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Sequential Estimation for Nonparametric
Autoregressive Models

1.1. Introduction

The tradition of considering the problem of statistical estimation as that of
estimating a finite number of parameters goes back to Fisher. Statistical models that
explain the data more deeply are usually more complex: the unknowns of these
models are, in general, some functions with certain properties of regularity. The
problem of nonparametric estimation consists in estimating, from the observations,
an unknown function belonging to a certain rather large functional class.

The theory of nonparametric estimation has been developed considerably in the
last three decades, focusing on a some key themes, in particular the study of
optimality of estimators and adaptive estimation. We are interested in particular in
the optimality of the estimators when the sample size tends to infinity, such
estimators are called asymptotically efficient. Numerous problems of asymptotic
efficiency have been studied over the last forty years, both in a parametric and
nonparametric framework and for different models.

We have focused here on showing the asymptotic efficiency of some kernel
estimators for the following autoregressive model:

yk = S(xk)yk−1 + ξk, 1 ≤ k ≤ n, [1.1.1]

where S(·) is an unknown function, xk = a + k
n (b − a),the initial value y0 is

a constant and the noise (ξk)k≥1 is i.i.d. sequence of unobservable random variables
with Eξ1 = 0 and Eξ2

1
= 1.
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The model [1.1.1] is a generalization of an autoregressive processes of the first
order. It should be noted that the varying coefficient principle is well known in the
regression analysis. It permits the use of more complex forms for regression
coefficients and, therefore, the models constructed via this method are more adequate
for applications (see, for example, Fan and Zhang (2008), Luo and Zhou (2009)).
There is a number of papers which study these varying coefficient autoregressive
models. In Dahlhaus (1996b), the process [1.1.1] is considered with the function S
having a parametric form. Moreover, Dahlhaus (1996a) studied spectral properties of
the stationary process [1.1.1] with the nonparametric function S. Belitser (2000)
considered this model with Lipschitz conditions and proposed a recursive estimator.
(The author established the convergence rate for quadratic risk). In all these papers,
the authors propose some asymptotic (as n→∞) methods for different identification
studies without considering optimal issues (in the minimax sense).

To our knowledge, for the first time, the minimax estimation problem for model
[1.1.1] has been treated in Moulines et al. (2005) in the non adaptive case, i.e. when
the regularity of S is known. More specifically, it was shown that the convergence rate
is optimal for the quadratic risk by using a recursive method for autoregressive model
of order d.

This chapter talks about the development of an adaptive sequential procedure for
the estimation of the unknown functional coefficient in model [1.1.1]. The minimax
nonadaptive and adaptive convergence rates are established in a Hölderian case and an
asymptotically efficient estimator is constructed with the absolute error risk. Then, in
a general framework, we propose a new sequential model selection procedure for this
modelwhich provides a sharp oracle inequality.

We assume that in the model [1.1.1] the i.i.d. random variables (ξk)1≤k≤n have a
density p (with respect to the Lebesgue measure) from the functional class Pς defined
as

Pς :=

{
p ≥ 0 :

∫ +∞

−∞
p(x) dx = 1 ,

∫ +∞

−∞
x p(x) dx = 0 ,

∫ +∞

−∞
x2 p(x) dx = 1 , sup

k≥1

1

ςk(2k − 1)!!

∫ +∞

−∞
|x|2k p(x) dx ≤ 1

}
[1.1.2]

where ς ≥ 1 is some fixed parameter.

To obtain the stable (uniformly with respect to the function S ) model [1.1.1], we
assume that for some fixed 0 < ε < 1 and L > 0 the unknown function S belongs to
the ε - stability set

Θε,L =
{
S ∈ C1([a, b],R) : ‖S‖ ≤ 1− ε and ‖Ṡ‖ ≤ L

}
,
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where C1([a, b],R) is the Banach space of continuously differentiable [a, b] → R
functions and ‖S‖ = sup

a≤x≤b |S(x)|.

1.2. Pointwise estimation with absolute error risk

This section is devoted to nonparametric estimation for autoregressive models. We
consider the problem of estimating an unknown function at a fixed point using data
governed by autoregressive models defined in [1.1.1]. To define the risk associated
with the use of an estimator and thus measure the quality of it, we use the loss
function related to the absolute error. This work follows the minimax approach for
which the goal is to find a lower bound of the asymptotic minimax risk and then
to construct an estimator, said asymptotically efficient, for which the maximum risk
reaches asymptotically this bound.

For a nonparametric autoregressive model where the autoregressive function is
supposed to belong to a weak Hölder class with known regularity, we show that a
kernel estimator is asymptotically efficient. When the regularity of the autoregressive
function is unknown, we get the minimax adaptive convergence rate of estimators on
a family of Hölderian classes. Moreover in the same case, we can construct through a
sequential procedure an asymptotically efficient estimator over the same weak Hölder
class.

For the model [1.1.1], we propose to estimate the unknown function S belonging
to a certain Hölder class H(β) at a fixed point z0, where β is the regularity parameter
of this functional class. In terms of asymptotic efficiency, we are now able to define
the maximum risk of an estimator and to describe the minimax approach used for this
purpose.

1.2.1. Minimax approach

Let us begin by giving precisely the definition of a estimator for the considered
model [1.1.1].

DEFINITION 1.1.– For the autoregressive model [1.1.1], an estimator of S at point z0

is a random variable ω 7→ S̃n = S̃n(z0, y1, . . . , yn) measurable with respect to the
σ-algebra engendered by y1, . . . , yn.

We define the risk of an estimator S̃n of function S belonging to a functional class
H(β) of regularity β for a fixed z0 by ES |S̃n − S(z0)|, where ES is the expectation
when the randomness is determined by the model [1.1.1].
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In our framework we consider the case for which the maximum risk of an estimator
S̃n is defined by

Rn(S̃n) := sup
S∈H(β)

sup
p∈P

ES,p|S̃n − S(z0)|.

We are therefore led to consider the asymptotic behavior of minimax risk defined by

R∗n = inf
S̃n

Rn(S̃n),

the infimum being taken on all the estimators.

