound for the quadratic risk of the
estimator Ŝ∗. To this end we assume the following condition for the penalty
coefficient δ in the objective function (3.16).

A2) Assume that the parameter δ is a function of n, i.e. δ = δn such that
for any b > 0

lim
n→∞

δn
nb

= 0 . (4.6)

Theorem 4.2. Assume that the conditions A1) – A2) hold. The model

selection procedure Ŝ∗ defined in (3.18) with the penalty coefficient given in
A2) admits the following asymptotic upper bound

lim sup
n→∞

n2k/(2k+1) sup
S∈Wk,r

υ(S)R(Ŝ∗, S) ≤ l∗(r) . (4.7)

Corollary 4.3. Assume that the conditions A1) – A2) hold. The model

selection procedure Ŝ∗ defined in (3.18) with the penalty coefficient given in
A2) is efficient, i.e.

lim
n→∞

inf Ŝn∈En sup
S∈Wk,r

υ(S)R∗(Ŝn, S)

sup
S∈Wk,r

υ(S)R(Ŝ∗, S)
= 1 . (4.8)

Moreover,
lim
n→∞

n2k/(2k+1) sup
S∈Wk,r

υ(S)R(Ŝ∗, S) = l∗(r) . (4.9)

Remark 4.1. Note that the limit equalties (4.8) and (4.9) imply that the
function l∗(r)/υ(S) is the minimal value of the normalised asymptotic quadratic

14



robust risk, i.e. Pinsker constant in this case. We remind that the coeffi-
cient l∗(r) is the well known Pinsker constant for the ”signal+standard white
noise” model obtained in [19]. Therefore, the Pinsker constant for the model
(1.1) is represented by the Pinsker constant for the ”signal+white noise”
model in which the noise intensity is given by the function (4.4).

5 The van Trees inequality

In this section we consider the following continuous time parametric model
(1.1) with the (0, 1) gaussian i.i.d. random variable (ξj)1≤j≤n and the para-
metric linear function S, i.e.

Sθ(x) =
d∑
l=1

θl ψl(x) , θ = (θ1, . . . ,Ξd)
′ ∈ Rn . (5.1)

The functions (ψi)1≤i≤d are orthogonal with respect to the scalar product
(3.3).

Let now Pn
θ

be the distribution in Rn of the observations y = (y1, . . . , yn)
in the model (1.1) with the function (5.1) and νn

ξ
be the distribution in Rn

of the gaussian vector (ξ1, . . . , ξn). In this case the Radon - Nykodim density
is given as

fn(y, θ) =
dP

(n)
θ

dνn
ξ

= exp


n∑
j=1

Sθ(xj)yj−1yj −
1

2

n∑
j=1

S2
θ
(xj)y

2
j−1

 . (5.2)

Let u be a prior distribution density on Rd for the parameter θ of the following
form:

u(θ) =
d∏
j=1

uj(θj) ,

where uj is some continuously differentiable probability density in R with
the support ]− Lj , Lj[, i.e. uj(z) > 0 for any −Lj < z < Lj and uj(z) = 0
for all |z| ≥ Lj, such that the Fisher information is finite, i.e.

Ij =

∫ Lj

−Lj

u̇2
l
(z)

uj(z)
dz <∞ . (5.3)

Now, we set

Ξ =]− L1 , L1[× . . . × ]− Ld , Ld[ ⊆ Rd . (5.4)

15



Let g(θ) be a continuously differentiable Ξ→ R function such that, for each
1 ≤ j ≤ d,

lim
|θj |→Lj

g(θ)uj(θj) = 0 and

∫
Rd
|g′
j
(θ)|u(θ) dθ <∞ , (5.5)

where g′
j
(θ) = ∂g(θ)/∂θj.

For any B(X )×B(Rd)-measurable integrable function H = H(y, θ) we denote

ẼH =

∫
Ξ

(∫
Rn

H(y, θ) dPn
θ

)
u(θ)dθ

=

∫
Ξ

(∫
Rn

H(y, θ) fn(y, θ)u(θ)dν
(n)
ξ

)
dθ .

