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Abstract. The risk of drought impacting the drinking water and agricultural production is 
worrying in the developed countries, especially in a changing climate context. To manage and 
prevent this phenomenon, real-time monitoring and predictive systems are emerging as the key 
solutions. In the field of artificial intelligence, neural networks are one of these predictive 
systems. This family of parameterized models is a composition of neuronal functions, which 
apply a non-linear transformation from their inputs to their outputs. These networks are able to 
learn a hydro(geo)logical system behaviour using a database composed of observed inputs 
(rainfall, evapotranspiration, etc.) and outputs (groundwater level, discharge, etc.), thanks to an 
algorithm minimizing a cost function between observed and simulated outputs. However, it 
remains difficult to assess the uncertainty generated by these models, possibly leading to 
misinterpretations by the end users. These uncertainties are mainly of three types. The first is 
related to the input data. Indeed, hydrosystems are surface elements whereas meteorological 
inputs are punctual elements. The interpolation error can, therefore, be significant because of the 
lack of knowledge between gauging stations. The second is the neural network model 
architecture itself. It is possible to deal with this source of uncertainty using regularization 
methods. Finally, the neural networks are submitted to uncertainties related to parameter 
initialization, before the training step. The initial parameters may have an important impact on 
the results. In this paper, we address the prediction of the Blavet groundwater level (Bretagne, 
France). In order to assess uncertainties, we will first focus on the parameters initialization of 
the model. Neuronal models are optimized using cross-validation and early stopping. Then, an 
ensemble model is realized, in which each member is the result of a unique set of parameters 
initialization. The purpose of the study is to define how many initializations are necessary to 
obtain a reasonable confidence interval for forecasts, with the smallest interval and the higher 
rate of observed points inside this interval. The best model will be determined using cross-
validation scores thereby ensuring optimal robustness. We show that, in this case study, an 
ensemble model of 20 different initializations is sufficient to estimate uncertainty while 
preserving quality. In the second part, the resulting ensemble model will be used to estimate the 
global model uncertainty using probability density functions (pdf) applied to the distribution of 
groundwater level data and cross-validation scores of forecasts. It reveals that the groundwater 
level predictions are composed of two mixed distributions. Therefore, we will use the 
expectation-maximization algorithm (EM) to obtain parameters of mixed models. Mixed normal 
and mixed Gumbel laws, among five mixed distributions assessed, give the best groundwater 
distribution and are able to generate an abacus drawing uncertainty of model. 
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1. Introduction 
Water related risks impact a large part of the population. On the one hand, floods frequently cause 
fatalities and damages. On the other hand, droughts affect drinking water and agricultural production. 
In a climate change context, with a rise of extreme phenomena frequency and duration [1], real-time 
monitoring and predictive systems are emerging as key solutions. To forecast the underground water 
level or river discharge, two main solutions emerge. The first relies on a deep knowledge of the 
considered system, dedicated to building physically based models. Unfortunately, this knowledge is 
most of the time difficult to acquire, leading to lower efficiency and high time and money consuming 
methods. The second one relies on the relation between system inputs and outputs, never making any 
strong hypothesis on the system operation, as long as the inputs are able to explain the outputs (such as 
rainfall for discharge). In the latter solution family, neural networks play an important role as they are 
known to be able to identify dynamical processes [2]. However, like any model would do, they generate 
uncertainties which are sometimes difficult both to quantify and to express, and can lead to 
misinterpretations by end users. These uncertainties mainly have three origins: input data (especially 
noise and spatial variability), model architecture and parameters initialization before the training step 
[3]. 