The primary goal of the minimax approach is to find an estimator Ŝn whose
maximum risk is equal to the minimax risk. Such an estimator is called minimax.
An estimator Ŝn is said asymptotically efficient if

Rn(Ŝn) ∼
n→∞

R∗n.

The goal of the approach is to find an estimator S∗n, a sequence (ϕn)n∈N∗ strictly
positive reals such as ϕn → +∞, when n → +∞ and constants c > 0 and C < ∞
such as

lim sup
n→∞

ϕnRn(S∗n) ≤ C and lim inf
n→∞

ϕnR∗n ≥ c. [1.2.1]

DEFINITION 1.2.– The family (ϕn)n∈N∗ is called minimax convergence rate of
estimators overH(β) if [1.2.1] is verified.

DEFINITION 1.3.– An estimator S∗n satisfying

c ≤ lim inf
n→∞

ϕnR∗n ≤ lim sup
n→∞

ϕnRn(S∗n) ≤ C

where (ϕn)n∈N∗ is the minimax convergence rate and c > 0 and C < ∞ are
constants, is said optimal estimator in convergence rate overH(β).

REMARK 1.1.– To show the asymptotic efficiency of an estimator, it suffices to obtain
the same lower and upper bounds (C = c in Definition 1.3).

1.2.2. Adaptive minimax approach

The minimax approach is called adaptive when one of the parameters defining the
considered functional class is assumed to be unknown, for example the regularity of
the autoregressive function S in the model [1.1.1]. For the Höderian class H(β), we
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assume that β ∈ B, where B is an interval and define the adaptive risk of an estimator
S̃n of S(z0) as

Rn,β(S̃n) = sup
S∈H(β)

sup
p∈P

ES |S̃n − S(z0)|.

Then, as for the nonadaptive minimax approach, we look for an adaptive
(independent of β ∈ B) and asymptotically efficient estimator, as well as the exact
asymptotic bound of the adaptive minimax risk

inf
S̃n

sup
β∈B
Rn,β(S̃n).

The question we are also asking is the existence of an optimal adaptive estimator
in convergence rate, i.e an estimator, independent of β ∈ B, which converges at this
rate on each classH(β). More precisely:

DEFINITION 1.4.– The family (φn(β))n∈N∗ is called adaptive minimax rate of
convergence of estimators on the family of classes (H(β))β∈B if

– for a certain estimator S∗n and a constant C > 0, we have:

lim sup
n→∞

sup
β∈B

φn(β)Rn,β(S∗n) ≤ C;

– and there exists a constant c > 0 such that:

lim inf
n→∞

inf
S̃n

sup
β∈B

φn(β)Rn,β(S̃n) ≥ c.

An estimator S∗n checking the first previous point, with φn(β) the adaptive minimax
convergence rate is said adaptive optimal in rate of convergence on the family
(H(β))β∈B.

DEFINITION 1.5.– An adaptive optimal estimator S∗n in convergence rate is called
adaptive asymptotically efficient on the family

{
H(β)

}
β∈B if it satisfies:

lim
n→∞

inf
S̃n

sup
β∈B

φn(β)Rn,β(S̃n) = lim
n→∞

sup
β∈B

φn(β)Rn,β(S∗n).

However, optimal adaptive estimators of convergence do not always exist. Indeed,
Lepskii (1990) shows that it does not exist for estimation at a fixed point, in a Gaussian
white noise model, of a Hölderian function belonging to the class Σ(L, β), β ∈
B ⊂ R∗+ described in the definition 1.6 and B containing at least two elements.
Nevertheless,we can get a relationship of the type

lim sup
n→∞

sup
β∈B

φn(β))Rβ(S∗n) ≤ C,
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for a certain estimator S∗n, whereas φn(β) is not the minimax convergence rate on
H(β).

DEFINITION 1.6.– Let L > 0 and β > 0. The Hölder class Σ(L, β) is defined by

Σ(L, β) =
{
S : R→ R : |S(m)(x)− f (m)(y)| ≤ L|x− y|β−m,∀x, y ∈ R

}
,

where m = bβc is the largest integer strictly smaller than real β.

1.2.3. Nonadaptive procedure

This section deals with the nonparametric estimation of the autoregression
coefficient function S in the model [1.1.1] at a given point z0, when the smoothness
of S is known. For this problem we make use of the following modified kernel
estimator

Ŝn(z0) =
1

An

n∑
k=1

Q(uk) yk−1 yk 1(An≥d), [1.2.2]

where Q(·) is a kernel function,

An =

n∑
k=1

Q(uk)y2
k−1 with uk =

xk − z0

h
;

d and h are some positive parameters.

Our first goal is to find the convergence rate of the minimax risk taken over the
stable local Hölder class at the point z0

H(β)(z0,K, ε)

=
{
S ∈ Θε,L, |Ṡ(x)− Ṡ(z0)| ≤ K|x− z0|β−1,∀x ∈ [a, b]

}
, [1.2.3]

with a known regularity 1 ≤ β ≤ 2.

We assume that the regularity β ≤ β ≤ β, where β = 1 + α and β = 1 + α for
some fixed parameters 0 ≤ α < α ≤ 1.

We will find an asymptotical (as n → ∞) positive lower bound for the minimax
risk with the normalyzing coefficient

ϕn = n
β

2β+1 . [1.2.4]

To obtain this convergence rate we set in [1.2.2]

h = n−
1

2β+1 and d = κn nh , [1.2.5]
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where κn ≥ 0,

lim
n→∞

κn = 0 and lim
n→∞

h

κ2
n

= 0 . [1.2.6]

As to the the kernel function we assume that∫ 1

−1

Q(z) dz > 0 and
∫ 1

−1

z Q(z) dz = 0 . [1.2.7]

The two following theorems assert that the estimator [1.2.2] with the parameters
[1.2.5]–[1.2.7] is asymptotically optimal with respect to the convergence rate [1.2.4]
over the stable local Hölder classH(β)(z0,K, ε).

THEOREM 1.1.– For any K > 0 and 0 < ε < 1

lim inf
n→∞

inf
S̃n

sup
S∈H(β)(z0,K,ε)

ϕnRn(S̃n, S) > 0,

where the infimum is taken over all estimators.

Now we obtain an upper bound for the kernel estimator [1.2.2].