Now we obtain an lower bound for the corresponding bayesian risks in the
case when the model (1.1) is gaussian with the function (5.1).

Lemma 5.1. For any Fyn-measurable square integrable function ĝn and for
any 1 ≤ j ≤ d, the following inequality holds

Ẽ(ĝn − g(θ))2 ≥
g2
j

ẼΨn,j + Ij
, (5.6)

where Ψn,j =
∑n

j=1
ψ2
j
(xl) y

2
l−1

and g
j

=
∫

Ξ
g′
j
(θ)u(θ) dθ.

Proof. First, for any θ ∈ Ξ we set

Ũj = Ũj(y, θ) =
1

f(y, θ)u(θ)

∂ (f(y, θ)u(θ))

∂θj
.

Taking into account the condition (5.5) and integrating by parts we get

Ẽ
(

(ĝn − g(θ))Ũj

)
=

∫
Rn×Ξ

(ĝn(y)− g(θ))
∂

∂θj
(f(y, θ)u(θ)) dθ dν

(n)
ξ

=

∫
Rn×Ξ̌j

(∫ Lj

−Lj

g′
j
(θ) f(y, θ)u(θ)dθj

)∏
i 6=j

dθi

 dν
(n)
ξ = g

j
,

where
Ξ̌j =

∏
i 6=j

]− Li , Li[ .
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Now by the Bouniakovskii-Cauchy-Schwarz inequality we obtain the fol-
lowing lower bound for the quadratic risk

Ẽ(ĝn − g(θ))2 ≥
g2
j

ẼŨ2
j

.

To study the denominator in the left hand of this inequality note that in
view of the representation (5.2)

1

fn(y, θ)

∂ fn(y, θ)

∂θj
=

n∑
l=1

ψj(xl) yl−1(yl − Sθ(xl)yl−1) .

Therefore, for each θ ∈ Ξ,

E
(n)
θ

1

fn(y, θ)

∂ fn(y, θ)

∂θj
= 0

and

E
(n)
θ

(
1

fn(y, θ)

∂ fn(y, θ)

∂θj

)2

= E
(n)
θ

n∑
l=1

ψ2
j
(xl) y

2
l−1

= E
(n)
θ Ψn,l .

Using the equality

Ũj =
1

fn(y, θ)

∂ fn(y, θ)

∂θj
+

1

u(θ)

∂ u(θ)

∂θj
,

we get
Ẽ Ũ2

j
= ẼΨn,j + Ij ,

where the Fisher information Ij is defined in (5.3). Hence Lemma 5.1.

Remark 5.1. It should be noted that in the definition of the prior distribution
the bound Lj may be equal to infinity either for some 1 ≤ j ≤ d or for all
1 ≤ j ≤ d.

6 Low bound

First, note that

R∗(Ŝn, S) ≥ Rp0
(Ŝn, S) , (6.1)
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where p0 is the (0, 1) gaussian density. Now for any fixed 0 < ε < 1 we set

d = dn =

[
k + 1

k
(ςn)1/(2k+1)l∗(rε)

]
(6.2)

where ς = 1/(b− a), rε = (1− ε)r and

l∗(rε) = ((1 + 2k)rε)
1/(2k+1)

(
k

π(k + 1)

)2k/(2k+1)

= (1− ε)1/(2k+1)l∗(r) .

For any vector θ = (θj)1≤j≤d ∈ Rd, we set

Sθ(x) =

dn∑
j=1

θj φj(x) , (6.3)

where (φj)1≤j≤dn is the trigonometric basis defined in (3.4). As ir is shown
in [13] there exist continuously differentiable density p̌L with the support on

[−L,L]] such that
∫ L
−L xp̌L(x)dx = 0,

∫ L
−L x

2p̌L(x)dx = 1 and

ǏL =

∫ L

−L

(p̌′(x))2

p̌(x)
p̌(x)dx = 1 + ε̌L ,

where ε̌L → 0 as L → ∞. To define the bayesian risk we choose a prior
distribution on Rd as

θ = (θj)1≤j≤dn and κj = sj η̌j , (6.4)

where η̌j are i.i.d. random variables with the density p̌L,

sj =

√
s∗
j

ςn
and s∗

j
=

(
dn
j

)k
− 1 .

