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 for non parametric autoregressions an adaptive efficient model selection procedure is proposed, i.e. such for which the upper bound of its robust quadratic risk coincides with the obtained Pinsker constant.

1 Introduction

Model

In this paper we consider the nonparametric autoregression model defined as

y k = S(x k )y k-1 + ξ k and x k = a + k(b -a) n , (1.1) 
where S(•) ∈ L 2 [a, b] is unknown function, a < b are fixed known constants, 1 ≤ k ≤ n, the initial value y 0 is a constant and the noise (ξ k ) k≥1 is i.i.d. sequence of unobservable random variables with Eξ 1 = 0 and Eξ 2 1 = 1. In the sequel we denote by p the distribution density of the random variable ξ 1 .

The problem is to estimate the function S(•) on the basis of the observations (y k ) 1≤k≤n under the condition that the noise distribution p is unknown and belongs to some noise distributions class P. There is a number of papers which consider these models such as [START_REF] Dahlhaus | Maximum Likelihood Estimation and Model Selection for Locally Stationary Processes[END_REF], [START_REF] Dahlhaus | On the Kullback-Leibler Information Divergence of Locally Stationary Processes[END_REF] and [START_REF] Belitser | Recursive Estimation of a Drifted Autoregressive Parameter[END_REF]. In all these papers, the authors propose some asymptotic (as n → ∞) methods for different identification studies without considering optimal estimation issues. Firstly, minimax estimation problems for the model (1.1) has been treated in [START_REF] Arkoun | Nonparametric Estimation for an Autoregressive Model[END_REF] and [START_REF] Moulines | On Recursive Estimation for Time Varying Autoregressive Processes[END_REF] in the nonadaptive case, i.e. for the known regularity of the function S. Then, in [START_REF] Arkoun | Sequential Adaptive Estimators in Nonparametric Autoregressive Models[END_REF] and [START_REF] Arkoun | Sequential Robust Estimation for Nonparametric Autoregressive Models[END_REF] it is proposed to use the sequential analysis method for the adaptive pointwise estimation problem in the case when the Hölder regularity is unknown.

Main contributions

In this paper we consider the adaptive estimation problem for the quadratic risk defined as

R p ( S n , S) = E p,S S n -S 2 , S 2 = b a S 2 (x)dx , (1.2) 
where S n is an estimator of S based on observations (y k ) 1≤k≤n and E p,S is the expectation with respect to the distribution law P p,S of the process (y k ) 1≤k≤n given the distribution density p and the coefficient S. Moreover, taking into account that the distribution p is unknown, we use the robust nonparametric estimation approach proposed in [START_REF] Galtchouk | Asymptotically Efficient Estimates for Nonparametric Regression Models[END_REF]. To this end we set the robust risk as

R * ( S n , S) = sup p∈P R p ( S n , S) , (1.3) 
where P is a family of the distributions defined in Section 2.

To estimate the function S in model (1.1) we make use of the model selection procedures proposed in [START_REF] Arkoun | Sequential Model Selection Method for Nonparametric Autoregression[END_REF] based on the family of the optimal poinwise truncated sequential estimators from [START_REF] Arkoun | Sequential Robust Estimation for Nonparametric Autoregressive Models[END_REF] for which using the model selection method developed in [START_REF] Galtchouk | Sharp nonasymptotic oracle inequalities for nonparametric heteroscedastic regression models[END_REF] a sharp oracle inequality is shown. In this paper, using this inequality we show that the model selection procedure is efficient in adaptive setting for the robust quadratic risks (1.3). To this end, first of all we have to study the sharp lower bound for the these risks, i.e. we have to study the best potential accuracy estimation for the model (1.1) which is called the Pinsker constant. For this we use the approach proposed in [START_REF] Galtchouk | Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression[END_REF] - [START_REF] Galtchouk | Adaptive Sequential Estimation for Ergodic Diffusion Processes in Quadratic Metric[END_REF] which is based the Van-Trees inequality. It turns out that for the model (1.1) the Pinsker constant has the same form as for the filtration signal problem in the "signal -white noise" model studied in [START_REF] Pinsker | Optimal filtration of square integrable signals in gaussian noise[END_REF] but with new coefficient which equals to the optimal variance given by the Hajek -Le Cam inequality for the parametric model (1.1). This is the new result in the efficient non parametric estimation theory for the statistical models with dependent observations. Then, using the oracle inequality from [START_REF] Arkoun | Sequential Model Selection Method for Nonparametric Autoregression[END_REF] and the weight least square estimation method we show that for the model selection procedure with the Pinsker weight coefficients the upper bound asymptotically coincides with the obtained Pinsker constant without using the regularity properties of the unknown functions, i.e. it is efficient in adaptive setting with respect to the robust risks (1.3).

Plan of the paper

The paper is organized as follows. In Section 2 we give all conditions and construct the sequential point-wise estimation procedures. to pass from the auto-regression model to the corresponding regression model. In Section 3 we construct the model selection procedure based on the sequential estimators from Section 2. In Section 4 we announce the main results. In Section 5 we show the Van -Trees inequality for the model (1.1). In section 6 we obtain the lower bound for the robust risks. In Section 7 we obtain the upper bounds for the robust risks. In Appendix A we give the all auxiliary and technic tools.

Sequential procedures.

As in [START_REF] Arkoun | Sequential Robust Estimation for Nonparametric Autoregressive Models[END_REF] we assume that in the model (1.1) the i.i.d. random variables (ξ k ) k≥1 have a density p (with respect to the Lebesgue measure) from the functional class P defined as

P := p ≥ 0 : +∞ -∞ p(x) dx = 1 , +∞ -∞ x p(x) dx = 0 , +∞ -∞ x 2 p(x) dx = 1 and sup k≥1 +∞ -∞ |x| 2k p(x) dx ς k (2k -1)!! ≤ 1 , (2.1)
where ς ≥ 1 is some fixed parameter, which may be a function of the number observation n, i.e. ς = ς(n), such that for any b > 0

lim n→∞ ς(n) n b = 0 . (2.2)
Note that the (0, 1)-Gaussian density belongs to P. In the sequel we denote this density by p 0 . It is clear that for any q > 0

m * q = sup p∈P E p |ξ 1 | q < ∞ , (2.3) 
where E p is the expectation with respect to the density p from P. To obtain the stable (uniformly with respect to the function S ) model (1.1), we assume that for some fixed 0 < < 1 and L > 0 the unknown function S belongs to the ε -stability set introduced in [START_REF] Arkoun | Sequential Robust Estimation for Nonparametric Autoregressive Models[END_REF] as