THEOREM 1.2.– For any K > 0 and 0 < ε < 1 the kernel estimator [1.2.2] with the
parameters [1.2.5]–[1.2.7] satisfies the following inequality

lim sup
n→∞

sup
S∈H(β)(z0,K,ε)

ϕnRn(Ŝn, S) <∞.

At the next step we study sharp asymptotic properties for the minimax estimators
[1.2.2].

To this end similarly to Arkoun and Pergamenchtchikov (2008) we make use of
the family of the weak stable local Hölder classes at the point z0, i.e. for any δ > 0
we set

U (β)
δ,n (z0, ε) =

{
S ∈ Γε : ‖Ṡ‖ ≤ δ−1 and |Ωh(z0, S)| ≤ δhβ

}
, [1.2.8]

where

Ωh(z0, S) =

∫ 1

−1

(S(z0 + uh)− S(z0)) du

and h is given in [1.2.5].

In this case we find in Theorem 1.3 a positive constant giving the exact asymptotic
lower bound for the minimax risk with the normalyzing coefficient [1.2.4]. Moreover,
Theorem 1.4 shows that for the estimator [1.2.2] with the parameters [1.2.5]–[1.2.6]
and the indicator kernel Q = 1[−1,1] the asymptotic upper bound of the minimax
risk coincides with this constant, i.e. in this case such estimators are asymptotically
efficient.



8 Sequential Estimation for Nonparametric Autoregressive Models

THEOREM 1.3.– For any δ > 0 and 0 < ε < 1

lim inf
n→∞

inf
S̃n

sup
S∈U(β)

δ,n (z0,ε)

τ−1/2(S)ϕnRn(S̃n, S) ≥ E|η| ,

where τ(S) = 1− S2(z0) and η is a gaussian random variable with the parameters
(0, 1/2).

THEOREM 1.4.– The estimator [1.2.2] with the parameters [1.2.5]–[1.2.6] and
Q(z) = 1[−1,1] satisfies the following inequality

lim sup
δ→0

lim sup
n→∞

sup
S∈U(β)

δ,n (z0,ε)

τ−1/2(S)ϕnRn(Ŝn, S) ≤ E|η| ,

where τ(S) = 1− S2(z0) and η is a gaussian random variable with the parameters
(0, 1/2).

REMARK 1.2.– One can show (see Galtchouk and Pergamenshchikov (2006a)) that
for any 0 < δ < 1 and n ≥ 1

H(β)(z0, δ, ε) ⊂ U
(β)
δ,n (z0, ε) .

This means that the “natural” normalyzing coefficient for the functional class [1.2.8]
is the sequence [1.2.4]. Theorem 1.3 and Theorem 1.4 extend usual the Hölder
approach for the point estimation by keeping the minimax convergence rate [1.2.4].

1.2.4. Sequential kernel estimator

In the perspective of obtaining an optimal estimator in an adaptive framework
(when the regularity β is unknown), similarly to Galtchouk and Pergamenshchikov
(2001), we will apply in the next section the Lepskĭi procedure to the model [1.1.1]
based on the sequential kernel estimates.

Here we construct the sequential kernel estimator using the method proposed in
Borisov and Konev (1977) for the parametric case. It should be noted that to apply the
Lepskĭi procedure the kernel estimators must have the tail distribution of the Gaussian
type. To obtain this property one needs to use the sequential approach.

First of all, we need the first ν observations for the auxiliary estimation of S(z0):

Ŝν =
1

A
ν

ν∑
j=1

Q(uj) yj−1 yj , Aν =

ν∑
j=1

Q(uj) y
2
j−1

, [1.2.9]
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where the kernel Q(·) is the indicator function of the interval [−1; 1]; uj = (xj −
z0)/h and h is some positive bandwidth. In the sequel for any 0 ≤ k < m ≤ n we set

Ak,m =

m∑
j=k+1

Q(uj) y
2
j−1

,

i.e. Aν = A0,ν . It is clear that to estimate S(z0) on the basis of the kernel estimate
with the kernel Q we can use the observations (yj)k∗≤j≤k

∗ , where

k∗ = [nz0 − nh] + 1 and k∗ = [nz0 + nh] .

Here [a] is the integral part of a number a. So for the first estimation we chose ν as

ν = ν(h, α) = k∗ + ι , [1.2.10]

where
ι = ι(h, α) = [ε̃nh] + 1 and ε̃ = ε̃(h, α) = hα/ lnn .

Next, similarly to Arkoun (2011), we use a some kernel sequential procedure based
on the observations (yj)ν≤j≤n. The key idea from the sequential procedure proposed
by Borisov and Konev (1977) is to replace the random denominator by some threshold
H > 0 in the kernel estimator [1.2.2], which transform this estimator to a linear
function of observations replacing the number of observations n by the following
stopping time

τH = inf{k ≥ ν + 1 : Aν,k ≥ H},

where inf{∅} = n and the positive threshold H will be chosen as a positive random
variable measurable with respect to the σ - field {y1, . . . , yν}. Therefore, we define
on the set {τH < n}

S∗
h

=
1

H

 τH−1∑
j=ν+1

Q(uj) yj−1 yj + κH Q(uτH ) yτH−1 yτH

 , [1.2.11]

where the correcting coefficient κH on the set {Aν,τH ≥ H} is defined as

Aν,τH−1 + κH Q(uτH ) y2
τH−1

= H

and κH = 1 on the set {Aν,τH < H}.

Now, to obtain an efficient estimate we need to use the all n observations, i.e.
asymptotically for sufficiently large n the stopping time τH ≈ n. Similarly to Konev
and Pergamenshchikov (1984), one can show that τH ≈ γ(S)H as H →∞, where

γ(S) = 1− S2(z0) .
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Therefore, to use asymptotically all observations we have to chose H as the number
observations divided by γ(S). But in our case we use k∗−k∗ observations to estimate
S(z0), Therefore, to obtain optimal estimate we need to define H as (k∗ − k∗)/γ(S).
taking into account that k∗ − k∗ ≈ 2nh and that γ(S) is unknown we define the
threshold H as

H = H(h, α) = ρnh , ρ = ρ(h, α) =
2(1− ε̃)
γ(S̃ν)

, [1.2.12]

where S̃ν is the projection of the estimator Ŝν in the interval ]− 1 + ε, 1− ε[, i.e.