Furthermore, for any function f , we denote by h(f) its projection in L2[0, 1]
onto Wk,r, i.e.

h(f) = PrWk,r
(f) .

Since Wk,r is a convex set, we obtain, that for any function S ∈ Wk,r

‖Ŝ − S‖2 ≥ ‖ĥ− S‖2 with ĥ = h(Ŝ) .

From the definition of the prio distribution (6.4) we obtain that a.s.

max
a≤x≤b

(
|Sθ(x)|+ |Ṡθ(x)|

)
≤
√

2

b− a
b− a+ 1

b− a
εn := ε∗

n
, (6.5)
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where

εn =
L√
n

dn∑
j=1

(
dn
j

)k/2
j → 0 as n→∞

for any k ≥ 2. Therefore, for sufficiently large n the function (6.3) belongs
to the class (2.4) and the last property yileds

sup
S∈Wk,r

υ(S)Rp0
(Ŝ, S) ≥

∫
{z∈Rd :Sz∈Wk,r}

υ(Sz)Ep0,Sz
‖ĥ− Sz‖2 µκ(dz)

≥ υ∗

∫
{z∈Rd :Sz∈Wk,r}

Ep0,Sz
‖ĥ− Sz‖2 µκ(dz) ,

where
υ∗ = inf

|S|∗≤ε∗n
υ(S) → ς2k/(2k+1) as n→∞ .

Using the distribution µκ we introduce the following Bayes risk

R̃0(Ŝ) =

∫
Rd
Rp0

(Ŝ, Sz)µκ(dz) .

Taking into account now that ‖ĥ‖2 ≤ r we obtain

sup
S∈Wk,r

υ(S)Rp0
(Ŝ, S) ≥ υ∗ R̃0(ĥ)− 2 υ∗R0,n (6.6)

with

R0,n =

∫
{z∈Rd :Sz /∈Wk,r}

(r + ‖Sz‖2)µκ(dz) .

In Lemma A.2 we studied the last term in this inequality. Now it is easy to
see that

‖ĥ− Sz‖2 ≥
dn∑
j=1

(ẑj − zj)2 ,

where ẑj =
∫ 1

0
ĥ(t)φj(t)dt. So, in view of Lemma 5.1, we obtain

R̃0(ĥ) ≥ 1

ςn

dn∑
j=1

1

1 + ǏL(s∗
j
)−1
≥ 1

ςnmax(1, ǏL)

dn∑
j=1

(
1− jk

dk
n

)
.

Therefore, using now the definition (6.2), Lemma A.2 and the inequality (6.1)
we obtain that

lim inf
n→∞

inf
Ŝ∈Πn

n
2k

2k+1 sup
S∈Wk,r

υ(S)R∗(Ŝn, S) ≥ (1− ε)
1

2k+1
1

max(1, ǏL)
l∗ .

Taking here limit as ε→ 0 and L→∞ we come to the Theorem 4.1.

19



7 Upper bound

7.1 Known regularity

We start with the estimation problem for the functions S from Wk,r with
known parameters k, r and ς(S) defined in (4.4). In this case we use the
estimator from family (3.23)

S̃ = Ŝα̃ , (7.1)

where α̃ = (k, t̃n), l̃n = [r(S)/ε] ε and r(S) = r/ς(S). We remind, that
ε = 1/ lnn. Note that for sufficiently large n, the parameter α̃ belongs to
the set (3.19). In this section we obtain the upper bound for the empiric risk
(3.2).

