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ABSTRACT 

 1. INTRODUCTION 

 Indoor pollution concentrations are known to be up to five times higher than outdoors [1]. People spend 

generally 90% of their time indoor, and approximately 3,8 million people die yearly from causes related to the 

exposure to indoor pollution [2]. Among all the indoor pollutants, volatile organic compounds (VOCs) are of 

particular interest due to their high level of toxicity. One of the VOCs that raises increased concern is 

formaldehyde, a compound that is supposed to be carcinogenic and mutagenic [3], [4]. Formaldehyde is largely 

used in the fabrication of building materials, household products, and resins for wood products. There are 

research projects looking for a none harmful formaldehyde alternative in the form of bio-based platform 

chemical 5-HMF (5-Hydroxymethylfurfural) [5], but meanwhile, the formaldehyde industrial consumption is 

continuously growing. Detection devices existing today are far from being cost-effective, ultra-portable, stable 

and fast, making the detection process of formaldehyde difficult and limited.  

 This project aims to explore the miniaturization possibilities towards the lab-on-a-chip integration of the 

real-time detection of low concentrations of formaldehyde. The detection principle is  based on the Hantzsch 

reaction coupled to the fluorescence optical detection microfluidic method, described in [6]. A prototype 

concept is here proposed, aiming to embed the detection process inside a modular palm-hand device. For a 

better understanding and control of the involved parameters, formaldehyde trapping and derivatization are 

assigned to a sub-device, named Gas-Liquid Micro-Contactor, and the fluorescence detection system to another 

sub-system, named Optical Detector (Figure 1). A micro-machined polymer chip, embedding a flat 

hydrophobic membrane, stands for continually contacting a gas and a liquid microflow, using an overlapping 

network of two meandering channels. The interest here is to study the feasibility of enabling enhanced and 

efficient formaldehyde trapping using relatively cheap on-chip membrane-based polymer chips. The optical 

detection sub-system targets the development of a miniaturized device for the fluorescence intensity 
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quantification based on the contact sensing and the CMOS-based fluorescence sensing in low interrogation 

volumes, down to the nanoliter range.  

 2. GAS-LIQUID MICRO-CONTACTOR 

 Micro-fabrication of polymer chips for efficient gas-liquid interaction is a subject of interest in a large 

variety of fields, especially in the lab-on-a-chip domain [7]. Disposable polymer chips propose relatively cost-

effective and ultra-portable alternatives for applications well-established for properly working in laboratory 

conditions, but lacking in portability and autonomy for long-term remote applications.  

 Here, the poly (methyl methacrylate) (PMMA) polymer is considered due to the fact that it does not 

release formaldehyde up to 80°C temperature and it is not known as a formaldehyde absorbent. PMMA does 

not react with Fluoral-P reagent solution and has a good optical clarity. These properties make this polymer 

the perfect candidate for integration of formaldehyde detection based on the Hantzsch reaction and optical 

sensing into a chip.  

 The polymer chip concept hosts a network of two overlapping meandering micro-channels, one channel 

being assigned to the liquid stream and the other one to the gas stream. They are milled with very good 

precision (±5µm) on two 1 mm thickness PMMA sheets (Figure 2.b). Two different double-sided commercial-

available hydrophobic ePTFE membranes (Aspire® QP955 and Aspire® QL217) were considered for being on-

chip integrated and further tested. They have a reference pore diameter of 200 nm and the contact angle is 120° 

[8]. A vacuum chunk was used to maintain the horizontality of the PMMA sheets, in order to avoid its wavy 

form and assure a constant depth of the channel over the length. The two meter long overlapping channels 

have: (a) 400 µm × 200 µm cross section for the gas carrying channel and (b) 100 µm × 200 µm cross section 

for the liquid carrying channel.  

 The microfluidic sealing of the chip was realized using solvent-enhanced femtosecond laser welding. A 

hot embossing procedure was previously tested, but failed since the very thin ePTFE layer (30 µm thickness) 

of the membrane melted during the process. Two interior strips (Figure 2, (b)) were designed on the PMMA 

gas sheet, in order to enforce the mechanical resistance of the structure which is important when pressure drop 

is considered. The hydrophobic membrane was precisely cut by a CO2 laser (Figure 2, (c)) to fit the pocket on 

the PMMA gas sheet. The gas-liquid contacting chip is integrated in between two upper and lower holders 

(Figure 3). The holders are micro-machined in polyether ether ketone (PEEK) which was chosen due to its low 

thermal conductivity of 0.25 
!

"#$
. They host fluidic leakage-free connections for gas (Swagelok, SS-100-1-1, 

1/16) and liquid (N-333, Idex-HS) streams, the flat copper foils thermally controlled by cartridge heaters 

(Watlow, C1A-9602, 30 W power, 24V voltage) in order to heat up the fluid streams insi – the temperature 

found to be optimal for the Hatzsch reaction, and O-rings (Parker, 6-1735 E540-80, 0.7 × 0.5 mm ) – one for 

Figure 1. (a) Formaldehyde detection methodology; (b) Prototype device exploded view 

 (a)  (b) 

methodology; (b) Prototype device 

 1. Gas-liquid Micro-Contactor 2. Optical detector 1 2
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each fluidic inlet/outlet – that assure the leakage-free condition when the chip is clamped in between the 

holders. 