S̃ν = min(max(Ŝν ,−1 + ε), 1− ε) .

In this paper we chose the bandwidth h in the following form

h = h(β) = (κn)
1

2β+1 , [1.2.13]

where the sequence κn > 0 such that

κ∗ = lim inf
n→∞

nκn > 0 and lim
n→∞

nδ κn = 0 [1.2.14]

for any 0 < δ < 1.

1.2.4.1. Property of the stopping time τH
PROPOSITION 1.1.– Assume that the threshold H is chosen in the form [1.2.12] and
the bandwidth h satisfies the conditions [1.2.13] - [1.2.14]. Then for any m ≥ 1

lim sup
n→∞

sup
α≤α≤α

h−m sup
S∈Θε,L

sup
p∈Pς

PS,p(τH = n) <∞ .

1.2.4.2. Decomposition of the estimate error

In the sequel we present the following decomposition of the estimate error on
which the proof of the optimality of the sequential kernel estimator is based.

First we set
κ̌j = 1{τH 6=j} + κH 1{τH=j} .

Then taking this into account we can represent the estimate error as

S∗
h
− S(z0) = −S(z0)1(τH=n) +

(
Bn(h) +

1√
H
ζn(h)

)
1(τH<n) ,

whith the approximative terms

Bn(h) =

∑τH
j=ν+1

κ̌j Q(uj) (S(xj)− S(z0)) y2
j−1

H
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and

ζn(h) =

∑τH
j=ν+1

κ̌j Q(uj) yj−1 ξj√
H

.

Recall that the nonsequential kernel estimator [1.2.2] does not have the above
property in the case of the model [1.1.1]. Thus, in this case, the adaptive pointwise
estimation is possible only in the sequential framework. In the following lemma,
we obtain that the sequential kernel estimator has the the same form for the tail
distribution as a Gaussian random variable.

LEMMA 1.1.– The sequence ζn(h) satisfies the following properties:
– the sequence ζn(h)1(τH<n) converges in law to N (0, 1) as n → ∞ uniformly

in p ∈ Pς and S ∈ Θε,L ,

– and for all z ≥ 2

sup
n≥1

sup
h>0

sup
S∈C[0,1]

PS,p

(
ζn(h)1(τH<n) ≥ z

)
≤ 2e−z

2/8 .

1.2.5. Adaptive sequential procedure

We construct a sequential adaptive procedure for estimating the autoregressive
function at a given point in nonparametric autoregression models with Gaussian noise.
We make use of the sequential kernel estimators. The optimal adaptive convergence
rate is given as well as the upper bound for the minimax risk.

We will construct an adaptive minimax sequential estimation for the function S
from the functional class [1.2.3] of the unknown regularity β. To this end we will use
the modification of the adaptive Lepskĭi method proposed in Arkoun (2011) based on
the sequential estimators [1.2.11]. We set

dn =
n

lnn
and φn(β) = (dn)

β
2β+1 . [1.2.15]

Moreover, we chose the bandwidth h in the form [1.2.13] with κn = 1/dn, i.e. we set

ȟ = ȟ(β) =

(
1

dn

) 1
2β+1

.

We define the grids on the intervals [β , β] and [α , α] as

βk = β +
k

m
(β − β) and αk = α+

k

m
(α− α)

for 0 ≤ k ≤ m with m = [ln dn] + 1, and we set

φn,k = φn(βk) and ȟk = ȟ(βk) .
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Replacing in [1.2.10] and [1.2.12] the parameters h and α we define

ν̌k = ν(ȟk, αk) and Ȟk = H(ȟk, αk) .

Now using these parameters in the estimators [1.2.9] and [1.2.11] we set
Šk = S∗

ȟk
(z0) and

ω̌k = max
0≤j≤k

(
|Šj − Šk| −

λ̌

Nj

)
, [1.2.16]

where

λ̌ > λ̌∗ = 4
√

2

(
β − β

(2β + 1)(2β + 1)

)1/2

.

In particular, if β = 1 and β = 2 we get λ̌∗ = 4(2/15)1/2. We also define the optimal
index as

ǩ = max

{
0 ≤ k ≤ m : ω̌k ≤

λ̌

Nk

}
.

The adaptive estimator is now defined as
Ŝa,n = S∗

ȟk
and ȟk = ȟǩ . [1.2.17]

REMARK 1.3.– It should be noted that the usual adaptive pointwise estimation (see,
for example, Lepskii (1990), Galtchouk and Pergamenshchikov (2001)) differs from
the threshold λ̌ by the fact that [1.2.16] does not depend on the parameters L > 0 and
K > 0 of the Hölder class [1.2.3].

Now we are able to give the main results for the adaptive estimation of the function
S at a fixed point z0 ∈]0, 1[, in the Gaussian model [1.1.1], i.e. when p = p0 where p0

is (0, 1)− Gaussian density.

For any estimate S̃n of S(z0), we define the adaptive risk over the class
H(β)(ε, L,K) as

Ra,n(S̃n) = sup
β∈[β;β]

sup
S∈H(β)(ε,L,K)

φn(β)ES,p0 |S̃n − S(z0)| , [1.2.18]

where φn(β) is defined in [1.2.15].

First we give the lower bound for the minimax risk. More precisely, with the
convergence rate φn(β), the lower bound for the minimax risk is strictly positive.

THEOREM 1.5.– There exists K0 > 0 such that for all K > K0, the risk [1.2.18]
admits the following lower bound:

lim inf
n→∞

inf
S̃n

Ra,n(S̃n) > 0 ,

where the infimum is taken over all estimators S̃n.
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To obtain an upper bound for the adaptive risk [1.2.18] of the procedure [1.2.17]
we need to study the family (S∗

h
)α≤α≤α.

THEOREM 1.6.– The sequential procedure [1.2.11] with the bandwidth h defined in
[1.2.13] for κn = lnn/n satisfies the following property

lim sup
n→∞

sup
α≤α≤α

(Υn(h))−1 sup
S∈H(β)(ε,L,K)

sup
p∈Pς

ES,p|S∗h − S(z0))| <∞

where Υn(h) = hβ + (nh)−1/2.