Theorem 7.1. The estimator S̃ constructed on the trigonometric basis sat-
isfies the following asymptotic upper bound

lim sup
n→∞

n2k/(2k+1) sup
S∈Wk,r

υ(S)Ep,S‖S̃ − S‖2
d
1Γ ≤ l∗(r) . (7.2)

Proof. We denote λ̃ = λα̃ and ω̃ = ωα̃. Now we recall that the Fourier
coefficients on the set Γ

θ̂j,d = θj,d + ζj,d with ζj,d =

√
b− a
d

ηj,d +$j,d ,

Therefore, on the set Γ we can represent the empiric squared error as

‖S̃ − S‖2
d

=
d∑
j=1

(1− λ̃(j))2 θ2
j,d
− 2Mn

− 2
d∑
j=1

(1 − λ̃(j)) λ̃(j)θj,d$j,d +
d∑
j=1

λ̃2(j) ζ2
j,d
,

where

Mn =

√
b− a
d

d∑
j=1

(1 − λ̃(j)) λ̃(j)θj,d ηj,d .

Now for any 0 < ε̌ < 1

2

∣∣∣∣∣
d∑
j=1

(1− λ̃(j))λ̃(j)θj,d$j,d

∣∣∣∣∣ ≤ ε̌

d∑
j=1

(1− λ̃(j))2θ2
j,d

+ ε̌−1

d∑
j=1

$2
j,d
.
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Taking into account here the definition (3.8), we can rewrite this inequality
as

2

∣∣∣∣∣
d∑
j=1

(1− λ̃(j))λ̃(j)θj,d$j,d

∣∣∣∣∣ ≤ ε̌
d∑
j=1

(1− λ̃(j))2θ2
j,d

+
Bn

ε̌n
.

Therefore,

‖S̃ − S‖2
d
≤ (1 + ε̌)

d∑
j=1

(1− λ̃(j))2θ2
j,d
− 2Mn +

Bn

ε̌n
+

d∑
j=1

λ̃2(j)ζ2
j,d
.

By the same way we estimate the last term on the right-hand side of this
inequality as

d∑
j=1

λ̃2(j) ζ2
j,d
≤ (1 + ε̌)(b− a)

d

d∑
j=1

λ̃2(j) η2
j,d

+ (1 + ε̌−1)
Bn

n
.

Thus, on the set Γ we find that for any 0 < ε̌ < 1

‖S̃n − S‖2
d
≤ (1 + ε̌)Υn(S)− 2Mn + (1 + ε̌)Un +

3Bn

ε̌n
, (7.3)

where

Υn(S) =
d∑
j=1

(1− λ̃(j))2θ2
j,d

+
ς(S)

d2

d∑
j=1

λ̃2(j) (7.4)

and

Un =
1

d2

d∑
j=1

λ̃2(j)
(
d(b− a)η2

j,d
− ς(S)

)
.

First, note that in view of Lemma A.7

Ep,SM
2
n ≤

σ1,∗(b− a)

d

d∑
j=1

θ2
j,d

=
σ1,∗(b− a)

d
‖S‖2

d
≤
σ1,∗(b− a)2

d
,

where the constant σ1,∗ is defined in (2.30). Moreover, taking into account
here that Ep,SMn = 0, we get

|Ep,SMn 1Γ| = |Ep,SMn 1Γc | ≤ (b− a)

√
σ1,∗Pp,S(Γc)

d
.

Therefore, Proposition 2.2 yields

lim
n→∞

n2k/(2k+1) sup
S∈Θε,L

|Ep,SMn 1Γ| = 0 . (7.5)

Now, the property (3.9) Lemma A.6 and Lemma A.8 imply the inequality
(7.2). Hence Theorem 7.1.
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7.2 Unknown smoothness

Theorem 3.1 and Theorem 7.1 imply Theorem 4.2.
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A Appendix

A.1 Properties of the prior distribution (6.4)

Lemma A.1. For any 1 ≤ j ≤ d

lim
n→∞

(b− a)

n
ẼΨn,j = 1 . (A.1)

Proof. First, note that for any k ≥ 1

yk = y0

k∏
j=1

Sθ(xj) +
k∑
l=1

k∏
j=l+1

Sθ(xj)ξl .