Θ ,L = S ∈ C 1 ([a, b], R) : |S| * ≤ 1 - and | Ṡ| * ≤ L , (2.4) 
where

C 1 [a, b] is the Banach space of continuously differentiable [a, b] → R functions and |S| * = sup a≤x≤b |S(x)|.
We will use as a basic procedures the point wise procedure from [START_REF] Arkoun | Sequential Robust Estimation for Nonparametric Autoregressive Models[END_REF] at the points (z l ) 1≤l≤d defined as

z l = a + l d (b -a) , (2.5) 
where d is an integer value function of n, i.e.

d = d n , such that lim n→∞ d n √ n = 1 . (2.6)
So we propose to use the first ι l observations for the auxiliary estimation of S(z l ). We set

S l = 1 A ι l ι l j=1 Q l,j y j-1 y j , A ι l = ι l j=1 Q l,j y 2 j-1 , (2.7) 
where Q l,j = Q(u l,j ) and the kernel

Q(•) is the indicator function of the interval [-1; 1], i.e. Q(u) = 1 [-1,1] (u).
The points (u l,j ) are defined as

u l,j = x j -z l h . (2.8) 
Note that to estimate S(z l ) on the basis of the kernel estimate with the kernel Q we use only the observations (y j ) k 1,l ≤j≤k 2,l from the h -neighbor of the point z l , i.e.

k 1,l = [n z l -n h] + 1 and k 2,l = [n z l + n h] ∧ n , (2.9) 
where z l = (z l -a)/(b -a) and h = h/(b -a). Note that, only for the last point z d = b the k 2,d = n. We chose ι l in (2.7) as

ι l = k 1,l + q and q = q n = [(n h) µ 0 ] (2.10)
for some 0 < µ 0 < 1. In the sequel for any 0 ≤ k < m ≤ n we set

A k,m = m j=k+1 Q l,j y 2 j-1 and A m = A 0,m . (2.11) 
Next, similarly to [START_REF] Arkoun | Sequential Adaptive Estimators in Nonparametric Autoregressive Models[END_REF], we use a some kernel sequential procedure based on the observations (y j ) ι l ≤j≤n . To transform the kernel estimator in the linear function of observations and we replace the number of observations n by the following stopping time

τ l = inf{ι l + 1 ≤ k ≤ k 2,l : A ι l ,k ≥ H l } , (2.12) 
where inf{∅} = k 2,l and the positive threshold H l will be chosen as a positive random variable measurable with respect to the σ -field {y 1 , . . . , y ι l }. Now we define the sequential estimator as

S * l = 1 H l   τ l -1 j=ι l +1 Q l,j y j-1 y j + κ l Q(u l,τ l ) y τ l -1 y τ l   1 Γ l , (2.13) 
where Γ l = {A ι l ,k 2,l -1 ≥ H l } and the correcting coefficient 0 < κ l ≤ 1 on this set is defined as

A ι l ,τ l -1 + κ 2 l Q(u l,τ l )y 2 τ l -1 = H l . (2.14)
Note that, to obtain the efficient kernel estimate of S(z l ) we need to use the all k 2,l -ι l -1 observations. Similarly to [START_REF] Konev | Estimate of the Number of Observations in Sequential Identification of the Parameters of Dynamical Systems[END_REF], one can show that τ l ≈ γ l H l as H → ∞, where γ l = 1 -S 2 (z l ) .

(2.15)

Therefore, one needs to chose H as (k 2,l -ι l -1)/γ l . Taking into account that the coefficients γ l are unknown we define the threshold H l as

H l = 1 - γ l (k 2,l -ι l -1) and = 1 2 + ln n , (2.16) 
where

γ l = 1 -S 2 ι l
and S ι l is the projection of the estimator S ι l in the interval ] -1 + , 1 -[, i.e.

S ι l = min(max( S ι l , -1 + ), 1 -) .

(2.17)

To obtain the uncorrelated stochastic terms in the kernel estimators for S(z l ) we chose the bandwidth h as

h = b -a 2d . (2.18) 
As to the estimator S ι l , we can show the following property. 

where 0 = 0 (n) → 0 as n → ∞ such that lim n→∞ n δ 0 = ∞ for any δ > 0. Now we set Y l = S * H,h (z l )1 Γ and Γ = ∩ d l=1 Γ l . ( 2 
Y l = S(z l ) + ζ l and ζ l = ξ * l + l , (2.22) 
in which

ξ * l = τ l -1 j=ι l +1 Q l,j y j-1 ξ j + κ l Q(u l,τ l ) y τ l -1 ξ τ l H l (2.23)
and l = 1,l + 2,l , where

1,l = τ l -1 j=ι l +1 Q l,j y 2 j-1 ∆ l,j + κ 2 l Q(u l,τ l ) y 2 τ l -1 ∆ l,τ l H l , ∆ l,j = S(x j ) -S(z l )
and

2,l = (κ l -κ 2 l ) Q(u l,τ l ) y 2 τ l -1 S(x τ l ) H l .
Note that in the model sec:In.1-11-1R the random variables (ξ * j ) 1≤j≤d are defined only on the set Γ. By the technical reasons we need the definitions for these variables on the set Γ c was well. To this end for any j ≥ 1 we set Ql,j = Q l,j y j-1 1 {j<k 2,l } + H l Q l,j 1 {j=k 2,l } (2.24)

and Ǎι l ,m = m j=ι l +1 Q2 l,j . Note, that for any j ≥ 1 and l = m Ql,j Qm,j = 0 .

(2.25)

and Ǎι l ,k 2,l ≥ H l . So we can modify now stopping time (2.12) as τl = inf{k ≥ ι l + 1 : Ǎι l ,k ≥ H l } .