Using this theorem we can establish the minimax property for the procedure [1.2.11].

THEOREM 1.7.– The estimation procedure [1.2.11] satisfies the following asymptotic
property

lim sup
n→∞

Ra,n(Ŝa,n) <∞ .

REMARK 1.4.– Theorem 1.5 gives the lower bound for the adaptive risk, i.e. the
convergence rate φn(β) is best for the adapted risk. Moreover, by Theorem 1.7 the
adaptive estimator [1.2.11] possesses this convergence rate. In this case, this estimator
is called optimal in sense of the adaptive risk [1.2.18]

1.3. Estimation with quadratic integral risk

In this section, we still consider the problem of estimating the autoregressive
function of the model [1.1.1] at any point in [a, b] but we will use the quadratic integral
risk to measure the mean error of an estimator Ŝn defined as

Rp(Ŝn, S) = Ep,S‖Ŝn − S‖2 , ‖S‖2 =

∫ b

a

S2(x)dx , [1.3.1]

Recalling that the distribution p of the noises ξk in model [1.1.1] is unknown, so
we still use the robust nonparametric estimation approach :

R∗(Ŝn, S) = sup
p∈P
Rp(Ŝn, S) , [1.3.2]

where P is defined in [1.1.2]

In this context, we focus here on obtaining an oracle inequality which is the first
step in getting asymptotic efficiency. More precisely, in order to estimate the function
S in model [1.1.1], we make use of the estimator family (Ŝλ, λ ∈ Λ), where Ŝλ is a
weighted least square estimator with the Pinsker weights. For this family, similarly to
Galtchouk and Pergamenshchikov (2009a), we construct a special selection rule, i.e.
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a random variable λ̂ with values in Λ, for which we define the selection estimator as
Ŝ∗ = Ŝλ̂. Our goal is to show the non asymptotic sharp oracle inequality for the robust
risks [1.3.2], i.e. to show that for any %̌ > 0 and n ≥ 1

R∗(Ŝ∗, S) ≤ (1 + %̌) min
λ∈Λ
R∗(Ŝλ, S) +

Bn
%̌n

, [1.3.3]

where Bn is a rest term such that for any δ̌ > 0,

lim
n→∞

Bn
nδ̌

= 0 .

In this case the estimator Ŝ∗ is called optimal in the oracle inequality sense.

In order to obtain this inequality for model [1.1.1], we develop a new model
selection method based on the truncated sequential procedure constructed in the
previous section for the pointwise efficient estimation. To this purpose, we use the
non-asymptotic analysis tool proposed for regression models in Galtchouk and
Pergamenshchikov (2009a) based on the non-asymptotic studies from Baron et al.
(1999) for a family of least-squares estimators and extended in Fourdrinier and
Pergamenshchikov (2007) to some others estimators families. Here we follow the
approach proposed by Galtchouk and Pergamenshchikov (2011), i.e. we pass to a
discrete time regression model by making use of the truncated sequential procedure
introduced previously. To this end, at any point (zl)1≤l≤d of a partition of the interval
[a, b], we define a sequential procedure (τl, S

∗
l
) with a stopping rule τl and an

estimator S∗
l

. For Yl = S∗
l

with 1 ≤ l ≤ d, we come to the regression equation on
some set Γ ⊆ Ω:

Yl = S(zl) + ζl , 1 ≤ l ≤ d . [1.3.4]

Here, in contrast with the classical regression model, the noise sequence (ζl)1≤l≤d has
a complex structure, namely,

ζl = ξ∗
l

+$l ,

where (ξ∗
l
)1≤l≤d is a ”main noise” sequence of uncorrelated random variables and

($l)1≤l≤n is a sequence of bounded random variables.

It should be emphasized that only sharp oracle inequalities of type [1.3.3] allow to
synthesis efficiency property in the adaptive setting.

1.3.1. Main Conditions

As in Arkoun and Pergamenchtchikov (2016) we assume that in the model [1.1.1]
the i.i.d. random variables (ξk)k≥1 have a density p (with respect to Lebesgue
measure) from the functional class Pς defined previously in [1.1.2], where ς ≥ 1 is
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some parameter, which may be a function of the number observation n, i.e. ς = ς(n),
such that for any δ̌ > 0

lim
n→∞

ς(n)

nδ̌
= 0 . [1.3.5]

Note that the (0, 1)-Gaussian density belongs to Pς . In the sequel we denote this
density by p0. It is clear that for any q > 0

m∗
q

= sup
p∈P

Ep |ξ1|q <∞ ,

where Ep is the expectation with respect to the density p from Pς . To obtain the stable
(uniformly with respect to the function S ) model [1.1.1], we assume that for some
fixed 0 < ε < 1 and L > 0 the unknown function S belongs to the ε - stability set
introduced in Arkoun and Pergamenchtchikov (2016) as

Θε,L =
{
S ∈ C1([a, b],R) : |S|∗ ≤ 1− ε and |Ṡ|∗ ≤ L

}
,

where C1([a, b],R) is the Banach space of continuously differentiable [a, b] → R
functions and |S|∗ = sup

a≤x≤b |S(x)|.

1.3.2. Passage to a discrete time regression model

We will use as a basic procedure the pointwise procedure from Arkoun and
Pergamenchtchikov (2016) at the points (zl)1≤l≤d defined as

zl = a+
l

d
(b− a) and d = [

√
n] , [1.3.6]

where [a] is the integer part of a number a. So we propose to use the first ιl
observations for the auxiliary estimation of S(zl). We set

Ŝιl =
1

Aιl

ιl∑
j=1

Ql,j yj−1 yj , Aιl =

ιl∑
j=1

Ql,j y
2
j−1

, [1.3.7]

where Ql,j = Q(ul,j) and the kernel Q(·) is the indicator function of the interval
[−1; 1], i.e. Q(u) = 1[−1,1](u). The points (ul,j) are defined as

ul,j =
xj − zl
h

.