Using the distribution (6.4), we obtain that

Ẽ y2
m

= y2
0
Ẽ

m∏
j=1

S2
θ
(xj) +

m∑
l=1

Ẽ
m∏

j=l+1

S2
θ
(xj) .

Therefore, due to the property (6.5) we obtain that for any m ≥ 1 and for
any n ≥ 1 for which ε∗

n
< 1 we get, that

|Ẽ y2
m
− 1| ≤ y2

0
(ε∗
n
)m +

m−1∑
l=1

(ε∗
n
)m−l ≤ ε∗

n

(
y2

0
+ 1
)

1− ε∗
n

.

Taking into account that for any n ≥ 1

(b− a)

n

n∑
l=1

φ2(xl) = 1 ,
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we obtain that
lim
n→∞

sup
m≥1

|Ẽ y2
m
− 1| = 0 .

Hence Lemma A.1.

Lemma A.2. For any b > 0 the term R0,n introduced in (6.6) satisfies the
following property

lim
n→∞

nbR0,n = 0 . (A.2)

Proof. First note, that the bound (6.5) implies that for sufficiently large n
the function (6.3) with the random coefficients defined through the prior dis-
tribution (6.4) almost sure belongs to the class Θε,L. Therefore, the definition
(4.1) we obtain that {

Sθ /∈ Wk,r

}
= {ζn > r} ,

where ζn =
∑dn

j=1
κ2
j
aj. So, it suffices to show that for any b > 0

lim
n→∞

nbP(ζn > r) = 0 . (A.3)

Note now, that

lim
n→∞

E ζn = lim
n→∞

1

(b− a)n

dn∑
j=1

aj s
∗
j

= rε = (1− ε)r .

So, for sufficiently large n we obtain that

{ζn > r} ⊂
{
ζ̃n > r1

}
,

where r1 = rε/2 and

ζ̃n = ζn − E ζn =
1

n

dn∑
j=1

s∗
j
aj η̃j .

Using again the correlation inequality from [12] we get that for any p ≥ 2
there exists some constant Cp > 0 for which

E ζ̃p
n
≤ Cp

1

vp
n

 d∑
j=1

(s∗
j
)2 a2

j

p/2

≤ Cp n
− p

4k+2 ,

i.e. the expectation E ζ̃p
n
→ 0 as n → ∞. Therefore, using the Chebychev

inequality we obtain that for any b > 0

nbP(ζ̃n > r1)→ 0 as n→∞ .

This implies (A.3), and therefore, Lemma A.2.
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A.2 Relations between the norms ‖ · ‖ and ‖ · ‖d.
Lemma A.3. Let f be an absolutely continuous [0, 1] → R function with
‖ḟ‖ <∞ and g be a simple [0, 1]→ R function of the form

g(t) =
d∑
j=1

cj χ(tj−1,tj ](t),

where cj are some constants and tj = j/d. Then for any ε̃ > 0

‖f − g‖2 ≤ (1 + ε̃)‖f − g‖2
d

+ (1 + ε̃−1)
‖ḟ‖2

d2

and

‖f − g‖2
d
≤ (1 + ε̃)‖f − g‖2 + (1 + ε̃−1)

‖ḟ‖2

d2
.

Proof. Setting ∆(t) = f(t)− g(t), we obtain, that for any ε̃ > 0

‖∆‖2 = ‖∆‖2
d

+
d∑
l=1

∫ tl

tl−1

(
2∆(tl) (∆(t)−∆(tl)) + (∆(t)−∆(tl))

2) dt

≤ (1 + ε̃)‖∆‖2
d

+ (1 + ε̃−1)
d∑
l=1

∫ tl

tl−1

[∆(tl)− (∆(t))]2 dt

= (1 + ε̃)‖∆‖2
d

+ (1 + ε̃−1)
d∑
l=1

∫ tl

tl−1

|f(tl)− f(t)|2 dt .