(2.26)

Obviously, τl ≤ k 2,l and τl = τ l on the set Γ for any 1 ≤ l ≤ d. Now similarly to (2.14) we define the correction coefficient as

Ǎι l ,τ l -1 + κ2 l Q2 l,τ l = H l . (2.27)
It is clear that 0 < κl ≤ 1 and κl = κ l on the set Γ for 1 ≤ l ≤ d. Using this coefficient we set

η l = τl -1 j=ι l +1 Ql,j ξ j + κl Ql,τ l ξ τl H l .
(2.28) Note that on the set Γ for any 1 ≤ l ≤ d the random variables η l = ξ * l . Moreover (see Lemma A.2 in [START_REF] Arkoun | Sequential Model Selection Method for Nonparametric Autoregression[END_REF]), for any 1 ≤ l ≤ d and p ∈ P

E p,S (η l |G l ) = 0 , E p,S η 2 l |G l = σ 2 l and E p,S η 4 l |G l ≤ mσ 4 l , (2.29) 
where

σ l = H -1/2 l , G l = σ{η 1 , . . . , η l-1 , σ l } and m = 4(144/ √ 3) 4 m * 4 . It is clear that σ 0, * ≤ min 1≤l≤d σ 2 l ≤ max 1≤l≤d σ 2 l ≤ σ 1, * , (2.30) 
where

σ 0, * = 1 -2 2(1 -)nh and σ 1, * = 1 (1 -)(2nh -q -3) . Now, taking into account that | 1,l | ≤ Lh, for any S ∈ Θ ,L we obtain that sup S∈Θ ,L E p,S 1 Γ 2 l ≤ L 2 h 2 + υn (nh) 2 , (2.31) 
where υn = sup p∈P sup S∈Θ ,L E p,S max 1≤j≤n y 4 j . The behavior of this coefficient is studied in the following Proposition. when n → ∞. We will use this in the oracle inequalities below.

Remark 2.2. Note, that to estimate the function S in (1.1) we use the approach developed in [START_REF] Galtchouk | Adaptive Sequential Estimation for Ergodic Diffusion Processes in Quadratic Metric[END_REF] for the diffusion processes. To this end we use the efficient sequential kernel procedures developed in [START_REF] Arkoun | Sequential Adaptive Estimators in Nonparametric Autoregressive Models[END_REF][START_REF] Arkoun | Nonparametric Estimation for an Autoregressive Model[END_REF][START_REF] Arkoun | Sequential Robust Estimation for Nonparametric Autoregressive Models[END_REF]. It should be emphasized that to obtain an efficient estimator, i.e. an estimator with the minimal asymptotic risk, one needs to take only indicator kernel as in (2.13).

Remark 2.3. Ii should be noted also that the sequential estimator (2.13) has the same form as in [START_REF] Arkoun | Sequential Robust Estimation for Nonparametric Autoregressive Models[END_REF], but except the last term, in which the correction coefficient is replaced by the square root of the coefficient used in [START_REF] Konev | On One Property of Martingales with Conditionally Gaussian Increments and Its Application in the Theory of Nonasymptotic Inference[END_REF]. We modify this procedure to calculate the variance of the stochastic term (2.23).

Model selection

In this section we consider the nonparametric estimation problem in the non asymptotic setting for the regression model sec:In.1-11-1R for some set Γ ⊆ Ω. The design points (z l ) 1≤l≤d are defined in (2.5). The function S(•) is unknown and has to be estimated from observations Y 1 , . . . , Y d . Moreover, we assume that the unobserved random variables (η l ) 1≤l≤d satisfy the properties (2.29) with some nonrandom constant m > 1 and the known random positive coefficients (σ l ) 1≤l≤d satisfy the inequlity (2.30) for some nonrandom positive constants σ 0, * and σ 1, * Concerning the random sequence = ( l ) 1≤l≤d we suppose that

E p,S 1 Γ 2 d < ∞ . (3.1)
The performance of any estimator S will be measured by the empirical squared error

S -S 2 d = ( S -S, S -S) d = b -a d d l=1 ( S(z l ) -S(z l )) 2 . (3.2) 
Now we fix a basis (φ j ) 1≤j≤d which is orthonormal for the empirical inner product:

(φ i , φ j ) d = b -a d d l=1 φ i (z l )φ j (z l ) = 1 {i=j} . (3.3)
For example, we can take the trigonometric basis (φ j ) j≥ 1 in L 2 [a, b], i.e.

φ 1 = 1 √ b -a , φ j (x) = 2 b -a Tr j (2π[j/2]l 0 (x)) , j ≥ 2 , (3.4) 
where the function Tr j (x) = cos(x) for even j and Tr j (x) = sin(x) for odd j, [x] denotes integer part of x. and l 0 (x) = (x -a)/(b -a). Note that, in this case to obtain the property (3.3) the numbers of points d must be odd.

To obtain the property (2.6) we can choose, for example,

d = 2[ √ n/2] + 1, where [a] is the integer part of a ∈ R.
Note that, using the orthonormality property (3.3) we can represent for any 1 ≤ l ≤ d the function S as

S(z l ) = d j=1 θ j,d φ j (z l ) and θ j,d = S, φ j d . (3.5)
So, to estimate the function S we have to estimate the Fourrier coefficients (θ j,d ) 1≤j≤d . To this end we reply the the function S by the observations, i.e.

θ j,d = b -a d d l=1 Y l φ j (z l ) . (3.6) 
From sec:In.1-11-1R we obtain immediately the following regression shceme

θ j,d = θ j,d + ζ j,d with ζ j,d = b -a d η j,d + j,d , (3.7) 
where

η j,d = b -a d d l=1 η l φ j (z l ) and j,d = b -a d d l=1 l φ j (z l ) .
Note that the upper bound (2.30) and the Bounyakovskii-Cauchy-Schwarz inequality imply that

| j,d | ≤ d φ j d = d .

Now we set

B n = n 2 d . (3.8) 
Note here that Proposition 3.3 from [START_REF] Arkoun | Sequential Model Selection Method for Nonparametric Autoregression[END_REF] implies directly that for any b > 0

lim n→∞ 1 n b sup p∈P sup S∈Θ ε,L E p,S B n 1 Γ = 0 . (3.9)
We estimate the function S on the sieve (2.5) by the weighted least squares estimator

S λ (z l ) = d j=1 λ(j) θ j,d φ j (z l ) 1 Γ , 1 ≤ l ≤ d , (3.10) 
where the weight vector λ = (λ(1), . . . , λ(d)) belongs to some finite set Λ ⊂ [0, 1] d , the prime denotes the transposition. We set for any A 1 ) For any δ > 0

a ≤ t ≤ b S λ (t) = d l=1 S λ (z l )1 {z l-1 <t≤z l } . ( 3 
lim n→∞ φ * n + ν n n δ = 0 and lim n→∞ Λ * (n) n 1/6+ δ = 0 , (3.12) 
where φ * n = max 1≤j≤n max x 0 ≤x≤x 1 |φ j (x)|. In order to obtain a good estimator, we have to write a rule to choose a weight vector λ ∈ Λ in (3.10). We define the empirical squared risk as

