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Abstract 

Single molecule detection provides detailed information about molecular structures and functions, but 

it generally requires the presence of a fluorescent marker which can interfere with the activity of the 

target molecule or complicate the sample production. Detecting a single protein with its natural UV 

autofluorescence is an attractive approach to avoid all the issues related to fluorescence labelling. 

However, the UV autofluorescence signal from a single protein is generally extremely weak. Here, we 

use aluminum plasmonics to enhance the tryptophan autofluorescence emission of single proteins in 

the UV range. Zero-mode waveguides nanoapertures enable observing the UV fluorescence of single 

label-free β-galactosidase proteins with increased brightness, microsecond transit times and operation 

at micromolar concentrations. We demonstrate quantitative measurements of the local 

concentration, diffusion coefficient and hydrodynamic radius of the label-free protein over a broad 

range of zero-mode waveguide diameters. While the plasmonic fluorescence enhancement has 

generated a tremendous interest in the visible and near-infrared parts of the spectrum, this work 

pushes further the limits of plasmonic-enhanced single molecule detection into the UV range and 

constitutes a major step forward in our ability to interrogate single proteins in their native state at 

physiological concentrations. 

Keywords : plasmonics, nanophotonics, ultraviolet UV, single molecule fluorescence, tryptophan 

autofluorescence, zero-mode waveguide 
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Understanding proteins functions and structures requires investigations at the single molecule level to 

reveal dynamics and heterogeneities hidden in ensemble-averaged measurements.1–3 Various 

approaches can provide a single molecule sensitivity,4 and among them fluorescence detection is by 

far the most widely used method.5,6 Superresolution imaging, Förster resonance energy transfer (FRET) 

and fluorescence correlation spectroscopy (FCS) are routinely implemented in laboratories. However, 

all these techniques are bound by the requirement of grafting an external fluorescent dye to the 

protein of interest. This fluorescence labelling can become a severe issue as fluorescent markers may 

perturb the protein reactivity or alter its conformation dynamics.7–10 Moreover, fluorescence labelling 

is also a complex and time-consuming task, especially in the case of protein purification. 

The three aromatic amino acid residues, tryptophan, tyrosine and phenylalanine naturally present in 

a vast majority of proteins, emit fluorescence light when excited in the 260-300 nm ultraviolet (UV) 

range.6,11 Using this intrinsic protein autofluorescence rules out all the issues related with the external 

fluorescence labelling. While broadly used at the molecular ensemble level in fluorimeters and assays, 

the UV autofluorescence detection remains very challenging at the single molecule level. As compared 

to conventional fluorescent dyes, the aromatic amino acids feature lower absorption cross-sections, 

lower quantum yields and lower photostabilities.6 Different excitation schemes using either one,12–15 

two,16,17 or three18 photon excitation have been explored, but single protein detection experiments 

based on UV autofluorescence remain scarce and limited by low signal to noise ratios. Let us also point 

out that the UV autofluorescence naturally occurs in all proteins containing tryptophan or tyrosine 

residues (more than 90% of all known proteins) and should not be confused with the visible-light 

intrinsic fluorescence of proteins related to the green fluorescent protein family (GFP, YFP, 

mCherry…).19  

 Plasmonic optical nanoantennas provide powerful means to overcome the limits of diffraction-limited 

microscopes, as they enable concentrating light at the nanoscale and enhancing the fluorescence 

emission of single molecules.20–24 Additionally, plasmonic nanostructures offer the opportunity to 

detect single molecules at high micromolar concentrations compatible with biologically-relevant 

conditions.25–27 All these features are highly appealing to improve the tryptophan autofluorescence 

detection of single proteins and extend plasmonics into the UV range.28–30 While numerical simulations 

of plasmonic resonances in aluminum nanoparticles31,32 and nanoapertures33–35 predict single emitter 

fluorescence enhancement, the experiments on UV plasmonics have remained largely focused on 

dense molecular layers deposited on nanoparticle arrays to enhance Raman scattering,36–39 or 

fluorescence.40–43 Metal nanoapertures were shown to reduce the fluorescence lifetime,44,45 but there 

has been no report so far quantifying the plasmonic-enhanced UV fluorescence at the single protein 

level. Several reasons contribute to make this a technical challenge: the need for reproducible well-
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controlled plasmonic structures, the need for a proper characterization approach to deal with the low 

brightness and photostability of proteins, and the limited stability of aluminum structures in water 

environment.46–49  

Here, we report the label-free detection of single β-galactosidase proteins using their natural 

tryptophan UV fluorescence emission enhanced by plasmonic aluminum nanoapertures. Our 

experiments are rationally designed to overcome all the previous limitations. To provide reproducible 

and well-controlled aluminum plasmonic nanostructures, we use zero-mode waveguides (ZMW), 

which are nanoapertures of 35 to 150 nm diameters milled in opaque aluminum films.25,50  These ZMWs 

enhance the fluorescence brightness and isolate single proteins in a concentrated micromolar solution. 

With their simple geometry and reproducible fabrication, ZMWs are well suited to serve as benchmark 

platforms to test the UV plasmonics fluorescence enhancement. Contrarily to gap antennas,23,24 ZMWs 

feature a better defined detection volume and are less prone to dispersion due to fabrication defects. 