Noting that, for tl−1 < t ≤ tl, one has the estimate

|f(tl)− f(t)|2 ≤

(∫ tl

tl−1

|ḟ(u)|du

)2

≤ 1

p

∫ tl

tl−1

|ḟ(u)|2du ,

one comes to the first inequality. Similarly, one can verify the second in-
equality. Hence Lemma A.3.

A.3 Properties of the trigonometric basis.

Lemma A.4. For any 1 ≤ j ≤ d the trigonometric Fourier coefficients
(θj,d)1≤j≤p for the functions S from the class Wk,r satisfy, for any ε̃ > 0, the
following inequality

θ2
j,d
≤ (1 + ε̃) θ2

j
+ (1 + ε̃−1)

2r

d2k
. (A.4)
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Proof. First we represent the function S as

S(x) =
d∑
l=1

θl φl(x) + ∆d(x) ,

where
∆d(x) =

∑
l>d

θl φl(x) .

Therefore,
θj,d = (S, φj)d = θj + (∆d, φj)d

and for any 0 < ε̃ < 1

θ2
j,d
≤ (1 + ε̃)θ2

j
+ (1 + ε̃−1)‖∆d‖2

d
.

By applying Lemma A.3 with g = 0, we obtain that

‖∆d‖2
d
≤ 2‖∆d‖2 + 2

‖∆̇d‖2

d2
.

Note here, that for any N ≥ 1

‖∆̇N‖2 = (2π)2
∑
l>N

θ2
l

[l/2]2 .

Taking into account here that

2π[l/2] ≥ l for l ≥ 2 ,

we obtain that
‖∆̇N‖2 ≤

∑
l>N

al
l2(k−1)

θ2
l
≤ r

N2(k−1)
. (A.5)

Hence Lemma A.4

Lemma A.5. For any d ≥ 2, 1 ≤ N ≤ d and r > 0, the coefficients
(θj,d)1≤j≤d of functions S from the class W 1

r
satisfy, for any ε̃ > 0, the

following inequality

d∑
j=N

θ2
j,d
≤ (1 + ε̃)

∑
j≥N

θ2
j

+ (1 + ε̃−1)
r

d2N2(k−1)
. (A.6)

Proof. First we note that
d∑

j=N

θ2
j,d

= min
x1,...,xN−1

‖S −
N−1∑
j=1

xjφj‖2
d
≤ ‖∆N‖2

d
,

where ∆N(t) =
∑

j≥N θjφj(t). By applying Lemma A.3 and taking into

account the inequality (A.5), we obtain the bound (A.6). Hence Lemma A.5
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A.4 Technical lemmas

Lemma A.6. The sequence Υn(S) satisfies the following upper bound

lim sup
n→∞

sup
S∈Wk,r

n2k/(2k+1) υ(S) Υn(S) ≤ l∗(r) . (A.7)

Proof. First of all, note that

0 < ε2(b− a) ≤ inf
S∈Θε,L

ς(S) ≤ sup
S∈Θε,L

ς(S) ≤ b− a . (A.8)

This implies directly that

lim
n→∞

sup
S∈Θε,L

∣∣∣∣∣ l̃n
r(S)

− 1

∣∣∣∣∣ = 0 , (A.9)

where r(S) = r/ς(S). Moreover, note that

n2k/(2k+1)υ(S) Υn(S) ≤ n2k/(2k+1) υ(S) Ξd +
(ς(S))1/(2k+1)

n1/(2k+1)

d∑
j=1

λ̃2(j)

and

Ξd =
d∑
j=1

(1− λ̃(j))2 θ2
j,d

= Ξ1,d + Ξ2,d ,

where

Ξ1,d =

[ω̃]∑
j=j∗

(1− λ̃(j))2 θ2
j,d

and Ξ2,d =
d∑

j=[ω̃]+1

θ2
j,d
.