Err d (λ) = S λ -S 2 d .
Using (3.5) and (3.10) we can rewire this risk as

Err d (λ) = d j=1 λ 2 (j) θ 2 j,d -2 d j=1 λ(j) θ j,d θ j,d + d j=1 θ 2 j,d . (3.13) 
Since the coefficient θ j,d is unknown, we need to replace the term θ j,d θ j,d by some its estimator which we choose as

θ j,d = θ 2 j,d - b -a d s j,d with s j,d = b -a d d l=1 σ 2 l φ 2 j (z l ) . (3.14) 
Note that from (2.30) -(3.3) it follows that

s j,d ≤ σ 1, * . (3.15) 
Finally, we define the cost function of the form

J d (λ) = d j=1 λ 2 (j) θ 2 j,d -2 d j=1 λ(j) θ j,d + δP d (λ) , (3.16) 
where the penalty term is defined as

P d (λ) = b -a d d j=1 λ 2 (j)s j,d (3.17) 
and 0 < δ < 1 is some positive constant which will be chosen later. We set

λ = argmin λ∈Λ J d (λ) and S * = S λ . (3.18)
To study the efficiency property we specify the weight coefficients (λ(j)) 1≤j≤n as it is proposed, for example, in [START_REF] Galtchouk | Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression[END_REF]. First, for some 0 < ε < 1 introduce the two dimensional grid to adapt to the unknown parameters (regularity and size) of the Sobolev bull, i.e. we set

A = {1, . . . , k * } × {ε, . . . , mε} , (3.19) 
where m = [1/ε 2 ]. We assume that both parameters k * ≥ 1 and ε are functions of n, i.e.

k * = k * (n) and ε = ε(n), such that      lim n→∞ k * (n) = +∞ , lim n→∞ k * (n) ln n = 0 , lim n→∞ ε(n) = 0 and lim n→∞ n δ ε(n) = +∞ (3.20)
for any δ > 0. One can take, for example, for n ≥ 2

ε(n) = 1 ln n and k * (n) = k * 0 + √ ln n , (3.21) 
where k * 0 ≥ 0 is some fixed constant. For each α = (β, l) ∈ A, we introduce the weight sequence

λ α = (λ α (j)) 1≤j≤p
with the elements

λ α (j) = 1 {1≤j<j * } + 1 -(j/ω α ) β 1 {j * ≤j≤ω α } , (3.22) 
where

j * = 1 + [ln n], ω α = ( β l n) 1/(2β+1) , β = (β + 1)(2β + 1) π 2β β = 2β π 2β ι β and ι β = 2β 2 (β + 1)(2β + 1)
.

Now we define the set Λ as

Λ = {λ α , α ∈ A} . (3.23)
Note, that these weight coefficients are used in [START_REF] Konev | Efficient robust nonparametric estimation in a semimartingale regression model[END_REF][START_REF] Konev | Robust model selection for a semimartingale continuous time regression from discrete data[END_REF] for continuous time regression models to show the asymptotic efficiency. It will be noted that in this case the cardinal of the set Λ is ν = k * m. It is clear that the properties (3.20) imply the condition (3.12).

In [START_REF] Arkoun | Sequential Model Selection Method for Nonparametric Autoregression[END_REF] we shown the following result. 

Main results

For any fixed r > 0 and k ≥ 1 we define the Sobolev ellipse as

W k,r = {f ∈ Θ ,L : k j=0 a j θ 2 j ≤ r} , (4.1) 
where a j = k l=0 (2π[j/2]) 2l , (θ j ) j≥1 are the trigonometric Fourier coefficients, i.e.

θ j = b a f (x)φ j (x)dx
and (φ j ) j≥1 is the trigonometric basis defined in (3.4). It is clear we can represent this functional class as

W k,r = {f ∈ Θ ,L : k j=0 f (j) 2 ≤ r} , (4.2) 
In order to formulate the asymptotic results we define the following normalizing coefficients. First, for any r > 0 we set

l * (r) = ((1 + 2k)r) 1/(2k+1) k π(k + 1) 2k/(2k+1) (4.3) and ς(S) = b a (1 -S 2 (u))du . (4.4)
It is well known that for any S ∈ W k,r the optimal rate of convergence is n -2k/(2k+1) . First we study the lower bound for the asymptotic risks in the class of all estimators E n , i.e. any measurable function with respect to the observations σ{y 1 , . . . , y n }. 

lim inf n→∞ inf S n ∈E n n 2k/(2k+1) sup S∈W k,r υ(S)R * ( S n , S) ≥ l * (r) , (4.5) 
where υ(S) = (ς(S)) -2k/(2k+1) .

Now we stady the asymptotic upper bound for the quadratic risk of the estimator S * . To this end we assume the following condition for the penalty coefficient δ in the objective function (3.16).

A 2 ) Assume that the parameter δ is a function of n, i.e. δ = δ n such that for any b > 0 Remark 4.1. Note that the limit equalties (4.8) and (4.9) imply that the function l * (r)/υ(S) is the minimal value of the normalised asymptotic quadratic robust risk, i.e. Pinsker constant in this case. We remind that the coefficient l * (r) is the well known Pinsker constant for the "signal+standard white noise" model obtained in [START_REF] Pinsker | Optimal filtration of square integrable signals in gaussian noise[END_REF]. Therefore, the Pinsker constant for the model (1.1) is represented by the Pinsker constant for the "signal+white noise" model in which the noise intensity is given by the function (4.4).

lim n→∞ δ n n b = 0 . ( 4 

The van Trees inequality

In this section we consider the following continuous time parametric model (1.1) with the (0, 1) gaussian i.i.d. random variable (ξ j ) 1≤j≤n and the parametric linear function S, i.e.

S θ (x) = d l=1 θ l ψ l (x) , θ = (θ 1 , . . . , Ξ d ) ∈ R n . (5.1)
The functions (ψ i ) 1≤i≤d are orthogonal with respect to the scalar product (3.3). Let now P n θ be the distribution in R n of the observations y = (y 1 , . . . , y n ) in the model (1.1) with the function (5.1) and ν n ξ be the distribution in R n of the gaussian vector (ξ 1 , . . . , ξ n ). In this case the Radon -Nykodim density is given as

f n (y, θ) = dP (n) θ dν n ξ = exp    n j=1 S θ (x j )y j-1 y j - 1 2 n j=1 S 2 θ (x j )y 2 j-1    . (5.2)
Let u be a prior distribution density on R d for the parameter θ of the following form:

u(θ) = d j=1 u j (θ j ) ,
where u j is some continuously differentiable probability density in R with the support ] -L j , L j [, i.e. u j (z) > 0 for any -L j < z < L j and u j (z) = 0 for all |z| ≥ L j , such that the Fisher information is finite, i.e.