Note that to estimate S(zl) on the basis of kernel estimator with the kernel Q we use
only the observations (yj)k1,l≤j≤k2,l from the h - neighborhood of the point zl, i.e.

k1,l = [nz̃l − nh̃] + 1 and k2,l = [nz̃l + nh̃] ∧ n ,
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where z̃l = (zl − a)/(b − a) and h̃ = h/(b − a). Note that, only for the last point
zd = b, we take k2,d = n. We choose ιl in [1.3.7] as

ιl = k1,l + q and q = qn = [(nh̃)µ0 ]

for some 0 < µ0 < 1. In the sequel for any 0 ≤ k < m ≤ n we set

Ak,m =

m∑
j=k+1

Ql,j y
2
j−1

and Am = A0,m .

Next, similarly to Arkoun (2011), we use a kernel sequential procedure based on the
observations (yj)ιl≤j≤n. To transform the kernel estimator in a linear function of
observations and we replace the number of observations n by the following stopping
time

τl = inf{ιl + 1 ≤ k ≤ k2,l : Aιl,k ≥ Hl} , [1.3.8]

where inf{∅} = k2,l and the positive thresholdHl will be chosen as a positive random
variable which is measurable with respect to the σ-algebra {y1, . . . , yιl}.

Now we define the sequential estimator as

S∗
l

=
1

Hl

 τl−1∑
j=ιl+1

Ql,j yj−1 yj + κlQl,τl yτl−1 yτl

1Γl
, [1.3.9]

where Γl = {Aιl,k2,l−1 ≥ Hl} and the correcting coefficient 0 < κl ≤ 1 on this set
is defined as

Aιl,τl−1 + κ2
l
Ql,τly

2
τl−1

= Hl . [1.3.10]

Note that, to obtain the efficient kernel estimator of S(zl) we need to use all k2,l−ιl−1
observations. Similarly to Konev and Pergamenshchikov (1984), one can show that
τl ≈ γlHl as Hl →∞, where

γl = 1− S2(zl) .

Therefore, one needs to choose Hl as (k2,l − ιl − 1)/γl. Taking into account that the
coefficients γl are unknown, we define the threshold Hl as

Hl =
1− ε̃
γ̃l

(k2,l − ιl − 1) and ε̃ =
1

2 + lnn
,

where γ̃l = 1 − S̃2
ιl

and S̃ιl is the projection of the estimator Ŝιl in the interval
]− 1 + ε̃, 1− ε̃[, i.e.

S̃ιl = min(max(Ŝιl ,−1 + ε̃), 1− ε̃) . [1.3.11]
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To obtain the uncorrelated stochastic terms in kernel estimator for S(zl) we choose
the bandwidth h as

h =
b− a

2d
.

As to the estimator Ŝιl , we can show the following property.

PROPOSITION 1.2.– The convergence rate in probability of the estimator [1.3.11] is
more rapid than any power function, i.e. for any b > 0

lim
n→∞

nb max
1≤l≤d

sup
S∈Θε,L

sup
p∈P

PS,p

(
|S̃ιl − S(zl)| > ε0

)
= 0 , [1.3.12]

where ε0 = ε0(n)→ 0 as n→∞ such that limn→∞ nδ̌ε0 =∞ for any δ̌ > 0.

Now we set

Yl = S∗
l
1Γ and Γ = ∩d

l=1
Γl . [1.3.13]

Using the convergence [1.3.12], we can study the probability properties of the set Γ in
the following theorem.

THEOREM 1.8.– For any b > 0, the probability of the set Γc satisfies the following
asymptotic equality

lim
n→∞

nb sup
S∈Θε,L

PS,p (Γc) = 0 .

In view of this theorem we can shrink the set Γc. So, using the estimators [1.3.13] on
the set Γ we obtain the discrete time regression model [1.3.4] in which

ξ∗
l

=

∑τl−1

j=ιl+1
Ql,j yj−1 ξj + κlQ(ul,τl) yτl−1 ξτl

Hl

[1.3.14]

and $l = $1,l +$2,l, where

$1,l =

∑τl−1

j=ιl+1
Ql,j y

2
j−1

šl,j + κ2
l
Q(ul,τl) y

2
τl−1

šl,τl
Hl

, šl,j = S(xj)− S(zl)

and

$2,l =
(κl − κ2

l
)Q(ul,τl) y

2
τl−1

S(xτl)

Hl

.

Note that in the model [1.3.4] the random variables (ξ∗
j
)1≤j≤d are defined only on the

set Γ. For technical reasons we need to define these variables on the set Γc as well. To
this end, for any j ≥ 1 we set

Q̌l,j = Ql,j yj−1 1{j<k2,l} +
√
HlQl,j 1{j=k2,l}
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and Ǎιl,m =
∑m

j=ιl+1
Q̌2
l,j

. Note, that for any j ≥ 1 and l 6= m

Q̌l,j Q̌m,j = 0 .

and Ǎιl,k2,l ≥ Hl. So now we can modify the stopping time [1.3.8] as

τ̌l = inf{k ≥ ιl + 1 : Ǎιl,k ≥ Hl} .
Obviously, τ̌l ≤ k2,l and τ̌l = τl on the set Γ for any 1 ≤ l ≤ d. Now similarly to
[1.3.10] we define the correction coefficient as

Ǎιl,τ̌l−1 + κ̌2
l
Q̌2
l,τ̌l

= Hl .

It is clear that 0 < κ̌l ≤ 1 and κ̌l = κl on the set Γ for 1 ≤ l ≤ d. Using this
coefficient we set

ηl =

∑τ̌l−1

j=ιl+1
Q̌l,j ξj + κ̌l Q̌l,τ̌l ξτ̌l

Hl

.

Note that on the set Γ, for any 1 ≤ l ≤ d, the random variables ηl = ξ∗
l

. Moreover we
van show that, for any 1 ≤ l ≤ d and p ∈ Pς

ES,p (ηl |Gl) = 0 , ES,p
(
η2
l
|Gl
)

= σ2
l
, ES,p

(
η4
l
|Gl
)
≤ m̌σ4

l
, [1.3.15]

where σl = H
−1/2
l , Gl = σ{η1, . . . , ηl−1, σl} and m̌ = 4(144/

√
3)4 m∗

4
. It is clear

that
σ0,∗ ≤ min

1≤l≤d
σ2
l
≤ max

1≤l≤d
σ2
l
≤ σ1,∗ , [1.3.16]

where

σ0,∗ =
1− ε2

2(1− ε̃)nh
and σ1,∗ =

1

(1− ε̃)(2nh− q− 3)
.