We recall that

ω̃ = ωα̃ =
(
ñln$k

)1/(2k+1)

.

Lemma A.4 and Lemma A.5 yield

Ξ1,d ≤ (1 + ε̃)

[ω̃]∑
j=j∗

(1− λ̃(j))2 θ2
j

+ 2r(1 + ε̃−1)
ω̃

d2k
.

and
Ξ2,d ≤ (1 + ε̃)

∑
j≥[ω̃]+1

θ2
j

+ (1 + ε̃−1)
r

d2 ω̃2(k−1)
,

i.e.
Ξd ≤ (1 + ε̃)

∑
j≥1

(1− λ̃(j))2 θ2
j

+ 2r(1 + ε̃−1) Ξ̃n , (A.10)
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where

Ξ∗
n

=
∑
j≥1

(1− λ̃(j))2 θ2
j

=
∑
j≤ω̃

(1− λ̃(j))2 θ2
j

+
∑
j>ω̃

θ2
j

:= Ξ∗
1,n

+ Ξ∗
2,n

and

Ξ̃n =
ω̃

d2k
+

1

d2ω̃2(k−1)
.

Note, that

n2k/(2k+1)υ(S)Ξ∗
1,n

=

[ω̃]∑
j=j∗

(1− λ̃(j))2 θ2
j

=
υ(S)

($k̃ln)2k/(2k+1)

[ω̃]∑
j=j∗

j2 θ2
j

≤ υ(S)

($k̃ln)2k/(2k+1)
a∗
j∗

[ω̃]∑
j=j∗

aj θ
2
j
,

where a∗
n

= sup
j≥n j

2k/aj. It is clear that

lim
n→∞

a∗
n

=
1

π2k
.

Therefore, from (A.9) we obtain that

lim sup
n→∞

sup
S∈Θε,L

n2k/(2k+1)υ(S) Ξ∗
1,n∑[ω̃]

j=j∗
aj θ

2
j

≤ 1

π2k($kr)
2k/(2k+1)

=
ι
2k/(2k+1)
k

(2kπ r)2k/(2k+1)
.

Next note, that for any 0 < ε̃ < 1 and for sufficiently large n

Ξ∗
2,n
≤ 1

π2k ω̃2k

∑
j≥[ω̃]+1

aj θ
2
j

≤ (1 + ε̃)
(ς(S)ιk)

2k/(2k+1)

π2k/(2k+1) (2krn)2k/(2k+1)

∑
j≥[ω̃]+1

aj θ
2
j
,

i.e.

lim sup
n→∞

sup
S∈Θε,L

n2k/(2k+1)υ(S)
∑

j≥[ω̃]+1
θ2
j∑[ω̃]

j=j∗
aj θ

2
j

≤ ι
2k/(2k+1)
k

(2kπ r)2k/(2k+1)
.
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Moreover, we get directly that

lim
T→∞

sup
S∈Θε,L

∣∣∣∣∣
∑d

j=1 λ̃
2(j)

n1/(2k+1)(r(S))1/(2k+1)gk
− 1

∣∣∣∣∣ = 0 , (A.11)

where

gk =
2k2

($k)
2k/(2k+1)(2k + 1)(k + 1)

.

So, taking into account that in (A.10)

lim
n→∞

sup
S∈Wk,r

n2k/(2k+1)Ξ̃n = 0 ,

we obtain the limit equality (A.7) and, hence Lemma A.6.

Lemma A.7. For any non random coefficients (uj)1≤j≤d

E

 d∑
j=1

ujηj,d

2

≤ σ1,∗

d∑
j=1

u2
j
.

Proof. Using the definition of ηj,d in (3.7), we obtain that

E

 d∑
j=1

ujηj,d

2

=
b− a
d

E
d∑
l=1

σ2
l

 d∑
j=1

ujφj(zl)

2

≤ σ1,∗
b− a
d

d∑
l=1

 d∑
j=1

ujφj(zl)

2

.