Contrarily to nanoparticles,22 ZMWs allow to work on a quasi-dark background, ensuring low noise in 

the measurements.  

The restricted UV photostability of proteins has been long recognized as a major limiting issue.14,16,18  

Here, we use oxygen scavengers51 and reducing agents52 to promote the tryptophan photostability. 

Additionally, the reduced diffusion time experienced by proteins in ZMWs helps to prevent observing 

the negative effects of photobleaching. While the corrosion of aluminum in water-based environments 

can be a severe issue for UV plasmonics,46–48 we have recently developed a protocol to inhibit the 

aluminum photocorrosion under UV illumination.49 Finally, we implement fluorescence correlation 

spectroscopy (FCS) as a robust analysis method to count the number of molecules and measure their 

diffusion time even in the presence of noisy fluorescence traces.53,54 With all these elements taken 

together, we can demonstrate the label-free detection of single proteins using their UV 

autofluorescence enhanced by a plasmonic structure. Zero-mode waveguides, nanopores and 

nanoapertures have received a large interest for many biophysics applications including molecular 

sensing,55–58 DNA sequencing,59–61 enzymatic reaction monitoring,62,63 and biomembrane 

investigations.64,65  With their ability to probe the protein tryptophan autofluorescence demonstrated 

here, new possibilities are offered to interrogate single proteins in their native state at physiological 

concentrations. 

Figure 1a presents the scheme of our experiment: a single ZMW milled in a 50 nm thick opaque 

aluminum film is positioned at the focus of a UV confocal microscope (the complete setup is detailed 

in the Supporting Information Fig. S1). The ZMW is covered with the solution containing the label-free 

proteins which freely diffuse across the nanoaperture volume. This geometry allows to record only the 
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fluorescence stemming from the ZMW, whose volume can be three orders of magnitude lower than 

the diffraction-limited confocal volume.25 Extending the ZMW optical response into the 200-400 nm 

UV range requires the use of aluminum instead of gold or silver, as these classical plasmonic metals 

feature too high losses below 400 nm.28,30 The deposition of aluminum demands specific conditions of 

high deposition rates (>10nm/s) and low vacuum (<10-6 mbar) to reduce the amount of residual oxide 

found within the bulk of the aluminum layer and ensure the best plasmonic performance.28,66 Focused 

ion beam (FIB) milling then directly carves the nanoaperture into the aluminum layer, enabling an 

accurate control on the diameter and the 50 nm undercut in the quartz substrate to optimize the signal 

to noise ratio.67–69 Figure 1b shows typical SEM images of our ZMW samples with different diameters. 

 

 

Figure 1. Aluminum zero-mode waveguides (ZMWs) to enhance single molecule fluorescence in the 

UV range. (a) Schematic view of the ZMW configuration. (b) Scanning electron microscope images of 

ZMWs with different diameters. (c) Finite difference time domain (FDTD) simulation of the intensity 

enhancement inside a 50 nm diameter aluminum ZMW at a 266 nm wavelength. The intensity is 

displayed along the laser linear polarization direction and the inset shows the intensity in a plane 5 nm 

inside the nanoaperture from the aluminum-quartz interface. (d) Absorption and emission spectra of 

p-terphenyl molecules in cyclohexane. (e) Absorption and emission spectra of β-galactosidase protein 

in aqueous buffer. In (d) and (e) the violet lines correspond to the laser wavelength used for excitation, 

and the grey backgrounds show the detection spectral range. 

 

Circular apertures milled in a perfect electrical conductor have a theoretical cut-off diameter given by 

0.59 𝜆/𝑛 where 𝑛 is the refractive index of the medium filling the aperture.70 Diameters below this 
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cut-off lead to an evanescently decaying intensity profile as light is not transmitted anymore. For 

water-filled ZMWs at 266 nm, the theoretical cut-off diameter amounts to 115 nm. For a real metal of 

finite conductivity, the propagation constant inside the aperture differs slightly as part of the 

electromagnetic field penetrates into the metal (Supporting information Fig. S2). Taking this effect into 

account, our numerical simulations of the UV intensity profile inside a 50 nm ZMW display the 

characteristic features of evanescent decay and local intensity enhancement (Fig. 1c). 

The β-galactosidase protein from Escherichia coli selected for this work has a tetrameric structure 

containing a total of 156 tryptophan residues.14 Each of the four subunits has a length of 1024 

aminoacids and a mass of 116.5 kDa. The quantum yield of tryptophan in water is 13%, but because of 

the fluorescence quenching occurring between nearby aminoacids, the net quantum yield of emission 

for tryptophan in proteins can be significantly lower.6,71 Part of this quenching can be compensated by 

selecting a protein with a large number of tryptophan residues.14,16 The main focus of this work is to 

assess the detectability of proteins inside plasmonic ZMWs. Because of the low signal to noise ratio 

inherent to protein UV autofluorescence, we first perform calibration measurements of the ZMW 

properties using p-terphenyl as a high quantum yield fluorescent dye in the UV range. This calibration 

is important to unambiguously confirm the validity of the results obtained on β-galactosidase proteins. 

p-terphenyl has a quantum yield of 93% in cyclohexane,72 and features absorption and emission 

spectra very close to the ones of β-galactosidase, well into the UV range (Fig. 1d,e) 