In the present paper, we propose a methodology to allow quantifying some of these uncertainties. 
The first part consists of building a reliable model to forecast groundwater level on a case study of north-
western France. As [4] did with success on a southern France karst aquifer, the neural model will be 
optimized using cross-validation and early stopping. In the targeted region, we will state that the high 
quality of data and the low spatial variability are good enough reasons to overlook the uncertainties 
coming from data. Besides, the strict application of regularization methods should protect us from the 
uncertainties coming from the model architecture. We will thus focus on parameters initialization 
uncertainties, which are consequently considered as the main source of uncertainty in this case. The 
second part will consist of assessing this uncertainty, by generating ensemble models composed of 
members corresponding to different random sets of initial parameters. At last, the uncertainty will be 
expressed as a function of the state of the system in order to build an uncertainty pattern using statistical 
distributions. After having reminded the main characteristics of neural models and having presented the 
study area, we will describe more precisely the methodology used and discuss the results obtained. 

2. Neural networks 
2.1 Background 
A neuron is a mathematical operator applying a nonlinear transformation from its inputs to its outputs. 
In practice, it makes a weighted sum of its inputs transformed by an activation function thus giving an 
output. The weights of the sum are the parameters of the neural network. 

Neurons can be combined in networks following architecture depending on: (i) the data describing 
the modelled system, and (ii) the purpose of the model. Neurons are then organised in layers of two 
types: output layers, whose outputs are the outputs of the model, and associated to measured values, and 
hidden layers, whose outputs are not associated to measured values [5]. 

2.2 Neural networks models 
Depending on how they deal with time, neural networks can be called “static” or “recurrent”. In the first 
case, time does not play any functional role and the input variables are exogenous (static model, (1)).  

𝑦𝑦�(𝑘𝑘) = 𝜑𝜑(𝐱𝐱(𝑘𝑘), … , 𝐱𝐱(𝑘𝑘 − 𝑛𝑛𝑟𝑟 + 1),𝐖𝐖)    (1) 

Where 𝑦𝑦�(𝑘𝑘) is the estimated output at the discrete time k; 𝜑𝜑 the nonlinear function implemented by 
the model; 𝒙𝒙 the input vector; 𝑛𝑛𝑟𝑟 the sliding time windows size that defines the length of the necessary 
exogenous data; 𝐖𝐖 the vector of parameters. 
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In the second case, added to the exogenous variables, the result of the simulation at the previous time 
steps is used as an input variable (recurrent model, (2)).  

𝑦𝑦�(𝑘𝑘) = 𝜑𝜑(𝒚𝒚�(𝑘𝑘 − 1), … ,𝒚𝒚�(𝑘𝑘 − 𝑟𝑟);𝒙𝒙(𝑘𝑘), … ,𝒙𝒙(𝑘𝑘 − 𝑛𝑛𝑟𝑟 + 1),𝐖𝐖)  (2) 

Where 𝑟𝑟 is the order of the recurrent model. 

A third case, called “feed-forward model” substitutes the recurrent input by the observations of the 
output at the previous time steps (3). 

𝑦𝑦�(𝑘𝑘) = 𝜑𝜑(𝒚𝒚(𝑘𝑘 − 1), … ,𝒚𝒚(𝑘𝑘 − 𝑟𝑟);𝒙𝒙(𝑘𝑘), … ,𝒙𝒙(𝑘𝑘 − 𝑛𝑛𝑟𝑟 + 1),𝐖𝐖)  (3) 

Where 𝒚𝒚(𝑘𝑘) is the observed value of the simulated variable at the discrete time k. 

Recurrent models are used when the noise affecting outputs is known to be higher than the one 
affecting inputs. In contrast, feed-forward models, in which previously observed outputs are used as 
input variables, are used when the noise affecting input data is known to be the highest [6, 7]. 

One of the most common neural network structures is a feed-forward model called “multilayer 
perceptron” (MLP), for which the universal approximation property has been shown by [8]. This 
property mainly states that that kind of model (Figure 1) can approach any differentiable function as 
soon as it has enough hidden neurons and a database of sufficient quality.  

