Sequential Estimation for Nonparametric Autoregressive Models

Introduction

The tradition of considering the problem of statistical estimation as that of estimating a finite number of parameters goes back to Fisher. Statistical models that explain the data more deeply are usually more complex: the unknowns of these models are, in general, some functions with certain properties of regularity. The problem of nonparametric estimation consists in estimating, from the observations, an unknown function belonging to a certain rather large functional class.

The theory of nonparametric estimation has been developed considerably in the last three decades, focusing on a some key themes, in particular the study of optimality of estimators and adaptive estimation. We are interested in particular in the optimality of the estimators when the sample size tends to infinity, such estimators are called asymptotically efficient. Numerous problems of asymptotic efficiency have been studied over the last forty years, both in a parametric and nonparametric framework and for different models.

We have focused here on showing the asymptotic efficiency of some kernel estimators for the following autoregressive model:

y k = S(x k )y k-1 + ξ k , 1 ≤ k ≤ n, [1.1.1]
where S(•) is an unknown function, x k = a + k n (b -a),the initial value y 0 is a constant and the noise (ξ k ) k≥1 is i.i.d. sequence of unobservable random variables with Eξ 1 = 0 and Eξ 2 1 = 1.

Chapter written by O. ARKOUN, J.-Y. BRUA AND S. PERGAMENCHTCHIKOV.

The model [1.1.1] is a generalization of an autoregressive processes of the first order. It should be noted that the varying coefficient principle is well known in the regression analysis. It permits the use of more complex forms for regression coefficients and, therefore, the models constructed via this method are more adequate for applications (see, for example, [START_REF] Fan | Statistical methods with varying coefficient models[END_REF], [START_REF] Luo | Nonparametric estimation of the production function with time-varying elasticity coefficients[END_REF]). There is a number of papers which study these varying coefficient autoregressive models. In [START_REF] Dahlhaus | On the kullback-leibler information divergence of locally stationary processes[END_REF], the process [1.1.1] is considered with the function S having a parametric form. Moreover, Dahlhaus (1996a) studied spectral properties of the stationary process [1.1.1] with the nonparametric function S. [START_REF] Belitser | Recursive estimation of a drifted autoregressive parameter[END_REF] considered this model with Lipschitz conditions and proposed a recursive estimator. (The author established the convergence rate for quadratic risk). In all these papers, the authors propose some asymptotic (as n → ∞) methods for different identification studies without considering optimal issues (in the minimax sense).

To our knowledge, for the first time, the minimax estimation problem for model [1.1.1] has been treated in [START_REF] Moulines | On recursive estimation for time varying autoregressive processes[END_REF] in the non adaptive case, i.e. when the regularity of S is known. More specifically, it was shown that the convergence rate is optimal for the quadratic risk by using a recursive method for autoregressive model of order d.

This chapter talks about the development of an adaptive sequential procedure for the estimation of the unknown functional coefficient in model [1.1.1]. The minimax nonadaptive and adaptive convergence rates are established in a Hölderian case and an asymptotically efficient estimator is constructed with the absolute error risk. Then, in a general framework, we propose a new sequential model selection procedure for this modelwhich provides a sharp oracle inequality.

We assume that in the model [1.1.1] the i.i.d. random variables (ξ k ) 1≤k≤n have a density p (with respect to the Lebesgue measure) from the functional class P ς defined as

P ς := p ≥ 0 : +∞ -∞ p(x) dx = 1 , +∞ -∞ x p(x) dx = 0 , +∞ -∞ x 2 p(x) dx = 1 , sup k≥1 1 ς k (2k -1)!! +∞ -∞ |x| 2k p(x) dx ≤ 1 [1.1.2]
where ς ≥ 1 is some fixed parameter.

To obtain the stable (uniformly with respect to the function S ) model [1.1.1], we assume that for some fixed 0 < ε < 1 and L > 0 the unknown function S belongs to the εstability set

Θ ε,L = S ∈ C 1 ([a, b], R) : S ≤ 1 -ε and Ṡ ≤ L , where C 1 ([a, b], R) is the Banach space of continuously differentiable [a, b] → R functions and S = sup a≤x≤b |S(x)|.

Pointwise estimation with absolute error risk

This section is devoted to nonparametric estimation for autoregressive models. We consider the problem of estimating an unknown function at a fixed point using data governed by autoregressive models defined in [1.1.1]. To define the risk associated with the use of an estimator and thus measure the quality of it, we use the loss function related to the absolute error. This work follows the minimax approach for which the goal is to find a lower bound of the asymptotic minimax risk and then to construct an estimator, said asymptotically efficient, for which the maximum risk reaches asymptotically this bound.

For a nonparametric autoregressive model where the autoregressive function is supposed to belong to a weak Hölder class with known regularity, we show that a kernel estimator is asymptotically efficient. When the regularity of the autoregressive function is unknown, we get the minimax adaptive convergence rate of estimators on a family of Hölderian classes. Moreover in the same case, we can construct through a sequential procedure an asymptotically efficient estimator over the same weak Hölder class.

For the model [1.1.1], we propose to estimate the unknown function S belonging to a certain Hölder class H (β) at a fixed point z 0 , where β is the regularity parameter of this functional class. In terms of asymptotic efficiency, we are now able to define the maximum risk of an estimator and to describe the minimax approach used for this purpose.

Minimax approach

Let us begin by giving precisely the definition of a estimator for the considered model

[1.1.1]. DEFINITION 1.1.-For the autoregressive model [1.1.1],
an estimator of S at point z 0 is a random variable ω → Sn = Sn (z 0 , y 1 , . . . , y n ) measurable with respect to the σ-algebra engendered by y 1 , . . . , y n .

We define the risk of an estimator Sn of function S belonging to a functional class H (β) of regularity β for a fixed z 0 by E S | Sn -S(z 0 )|, where E S is the expectation when the randomness is determined by the model [1.1.1].