Now, the orthonormality property of the basis functions (φj(·))1≤j≤d implies
this lemma.

Lemma A.8. Now we show that

lim
n→∞

n2k/(2k+1) sup
S∈Wk,r

|Ep,S Un1Γ| = 0 . (A.12)

Proof. First of all, note that, using the definition of sj,d in (3.14), we obtain

Ep,S η
2
j,d

= Ep,S sj,d =
1

d

d∑
l=1

Ep,S

1

Hl

+
1

d
Ep,Ssj,d ,
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where

sj,d =
d∑
l=1

σ2
l
φ
j
(xl) and φj(z) = (b− a)φ2

j
(z)− 1 .

Therefore, we can represent the expectation of Un as

Ep,S Un =
‖λ̃‖2

d2
Ep,SU1,n +

b− a
d2

Ep,SU2,n ,

where ‖λ̃‖2 =
∑d

j=1
λ̃2(j),

U1,n =
b− a
d

d∑
l=1

d

Hl

− ς(S) and U2,n =
d∑
j=1

λ̃2(j)sj,d .

Note now, that using Proposition 2.19 and the dominated convergence the-
orem in the definition (2.16) we obtain that

lim
n→∞

max
1≤l≤d

sup
S∈Θε,L

sup
p∈P

Ep,S

∣∣∣∣ dHl

− (1− S2(zl))

∣∣∣∣ = 0 .

Taking into account that for the functions from the class (2.4) their deriva-
tives are bounded in modulus by the fixed constant L > 0, we can easy
deduce that

lim
n→∞

sup
S∈Θε,L

∣∣∣∣∣b− ad
d∑
l=1

(1− S2(zl))− ς(S)

∣∣∣∣∣ = 0 ,

i.e.
lim
n→∞

sup
S∈Θε,L

sup
p∈P
|Ep,S U1,n| = 0 .

Therefore, taking into account that

lim sup
n→∞

n2k/(2k+1) sup
S∈Θε,L

‖λ̃‖2

d2
<∞ ,

we obtain that

limn→∞ n
2k/(2k+1) sup

S∈Θε,L

sup
p∈P
|Ep,S Un| ≤ (b− a)limn→∞U∗

2,n
, (A.13)

where

U∗
2,n

=
n2k/(2k+1)

d2
sup

S∈Θε,L

sup
p∈P
|Ep,SU2,n| .
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Now, using Lemma A.2 from [9] we obtain that

∣∣Ep,SU2,n

∣∣ =

∣∣∣∣∣
d∑
l=1

Ep,S σ
2
l

d∑
j=1

λ̃2(j)φ
j
(zl)

∣∣∣∣∣
≤ d σ1,∗ (22k+1 + 2k+2 + 1) ≤ 5d σ1,∗ 22k .

Note that from the definition of σ1,∗ in (2.30) it follows that

lim sup
n→∞

d σ1,∗ <∞ ,

i.e.
lim sup
n→∞

sup
S∈Θε,L

sup
p∈P

∣∣Ep,SU2,n

∣∣ <∞ .

Therefore, the using this bound in (A.13) implies

limn→∞ n
2k/(2k+1) sup

S∈Θε,L

sup
p∈P
|Ep,S Un| = 0 .

Moreover, according to the inequality (A.4) from [4] we have that

Ep,Sη
4
j,q
≤ 64m̌σ2

1,∗ ,

where the coefficient m̌ is given in (2.29). From this we obtain, that

Ep,S|Un|1Γc ≤
(b− a)

d

d∑
j=1

Ep,Sη
2
j,d
1Γc + ς(S)Pp,S(Γc)

≤
8σ1,∗(b− a)

√
m̌

d

√
Pp,S(Γc) + ς(S)Pp,S(Γc) .

So, Proposition 2.2 implies

lim
n→∞

n2k/(2k+1) sup
S∈Wk,r

Ep,S|Un|1Γc = 0 .

This implies the quality (A.12), and we obtain Lemma A.8.
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