 

Figure 1. Multilayer Perceptron 
representation, with xi, the 
exogenous variables, Wab, the 
parameters, y, the measured 
output, ŷ, the simulated output, r, 
the order of the model, nr, the 
input window width, HN, hidden 
neuron, N, the number of hidden 
neurons, k, the discrete time and 
h, the lead time 

Beside this property, a MLP also has the parsimony property, shown by [9], that states that if the 
function operated by the model depends on nonlinearly adjustable parameters, it is more parsimonious 
than if it depends linearly on its parameters. This property is even more valuable when the number of 
input variables increases. 

2.3 Neural networks training and overtraining: regularization methods 
Training a neural network means finding the parameters vector such as a cost function is minimized. 
A training data set is dedicated to this task and a training algorithm is implemented. The purpose is to 
find the best approximation of the regression function to make the model adjust itself to the training set. 

Consequently, a too complex model will adapt to the signal and to the random noise carried by this 
signal. On the other hand, a too simple model will not be able to adapt to the signal. This is called the 
“bias/variance dilemma” [10]. If the bias decreases too much, there is a risk that the model is adjusting 
to the noise, thus increasing the variance of its output, whereas a low variance and a low bias are desired. 
Therefore, the error on the training set is not a relevant estimator of the generalisation error. 

We understand here that the result is highly depending on the data contained in the training set. To 
assess the generalization error of the model, one can use cross-validation [11]. Applied to the increasing 
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model complexities, it provides a performance score that should decrease while the score the model 
obtains on the training set still increases, showing that the model performances in generalization are 
becoming too complex. Also, to stop training before the generalization capability decreases, one can use 
early stopping [12], which consists of applying the model to a separate smaller data set and to stop 
training when the cost function reaches a minimum on this set. 

In this paper, both these regularization methods will be applied, in order to ensure the robustness of 
the model [13]. Beside these issues, the neural models are sensitive to the initial random values of the 
parameters at the beginning of the training step. The modeller thus has to ensure that the result given by 
a model is robust and not depending on this random initialization. A certain number of these 
initializations may be used to create an ensemble that provides a range of possibilities [5, 14]. 

3. Study area: the Blavet groundwater basin 
Located in north-western France, in the Bretagne region, the Blavet groundwater basin lies on more than 
2,100 sq.km. It is mainly composed of metamorphic, magmatic and sandy rocks and its elevation ranges 
from -15 to 320 m.a.s.l. (Figure 2). Due to the low porosity of bedrock, this groundwater only exists 
thanks to regoliths and faults [15]. 

 
Figure 2. Map of the Blavet groundwater basin 

Table 1. Statistics on Blavet time series 

Station name Variable Unit Time step Max value Min value Median Average 
Miniou Level m.a.s.l day 247.40 234.56 239.83 240.21 

Blavet in Kerien Discharge m3/s day 3.200 0.015 0.208 0.325 
Rostrenen-Keringant Precipitation mm day 78.70 0.00 0.40 2.81 
Rostrenen-Keringant PET mm day 8.90 0.00 1.60 1.87 

Data range from 2005 to 2019 at a daily time-step. They are issued from a meteorological station in 
Rostrenen (temperature, precipitation and evapotranspiration), a piezometer and a discharge station are 
also located in Rostrenen (Table 1). It has been shown that groundwater contributed at 57 % to river 
discharge at Blavet in Kerien during the 1994 to 2000 period [16]. Therefore, strong interactions between 
groundwater and surface water exist in this basin. From a climate point of view, the area is submitted to 
an oceanic climate, with an annual mean rainfall from 900 to 1,300mm and moderate temperatures, 
based on the 1981 to 2010 averages (Météo France). 
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4. Methodology 
4.1 Variable selection 
Inputs are divided in a one-year-long-subsets, from January to December, except for first and last years 
that are not complete. These subsets are used for training, except for the one used for stop set (2017) 
and the one used for validation set that ranges from the end of 2018 to the beginning of 2019 (5 months). 
As the groundwater levels are available, a feed-forward model seems convenient. We also state that the 
water level measurement is accurate while rainfall and evapotranspiration measurements are not as much 
accurate, especially considering that there is only one meteorological station for a large surface and only 
one discharge station. In order to design the range of sliding input time windows (see section 2.2) that 
will be used for the model selection, cross correlations between available inputs and the output are 
calculated. They provide information on the explanatory power of the inputs on the outputs. They also 
show the response time, the memory effect of the system and the reasonable lead-time that could be 
reached. This lead-time is 3 days, which is long enough to make the output varying, and short enough 
to preserve forecast quality, even in the absence of rainfall forecast. 