In our framework we consider the case for which the maximum risk of an estimator Sn is defined by

R n ( Sn ) := sup S∈H (β) sup p∈P E S,p | Sn -S(z 0 )|.
We are therefore led to consider the asymptotic behavior of minimax risk defined by

R * n = inf Sn R n ( Sn ),
the infimum being taken on all the estimators.

The primary goal of the minimax approach is to find an estimator Ŝn whose maximum risk is equal to the minimax risk. Such an estimator is called minimax. An estimator Ŝn is said asymptotically efficient if

R n ( Ŝn ) ∼ n→∞ R * n .
The goal of the approach is to find an estimator S * n , a sequence (ϕ n ) n∈N * strictly positive reals such as ϕ n → +∞, when n → +∞ and constants c > 0 and C < ∞ such as

lim sup n→∞ ϕ n R n (S * n ) ≤ C and lim inf n→∞ ϕ n R * n ≥ c. [1.2.1] DEFINITION 1.2.-The family (ϕ n ) n∈N * is called minimax convergence rate of estimators over H (β) if [1.2.1] is verified. DEFINITION 1.3.-An estimator S * n satisfying c ≤ lim inf n→∞ ϕ n R * n ≤ lim sup n→∞ ϕ n R n (S * n ) ≤ C
where (ϕ n ) n∈N * is the minimax convergence rate and c > 0 and C < ∞ are constants, is said optimal estimator in convergence rate over H (β) .

REMARK 1.1.-To show the asymptotic efficiency of an estimator, it suffices to obtain the same lower and upper bounds (C = c in Definition 1.3).

Adaptive minimax approach

The minimax approach is called adaptive when one of the parameters defining the considered functional class is assumed to be unknown, for example the regularity of the autoregressive function S in the model [1.1.1]. For the Höderian class H (β) , we assume that β ∈ B, where B is an interval and define the adaptive risk of an estimator Sn of S(z 0 ) as R n,β ( Sn ) = sup

S∈H (β) sup p∈P E S | Sn -S(z 0 )|.
Then, as for the nonadaptive minimax approach, we look for an adaptive (independent of β ∈ B) and asymptotically efficient estimator, as well as the exact asymptotic bound of the adaptive minimax risk

inf Sn sup β∈B R n,β ( Sn ).
The question we are also asking is the existence of an optimal adaptive estimator in convergence rate, i.e an estimator, independent of β ∈ B, which converges at this rate on each class H (β) . More precisely: DEFINITION 1.4.-The family (φ n (β)) n∈N * is called adaptive minimax rate of convergence of estimators on the family of classes (H (β) ) β∈B if -for a certain estimator S * n and a constant C > 0, we have:

lim sup n→∞ sup β∈B φ n (β)R n,β (S * n ) ≤ C;
-and there exists a constant c > 0 such that:

lim inf n→∞ inf Sn sup β∈B φ n (β)R n,β ( Sn ) ≥ c.
An estimator S * n checking the first previous point, with φ n (β) the adaptive minimax convergence rate is said adaptive optimal in rate of convergence on the family (H (β) ) β∈B .

DEFINITION 1.5.-An adaptive optimal estimator S * n in convergence rate is called adaptive asymptotically efficient on the family H (β) β∈B if it satisfies:

lim n→∞ inf Sn sup β∈B φ n (β)R n,β ( Sn ) = lim n→∞ sup β∈B φ n (β)R n,β (S * n ).
However, optimal adaptive estimators of convergence do not always exist. Indeed, [START_REF] Lepskii | A problem of adaptive estimation in gaussian white noise[END_REF] shows that it does not exist for estimation at a fixed point, in a Gaussian white noise model, of a Hölderian function belonging to the class Σ(L, β), β ∈ B ⊂ R * + described in the definition 1.6 and B containing at least two elements. Nevertheless,we can get a relationship of the type

lim sup n→∞ sup β∈B φ n (β))R β (S * n ) ≤ C,
for a certain estimator S * n , whereas φ n (β) is not the minimax convergence rate on H (β) . DEFINITION 1.6.-Let L > 0 and β > 0. The Hölder class Σ(L, β) is defined by

Σ(L, β) = S : R → R : |S (m) (x) -f (m) (y)| ≤ L|x -y| β-m , ∀x, y ∈ R ,
where m = β is the largest integer strictly smaller than real β.

Nonadaptive procedure

This section deals with the nonparametric estimation of the autoregression coefficient function S in the model [1.1.1] at a given point z 0 , when the smoothness of S is known. For this problem we make use of the following modified kernel estimator

Ŝn (z 0 ) = 1 A n n k=1 Q(u k ) y k-1 y k 1 (A n ≥d) , [1.2.2]
where Q(•) is a kernel function,

A n = n k=1 Q(u k )y 2 k-1 with u k = x k -z 0 h ;
d and h are some positive parameters.

Our first goal is to find the convergence rate of the minimax risk taken over the stable local Hölder class at the point z 0

H (β) (z 0 , K, ε) = S ∈ Θ ε,L , | Ṡ(x) -Ṡ(z 0 )| ≤ K|x -z 0 | β-1 , ∀x ∈ [a, b] , [1.2.3] with a known regularity 1 ≤ β ≤ 2.
We assume that the regularity β ≤ β ≤ β, where β = 1 + α and β = 1 + α for some fixed parameters 0 ≤ α < α ≤ 1.