FCS and fluorescence lifetime experiments on p-terphenyl molecules assess the optical performance 

of ZMWs in the UV (Fig. 2). The choice of a high quantum yield UV dye enables an accurate calibration 

of the ZMW photonic properties to benchmark the protein autofluorescence that will be studied later 

in Fig. 3. Figure 2a displays the raw fluorescence intensity time traces recorded on ZMWs with different 

diameters (the background noise is negligible here). Throughout these experiments, the p-terphenyl 

concentration is kept constant at 10 µM. Each time trace is analyzed by FCS to compute the temporal 

correlation function and assess the average number of molecules Nmol present in the ZMW detection 

volume (Fig. 2d) and their average diffusion time τd (Fig 2e). Figure 2b shows normalized FCS 

correlation functions to evidence the shorter diffusion times observed as the ZMW diameter is 

reduced. Details about the FCS fitting procedure are given in the Methods section, and supplementary 

FCS traces are shown in the Supporting Information Fig. S3 to better present the quality of the fits.  
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Figure 2. Characterization of aluminum ZMWs performance in the UV.  (a) p-terphenyl fluorescence 

intensity time traces recorded on ZMWs with different diameters. For all the experiments shown here, 

the p-terphenyl concentration is constant at 10 µM. (b) Normalized FCS correlation functions showing 

a reduction of the diffusion time as the ZMW diameter is decreased. (c) Normalized fluorescence 

lifetime decay traces for the confocal reference and ZMWs of decreasing diameters. The black lines 

are numerical fits, and IRF indicates the instrument response function. (d) Number of p-terphenyl 

molecules in the ZMW detection volume and (e) average diffusion time deduced from the FCS fits as a 

function of the ZMW diameter. (f) p-terphenyl fluorescence lifetime measured from the decays in (c) 

and corresponding lifetime reduction as compared to the confocal reference. (g) Fluorescence 

brightness per molecule enhancement as a function of the ZMW diameter. (h) Quantum yield and 

excitation gain in ZMWs deduced from the lifetime reduction in (f) and the fluorescence enhancement 

in (g) with respect to the diameter. Throughout (d-h) the lines are guide to the eyes. 

 

Less than 5 p-terphenyl molecules are detected in the 35 nm ZMW, while at the 10 µM concentration, 

the diffraction-limited confocal volume of 0.5 fL contains 3000 molecules. We find that Nmol has a 

nearly cubic dependence with the ZMW diameter to the power 2.7 (Fig. 2d, note that this number of 

molecules also considers the undercut volume below the ZMW). The diffusion time τd scales linearly 
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with the ZMW diameter (Fig. 2e), and a quadratic dependence with the intensity decay length inside 

the ZMW can be retrieved (Supporting Information Fig. S4), confirming the Brownian nature of the 

diffusion process. Additional control experiments assess the validity of the ZMW calibration data: we 

check that the number of detected molecules scales linearly with the concentration (Supporting 

Information Fig. S5) and that the fluorescence brightness per molecule depends linearly with the UV 

excitation power (Supporting Information Fig. S6).  In addition to FCS, time-resolved fluorescence 

decay histograms record the fluorescence lifetime in the ZMWs and its reduction as compared to the 

0.95 ns reference in the confocal setup (Fig. 2c,f). As the ZMW diameter is reduced, the dye gets in 

closer proximity to the aluminum surface leading to a 3× reduction of its fluorescence lifetime down 

to 0.3 ns for the smallest 35 nm ZMW (Fig. 2f and Supporting Information Tab. S1). 

Putting together all the characterizations (Fig. 2a-f), we derive the ZMW influence on the UV 

fluorescence photodynamics (Fig. 2g,h). First, the fluorescence brightness per molecule is assessed by 

normalizing the total signal by the number of p-terphenyl molecules detected by FCS. Typically at 200 

µW excitation power, the fluorescence brightness amounts to 1.9 kcounts/s per molecule in a 55 nm 

diameter ZMW while in the confocal setup it is only 0.45 kcounts/s (Supporting Information Fig. S6), 

indicating a 4× fluorescence enhancement for the 55 nm ZMW. The fluorescence enhancement follows 

a Gaussian distribution with the ZMW diameter (Fig. 2g), with a clear optimum around 60 nm. This size 

corresponds to the diameter where the real part of the propagation constant inside the ZMW vanishes 

and the light group velocity is minimum (Supporting Information Fig. S2).73 To reveal the physics behind 

this phenomenon, we express the fluorescence enhancement 𝜂𝐹  as the product of the gains in the 

excitation intensity  𝜂𝑒𝑥𝑐 times the gain in quantum yield  𝜂𝜙 and the gain in collection efficiency  

𝜂𝑐𝑜𝑙𝑙.
74 The quantum yield gain can be further written as the ratio between the gains in the radiative 

rate  𝜂Γ𝑟𝑎𝑑 and the total decay rate 𝜂Γ𝑡𝑜𝑡. This expresses the fluorescence enhancement as 𝜂𝐹 =