4.2 Complexity selection 
To ensure the robustness of the model, we explore different architectures and apply cross-validation. 
We thus select the depth of the sliding input time windows along with the complexity of the model. The 
cross-validation score SCV is obtained by the median of the scores calculated for each combination of 
training / validation sets (Figure 3). 

 
Figure 3. Schematic view of the cross-validation process; T is for training, V for validation, S for 

stop; Syyyy is for the score calculated on the yyyy subset, SCV is for the median of the scores 

The score can be any relevant indicator of the performance. In the case of forecasting low variability 
variables, the persistence criterion [17] that measures the difference between a naïve forecast and the 
calculated forecast, is well suited (4). 

𝐶𝐶𝑃𝑃 = 1 −  
∑ (𝑌𝑌𝑝𝑝,𝑘𝑘+ℎ−𝑌𝑌𝑠𝑠,𝑘𝑘+ℎ)²𝑛𝑛
𝑘𝑘
∑ (𝑌𝑌𝑝𝑝,𝑘𝑘−𝑌𝑌𝑝𝑝, 𝑘𝑘+ℎ)²𝑛𝑛
𝑘𝑘

     (4) 

Where 𝑌𝑌𝑝𝑝,𝑘𝑘 is the measured value at the discrete time k, 𝑌𝑌𝑠𝑠,𝑘𝑘 is the predicted value at the discrete time 
k and 𝑌𝑌𝑝𝑝, 𝑘𝑘+ℎ the observed value at the discrete time k+h, with h, the lead time. 

This selection process is applied for all the possible relevant architectures in conjunction with early 
stopping. Variables and complexity are thus appropriately selected, using a relevant score for the 
purpose of this study. 

4.3 Parameters initialization 
After training, the parameters of the model possibly depend on their initial random value. Un uncertainty 
on the results is generated. The purpose of this study is to quantify this uncertainty, providing a range 
of possible outputs, called the prediction interval. This interval must be as small as possible (measured 
by the MPI criterion (Mean Prediction Interval), [18]) whereas it includes a maximum of observed 
values (which is measured by the PICP criterion (Prediction Interval Coverage Probability) [18]). The 
purpose of this step is to define how many random initializations are necessary to reach this optimum 
that will be calculated using SFPI (Spatial Frequency Prediction Interval) (5). 

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018   
V T T T T T T T T T T T S T S2005 
T V T T T T T T T T T T S T S2006 

…
 

  

T T T T T T T T T T T V S T S2016 
T T T T T T T T T T T T S V S2018 

Median Scv 
 



World Multidisciplinary Earth Sciences Symposium (WMESS 2019)

IOP Conf. Series: Earth and Environmental Science 362 (2019) 012112

IOP Publishing

doi:10.1088/1755-1315/362/1/012112

6

 
 
 
 
 
 

𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀

=  
1
𝑛𝑛∑ 𝑓𝑓(𝑌𝑌𝑝𝑝,𝑘𝑘)𝑛𝑛

𝑘𝑘

1
𝑛𝑛∑ (𝑌𝑌𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘− 𝑌𝑌𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘)𝑛𝑛

𝑘𝑘

 

with 𝑓𝑓(𝑌𝑌𝑝𝑝,𝑘𝑘) = 1 if 𝑌𝑌𝑝𝑝,𝑘𝑘 ∈  [𝑌𝑌𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘;𝑌𝑌𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘], else 𝑓𝑓(𝑌𝑌𝑝𝑝,𝑘𝑘) = 0  (5) 

Where 𝑌𝑌𝑝𝑝,𝑘𝑘 is the measured value at the discrete time k and 𝑌𝑌𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 and 𝑌𝑌𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘 the upper and lower 
bounds of the forecast interval. 