We will find an asymptotical (as n → ∞) positive lower bound for the minimax risk with the normalyzing coefficient

ϕ n = n β 2β+1 . [1.2.4]
To obtain this convergence rate we set in [1.2.2]

h = n -1 2β+1 and d = κ n nh , [1.2.5]
where

κ n ≥ 0, lim n→∞ κ n = 0 and lim n→∞ h κ 2 n = 0 . [1.2.6]
As to the the kernel function we assume that

1 -1 Q(z) dz > 0 and 1 -1 z Q(z) dz = 0 . [1.2.7]
The two following theorems assert that the estimator [1.2.2] with the parameters [1.2.5]-[1.2.7] is asymptotically optimal with respect to the convergence rate [1.2.4] over the stable local Hölder class

H (β) (z 0 , K, ε). THEOREM 1.1.-For any K > 0 and 0 < ε < 1 lim inf n→∞ inf Sn sup S∈H (β) (z 0 ,K,ε) ϕ n R n ( S n , S) > 0,
where the infimum is taken over all estimators.

Now we obtain an upper bound for the kernel estimator

[1.2.2]. THEOREM 1.2.-For any K > 0 and 0 < ε < 1 the kernel estimator [1.2.2] with the parameters [1.2.5]-[1.2.7] satisfies the following inequality lim sup n→∞ sup S∈H (β) (z 0 ,K,ε) ϕ n R n ( Ŝn , S) < ∞.
At the next step we study sharp asymptotic properties for the minimax estimators [1.2.2].

To this end similarly to [START_REF] Arkoun | Nonparametric estimation for an autoregressive model[END_REF] we make use of the family of the weak stable local Hölder classes at the point z 0 , i.e. for any δ > 0 we set

U (β) δ,n (z 0 , ε) = S ∈ Γ ε : Ṡ ≤ δ -1 and |Ω h (z 0 , S)| ≤ δh β , [1.2.8] where Ω h (z 0 , S) = 1 -1 (S(z 0 + uh) -S(z 0 )) du and h is given in [1.2.5].
In this case we find in Theorem 1.3 a positive constant giving the exact asymptotic lower bound for the minimax risk with the normalyzing coefficient [1.2.4]. Moreover, Theorem 1.4 shows that for the estimator [1.2.2] with the parameters [1.2.5]-[1.2.6] and the indicator kernel Q = 1 [-1,1] the asymptotic upper bound of the minimax risk coincides with this constant, i.e. in this case such estimators are asymptotically efficient.

THEOREM 1.3.-For any δ > 0 and 0

< ε < 1 lim inf n→∞ inf Sn sup S∈U (β) δ,n (z 0 ,ε) τ -1/2 (S) ϕ n R n ( S n , S) ≥ E|η| ,
where τ (S) = 1 -S 2 (z 0 ) and η is a gaussian random variable with the parameters (0, 1/2).

THEOREM 1.4.-The estimator [1.2.2] with the parameters [1.2.5]-[1.2.6] and Q(z) = 1 [-1,1] satisfies the following inequality lim sup δ→0 lim sup n→∞ sup S∈U (β) δ,n (z 0 ,ε) τ -1/2 (S) ϕ n R n ( Ŝn , S) ≤ E|η| ,
where τ (S) = 1 -S 2 (z 0 ) and η is a gaussian random variable with the parameters (0, 1/2).

REMARK 1.2.-One can show (see Galtchouk and Pergamenshchikov (2006a)) that for any 0 < δ < 1 and n ≥ 1

H (β) (z 0 , δ, ε) ⊂ U (β) δ,n (z 0 , ε) .
This means that the "natural" normalyzing coefficient for the functional class [1.2.8] is the sequence [1.2.4]. Theorem 1.3 and Theorem 1.4 extend usual the Hölder approach for the point estimation by keeping the minimax convergence rate [1.2.4].

Sequential kernel estimator

In the perspective of obtaining an optimal estimator in an adaptive framework (when the regularity β is unknown), similarly to [START_REF] Galtchouk | Sequential nonparametric adaptive estimation of the drift coefficient in diffusion processes[END_REF], we will apply in the next section the Lepski ȋ procedure to the model [1.1.1] based on the sequential kernel estimates.

Here we construct the sequential kernel estimator using the method proposed in [START_REF] Borisov | Sequential estimation of parameters of discrete processes[END_REF] for the parametric case. It should be noted that to apply the Lepski ȋ procedure the kernel estimators must have the tail distribution of the Gaussian type. To obtain this property one needs to use the sequential approach.

First of all, we need the first ν observations for the auxiliary estimation of S(z 0 ):

S ν = 1 A ν ν j=1 Q(u j ) y j-1 y j , A ν = ν j=1 Q(u j ) y 2 j-1 , [1.2.9]
where the kernel Q(•) is the indicator function of the interval [-1; 1]; u j = (x jz 0 )/h and h is some positive bandwidth. In the sequel for any 0 ≤ k < m ≤ n we set

A k,m = m j=k+1 Q(u j ) y 2 j-1 , i.e. A ν = A 0,ν .
It is clear that to estimate S(z 0 ) on the basis of the kernel estimate with the kernel Q we can use the observations (y j ) k * ≤j≤k * , where

k * = [nz 0 -nh] + 1 and k * = [nz 0 + nh] .
Here [a] is the integral part of a number a. So for the first estimation we chose ν as

ν = ν(h, α) = k * + ι , [1.2.10] where ι = ι(h, α) = [ nh] + 1 and = (h, α) = h α / ln n .
Next, similarly to [START_REF] Bibliography Arkoun | Sequential adaptive estimators in nonparametric autoregressive models[END_REF], we use a some kernel sequential procedure based on the observations (y j ) ν≤j≤n . The key idea from the sequential procedure proposed by [START_REF] Borisov | Sequential estimation of parameters of discrete processes[END_REF] is to replace the random denominator by some threshold H > 0 in the kernel estimator [1.2.2], which transform this estimator to a linear function of observations replacing the number of observations n by the following stopping time

τ H = inf{k ≥ ν + 1 : A ν,k ≥ H},
where inf{∅} = n and the positive threshold H will be chosen as a positive random variable measurable with respect to the σ -field {y 1 , . . . , y ν }. Therefore, we define on the set {τ H < n}

S * h = 1 H   τ H -1 j=ν+1 Q(u j ) y j-1 y j + κ H Q(u τ H ) y τ H -1 y τ H   , [1.2.11]
where the correcting coefficient κ H on the set {A ν,τ H ≥ H} is defined as

A ν,τ H -1 + κ H Q(u τ H ) y 2 τ H -1 = H
and κ H = 1 on the set {A ν,τ H < H}.