I j = L j -L j u2 l (z) u j (z) dz < ∞ . (5.3) Now, we set Ξ =] -L 1 , L 1 [ × . . . × ] -L d , L d [ ⊆ R d . (5.4) 
Let g(θ) be a continuously differentiable Ξ → R function such that, for each 1 ≤ j ≤ d,

lim |θ j |→L j g(θ) u j (θ j ) = 0 and R d |g j (θ)| u(θ) dθ < ∞ , (5.5) 
where g j (θ) = ∂g(θ)/∂θ j .

For any B(X )×B(R d )-measurable integrable function H = H(y, θ) we denote

E H = Ξ R n H(y, θ) dP n θ u(θ)dθ = Ξ R n H(y, θ) f n (y, θ) u(θ)dν (n) ξ dθ .
Now we obtain an lower bound for the corresponding bayesian risks in the case when the model (1.1) is gaussian with the function (5.1).

Lemma 5.1. For any F y n -measurable square integrable function g n and for any 1 ≤ j ≤ d, the following inequality holds

E( g n -g(θ)) 2 ≥ g 2 j E Ψ n,j + I j , (5.6) 
where Ψ n,j = n j=1 ψ 2 j (x l ) y 2 l-1 and g j = Ξ g j (θ) u(θ) dθ.

Proof. First, for any θ ∈ Ξ we set

U j = U j (y, θ) = 1 f (y, θ)u(θ) ∂ (f (y, θ)u(θ)) ∂θ j .
Taking into account the condition (5.5) and integrating by parts we get

E ( g n -g(θ)) U j = R n ×Ξ ( g n (y) -g(θ)) ∂ ∂θ j (f (y, θ)u(θ)) dθ dν (n) ξ = R n × Ξj L j -L j g j (θ) f (y, θ)u(θ)dθ j   i =j dθ i   dν (n) ξ = g j , where Ξj = i =j ] -L i , L i [ .
Now by the Bouniakovskii-Cauchy-Schwarz inequality we obtain the following lower bound for the quadratic risk

E( g n -g(θ)) 2 ≥ g 2 j E U 2 j .
To study the denominator in the left hand of this inequality note that in view of the representation (5.2)

1 f n (y, θ) ∂ f n (y, θ) ∂θ j = n l=1 ψ j (x l ) y l-1 (y l -S θ (x l )y l-1 ) .
Therefore, for each θ ∈ Ξ,

E (n) θ 1 f n (y, θ) ∂ f n (y, θ) ∂θ j = 0 E (n) θ 1 f n (y, θ) ∂ f n (y, θ) ∂θ j 2 = E (n) θ n l=1 ψ 2 j (x l ) y 2 l-1 = E (n) θ Ψ n,l .
Using the equality

U j = 1 f n (y, θ) ∂ f n (y, θ) ∂θ j + 1 u(θ) ∂ u(θ) ∂θ j ,
we get E U 2 j = E Ψ n,j + I j , where the Fisher information I j is defined in (5.3). Hence Lemma 5.1.

Remark 5.1. It should be noted that in the definition of the prior distribution the bound L j may be equal to infinity either for some 1 ≤ j ≤ d or for all 1 ≤ j ≤ d.

Low bound

First, note that R * ( S n , S) ≥ R p 0 ( S n , S) , (6.1) where p 0 is the (0, 1) gaussian density. Now for any fixed 0 < ε < 1 we set

d = d n = k + 1 k (ςn) 1/(2k+1) l * (r ε ) (6.2)
where ς = 1/(b -a), r ε = (1 -ε)r and

l * (r ε ) = ((1 + 2k)r ε ) 1/(2k+1) k π(k + 1) 2k/(2k+1) = (1 -ε) 1/(2k+1) l * (r) .
For any vector θ = (θ j ) 1≤j≤d ∈ R d , we set

S θ (x) = d n j=1 θ j φ j (x) , (6.3) 
where (φ j ) 1≤j≤d n is the trigonometric basis defined in (3.4). As ir is shown in [START_REF] Golubev | On the second order minimax estimation of distribution functions[END_REF] there exist continuously differentiable density pL with the support on

[-L, L]] such that L -L xp L (x)dx = 0, L -L x 2 pL (x)dx = 1 and ǏL = L -L (p (x)) 2 p(x) p(x)dx = 1 + ˇ L ,
where ˇ L → 0 as L → ∞. To define the bayesian risk we choose a prior distribution on R d as θ = (θ j ) 1≤j≤d n and κ j = s j ηj , (6.4)

where ηj are i.i.d. random variables with the density pL ,

s j = s * j ςn and s * j = d n j k -1 .
Furthermore, for any function f , we denote by h(f ) its projection in

L 2 [0, 1] onto W k,r , i.e. h(f ) = Pr W k,r (f ) .
Since W k,r is a convex set, we obtain, that for any function

S ∈ W k,r S -S 2 ≥ h -S 2 with h = h( S) .
From the definition of the prio distribution (6.4) we obtain that a.s.

max a≤x≤b |S θ (x)| + | Ṡθ (x)| ≤ 2 b -a b -a + 1 b -a n := * n , (6.5) 
where

n = L √ n d n j=1 d n j k/2 j → 0 as n → ∞
for any k ≥ 2. Therefore, for sufficiently large n the function (6.3) belongs to the class (2.4) and the last property yileds sup

S∈W k,r υ(S) R p 0 ( S, S) ≥ {z∈R d : S z ∈W k,r } υ(S z )E p 0 ,S z h -S z 2 µ κ (dz) ≥ υ * {z∈R d : S z ∈W k,r } E p 0 ,S z h -S z 2 µ κ (dz)
,

where υ * = inf |S| * ≤ * n υ(S) → ς 2k/(2k+1) as n → ∞ .
Using the distribution µ κ we introduce the following Bayes risk

R 0 ( S) = R d R p 0 ( S, S z ) µ κ (dz) .
Taking into account now that h 2 ≤ r we obtain sup

S∈W k,r υ(S) R p 0 ( S, S) ≥ υ * R 0 ( h) -2 υ * R 0,n (6.6) 
with R 0,n =

{z∈R d : S z / ∈W k,r } (r + S z 2 ) µ κ (dz) .
In Lemma A.2 we studied the last term in this inequality. Now it is easy to see that

h -S z 2 ≥ d n j=1 ( z j -z j ) 2 ,
where

z j = 1 0 h(t) φ j (t)dt. So, in view of Lemma 5.1, we obtain R 0 ( h) ≥ 1 ςn d n j=1 1 1 + ǏL (s * j ) -1 ≥ 1 ςn max(1, ǏL ) d n j=1 1 - j k d k n .
Therefore, using now the definition (6.2), Lemma A.2 and the inequality (6.1) we obtain that lim inf

n→∞ inf S∈Π n n 2k 2k+1 sup S∈W k,r υ(S) R * ( S n , S) ≥ (1 -ε) 1 2k+1 1 max(1, ǏL ) l * .
Taking here limit as ε → 0 and L → ∞ we come to the Theorem 4.1.