Ensemble forecasts are thus calculated, with 3 to 120 members in each (respectively 3, 5, 10, 20, 30, 
40, 50, 60, 80, 100 and 120 forecasts). For each of these intervals, the SFPI criterion is calculated, 
allowing defining an optimal number of initializations with a relevant benchmark. 

4.4 Representation of model uncertainty with probability density functions (pdf) 
The uncertainty can be approached with pdf applied to output variable distribution. For this purpose, we 
fit 5 different pdf to the observed groundwater level distributions, which are Normal [19], Gumbel [20], 
Laplace [21], Cauchy [22] and Logistic laws [23], detailed respectively in (6), (7), (8), (9) and (10). 

𝒩𝒩(𝑥̅𝑥,  𝜎𝜎2) = 1
𝜎𝜎√2𝜋𝜋

 𝑒𝑒−
(𝑥𝑥−𝑥𝑥�)²
2𝜎𝜎²      (6) 

𝒢𝒢𝒢𝒢𝒢𝒢(𝑥̅𝑥,𝛽𝛽) = 𝑒𝑒
−(𝑥𝑥−𝑥𝑥�)

𝛽𝛽 𝑒𝑒−𝑒𝑒
−(𝑥𝑥−𝑥𝑥�)

𝛽𝛽

𝛽𝛽
    (7) 

ℒ𝒶𝒶𝒶𝒶(𝑥̅𝑥,  𝑏𝑏) = 1
2𝑏𝑏
𝑒𝑒−

(|𝑥𝑥−𝑥𝑥�|)
𝑏𝑏      (8) 

𝒞𝒞𝒞𝒞𝒞𝒞(𝑥𝑥0,  𝑎𝑎) = 1

𝜋𝜋𝜋𝜋 (1+�𝑥𝑥 − 𝑥𝑥0 
𝑎𝑎 �

2
)
    (9) 

ℒ𝑜𝑜𝑜𝑜𝒾𝒾𝒾𝒾𝒾𝒾(𝑥̅𝑥,  𝑠𝑠) = 𝑒𝑒−
(𝑥𝑥−𝑥𝑥�)
𝑠𝑠

𝑠𝑠 �1+𝑒𝑒−
(𝑥𝑥−𝑥𝑥�)
𝑠𝑠 �

2    (10) 

Where x is the variable,x its mean, x0, its median, σ² its variance and a, b, β and s scale parameters. 

In the case of Blavet groundwater level, a double distribution appears, corresponding to dry and wet 
seasons, leading to finding a mixed distribution. An expectation-maximization algorithm is applied to 
the 5 laws described, to obtain pdf parameters. The main purpose of this algorithm is to find a maximum 
likelihood set of parameters of a model when equations are not solvable. This algorithm is established 
in two steps. The first is the expectation step, where an expected value for log-likelihood parameters is 
defined, following assessed distribution or pdf. The second step is the maximization step, which consists 
of obtaining parameters that maximize the expected value, using an iterative process [24]. After finding 
parameters of each pdf, their inflection point is obtained, which allows separating mixed distribution in 
two pdf. Each pdf is multiplied by PICP, thus giving pdf of distribution included in prediction interval, 
by addition of the two pdf. The same process is used for water levels outside the prediction interval. It 
is lastly possible to rebuild mixed pdf, by addition of outside pdf and included pdf. The ratio between 
included prediction interval pdf and summoned pdf is calculated in order to obtain the probability to 
have a forecast inside the prediction interval for each groundwater level. 