Now, to obtain an efficient estimate we need to use the all n observations, i.e. asymptotically for sufficiently large n the stopping time τ H ≈ n. Similarly to [START_REF] Konev | Estimate of the number of observations in sequential identification of the parameters of dynamical systems[END_REF], one can show that τ H ≈ γ(S) H as H → ∞, where

γ(S) = 1 -S 2 (z 0 ) .
Therefore, to use asymptotically all observations we have to chose H as the number observations divided by γ(S). But in our case we use k * -k * observations to estimate S(z 0 ), Therefore, to obtain optimal estimate we need to define H as (k * -k * )/γ(S). taking into account that k * -k * ≈ 2nh and that γ(S) is unknown we define the threshold H as

H = H(h, α) = ρnh , ρ = ρ(h, α) = 2(1 -) γ( S ν ) , [1.2.12]
where S ν is the projection of the estimator S ν in the interval ] -

1 + ε, 1 -ε[, i.e. S ν = min(max( S ν , -1 + ε), 1 -ε) .
In this paper we chose the bandwidth h in the following form

h = h(β) = (κ n ) 1 2β+1 , [1.2.13]
where the sequence

κ n > 0 such that κ * = lim inf n→∞ nκ n > 0 and lim n→∞ n δ κ n = 0 [1.2.14]
for any 0 < δ < 1. In the sequel we present the following decomposition of the estimate error on which the proof of the optimality of the sequential kernel estimator is based.

First we set κj = 1 {τ H =j} + κ H 1 {τ H =j} .
Then taking this into account we can represent the estimate error as

S * h -S(z 0 ) = -S(z 0 ) 1 (τ H =n) + B n (h) + 1 √ H ζ n (h) 1 (τ H <n) ,
whith the approximative terms

B n (h) = τ H j=ν+1 κj Q(u j ) (S(x j ) -S(z 0 )) y 2 j-1 H and ζ n (h) = τ H j=ν+1 κj Q(u j ) y j-1 ξ j √ H .
Recall that the nonsequential kernel estimator [1.2.2] does not have the above property in the case of the model [1.1.1]. Thus, in this case, the adaptive pointwise estimation is possible only in the sequential framework. In the following lemma, we obtain that the sequential kernel estimator has the the same form for the tail distribution as a Gaussian random variable.

LEMMA 1.1.-The sequence ζ n (h) satisfies the following properties:

-the sequence ζ n (h)1 ( τ H <n) converges in law to N (0, 1) as n → ∞ uniformly in p ∈ P ς and S ∈ Θ ε,L ,

-and for all z ≥ 2 sup

n≥1 sup h>0 sup S∈C[0,1] P S,p ζ n (h) 1 (τ H <n) ≥ z ≤ 2e -z 2 /8 .

Adaptive sequential procedure

We construct a sequential adaptive procedure for estimating the autoregressive function at a given point in nonparametric autoregression models with Gaussian noise. We make use of the sequential kernel estimators. The optimal adaptive convergence rate is given as well as the upper bound for the minimax risk.

We will construct an adaptive minimax sequential estimation for the function S from the functional class [1.2.3] of the unknown regularity β. To this end we will use the modification of the adaptive Lepski ȋ method proposed in [START_REF] Bibliography Arkoun | Sequential adaptive estimators in nonparametric autoregressive models[END_REF] based on the sequential estimators [1.2.11]. We set

d n = n ln n and φ n (β) = (d n ) β 2β+1 . [1.2.15]
Moreover, we chose the bandwidth h in the form [1.2.13] with κ n = 1/d n , i.e. we set

ȟ = ȟ(β) = 1 d n 1 2β+1
.

We define the grids on the intervals [β , β] and [α , α] as

β k = β + k m (β -β) and α k = α + k m (α -α) for 0 ≤ k ≤ m with m = [ln d n ]
+ 1, and we set

φ n,k = φ n (β k ) and ȟk = ȟ(β k ) .
Replacing in [1.2.10] and [1.2.12] the parameters h and α we define νk = ν( ȟk , α k ) and Ȟk = H( ȟk , α k ) .

Now using these parameters in the estimators [1.2.9] and [1.2.11] we set Šk = S * ȟk (z 0 ) and

ωk = max 0≤j≤k | Šj -Šk | - λ N j , [1.2.16]
where

λ > λ * = 4 √ 2 β -β (2β + 1)(2β + 1) 1/2 .
In particular, if β = 1 and β = 2 we get λ * = 4(2/15) 1/2 . We also define the optimal index as

ǩ = max 0 ≤ k ≤ m : ωk ≤ λ N k .
The adaptive estimator is now defined as S a,n = S * ȟk and ȟk = ȟǩ .

[1.2.17] REMARK 1.3.-It should be noted that the usual adaptive pointwise estimation (see, for example, [START_REF] Lepskii | A problem of adaptive estimation in gaussian white noise[END_REF], [START_REF] Galtchouk | Sequential nonparametric adaptive estimation of the drift coefficient in diffusion processes[END_REF]) differs from the threshold λ by the fact that [1.2.16] does not depend on the parameters L > 0 and K > 0 of the Hölder class [1.2.3].

Now we are able to give the main results for the adaptive estimation of the function S at a fixed point z 0 ∈]0, 1[, in the Gaussian model [1.1.1], i.e. when p = p 0 where p 0 is (0, 1)-Gaussian density.