𝜂𝑒𝑥𝑐 𝜂𝑐𝑜𝑙𝑙 𝜂Γ𝑟𝑎𝑑 / 𝜂Γ𝑡𝑜𝑡 (with these notations 𝜂Γ𝑡𝑜𝑡 corresponds also to the fluorescence lifetime 

reduction). In the case of a slightly focused laser beam (as with our 0.6 NA), it can be derived from the 

reciprocity theorem that the gain in excitation intensity amounts to the products of the gains in 

collection efficiency times the gain in radiative rate: 𝜂𝑒𝑥𝑐 =  𝜂𝑐𝑜𝑙𝑙 𝜂Γ𝑟𝑎𝑑.75 Thanks to this simplification, 

we can now compute from the data in Fig. 2f,g the influence of the ZMW on the excitation intensity 

and the quantum yield (Fig. 2h). The excitation intensity increases up to 3.5× as the ZMW diameter is 

reduced, in good quantitative agreement with FDTD simulations. While the quantum yield does not 

depend much on the ZMW diameter for sizes above 60 nm (the radiative emission dominates the 

photokinetics pathways), a clear quenching is observed for the smallest apertures where nonradiative 

plasmonic losses become important. The trade-off between excitation gain maximization and quantum 

yield quenching minimization explains the optimum ZMW diameter around 60 nm.  
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Overall, Figure 2 completely characterizes the ZMW performance in the UV range, demonstrating 

excellent control, reproducibility and tunability of their photonic properties. This makes ZMW useful 

platforms for single molecule analysis in the UV, and is a significant step forward to extend plasmonics 

into the UV band. We can now apply this knowledge to demonstrate the label-free detection of 

tryptophan-containing proteins enhanced by UV plasmonics. 

 

 

Figure 3. Label-free tryptophan autofluorescence detection of β-galactosidase proteins in aluminum 

ZMWs. (a) Fluorescence intensity time traces recorded with different ZMW diameters. For all the 

experiments shown here, the β-galactosidase protein concentration is 2 µM. (b) Raw FCS correlation 

functions corresponding to the traces shown in (a). Detailed FCS fitting results and residuals are shown 

in the Supporting Information Fig. S7. (c) Fluorescence brightness per molecule as a function of the 

average laser power, after the background noise has been subtracted. The lines are numerical fits 

based on a two-level fluorescence system. As compared to the confocal reference, the values for the 

150 nm and 70 nm diameter ZMWs are enhanced by 2× and 5× respectively. (d) Number of β-

galactosidase molecules in the ZMW detection volume and (e) average diffusion time as a function of 

the ZMW diameter deduced from the FCS fits. (f) From the diffusion time in (e) and using the 

experimental results obtained with p-terphenyl to calibrate the nanoaperture influence (Fig. 2e), we 

can retrieve experimentally the diffusion coefficient and hydrodynamic radius of β-galactosidase in 

ZMWs. The dashed horizontal lines indicate the values from the literature.14 
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Figure 3 summarizes our main results on the enhanced detection of β-galactosidase UV 

autofluorescence in ZMWs. Raw fluorescence intensity time traces are shown in Fig. 3a for ZMWs of 

different diameters. As compared to the p-terphenyl fluorescence and despite the 156 tryptophans 

contained in each protein, the detected intensity for β-galactosidase is about one order of magnitude 

lower, and the signal to background becomes a limiting issue. We could only record relevant 

fluorescence data for ZMWs diameters above 70 nm. For lower diameters, the data becomes too noisy 

as the signal to background goes below one. Importantly, our autofluorescence traces are stable over 

several minutes, and show no signs of photobleaching or photodegradation.14  The fluorescence time 

traces are analyzed by FCS using the same procedure, with raw (non-normalized) FCS correlation traces 

displayed in Fig. 2b and detailed in the Supporting Information Fig. S7. Importantly, we check that the 

background noise does not yield any correlation (Supporting Information Fig. S8), confirming that the 

observed FCS correlations stem from the β-galactosidase proteins. The FCS analysis then quantifies the 

number of molecules Nmol (Fig. 3d) and the diffusion time τd (Fig 3e) as a function of the ZMW 

diameter. The evolutions of Nmol and  τd follow exactly the same behavior with the ZMW diameter 

observed with p-terphenyl (Fig. 2d,e), confirming the validity of our results. From the known 

concentration of each molecular sample, we compute back the ZMW detection volume for each 

experiment. The values found for both β-galactosidase and p-terphenyl nicely coincide (Supporting 

Information Fig. S9), and establish our ability to count individual label-free proteins in ZMWs.  

We use the number of molecules assessed by FCS to quantify the fluorescence brightness per β-

galactosidase protein for the different ZMWs (Fig. 2c). All samples follow a fluorescence saturation 

curve with the excitation power, verifying that the detected signal stems from the protein tryptophan 

autofluorescence and not from the background or Raman scattering. At 100 µW excitation power, the 

fluorescence brightness is 140 counts/s per protein in a 70 nm diameter ZMW. This value is about 5× 

greater than the 30 counts/s per protein found for the confocal reference (Fig. 2c), demonstrating the 

occurrence of plasmonic fluorescence enhancement for the native tryptophan emission. However, this 

low intensity level prevents from directly observing UV fluorescence bursts clearly resolved in time, 

and requires the use of FCS as single molecule analysis tool.19,53 The very weak autofluorescence signal 

in the confocal setup also highlights the interest for the plasmonic enhancement. Even moderate 