5. Results and discussions 
5.1 Model selected and deterministic results 
The model selected by the combined variable and complexity selection processes, especially cross-
validation with the persistence criterion has the architecture presented in Figure 4. This model is 
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validated on the test set, which is totally unknown of the model, and gives the results shown in Figure 5, 
with Cp = 0.65. These results are qualitative enough to assess uncertainties without being dependent on 
the errors of the model.  

 
Figure 4. Selected architecture 

 
Figure 5. Validation of groundwater level forecasting at 3 days lead-time on the test set 

5.2 Optimal number of initializations and ensemble results 
Once the architecture is selected and the model validated, ensemble forecasts are calculated. The number 
of members varies as described in section 4.3 while the performance is assessed using the SFPI criterion 
as a cross validation score.  

 
Figure 6. SFPI cross-validation score of ensemble models as a function of the number of members 

As observed in Figure 6, a close to optimum performance is reached for 20 initializations. Even if 
the SFPI could be enhanced by using more members, the cost-benefit ratio (especially regarding 
calculation time) pleads in favour of the 20 members. Figure 7 shows the result for the test event, with 
a median PICP of 90% and an MPI of 0.41m, it reaches an SFPI of 1.25. 
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Figure 7. Representation of Figure 5 forecast with a prediction interval 

5.3 Representation of uncertainties 
First, we need to focus on the ensemble forecast groundwater distribution. It shows higher occurrence 
frequencies for wet and dry periods (resp. >242 m.a.s.l. and <238 m.a.s.l.). Intermediate values are less 
frequent because of the quick evolution of levels occurring in them. Consequently, it appears that 
groundwater distribution is a double distribution and that an expectation-maximisation algorithm is 
needed to separate both pdf. We obtain inflexion points for each of the calculated laws that can be seen 
in Figure 8 and that range from 240.52 to 240.76 m.a.s.l. Using these values, mixed pdf are calculated 
and compared to groundwater distributions inside and outside the interval. 

 
Figure 8. Mixed pdf of groundwater distributions. Determination coefficients are indicated in graphs 

(“In” means inside prediction interval, “out” means outside and “Cor.” is model correctness) 

The final step consists of calculating the abacus of model correctness, which is presented in Figure 
9, comparing the calculated pdf with PICP scores observed for each piezometer level. PICP scores are 
ignored if they appear less than 3 times in the whole set. Except for Cauchy mixed pdf, each pdf is 
decreasing when approaching the extreme values. Normal, Gumbel and logistic mixed pdf seems to be 
the best of the 5 mixed laws, especially considering their determination coefficients. They also fit with 
observed groundwater level distributions. It remains a high uncertainty on the calculation of model 
correctness probability, determination coefficients rarely exceeding 0.5. Furthermore, PICP scores 
cannot be calculated for the highest groundwater levels, due to their low representation in the data set. 
This implies that abacus cannot ensure a reliable probability prediction for these levels. Lastly, this 
methodology requires large datasets, in order to have enough examples of high droughts or floods. 
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Figure 9. Abacus of mixed pdf of model correctness 

6. Conclusions  
This methodology allows forecasting neural network model uncertainty in the case of low uncertainty 
coming from the data and from the model architecture. This low uncertainty comes from a rigorous 
variable and complexity selection, applied to ensure the robustness of the model. The initialization of 
the parameters during the training step of the model is thus considered as the main source of uncertainty 
and it is first represented by ensemble forecasts, whose number of members must be defined as 
a function of the purpose of the model. 

The use of the abacus created thanks to the law distribution fitting provides a significantly good 
representation of model uncertainty. With this abacus, it is possible to extrapolate uncertainties to 
unobserved value. The abacus is based on frequency distribution and as expected, it leads to: (i) 
a data set size sensibility and (ii) a low accuracy for an extreme event. Despite this limitation, this 
method is shown in our study, the possibility to use two different distribution laws; normal law and 
logistic law. Thanks to this final observation, the future work will focus on the application of multi-law 
distribution representation for the prediction uncertainty. 
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