7 Upper bound

Known regularity

We start with the estimation problem for the functions S from W k,r with known parameters k, r and ς(S) defined in (4.4). In this case we use the estimator from family (3.23)

S = S α , (7.1) 
where α = (k, t n ), l n = [r(S)/ε] ε and r(S) = r/ς(S). We remind, that ε = 1/ ln n. Note that for sufficiently large n, the parameter α belongs to the set (3.19). In this section we obtain the upper bound for the empiric risk (3.2).

Theorem 7.1. The estimator S constructed on the trigonometric basis satisfies the following asymptotic upper bound

lim sup n→∞ n 2k/(2k+1) sup S∈W k,r υ(S) E p,S S -S 2 d 1 Γ ≤ l * (r) . (7.2) 
Proof. We denote λ = λ α and ω = ω α . Now we recall that the Fourier coefficients on the set Γ

θ j,d = θ j,d + ζ j,d with ζ j,d = b -a d η j,d + j,d ,
Therefore, on the set Γ we can represent the empiric squared error as

S -S 2 d = d j=1 (1 -λ(j)) 2 θ 2 j,d -2M n -2 d j=1 (1 -λ(j)) λ(j)θ j,d j,d + d j=1 λ 2 (j) ζ 2 j,d ,
where

M n = b -a d d j=1 (1 -λ(j)) λ(j)θ j,d η j,d . Now for any 0 < ε < 1 2 d j=1 (1 -λ(j)) λ(j)θ j,d j,d ≤ ε d j=1 (1 -λ(j)) 2 θ 2 j,d + ε-1 d j=1 2 j,d .
Taking into account here the definition (3.8), we can rewrite this inequality as

2 d j=1 (1 -λ(j)) λ(j)θ j,d j,d ≤ ε d j=1 (1 -λ(j)) 2 θ 2 j,d + B n εn .
Therefore,

S -S 2 d ≤ (1 + ε) d j=1 (1 -λ(j)) 2 θ 2 j,d -2M n + B n εn + d j=1 λ 2 (j)ζ 2 j,d .
By the same way we estimate the last term on the right-hand side of this inequality as

d j=1 λ 2 (j) ζ 2 j,d ≤ (1 + ε)(b -a) d d j=1 λ 2 (j) η 2 j,d + (1 + ε-1 ) B n n .
Thus, on the set Γ we find that for any 0 < ε < 1

S n -S 2 d ≤ (1 + ε)Υ n (S) -2M n + (1 + ε)U n + 3B n εn , (7.3) 
where

Υ n (S) = d j=1 (1 -λ(j)) 2 θ 2 j,d + ς(S) d 2 d j=1 λ 2 (j) (7.4) 
and

U n = 1 d 2 d j=1 λ 2 (j) d(b -a)η 2 j,d -ς(S) .
First, note that in view of Lemma A.7

E p,S M 2 n ≤ σ 1, * (b -a) d d j=1 θ 2 j,d = σ 1, * (b -a) d S 2 d ≤ σ 1, * (b -a) 2 d ,
where the constant σ 1, * is defined in (2.30). Moreover, taking into account here that E p,S M n = 0, we get

|E p,S M n 1 Γ | = |E p,S M n 1 Γ c | ≤ (b -a) σ 1, * P p,S (Γ c ) d .
Therefore, Proposition 2.2 yields

lim n→∞ n 2k/(2k+1) sup S∈Θ ,L |E p,S M n 1 Γ | = 0 . (7.5) 
Now, the property (3.9) Lemma A.6 and Lemma A.8 imply the inequality (7.2). Hence Theorem 7.1. 

Unknown smoothness

A Appendix

A.1 Properties of the prior distribution (6.4)

Lemma A.1. For any 1 ≤ j ≤ d lim n→∞ (b -a) n E Ψ n,j = 1 . (A.1)
Proof. First, note that for any k ≥ 1

y k = y 0 k j=1 S θ (x j ) + k l=1 k j=l+1 S θ (x j )ξ l .
Using the distribution (6.4), we obtain that

E y 2 m = y 2 0 E m j=1 S 2 θ (x j ) + m l=1 E m j=l+1 S 2 θ (x j ) .
Therefore, due to the property (6.5) we obtain that for any m ≥ 1 and for any n ≥ 1 for which * n < 1 we get, that

| E y 2 m -1| ≤ y 2 0 ( * n ) m + m-1 l=1 ( * n ) m-l ≤ * n y 2 0 + 1 1 - * n .
Taking into account that for any n ≥ 1 Proof. First note, that the bound (6.5) implies that for sufficiently large n the function (6.3) with the random coefficients defined through the prior distribution (6.4) almost sure belongs to the class Θ ε,L . Therefore, the definition (4.1) we obtain that

S θ / ∈ W k,r = {ζ n > r} ,
where ζ n = d n j=1 κ 2 j a j . So, it suffices to show that for any b > 0 lim

n→∞ n b P(ζ n > r) = 0 . (A.3) Note now, that lim n→∞ E ζ n = lim n→∞ 1 (b -a)n d n j=1 a j s * j = r ε = (1 -ε)r .
So, for sufficiently large n we obtain that

{ζ n > r} ⊂ ζ n > r 1 ,
where r 1 = rε/2 and

ζ n = ζ n -E ζ n = 1 n d n j=1
s * j a j η j .