enhancement factors can make a significant contribution improving the detectability of single proteins 

above the background noise level. As for p-terphenyl, the fluorescence enhancement factor depends 

on the ZMW diameter, with an optimum size around 70 nm (Supporting Information Fig. S10). 
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The photostability of tryptophan autofluorescence in the UV has been recognized as a major limiting 

issue.14,16,18 For the detection of single molecules in solution, the photobleaching probability depends 

on the time spent by the molecules in their excited state, and is proportional to the product of the 

excitation power times the diffusion time and the fluorescence lifetime.76,77 Therefore, in the case of 

the ZMW, the effect of the higher excitation power (leading to a more pronounced photobleaching) is 

fortunately compensated by the shorter diffusion time across the ZMW. We evidence this 

experimentally as the excitation power dependence of the fluorescence intensity (Fig. 2c) indicates 

saturation, but not the drop characteristic of photobleaching.76,77 Also the fluorescence time traces 

(Fig. 2a) are stable with time. Although we did not monitor any significant reduction of the β-

galactosidase fluorescence lifetime in the ZMWs (Supporting Information Fig. S11, the photokinetics 

are too much dominated by the internal nonradiative conversion), the reduced diffusion time is by 

itself enough to stabilize the emission process and avoid observing photobleaching. This illustrates 

another benefit brought by the ZMWs. Furthermore, working with proteins featuring lower internal 

nonradiative rates would further promote the photostability in plasmonic nanostructures thanks to 

the additional fluorescence lifetime reduction.78  

Finally, we show that quantitative measurements of the diffusion coefficients and hydrodynamic radii 

of label-free proteins can be performed in ZMWs. An accurate description of the diffusion behavior 

inside a ZMW is not even needed, as relative measurements using the p-terphenyl calibration 

efficiently circumvent this supplementary difficulty. As the FCS diffusion time is inversely proportional 

to the diffusion coefficient D, the ratio of the FCS diffusion times found for p-terphenyl and β-

galactosidase determines the ratio of the diffusion coefficients:  d,pter / d,βgal = Dβgal / Dpter. Using the 

value calibrated for p-terphenyl on the confocal UV microscope Dpter = 5.6 10-6 cm²/s, we can compute 

the diffusion coefficient for β-galactosidase in each ZMW (Fig. 3f). Additionally, the hydrodynamic 

radius 𝑅𝐻  can be deduced from the diffusion coefficient by using the Stokes-Einstein equation 𝐷 =

𝑘𝑇/6𝜋𝜂𝑅𝐻 where 𝑘𝑇 is the thermal energy and 𝜂 the water viscosity (Fig. 3f). For all the different 

ZMW diameters, we find that the experimental values for 𝐷 and 𝑅𝐻  correspond well to the 3.1 10-7 

cm²/s and 7 nm values reported in the literature.14 This demonstrates that complete quantitative FCS 

measurements are possible on label-free proteins inside ZMWs. This agreement also further confirms 

that the protein structure is not damaged by the UV illumination inside the ZMW. 

To conclude, this work underscores the high potential of aluminum plasmonics to enable UV 

autofluorescence studies of single proteins in their natural state. Combining deep UV plasmonics with 

the detection of single label-free proteins requires dedicated strategies to optimize the UV aluminum 

nanostructures fabrication, counteract the metal photocorrosion, deal with the limited photostability 

of proteins and develop robust analysis tools to extract useful information out of noisy traces. Here, 



11 
 

we conclusively report the first demonstration of single protein tryptophan autofluorescence 

detection enhanced by UV aluminum plasmonics. Our specifically designed aluminum ZMWs enable 

observing the tryptophan fluorescence of label-free β-galactosidase proteins with single molecule 

sensitivity at micromolar concentrations, increased brightness per molecule and microsecond transit 

times. Quantitative FCS measurements are demonstrated over a wide range of ZMW diameters to 

measure the local concentration, diffusion coefficient and hydrodynamic radius of a label-free protein. 

This approach circumvents simultaneously the two main limitations of fluorescence labelling and 

dilutions to nanomolar concentrations that restrain confocal single molecule fluorescence detection. 

This novel facet of plasmonics constitutes an important step forward in our ability to interrogate single 

proteins in their native state at physiological concentrations. Currently, the detection sensitivity with 

the ZMW technique requires about 100 tryptophan residues per protein to yield a brightness of 100 

photons/second exceeding the background level. Future work will explore more advanced plasmonic 

nanostructures to further improve the detected signal per protein. 

 

Methods 

Zero-mode waveguide sample fabrication  

A 50 nm-thick layer of aluminum is deposited on cleaned microscope quartz coverslips by electron-

beam evaporation (Bühler Syrus Pro 710). In order to ensure the best plasmonic response for the 

aluminum layer,28,66 the chamber pressure during the deposition is maintained below 10-6 mbar and 

the deposition rate is 10 nm/s. Individual nanoapertures are then milled using gallium-based focused 

ion beam (FEI dual beam DB235 Strata) with 30 keV energy and 10 pA current.  