For any estimate Sn of S(z 0 ), we define the adaptive risk over the class

H (β) (ε, L, K) as R a,n ( Sn ) = sup β∈[β;β] sup S∈H (β) (ε,L,K) φ n (β) E S,p0 | Sn -S(z 0 )| , [1.2.18] where φ n (β) is defined in [1.2.15].
First we give the lower bound for the minimax risk. More precisely, with the convergence rate φ n (β), the lower bound for the minimax risk is strictly positive. THEOREM 1.5.-There exists K 0 > 0 such that for all K > K 0 , the risk [1.2.18] admits the following lower bound:

lim inf n→∞ inf Sn R a,n ( Sn ) > 0 ,
where the infimum is taken over all estimators Sn .

To obtain an upper bound for the adaptive risk [1.2.18] of the procedure [1.2.17] we need to study the family (S * h ) α≤α≤α .

THEOREM 1.6.-The sequential procedure [1.2.11] with the bandwidth h defined in [1.2.13] for κ n = ln n/n satisfies the following property

lim sup n→∞ sup α≤α≤α (Υ n (h)) -1 sup S∈H (β) (ε,L,K) sup p∈P ς E S,p |S * h -S(z 0 ))| < ∞ where Υ n (h) = h β + (nh) -1/2 .
Using this theorem we can establish the minimax property for the procedure [1. 

Estimation with quadratic integral risk

In this section, we still consider the problem of estimating the autoregressive function of the model [1.1.1] at any point in [a, b] but we will use the quadratic integral risk to measure the mean error of an estimator Ŝn defined as

R p ( S n , S) = E p,S S n -S 2 , S 2 = b a S 2 (x)dx , [1.3.1]
Recalling that the distribution p of the noises ξ k in model [1.1.1] is unknown, so we still use the robust nonparametric estimation approach :

R * ( S n , S) = sup p∈P R p ( S n , S) , [1.3.2]
where P is defined in [1. 1.2] In this context, we focus here on obtaining an oracle inequality which is the first step in getting asymptotic efficiency. More precisely, in order to estimate the function S in model [1.1.1], we make use of the estimator family ( Ŝλ , λ ∈ Λ), where Ŝλ is a weighted least square estimator with the Pinsker weights. For this family, similarly to Galtchouk and Pergamenshchikov (2009a), we construct a special selection rule, i.e. a random variable λ with values in Λ, for which we define the selection estimator as S * = S λ . Our goal is to show the non asymptotic sharp oracle inequality for the robust risks [1.3.2], i.e. to show that for any ˇ > 0 and n ≥ 1

R * ( S * , S) ≤ (1 + ˇ ) min λ∈Λ R * ( S λ , S) + B n ˇ n , [1.3.3]
where B n is a rest term such that for any δ > 0,

lim n→∞ B n n δ = 0 .
In this case the estimator S * is called optimal in the oracle inequality sense.

In order to obtain this inequality for model [1.1.1], we develop a new model selection method based on the truncated sequential procedure constructed in the previous section for the pointwise efficient estimation. To this purpose, we use the non-asymptotic analysis tool proposed for regression models in Galtchouk and Pergamenshchikov (2009a) based on the non-asymptotic studies from [START_REF] Baron | Risk bounds for model selection via penalization[END_REF] for a family of least-squares estimators and extended in [START_REF] Fourdrinier | Improved model selection method for a regression function with dependent noise[END_REF] to some others estimators families. Here we follow the approach proposed by [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes in quadratic metric[END_REF], i.e. we pass to a discrete time regression model by making use of the truncated sequential procedure introduced previously. To this end, at any point (z l ) 1≤l≤d of a partition of the interval [a, b], we define a sequential procedure (τ l , S * l ) with a stopping rule τ l and an estimator S * l . For Y l = S * l with 1 ≤ l ≤ d, we come to the regression equation on some set Γ ⊆ Ω:

Y l = S(z l ) + ζ l , 1 ≤ l ≤ d . [1.3.4]
Here, in contrast with the classical regression model, the noise sequence (ζ l ) 1≤l≤d has a complex structure, namely, ζ l = ξ * l + l , where (ξ * l ) 1≤l≤d is a "main noise" sequence of uncorrelated random variables and ( l ) 1≤l≤n is a sequence of bounded random variables.

It should be emphasized that only sharp oracle inequalities of type [1.3.3] allow to synthesis efficiency property in the adaptive setting.

Main Conditions

As in [START_REF] Arkoun | Sequential robust estimation for nonparametric autoregressive models[END_REF] we assume that in the model [1.1.1] the i.i.d. random variables (ξ k ) k≥1 have a density p (with respect to Lebesgue measure) from the functional class P ς defined previously in [1.1.2], where ς ≥ 1 is some parameter, which may be a function of the number observation n, i.e. ς = ς(n), such that for any δ > 0

lim n→∞ ς(n) n δ = 0 . [1.3.5]
Note that the (0, 1)-Gaussian density belongs to P ς . In the sequel we denote this density by p 0 . It is clear that for any q > 0

m * q = sup p∈P E p |ξ 1 | q < ∞ ,
where E p is the expectation with respect to the density p from P ς . To obtain the stable (uniformly with respect to the function S ) model [1.1.1], we assume that for some fixed 0 < ε < 1 and L > 0 the unknown function S belongs to the εstability set introduced in [START_REF] Arkoun | Sequential robust estimation for nonparametric autoregressive models[END_REF] as

Θ ε,L = S ∈ C 1 ([a, b], R) : |S| * ≤ 1 -ε and | Ṡ| * ≤ L , where C 1 ([a, b], R) is the Banach space of continuously differentiable [a, b] → R functions and |S| * = sup a≤x≤b |S(x)|.