Now, taking into account that |$1,l| ≤ Lh, for any S ∈ Θε,L we obtain that

sup
S∈Θε,L

ES,p1Γ$
2
l
≤
(
L2h2 +

υ̌n
(nh)2

)
, [1.3.17]

where υ̌n = sup
p∈P sup

S∈Θε,L
ES,p max1≤j≤n y

4
j
. The behavior of this coefficient

is studied in the following theorem.

THEOREM 1.9.– For any b > 0 the sequence (υ̌n)n≥1 satisfies the following limiting
equality

lim
n→∞

n−b υ̌n = 0 . [1.3.18]

REMARK 1.5.– It should be noted that the property [1.3.18] means that the asymptotic
behavior of the upper bound [1.3.17] is approximately as h−2 when n→∞. We will
use this in the oracle inequalities below.
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REMARK 1.6.– It should be emphasized that to estimate the function S in [1.1.1] we
use the approach developed in Galtchouk and Pergamenshchikov (2011) for the
sequential drift estimation problem in the stochastic differential equation. On the
basis of the efficient sequential kernel procedure developped in Galtchouk and
Pergamenshchikov (2005), Galtchouk and Pergamenshchikov (2006b) and Galtchouk
and Pergamenshchikov (2015) with the kernel-indicator, the stochastic differential
equation is replaced by regression model. It should be noted that to obtain the
efficient estimator one needs to take the kernel-indicator estimator. By this reason, in
this paper, we use the kernel-indicator in the sequential estimator [1.3.9]. It also
should be noted that the sequential estimator [1.3.9] which has the same form as in
Arkoun and Pergamenchtchikov (2016), except the last term, in which the correction
coefficient is replaced by the square root of the coefficient used in Konev (2016). We
modify this procedure to calculate the variance of the stochastic term [1.3.14].

1.3.3. Model selection

In this section we consider the nonparametric estimation problem in the non
asymptotic setting for the regression model [1.3.4] for some set Γ ⊆ Ω. The design
points (zl)1≤l≤d are defined in [1.3.6]. The function S(·) is unknown and has to be
estimated from observations the Y1, . . . , Yd. Moreover, we assume that the
unobserved random variables (ηl)1≤l≤d satisfy the properties [1.3.15] with some
nonrandom constant m̌ > 1 and the known random positive coefficients (σl)1≤l≤d
satisfy the inequality [1.3.16] for some nonrandom positive constants σ0,∗ and σ1,∗
Concerning the random sequence $ = ($l)1≤l≤n we suppose that

u∗
d

= ES,p1Γ‖$‖2d <∞ . [1.3.19]

The performance of any estimator Ŝ will be measured by the empirical squared error

‖Ŝ − S‖2
d

= (Ŝ − S, Ŝ − S)d =
b− a
d

d∑
l=1

(Ŝ(zl)− S(zl))
2 .

Now we fix a basis (φj)1≤j≤n which is orthonormal for the empirical inner product:

(φi , φj)d =
b− a
d

d∑
l=1

φi(zl)φj(zl) = 1{i=j} . [1.3.20]

For example, we can take the trigonometric basis (φj)j≥ 1 in L2[a, b] defined as

φ1 = 1 , φj(x) =

√
2

b− a
Trj (2π[j/2]l0(x)) , j ≥ 2 ,

where the function Trj(x) = cos(x) for even j and Trj(x) = sin(x) for odd j, [x]
denotes the integer part of x. and l0(x) = (x − a)/(b − a). Note that, using the
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orthonormality property [1.3.20] we can represent for any 1 ≤ l ≤ d the function S
as

S(zl) =

d∑
j=1

θj,d φj(zl) and θj,d =
(
S, φj

)
d
. [1.3.21]

So, to estimate the function S we have to estimate the Fourier coefficients (θj,d)1≤j≤d.
To this end, we replace the function S by these observations, i.e.

θ̂j,d =
b− a
d

d∑
l=1

Ylφj(zl) .

From [1.3.4] we obtain immediately the following regression scheme

θ̂j,d = θj,d + ζj,d with ζj,d =

√
b− a
d

ηj,d +$j,d ,

where

ηj,d =

√
b− a
d

d∑
l=1

ηlφj(zl) and $j,d =
b− a
d

d∑
l=1

$l φj(zl) .

Note that the upper bound [1.3.16] and the Bounyakovskii-Cauchy-Schwarz
inequality imply that

|$j,d| ≤ ‖$‖d ‖φj‖d = ‖$‖d .

We estimate the function S on the grid [1.3.6] by the weighted least-squares estimator

Ŝλ(zl) =

d∑
j=1

λ(j) θ̂j,d φj(zl)1Γ , 1 ≤ l ≤ d , [1.3.22]

where the weight vector λ = (λ(1), . . . , λ(d))′ belongs to some finite set Λ ⊂ [0, 1]d,
the prime denotes the transposition. We set for any a ≤ t ≤ b

Ŝλ(t) =

d∑
l=1

Ŝλ(zl)1{zl−1<t≤zl} . [1.3.23]

Moreover, denoting λ2 = (λ2(1), . . . , λ2(n))′ we define the following sets

Λ1 = {λ2 , λ ∈ Λ} and Λ2 = Λ ∪ Λ1 .

Denote by ν the cardinal number of the set Λ and

ν∗ = max
λ∈Λ

d∑
j=1

1{λ(j)>0} .
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In order to obtain a good estimator, we have to write a rule to choose a weight vector
λ ∈ Λ in [1.3.22]. We define the empirical squared risk as

Errd(λ) = ‖Ŝλ − S‖2d .

Using [1.3.21] and [1.3.22] we can rewrite this risk as

Errd(λ) =

d∑
j=1

λ2(j)θ̂2
j,d
− 2

d∑
j=1

λ(j)θ̂j,d θj,d +

d∑
j=1

θ2
j,d
.

Since the coefficient θj,d is unknown, we need to replace the term θ̂j,d θj,d by some of
its estimators which we choose as

θ̃j,d = θ̂2
j,d
− b− a

d
sj,d with sj,d =

b− a
d

d∑
l=1

σ2
l
φ2
j
(zl) .