 

Surface passivation 

The ZMW samples are rinsed with ultrapure water and isopropanol and then exposed to oxygen 

plasma for 5 minutes to remove any remaining organic residues and densify the oxide layer. To protect 

the aluminum surface and mitigate the corrosion effects,46,47 the sample is covered by a 5 nm thick 

polymer layer made of  polyvinylphosphonic acid (PVPA, Sigma Aldrich).49,79 ZMW samples are placed 

in 2.8 % m/v PVPA solution in water preliminary heated to 90 oC and left for 30 minutes to cover the 

surface. Then, the samples are rinsed with Milli-Q water and annealed at 80 oC for 10 minutes in a dry 

atmosphere. 
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Protein sample preparation 

β-galactosidase from Escherichia coli (PDB 1DP0, UniProtKB P0072, mass 466 kDa) are used as received 

from Sigma Aldrich without further purification. The stock solution of protein molecules is stored in 

phosphate buffer solution (PBS, pH 7.4) at -20 oC temperature. Before the measurements, the stock 

solution is slowly defrosted at 4 oC, then at room temperature (20 oC) and diluted down to 2 μM 

concentration in a buffer which contained PBS, 1.5 μM pyranose oxidase, 0.83 μM catalase, 10 w/v% 

D-glucose, 0.5 % Tween20 and 10 mM ascorbic acid at pH 4. D-glucose (≥99.5%), pyranose oxidase 

(from Coriolus sp., expressed in E.coli, M=270 kDa) and catalase (from bovine liver, M=250 kDa) 

together are abbreviated as PODCAT and play the role of an oxygen scavenger51 that removes a 

significant fraction of oxygen from the solution and increases photostability and brightness of β-

galactosidase, whereas ascorbic acid is introduced as a protein-friendly antioxidant to reduce pH of 

the solution for the measurement,52 and help stabilize the aluminum nanostructures.49 All the 

aforementioned chemicals are purchased from Sigma Aldrich. Likewise, p-terphenyl molecules are 

used as received from Sigma Aldrich, and are diluted in pure HPLC-grade cyclohexane. Emission and 

absorption fluorescence spectra (Fig. 1d,e) are recorded on an automated cuvette spectrophotometer 

(Tecan Spark 10M). 

 

Experimental setup 

The experiments are carried out on a home built confocal microscope with time-resolved fluorescence 

detection. The Supporting Information Fig. S1 presents a detailed scheme of the setup. The p-terphenyl 

molecules are excited by a 266 nm picosecond laser (Picoquant LDH-P-FA-266, 70 ps pulse duration, 

80 MHz repetition rate). For the β-galactosidase proteins, we use instead a 295 nm picosecond laser 

(Picoquant VisUV-295-590, 70 ps pulse duration, 80 MHz repetition rate), as the 295 nm excitation 

yields a slightly better signal to noise ratio than the 266 nm line for this sample. Both laser beams are 

spatially filtered with 50 µm pinholes, spectrally filtered by a short pass filter (Semrock FF01-311/SP-

25) and reflected by a dichroic mirror (Semrock FF310-Di01-25-D) towards the microscope body. For 

p-terphenyl experiments, the 266 nm laser power is kept at 200 µW except for experiments involving 

power variation. Similarly, for β-galactosidase experiments, the 295 nm laser power is fixed at 100 µW. 

The laser powers are measured before the microscope entrance port. 

A Zeiss Ultrafluar 40x, 0.6 NA glycerol immersion objective focuses the UV laser beam to a diffraction-

limited spot (Supporting Information Fig. S1). A 3-axis piezoelectric stage (Physik Instrumente P-

517.3CD) positions an individual ZMW at the laser focus. The fluorescence light is collected through 

the same objective in an epifluorescence configuration and transmitted through the dichroic mirror 
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(Semrock FF310-Di01-25-D) where it is separated from the laser beam. To further suppress the laser 

backreflection, a long pass filter (Semrock FF01-300/LP-25) is incorporated in the detection light path. 

An air-spaced achromatic doublet with 200 mm focal length (Thorlabs ACA254-200-UV) is used as a 

microscope tube lens to focus the fluorescence light on a 50 μm confocal pinhole. Finally, an emission 

band pass filter (Semrock FF01-375/110-25) selects the detection spectral range from 310 to 410 nm. 

A single photon counting photomultiplier tube (Picoquant PMA 175) connected to a photon counting 

module (Picoquant Picoharp 300) registers the arrival time of each detected photon in a time tagged 

time resolved mode (TTTR). Fluorescence lifetime measurements feature temporal resolutions of 150 

ps at 266nm and 140 ps at 295 nm excitation defined as the full width at half maximum of the 

instrument response function. All fluorescence traces are analyzed using Symphotime 64 software 

(Picoquant). The integration time for each trace is 5 minutes. 

 

FCS analysis 

The FCS correlation data are fitted using a standard three dimensional Brownian diffusion model:19,53  

G(τ) =  
1

Nmol
 [1 −

B

F
]

2

 (1 +
τ

τd
)

−1

(1 +
1

κ²

τ

τd
)

−0.5

         (1) 

where Nmol is the total number of detected molecules, B the background noise intensity, F the total 

fluorescence intensity, τd the mean diffusion time and κ the aspect ratio of the axial to transversal 

dimensions of the detection volume. Obviously the nanoaperture geometry is more complicated than 

an open 3D volume, yet this model was found to correctly describe the FCS data inside the 

nanoapertures,58,73 when the aspect ratio constant κ is set equal to 1. The fluorescence brightness per 

molecule is then computed as (F-B)/ Nmol. Figure S3 and S7 shows representative FCS correlation 

functions and their numerical fits for the different experiments. In all cases, the fit residuals are flat 

and symmetrically distributed across the zero line, indicating the good quality of the fitting process. 