Passage to a discrete time regression model

We will use as a basic procedure the pointwise procedure from [START_REF] Arkoun | Sequential robust estimation for nonparametric autoregressive models[END_REF] at the points (z l ) 1≤l≤d defined as

z l = a + l d (b -a) and d = [ √ n] , [1.3.6]
where [a] is the integer part of a number a. So we propose to use the first ι l observations for the auxiliary estimation of S(z l ). We set [1.3.7] where

S ι l = 1 A ι l ι l j=1 Q l,j y j-1 y j , A ι l = ι l j=1 Q l,j y 2 j-1 ,
Q l,j = Q(u l,j ) and the kernel Q(•) is the indicator function of the interval [-1; 1], i.e. Q(u) = 1 [-1,1] (u).
The points (u l,j ) are defined as

u l,j = x j -z l h .
Note that to estimate S(z l ) on the basis of kernel estimator with the kernel Q we use only the observations (y j ) k 1,l ≤j≤k 2,l from the h -neighborhood of the point z l , i.e.

k 1,l = [n z l -n h] + 1 and k 2,l = [n z l + n h] ∧ n ,
where z l = (z l -a)/(b -a) and h = h/(b -a). Note that, only for the last point z d = b, we take k 2,d = n. We choose ι l in [1.3.7] as

ι l = k 1,l + q and q = q n = [(n h) µ 0 ]
for some 0 < µ 0 < 1. In the sequel for any 0 ≤ k < m ≤ n we set

A k,m = m j=k+1 Q l,j y 2 j-1 and A m = A 0,m .
Next, similarly to Arkoun (2011), we use a kernel sequential procedure based on the observations (y j ) ι l ≤j≤n . To transform the kernel estimator in a linear function of observations and we replace the number of observations n by the following stopping time

τ l = inf{ι l + 1 ≤ k ≤ k 2,l : A ι l ,k ≥ H l } , [1.3.8]
where inf{∅} = k 2,l and the positive threshold H l will be chosen as a positive random variable which is measurable with respect to the σ-algebra {y 1 , . . . , y ι l }.

Now we define the sequential estimator as [1.3.9] where Γ l = {A ι l ,k 2,l -1 ≥ H l } and the correcting coefficient 0 < κ l ≤ 1 on this set is defined as

S * l = 1 H l   τ l -1 j=ι l +1 Q l,j y j-1 y j + κ l Q l,τ l y τ l -1 y τ l   1 Γ l ,
A ι l ,τ l -1 + κ 2 l Q l,τ l y 2 τ l -1 = H l . [1.3.10]
Note that, to obtain the efficient kernel estimator of S(z l ) we need to use all k 2,l -ι l -1 observations. Similarly to [START_REF] Konev | Estimate of the number of observations in sequential identification of the parameters of dynamical systems[END_REF], one can show that τ l ≈ γ l H l as H l → ∞, where

γ l = 1 -S 2 (z l ) .
Therefore, one needs to choose H l as (k 2,l -ι l -1)/γ l . Taking into account that the coefficients γ l are unknown, we define the threshold H l as

H l = 1 - γ l (k 2,l -ι l -1) and = 1 2 + ln n , where γ l = 1 -S 2 ι l
and S ι l is the projection of the estimator S ι l in the interval

] -1 + ε, 1 -ε[, i.e. S ι l = min(max( S ι l , -1 + ε), 1 -ε) .
[ 1.3.11] To obtain the uncorrelated stochastic terms in kernel estimator for S(z l ) we choose the bandwidth h as h = b -a 2d .

As to the estimator S ι l , we can show the following property.

PROPOSITION 1.2.-The convergence rate in probability of the estimator [1.3.11] is more rapid than any power function, i.e. for any b > 0

lim n→∞ n b max 1≤l≤d sup S∈Θ ε,L sup p∈P P S,p | S ι l -S(z l )| > 0 = 0 , [1.3.12]
where 0 = 0 (n) → 0 as n → ∞ such that lim n→∞ n δ 0 = ∞ for any δ > 0.

Now we set

Y l = S * l 1 Γ and Γ = ∩ d l=1 Γ l . [1.3.13]
Using the convergence [1.3.12], we can study the probability properties of the set Γ in the following theorem.

THEOREM 1.8.-For any b > 0, the probability of the set Γ c satisfies the following asymptotic equality lim

n→∞ n b sup S∈Θ ε,L P S,p (Γ c ) = 0 .
In view of this theorem we can shrink the set Γ c . So, using the estimators [1.3.13] on the set Γ we obtain the discrete time regression model [1.3.4] in which

ξ * l = τ l -1 j=ι l +1 Q l,j y j-1 ξ j + κ l Q(u l,τ l ) y τ l -1 ξ τ l H l [1.3.14]
and l = 1,l + 2,l , where

1,l = τ l -1 j=ι l +1 Q l,j y 2 j-1 šl,j + κ 2 l Q(u l,τ l ) y 2 τ l -1 šl,τ l H l , šl,j = S(x j ) -S(z l )
and

2,l = (κ l -κ 2 l ) Q(u l,τ l ) y 2 τ l -1 S(x τ l ) H l .
Note that in the model [1.3.4] the random variables (ξ * j ) 1≤j≤d are defined only on the set Γ. For technical reasons we need to define these variables on the set Γ c as well. To this end, for any j ≥ 1 we set

Ql,j = Q l,j y j-1 1 {j<k 2,l } + H l Q l,j 1 {j=k 2,l }
and Ǎι l ,m = m j=ι l +1 Q2 l,j . Note, that for any j ≥ 1 and l = m Ql,j Qm,j = 0 .

and Ǎι l ,k 2,l ≥ H l . So now we can modify the stopping time [1.3.8] as

τl = inf{k ≥ ι l + 1 : Ǎι l ,k ≥ H l } .
Obviously, τl ≤ k 2,l and τl = τ l on the set Γ for any 1 ≤ l ≤ d. Now similarly to [1.3.10] we define the correction coefficient as