Using again the correlation inequality from [START_REF] Galtchouk | Uniform concentration inequality for ergodic diffusion processes observe at discrete times[END_REF] we get that for any p ≥ 2 there exists some constant C p > 0 for which

E ζ p n ≤ C p 1 v p n   d j=1 (s * j ) 2 a 2 j   p/2 ≤ C p n -p 4k+2 ,
i.e. the expectation E ζ p n → 0 as n → ∞. Therefore, using the Chebychev inequality we obtain that for any b > 0

n b P( ζ n > r 1 ) → 0 as n → ∞ .
This implies (A.3), and therefore, Lemma A.2.

A.2 Relations between the norms • and • d .

Lemma A.3. Let f be an absolutely continuous [0, 1] → R function with ḟ < ∞ and g be a simple [0, 1] → R function of the form

g(t) = d j=1 c j χ (t j-1 ,t j ] (t),
where c j are some constants and t j = j/d. Then for any ε > 0

f -g 2 ≤ (1 + ε) f -g 2 d + (1 + ε -1 ) ḟ 2 d 2 and f -g 2 d ≤ (1 + ε) f -g 2 + (1 + ε -1 ) ḟ 2 d 2 . Proof. Setting ∆(t) = f (t) -g(t)
, we obtain, that for any ε > 0

∆ 2 = ∆ 2 d + d l=1 t l t l-1 2∆(t l ) (∆(t) -∆(t l )) + (∆(t) -∆(t l )) 2 dt ≤ (1 + ε) ∆ 2 d + (1 + ε -1 ) d l=1 t l t l-1 [∆(t l ) -(∆(t))] 2 dt = (1 + ε) ∆ 2 d + (1 + ε -1 ) d l=1 t l t l-1 |f (t l ) -f (t)| 2 dt .
Noting that, for t l-1 < t ≤ t l , one has the estimate

|f (t l ) -f (t)| 2 ≤ t l t l-1 | ḟ (u)|du 2 ≤ 1 p t l t l-1 | ḟ (u)| 2 du ,
one comes to the first inequality. Similarly, one can verify the second inequality. Hence Lemma A.3.

A.3 Properties of the trigonometric basis.

Lemma A.4. For any 1 ≤ j ≤ d the trigonometric Fourier coefficients (θ j,d ) 1≤j≤p for the functions S from the class W k,r satisfy, for any ε > 0, the following inequality

θ 2 j,d ≤ (1 + ε) θ 2 j + (1 + ε -1 ) 2r d 2k . (A.4)
Proof. First we represent the function S as

S(x) = d l=1 θ l φ l (x) + ∆ d (x) , where ∆ d (x) = l>d θ l φ l (x) .
Therefore,

θ j,d = (S, φ j ) d = θ j + (∆ d , φ j ) d
and for any 0 < ε < 1

θ 2 j,d ≤ (1 + ε)θ 2 j + (1 + ε -1 ) ∆ d 2 d
. By applying Lemma A.3 with g = 0, we obtain that

∆ d 2 d ≤ 2 ∆ d 2 + 2 ∆d 2 d 2 . Note here, that for any N ≥ 1 ∆N 2 = (2π) 2 l>N θ 2 l [l/2] 2 .
Taking into account here that 2π[l/2] ≥ l for l ≥ 2 ,

we obtain that ∆N 2 ≤ l>N a l l 2(k-1) θ 2 l ≤ r N 2(k-1) . (A.5)
Hence Lemma A.4

Lemma A.5. For any d ≥ 2, 1 ≤ N ≤ d and r > 0, the coefficients (θ j,d ) 1≤j≤d of functions S from the class W 1 r satisfy, for any ε > 0, the following inequality

d j=N θ 2 j,d ≤ (1 + ε) j≥N θ 2 j + (1 + ε -1 ) r d 2 N 2(k-1) . (A.6)
Proof. First we note that

d j=N θ 2 j,d = min x 1 ,...,x N -1 S - N -1 j=1 x j φ j 2 d ≤ ∆ N 2 d ,
where ∆ N (t) = j≥N θ j φ j (t). By applying Lemma A.3 and taking into account the inequality (A.5), we obtain the bound (A.6). Hence Lemma A.5 (A.7)

A.4 Technical lemmas

Proof. First of all, note that

0 < ε 2 (b -a) ≤ inf S∈Θ ε,L ς(S) ≤ sup S∈Θ ε,L ς(S) ≤ b -a . (A.8)
This implies directly that

lim n→∞ sup S∈Θ ε,L l n r(S) -1 = 0 , (A.9)
where r(S) = r/ς(S). Moreover, note that

n 2k/(2k+1) υ(S) Υ n (S) ≤ n 2k/(2k+1) υ(S) Ξ d + (ς(S)) 1/(2k+1) n 1/(2k+1) d j=1 λ 2 (j)
and

Ξ d = d j=1 (1 -λ(j)) 2 θ 2 j,d = Ξ 1,d + Ξ 2,d ,
where

Ξ 1,d = [ ω] j=j * (1 -λ(j)) 2 θ 2 j,d and Ξ 2,d = d j=[ ω]+1 θ 2 j,d .
We recall that ω = ω α = n l n k

1/(2k+1)

.

Lemma A.4 and Lemma A.5 yield

Ξ 1,d ≤ (1 + ε) [ ω] j=j * (1 -λ(j)) 2 θ 2 j + 2r(1 + ε -1 ) ω d 2k . and Ξ 2,d ≤ (1 + ε) j≥[ ω]+1 θ 2 j + (1 + ε -1 ) r d 2 ω 2(k-1) , i.e. Ξ d ≤ (1 + ε) j≥1 (1 -λ(j)) 2 θ 2 j + 2r(1 + ε -1 ) Ξ n , (A.10)
where

Ξ * n = j≥1 (1 -λ(j)) 2 θ 2 j = j≤ ω (1 -λ(j)) 2 θ 2 j + j> ω θ 2 j := Ξ * 1,n + Ξ * 2,n and Ξ n = ω d 2k + 1 d 2 ω 2(k-1) . Note, that n 2k/(2k+1) υ(S)Ξ * 1,n = [ ω] j=j * (1 -λ(j)) 2 θ 2 j = υ(S) ( k l n ) 2k/(2k+1) [ ω] j=j * j 2 θ 2 j ≤ υ(S) ( k l n ) 2k/(2k+1) a * j * [ ω] j=j * a j θ 2 j ,
where a * n = sup j≥n j 2k /a j . It is clear that

lim n→∞ a * n = 1 π 2k .
Therefore, from (A.9) we obtain that lim sup

n→∞ sup S∈Θ ε,L n 2k/(2k+1) υ(S) Ξ * 1,n [ ω] j=j * a j θ 2 j ≤ 1 π 2k ( k r) 2k/(2k+1) = ι 2k/(2k+1) k (2kπ r) 2k/(2k+1) .
Next note, that for any 0 < ε < 1 and for sufficiently large n

Ξ * 2,n ≤ 1 π 2k ω 2k j≥[ ω]+1 a j θ 2 j ≤ (1 + ε) (ς(S)ι k ) 2k/(2k+1) π 2k/(2k+1) (2krn) 2k/(2k+1) j≥[ ω]+1 a j θ 2 j ,
i.e. Moreover, according to the inequality (A.4) from [START_REF] Arkoun | Sequential Model Selection Method for Nonparametric Autoregression[END_REF] we have that E p,S η 4 j,q ≤ 64 mσ This implies the quality (A.12), and we obtain Lemma A.8.