Considering the limited signal to noise ratio achieved in the UV, a more elaborate fitting model with a 

larger number of free components would not bring significant additional knowledge.  

 

Fluorescence lifetime analysis 

The fluorescence lifetime decay histograms are fitted by means of a Levenberg-Marquard optimization 

performed on a commercial software (Picoquant SymPhoTime 64). The model performs an iterative 

reconvolution fit considering the instrument response function (IRF). The region of interest in the 

temporal decays are set to ensure that more than 96% of all detected photons are considered. The 
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fluorescence decay for p-terphenyl in the confocal reference is fitted with a single exponential 

function. However, in the case of the nanoapertures, we find that a function with three exponential 

components provides a better fit to the intensity decay (Fig. 2c). Especially for the smallest 35 nm 

aperture diameter, the fluorescence decay becomes clearly not single exponential. The reasoning 

behind the three components is the following: in the case of nanoapertures, we observe that all decays 

need to take into account a very short lifetime of 10 ps (below the resolution of our system, this 

lifetime is fixed in the fitting procedure) to interpolate well the initial peak. We relate this contribution 

to some photoluminescence of the metal or Raman scattering of the sample. We also observe that in 

order to take well into account the decay tail at long time delays, we have to consider a contribution 

with fixed lifetime of 0.95 ns corresponding to the lifetime of p-terphenyl in the confocal case. This 

corresponds likely to a residual fluorescence contribution from molecules lying away from the aperture 

whose fluorescence emission is not enhanced by the plasmonic nanostructure. Finally, we extract the 

main contribution from the aperture fluorescence as the lifetime of the last component, which is the 

only free lifetime in the numerical fit. All the details for the numerical results of the lifetime decay fits 

are given in the Supporting Information Table S1. We use the same procedure for the fluorescence 

decay of β-galactosidase in nanoapertures (Supporting Information Fig. S10). Note that due to the large 

number of tryptophan residues in β-galactosidase, the decay for the confocal reference is also non-

single exponential. 

 

Numerical simulations  

Computations for the electric field intensity distributions shown on Fig. 1c are performed with finite-

difference time-domain (FDTD) method using RSoft Fullwave software. The simulated geometry 

reproduces the experimental ZMW samples characterized by SEM imaging (FEI dual beam DB235 

Strata). The complex permittivity for aluminum is taken from the optimized experimental values 

recorded in ref 66, and the refractive indexes for quartz and water are taken from ref 80. Each simulation 

is run with 0.5 nm mesh size and is checked for convergence after several optical periods. 

 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website at DOI: 

Experimental setup, Propagation constant in aluminum nanoapertures, FCS analysis on p-

terphenyl molecules, Quadratic dependence of the diffusion time on the decay length, 

Concentration dependence of p-terphenyl FCS data, Excitation intensity dependence of p-
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terphenyl fluorescence brightness, FCS analysis on β-galactosidase proteins, FCS analysis on 

background noise, Comparison of the detection volumes measured with the two molecules, 

Fluorescence brightness per molecule enhancement of β-galactosidase, Fluorescence lifetime 

decays of β-galactosidase 
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S1. Experimental setup 

 

 

 

 

Figure S1. (a) Schematic view of the experimental setup. (b) XY scan of a 50 nm ZMW filled with a p-

terphenyl solution as a fluorescent emitting source. This image is used to define the microscope point 

spread function (PSF) whose cross-cut view is shown together with a Gaussian fit.  

 

  

a 
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S2. Propagation constant in aluminum nanoapertures 
 

 

Figure S2. Real and imaginary part of the normalized propagation constant kZ / (2/) along the ZMW 

main axis as a function of the ZMW diameter. The calculations assume a cylindrical infinite waveguide, 

and follow a differential method written in a cylindrical geometry.S1 The aperture is filled with water 

and the vacuum wavelength is 266 nm. For ZMW diameters below 70 nm, the real part of the 

propagation constant vanishes and the intensity exponentially decays along the ZMW axis.  
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S3. FCS analysis on p-terphenyl molecules 

 

 

Figure S3. FCS correlation functions of p-terphenyl (blue markers) and their numerical fits for the 

confocal reference (a), as well as in ZMWs of 115 nm (b), 70 nm (c) and 35 nm (d) diameter. The lower 

traces show the residuals of the fit functions. The fit parameters deduced from the fitting model are 

shown in each panel. The p-terphenyl concentration used for the ZMWs is 10 μM, and 45 nM for the 

confocal experiment demonstrated here. 
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S4. The FCS diffusion time in the ZMWs has a quadratic dependence with the decay length 

 

 

Figure S4. (a) Normalized intensity profiles along the center axis of the ZMW computed by 3D FDTD. 