Ǎι l ,τ l -1 + κ2 l Q2 l,τ l = H l .
It is clear that 0 < κl ≤ 1 and κl = κ l on the set Γ for 1 ≤ l ≤ d. Using this coefficient we set

η l = τl -1 j=ι l +1 Ql,j ξ j + κl Ql,τ l ξ τl H l .
Note that on the set Γ, for any 1 ≤ l ≤ d, the random variables η l = ξ * l . Moreover we van show that, for any 1 ≤ l ≤ [1.3.16] where [1.3.17] where υn = sup p∈P sup S∈Θ ε,L E S,p max 1≤j≤n y 4 j . The behavior of this coefficient is studied in the following theorem. .3.18] means that the asymptotic behavior of the upper bound [1.3.17] is approximately as h -2 when n → ∞. We will use this in the oracle inequalities below.

σ 0, * = 1 -2 2(1 -)nh and σ 1, * = 1 (1 -)(2nh -q -3) . Now, taking into account that | 1,l | ≤ Lh, for any S ∈ Θ ε,L we obtain that sup S∈Θ ε,L E S,p 1 Γ 2 l ≤ L 2 h 2 + υn (nh) 2 ,
REMARK 1.6.-It should be emphasized that to estimate the function S in [1.1.1] we use the approach developed in [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes in quadratic metric[END_REF] for the sequential drift estimation problem in the stochastic differential equation. On the basis of the efficient sequential kernel procedure developped in [START_REF] Galtchouk | Nonparametric sequential minimax estimation of the drift coefficient in diffusion processes[END_REF], [START_REF] Galtchouk | Asymptotically efficient sequential kernel estimates of the drift coefficient in ergodic diffusion processes[END_REF] and [START_REF] Galtchouk | Efficient pointwise estimation based on discrete data in ergodic nonparametric diffusions[END_REF] with the kernel-indicator, the stochastic differential equation is replaced by regression model. It should be noted that to obtain the efficient estimator one needs to take the kernel-indicator estimator. By this reason, in this paper, we use the kernel-indicator in the sequential estimator [1.3.9]. It also should be noted that the sequential estimator [1.3.9] which has the same form as in [START_REF] Arkoun | Sequential robust estimation for nonparametric autoregressive models[END_REF], except the last term, in which the correction coefficient is replaced by the square root of the coefficient used in [START_REF] Konev | On one property of martingales with conditionally gaussian increments and its application in the theory of nonasymptotic inference[END_REF]. We modify this procedure to calculate the variance of the stochastic term [1.3.14].

Model selection

In this section we consider the nonparametric estimation problem in the non asymptotic setting for the regression model [1.3.4] for some set Γ ⊆ Ω. The design points (z l ) 1≤l≤d are defined in [1.3.6]. The function S(•) is unknown and has to be estimated from observations the Y 1 , . . . , Y d . Moreover, we assume that the unobserved random variables (η l ) 1≤l≤d satisfy the properties [1.3.15] with some nonrandom constant m > 1 and the known random positive coefficients (σ l ) 1≤l≤d satisfy the inequality [1.3.16] for some nonrandom positive constants σ 0, * and σ 1, * Concerning the random sequence = ( l ) 1≤l≤n we suppose that

u * d = E S,p 1 Γ 2 d < ∞ . [1.3.19]
The performance of any estimator S will be measured by the empirical squared error

S -S 2 d = ( S -S, S -S) d = b -a d d l=1 ( S(z l ) -S(z l )) 2 .
Now we fix a basis (φ j ) 1≤j≤n which is orthonormal for the empirical inner product:

(φ i , φ j ) d = b -a d d l=1 φ i (z l )φ j (z l ) = 1 {i=j} . [1.3.20]
For example, we can take the trigonometric basis (φ j ) j≥ 1 in L 2 [a, b] defined as

φ 1 = 1 , φ j (x) = 2 b -a Tr j (2π[j/2]l 0 (x)) , j ≥ 2 ,
where the function Tr j (x) = cos(x) for even j and Tr j (x) = sin(x) for odd j, To this end, we replace the function S by these observations, i.e.

θ j,d = b -a d d l=1 Y l φ j (z l ) .
From [1.3.4] we obtain immediately the following regression scheme

θ j,d = θ j,d + ζ j,d with ζ j,d = b -a d η j,d + j,d ,
where

η j,d = b -a d d l=1 η l φ j (z l ) and j,d = b -a d d l=1 l φ j (z l ) .
Note that the upper bound [1.3.16] and the Bounyakovskii-Cauchy-Schwarz inequality imply that

| j,d | ≤ d φ j d = d .
We estimate the function S on the grid [1.3.6] by the weighted least-squares estimator [1.3.22] where the weight vector λ = (λ(1), . . . , λ(d)) belongs to some finite set Λ ⊂ [0, 1] d , the prime denotes the transposition. We set for any a

S λ (z l ) = d j=1 λ(j) θ j,d φ j (z l ) 1 Γ , 1 ≤ l ≤ d ,
≤ t ≤ b S λ (t) = d l=1 S λ (z l )1 {z l-1 <t≤z l } . [1.3.23]
Moreover, denoting λ 2 = (λ 2 (1), . . . , λ 2 (n)) we define the following sets

Λ 1 = {λ 2 , λ ∈ Λ} and Λ 2 = Λ ∪ Λ 1 .
Denote by ν the cardinal number of the set Λ and

ν * = max λ∈Λ d j=1 1 {λ(j)>0} .
In order to obtain a good estimator, we have to write a rule to choose a weight vector λ ∈ Λ in [1.3.22]. We define the empirical squared risk as

Err d (λ) = S λ -S 2 d .
Using [1.3.21] and [1.3.22] we can rewrite this risk as

Err d (λ) = d j=1 λ 2 (j) θ 2 j,d -2 d j=1 λ(j) θ j,d θ j,d + d j=1 θ 2 j,d .
Since the coefficient θ j,d is unknown, we need to replace the term θ j,d θ j,d by some of its estimators which we choose as

θ j,d = θ 2 j,d - b -a d s j,d with s j,d = b -a d d l=1 σ 2 l φ 2 j (z l ) . Note that from [1.3.16] -[1.3.20] it follows that s j,d ≤ σ 1, * .
Similarly to [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes in quadratic metric[END_REF] one needs to introduce a penalty term in the cost function to compensate such modification of the empirical risk. We choose it as

P d (λ) = b -a d d j=1
λ 2 (j)s j,d .