Proposition 2 . 1 .

 21 The convergence rate in probability of the estimator (2.17) is more rapid than any power function, i.e. for any b > 0 lim n→∞ n b max 1≤l≤d sup S∈Θ ,L sup p∈P P p,S | S ι l -S(z l )| > 0 = 0 , (2.19)

Proposition 2 . 3 .Remark 2 . 1 .

 2321 For any b > 0 the sequence (υ n ) n≥1 satisfies the following limiting equality lim n→∞ n -b υn = 0 . (2.32) It should be noted that the property (2.32) means that the asymptotic behavior of the upper bound (2.31) approximately almost as h -2

. 11 )

 11 Denote by ν be the cardinal number of the set Λ and Λ * = max λ∈Λ d j=1 λ(j) .

Theorem 3 . 1 .Remark 3 . 1 .

 3131 Assume that the conditions (2.2) and (3.12) hold. Then for any n ≥ 3, any S ∈ Θ ,L and any 0 < δ ≤ 1/12, the procedure (3.18) with the coefficients (3.23) satisfies the following oracle inequalityR * ( S * , S) ≤ (1 + 4δ)(1 + δ) 2 1 -6δ min λ∈Λ R * ( S λ , S) + D * n δn ,(3.24)where the term D * n is such that for any b > It sjhould be noted that the weight least square estimators (3.10) with the weight coefficients (3.23) is efficient for the Sobolev ball (see, for example, [? 19]). So, Theorem 3.1 means that this model selection procedure is best among all the effective procedures in the sharp oracle inequality sense (3.24) and below we will use this property to show the efficiency property in adaptive setting, i.e. in the case, when the regularity property of the function S (1.1) is unknown.

Theorem 4 . 1 .

 41 For the model (1.1) with the noise distribution from the class P defined in(2.1) 

2 .

 2 For any b > 0 the term R 0,n introduced in (6.6) satisfies the following property lim n→∞ n b R 0,n = 0 . (A.2)

Lemma A. 6 .

 6 The sequence Υ n (S) satisfies the following upper bound lim sup n→∞ sup S∈W k,r n 2k/(2k+1) υ(S) Υ n (S) ≤ l * (r) .

λ 2 2 .Lemma A. 8 . 2 l 1 -( 1 - 2 λ 2

 22821122 (j) n 1/(2k+1) (r(S)) 1/(2k+1) g k -1 = 0 , (A.11)whereg k = 2k 2 ( k ) 2k/(2k+1) (2k + 1)(k + 1).So, taking into account that in (A.10)lim n→∞ sup S∈W k,r n 2k/(2k+1) Ξ n = 0 ,we obtain the limit equality (A.7) and, hence Lemma A.6.Lemma A.7. For any non random coefficients (u j ) 1≤j≤d Using the definition of η j,d in (3.7), we obtain that Now, the orthonormality property of the basis functions (φ j (•)) 1≤j≤d implies this lemma. Now we show thatlim n→∞ n 2k/(2k+1) sup S∈W k,r |E p,S U n 1 Γ | = 0 . (A.12)Proof. First of all, note that, using the definition of s j,d in (3.14), we obtainE p,S η 2 j,d = E p,S s j,d φ j (x l ) and φ j (z) = (b -a)φ 2 j (z) -1 .Therefore, we can represent the expectation of U n asE p,S U n = λ 2 d 2 E p,S U 1,n + b -a d 2 E p,S U 2,n ,whereλ 2 = d j=1 λ 2 (j), U 1,n = b -a d d l=1 d H l -ς(S) and U 2,n = d j=1 λ 2 (j)s j,d .Note now, that using Proposition 2.19 and the dominated convergence theorem in the definition (2.16) we obtain that lim S 2 (z l )) = 0 .Taking into account that for the functions from the class (2.4) their derivatives are bounded in modulus by the fixed constant L > 0, we can easy deduce S 2 (z l )) -ς(S) = 0 ,i.e. lim n→∞ sup S∈Θ ,L sup p∈P |E p,S U 1,n | = 0 .Therefore, taking into account that lim supn→∞ n 2k/(2k+1) sup S∈Θ ,L λ 2 d 2 < ∞ , we obtain that lim n→∞ n 2k/(2k+1) sup S∈Θ ,L sup p∈P |E p,S U n | ≤ (b -a)lim n→∞ U * sup p∈P |E p,S U 2,n | .29Now, using Lemma A.2 from[START_REF] Galtchouk | Sharp nonasymptotic oracle inequalities for nonparametric heteroscedastic regression models[END_REF] we obtain thatE p,S U 2,n = (j) φ j (z l ) ≤ d σ 1, * (2 2k+1 + 2 k+2 + 1) ≤ 5d σ 1, * 2 2k .Note that from the definition of σ 1, * in (2.30) it follows that lim sup n→∞ d σ 1, * < ∞ , i.e. lim sup n→∞ sup S∈Θ ,L sup p∈P E p,S U 2,n < ∞ . Therefore, the using this bound in (A.13) implies lim n→∞ n 2k/(2k+1) sup S∈Θ ,L sup p∈P |E p,S U n | = 0 .

  where the coefficient m is given in(2.29). From this we obtain, thatE p,S |U n |1 Γ c ≤ (b -a) d d j=1 E p,S η 2 j,d 1 Γ c + ς(S)P p,S (Γ c ) ≤ 8σ 1, * (b -a) √ m d P p,S (Γ c ) + ς(S)P p,S (Γ c ) . So, Proposition 2.2 implies lim n→∞ n 2k/(2k+1) sup S∈W k,r E p,S |U n |1 Γ c = 0 .
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