The numbers on each trace indicate the corresponding ZMW diameter. From the intensity profiles in 

(a), we determine the characteristic decay length at 1/e. Representing the ZMW diameter (b) or the 

FCS diffusion time (c) as a function of this characteristic decay length at 1/e, we find a quadratic 

dependence with the decay length. The lines in (b,c) are numerical fits using a quadratic power law 

(fixed exponent = 2, the exponent is not a free parameter). The graph in (c) explains the somewhat 

counterintuitive linear dependence of the diffusion time with the ZMW diameter observed in Fig. 2e, 

and shows that our observations actually follow the quadratic dependence expected for Brownian 

diffusion (which is a supplementary validation). The proper parameter to define correctly the distance 

dependence in the ZMW diffusion time is the intensity profile decay length, not the ZMW diameter. 

However, from an end-user point of view, the diameter remains by far the most practical parameter 

to characterize and compare between the ZMWs, hence our choice for the graphical display in Fig. 2e. 
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S5. FCS data on dilutions series of p-terphenyl samples show linear behavior with the 

concentration 

 

Figure S5. (a) FCS correlation functions in a 55 nm ZMW measured at four various concentrations of p-

terphenyl. Lower concentrations yield higher correlation amplitude as the FCS amplitude scales with 

the inverse of the number of molecules. (b) Number of molecules extracted from the FCS correlations 

versus the sample concentration. The line is a numerical fit. From its slope, we can deduce a volume 

of 2.8 attoliters (2.8 10-18L or 0.0028 µm3) for the 55 nm diameter aluminum ZMW illuminated at 266 

nm. 

 
S6. Excitation intensity dependence of p-terphenyl fluorescence shows linear behavior and 

no signs for saturation 

 

Figure S6. Fluorescence brightness per molecule of p-terphenyl in confocal reference and in a ZMW of 

55 nm diameter as a function of the 266 nm laser power. The data points follow a linear dependence 

and do not present any sign of saturation. The brightness per molecule is computed by dividing the 

average fluorescence intensity by the number of molecules obtained from the FCS fit. 
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S7. FCS analysis on β-galactosidase proteins 

 

  

Figure S7. FCS correlation functions of β-galactosidase (violet markers) and their numerical fits (black 

curves) for ZMW diameters of 150 nm (a), 115 nm (b) and 70 nm (c). The lower traces show the 

residuals from the fit functions. The fit parameters deduced from the fitting model are shown in each 

panel. The β-galactosidase concentration used for these experiments is 2 μM. (d) Amplitude-

normalized FCS correlation functions showing a clear reduction of correlation width as the diameter is 

reduced. 
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S8. FCS analysis on the background noise due to the protein buffer alone does not show 

any correlation 

 

Figure S8. (a) Correlation function of a protein buffer in a 70 nm diameter ZMW. The data is symmetric 

around the zero level indicating no correlation is found. (b) Background fluorescence intensity of 

protein buffer in the ZMWs versus average laser power. The protein buffer consists of 1.5 μM pyranose 

oxidase and 830 nM catalase with 10 mM ascorbic acid (pH 4.1).  

 
S9. The measured ZMW detection volumes show comparable values with p-terphenyl and 

β-galactosidase 

 

Figure S9. ZMW detection volume deduced from the number of molecules and known concentration 

of the solution as a function of the ZMW diameter. The volumes obtained with β-galactosidase and p-

terphenyl coincide, which further validate our results. The lines are guide to the eyes. 
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S10. Fluorescence brightness per molecule enhancement of β-galactosidase 

 

Figure S10. Fluorescence brightness per molecule enhancement of β-galactosidase in the presence of 

ZMWs of increasing diameters measured at 100 μW laser power. 

 
S11. Fluorescence lifetime decays of β-galactosidase 

 

Figure S11. Normalized TCSPC lifetime decays of β-galactosidase in free solution and in ZMWs. The 

normalization was done with fixed intensity at 0.6 ns as a reference point in order to dismiss artefacts 

of lifetime reduction attributed to Raman scattering or fast lifetime components in the buffer. No 

visible sign of lifetime reduction is visible here, which indicates that the decay photokinetics of β-

galactosidase are largely dominated by its internal non-radiative conversion rate. The fit results are 

detailed in Table S1. 

 

 



29 
 

 

Table S1: Parameters for the triexponential fits of the TCSPC histograms for p-terphenyl in free solution 

and in ZMWs of different diameters. τi indicate the lifetimes, Ii are the relative intensities of each 

exponential component and <τint> is the intensity-averaged lifetime. 96-99 % of detected photons were 

included in the region of interest for the fit. For the ZMW fits on p-terphenyl, the first and third lifetime 

components are fixed at 0.01 and 0.95 ns, respectively. For the ZMW fits on β-galactosidase, only the 

first component is fixed at 10 ps to account for the residual backscattering of the laser light and the 

Raman scattered light.  

 

p-terphenyl  τ1 (ns) τ2 (ns) τ3 (ns) I1 I2 I3 <τint> (ns) 

Confocal ref.  - - 0.95 - - 1 0.95 

115 nm aperture  0.01 0.62 0.95 0.04 0.38 0.58 0.78 

70 nm aperture  0.01 0.51 0.95 0.08 0.51 0.41 0.65 

35 nm aperture  0.01 0.27 0.95 0.19 0.57 0.24 0.38 

β-galactosidase  0.01 0.44 2.60 0.18 0.16 0.66 1.75 
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