Finally, we define the cost function in the following form

J d (λ) = d j=1 λ 2 (j) θ 2 j,d -2 d j=1 λ(j) θ j,d + δP d (λ) .
where 0 < δ < 1 is some positive constant which will be chosen later. We set

λ = argmin λ∈Λ J d (λ)
and define an estimator of S(t) of the form [1.3.23]: 

S * (t) = S λ (t) for a ≤ t ≤ b . [1.3.

Main results

In this section we formulate all main results. First we obtain the sharp oracle inequality for the selection model procedure [1.3.24] for the general regression model [1.3.4].

THEOREM 1.10.-There exists some constant l * > 0 such that for any weight vectors set Λ, any p ∈ P varsigma , any n ≥ 1 and 0 < δ ≤ 1/12, the procedure [1.3.24], satisfies the following oracle inequality 

  d and p ∈ P ς E S,p (η l |G l ) = 0 , E S,p η 2 l |G l = σ 2 l , E S,p η 4 l |G l ≤ mσ 4 l , [1.3.15] where σ l = H -1/2 l, G l = σ{η 1 , . . . , η l-1 , σ l } and m = 4

  THEOREM 1.9.-For any b > 0 the sequence (υ n ) n≥1 satisfies the following limiting equality lim n→∞ n -b υn = 0 . [1.3.18] REMARK 1.5.-It should be noted that the property [1

  [x] denotes the integer part of x. and l 0 (x) = (x -a)/(b -a). Note that, using the orthonormality property [1.3.20] we can represent for any 1 ≤ l ≤ d the function S as S(z l ) = d j=1 θ j,d φ j (z l ) and θ j,d = S, φ j d . [1.3.21] So, to estimate the function S we have to estimate the Fourier coefficients (θ j,d ) 1≤j≤d .

  We use the procedure [1.3.24] to estimate the function S in the autoregressive model [1.1.1] through the regression scheme [1.3.4] generated by the sequential procedures [1.3.13].

Eε

  S,p S * -S 2 d ≤ d + u * d + δ 2 P S,p (Γ c ) . Using Lemma A.2 from Konev and Pergamenshchikov (2015) we obtain the oracle inequality for the quadratic risks [1.3.1]. THEOREM 1.11.-There exists some constant l * > 0 such that for any weight vectors set Λ, any continuously differentiable function S, any p ∈ P ς , any n ≥ 1 and 0 < δ ≤ 1/12, the procedure [1.3.24] satisfies the following oracle inequality R p ( S * , S) d + u * d + δ 2 P S,p (Γ c ) . Now we assume that the cardinal ν of Λ and the parameter ς in the density family [1.1.2] are functions of the number observations n, i.e. ν = ν(n) and ς = ς(n) such that for any δ > the bounds [1.3.16] -[1.3.17] we obtain the oracle inequality for the estimation problem for the model [1.1.1].THEOREM 1.12.-Assume that the conditions [1.3.5] and [1.3.25] hold. Then for any p ∈ P ς , S ∈ Θ ε,L , n ≥ 3 and 0 < δ ≤ 1/12, the procedure [1.3.24] satisfies the following oracle inequalityR p ( S * , S) ≤ (1 + 4δ)(1 + δ) 2 1 -6δ min λ∈Λ R p ( S λ , S) + Bn (p) δn ,where the term Bn (p) is such that for any δ >We obtain the same inequality for the robust risks THEOREM 1.13.-Assume that the conditions [1.3.5] and [1.3.25] hold. Then for any n ≥ 3, any S ∈ Θ ε,L and any 0 < δ ≤ 1/12, the procedure [1.3.24] satisfies the following oracle inequalityR * ( S * , S) ≤ (1 + 4δ)(1 + δ) 2 1 -6δ min λ∈Λ R * ( S λ , S) + B * n δn ,where the term Bn is such that for any δ > It is well known that to obtain the efficiency property we need to specify the weight coefficients (λ(j)) 1≤j≤n (see, for example,[START_REF] Galtchouk | Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression[END_REF]). Consider for some fixed 0 < ε < 1 a numerical grid of the form A = {1, . . . , k * } × {ε, . . . , mε} , where m = [1/ε 2 ]. We assume that both parameters k * ≥ 1 and ε are functions of n, i.e. k * = k * (n) and ε = ε(n), such that n→∞ k * (n) = +∞ , lim n→∞ k * (n) ln n = 0 , lim n→∞ ε(n) = 0 and lim n→∞ n δ ε(n) = +∞ [1.3.26]for any δ > 0. One can take, for example, for n ≥ 2 is some fixed constant. For each α = (β, l) ∈ A, we introduce the weight sequence λ α = (λ α (j)) 1≤j≤nwith the elements λ α (j) = 1 {1≤j<j * } + 1 -(j/ω α ) β 1 {j * ≤j≤ω α } , where j * = 1 + [ln n], ω α = (d β l n) 1/(2β+1) and d β = (β + 1)(2β + 1) π 2β β .