Note that from [1.3.16] - [1.3.20] it follows that

sj,d ≤ σ1,∗ .

Similarly to Galtchouk and Pergamenshchikov (2011) one needs to introduce a penalty
term in the cost function to compensate such modification of the empirical risk. We
choose it as

Pd(λ) =
b− a
d

d∑
j=1

λ2(j)sj,d .

Finally, we define the cost function in the following form

Jd(λ) =

d∑
j=1

λ2(j)θ̂2
j,d
− 2

d∑
j=1

λ(j) θ̃j,d + δPd(λ) .

where 0 < δ < 1 is some positive constant which will be chosen later. We set

λ̂ = argmin
λ∈Λ

Jd(λ)

and define an estimator of S(t) of the form [1.3.23]:

Ŝ∗(t) = Ŝλ̂(t) for a ≤ t ≤ b . [1.3.24]

REMARK 1.7.– We use the procedure [1.3.24] to estimate the function S in the
autoregressive model [1.1.1] through the regression scheme [1.3.4] generated by the
sequential procedures [1.3.13].
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1.3.4. Main results

In this section we formulate all main results. First we obtain the sharp oracle
inequality for the selection model procedure [1.3.24] for the general regression model
[1.3.4].

THEOREM 1.10.– There exists some constant l∗ > 0 such that for any weight vectors
set Λ, any p ∈ Pvarsigma, any n ≥ 1 and 0 < δ ≤ 1/12, the procedure [1.3.24],
satisfies the following oracle inequality

ES,p‖Ŝ∗ − S‖2d ≤
1 + 4δ

1− 6δ
min
λ∈Λ

ES,p‖Ŝλ − S‖2d

+ l∗
νς2

δ

(
σ2

1,∗

σ0,∗d
+ u∗

d
+ δ2

√
PS,p(Γ

c)

)
.

Using Lemma A.2 from Konev and Pergamenshchikov (2015) we obtain the oracle
inequality for the quadratic risks [1.3.1].

THEOREM 1.11.– There exists some constant l∗ > 0 such that for any weight vectors
set Λ, any continuously differentiable function S, any p ∈ Pς , any n ≥ 1 and 0 <
δ ≤ 1/12, the procedure [1.3.24] satisfies the following oracle inequality

Rp(Ŝ∗, S) ≤ (1 + 4δ)(1 + δ)2

1− 6δ
min
λ∈Λ
Rp(Ŝλ, S)

+ l∗
ς2ν

δ

(
‖Ṡ‖2

d2 +
σ2

1,∗

σ0,∗d
+ u∗

d
+ δ2

√
PS,p(Γ

c)

)
.

Now we assume that the cardinal ν of Λ and the parameter ς in the density family
[1.1.2] are functions of the number observations n, i.e. ν = ν(n) and ς = ς(n) such
that for any δ̌ > 0

lim
n→∞

ν(n)

nδ̌
= 0 . [1.3.25]

Using Theorems 1.8 – 1.9 and the bounds [1.3.16] - [1.3.17] we obtain the oracle
inequality for the estimation problem for the model [1.1.1].

THEOREM 1.12.– Assume that the conditions [1.3.5] and [1.3.25] hold. Then for any
p ∈ Pς , S ∈ Θε,L, n ≥ 3 and 0 < δ ≤ 1/12, the procedure [1.3.24] satisfies the
following oracle inequality

Rp(Ŝ∗, S) ≤ (1 + 4δ)(1 + δ)2

1− 6δ
min
λ∈Λ
Rp(Ŝλ, S) +

B̌n(p)

δn
,
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where the term B̌n(p) is such that for any δ̌ > 0

lim
n→∞

B̌n(p)

nδ̌
= 0 .

We obtain the same inequality for the robust risks

THEOREM 1.13.– Assume that the conditions [1.3.5] and [1.3.25] hold. Then for any
n ≥ 3, any S ∈ Θε,L and any 0 < δ ≤ 1/12, the procedure [1.3.24] satisfies the
following oracle inequality

R∗(Ŝ∗, S) ≤ (1 + 4δ)(1 + δ)2

1− 6δ
min
λ∈Λ
R∗(Ŝλ, S) +

B∗
n

δn
,

where the term B̌n is such that for any δ̌ > 0

lim
n→∞

B∗
n

nδ̌
= 0 .

REMARK 1.8.– It is well known that to obtain the efficiency property we need to
specify the weight coefficients (λ(j))1≤j≤n (see, for example, Galtchouk and
Pergamenshchikov (2009b)). Consider for some fixed 0 < ε < 1 a numerical grid of
the form

A = {1, . . . , k∗} × {ε, . . . ,mε} ,
where m = [1/ε2]. We assume that both parameters k∗ ≥ 1 and ε are functions of n,
i.e. k∗ = k∗(n) and ε = ε(n), such that

limn→∞ k∗(n) = +∞ , limn→∞
k∗(n)

lnn
= 0 ,

limn→∞ ε(n) = 0 and limn→∞ nδ̌ε(n) = +∞

[1.3.26]

for any δ̌ > 0. One can take, for example, for n ≥ 2

ε(n) =
1

lnn
and k∗(n) = k∗

0
+
√

lnn ,

where k∗
0
≥ 0 is some fixed constant. For each α = (β, l) ∈ A, we introduce the

weight sequence
λα = (λα(j))1≤j≤n

with the elements

λα(j) = 1{1≤j<j∗} +
(
1− (j/ωα)β

)
1{j∗≤j≤ωα},

where j∗ = 1 + [lnn], ωα = (dβ l n)1/(2β+1) and

dβ =
(β + 1)(2β + 1)

π2ββ
.



24 Sequential Estimation for Nonparametric Autoregressive Models

Now we define the set Λ as
Λ = {λα , α ∈ A} .

Note that these weight coefficients are used in Konev and Pergamenshchikov (2012,
2015) for continuous time regression models to show the asymptotic efficiency. It will
be noted that in this case the cardinal of the set Λ is ν = k∗m. It is clear that
properties [1.3.26] imply condition [1.3.25].
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