 Leakage free condition was tested at 10 µL/min reagent flow rate. After six minutes of continuous 

streaming, leakage occurred near the connector. The chip was verified and it could be observed that the liquid 

filled in approximately one third the length of the two meters meandering channels. It could also be observed 

that the laser bonding of the chip failed, most probably due to the high pressure induced by the hydraulic 

resistance on the side filled in with water. A chip with a shorter meandering channel length is considered for 

the following tests.  

3. OPTICAL DETECTION SYSTEM 

 In contact sensing, the samples are placed in close proximity of the sensor surface without intermediate 

optics. Due to the short distance between the sensor and the sample, the optical loss can be small. The CMOS 

technology enables on-chip detection and signal processing, significantly reducing size and power 

consumption [9].  

 The optical detection sub-system here proposed combines the contact sensing and CMOS fluorescence 

sensing in low interrogation volumes (600 nL - 5 μL), in order to develop a robust, low-power, and sensitive 

micro-detector. Geometry of the fluidic interrogation chambers (Figure 3, c) was optimized in such a way to 

assure an uniform flow velocity [10]. The fluidic cells (Figure 3, c) were fabricated from two 1 mm thickness 

glass layers (Schott AF32). Fabrication of the interrogation cells was performed at LAAS Toulouse in the 

framework of the French National Nanofabrication Network Renatech. Two 4 inch glass wafers (Schott AF32) 

were used. The first wafer (fluidic wafer) was cleaned with oxygen plasma at 800 W for 5 minutes. Afterwards, 

a 200 µm SU8 coating was added and baked using the EVG 120 equipment. The masks were then used to 

expose the wafer to UV light, using the Suss MA6 gen4 equipment, in order to create the desired channeling 

geometry. The SU8 developer was used to remove the exposed parts, followed by a hard-bake at 125°C for 1 

minute with ramping. The second glass wafer (cover wafer) was firstly laminated with a Photec 2040 dryfilm 

for protecting the glass during piercing. The piercing was made with sand-blasting, procedure followed by 

rinsing and cleaning with acetone and DI water. The wafer was cleaned with oxygen plasma at 800 W for 5 

minutes, before adding a SU8 10 µm coating (Suss spincoater) and before being baked (hot plate). The fluidic 

and cover wafers were bonded together using Nanonex nanoimprint equipment by applying uniform pressure. 

An AZ 4562 photoresist coating was added using a spincoater as a protection layer before dicing the wafer in 

six different fluidic cells which were then rinsed and cleaned with DI water.  

 Commercially-available LEDs (Roithner Lasertechnik GmbH, VL415-5-15, 10-16 mW, viewing angle 

15°) and CMOS image sensors (Anitoa® USL24) have been used. The Anitoa® ULS24 CMOS image sensor 

was specially developed for spectroscopic measurements and possesses a signal-to-noise ratio larger than 13 

dB at its 3.0 x 10-6 lux detection threshold. The linearities of the CMOS image sensor over the integration time 

(y = 247.82x - 348.26, R² = 0.9848) and over the light intensity (y = 16.209x + 106.38, R² = 0.9968) were 

 (c1)  (c2) 
Gas inlet Gas outlet 

Reagent inlet Reagent outlet 

Fig. 2. (a) (1) – Holder. (2) – Copper layer. (3) – Cartridge heater. (4) – Gas-liquid contacting chip. (5) – O-ring. (b) Gas-

liquid contacting chip, exploded view: (b1) – Gas layer, (b2) – Double-sided membrane, (b3) – Liquid layer. 

(c) Fabrication steps of the gas-liquid chip contactor: (c1) CO2 laser membrane cut. (c2) Meandering channels micro-

milling process. (c3) Solvent-based laser welding.  

 (a)  (b) 

 (b1) 

 (b2) 

 (b3) 

 (c) 

 (c1)  (c2)  (c3) 

Enforcement 

strips 



Proceedings of the International Symposium on 

 Thermal Effects in Gas flows In Microscale 

October 24-25, 2019 – Ettlingen, Germany 

 

4 

A Marie-Curie-ITN 

within H2020

calculated experimentally, exposing the CMOS image sensor to different light intensities and measuring the 

photon counts. The upper and the lower holders are 3D printed. The prototype will be tested in a configuration 

possessing a bandpass filter (Midwest, BP525-R10). As well, a second round of interrogation fluidic cells 

made from PMMA are considered to be fabricated using micro-milling and hot embossing procedures. Results 

observed from parallel testing should prove the viability of PMMA material for optical detection of 

formaldehyde. 

4. CONCLUSION 

Successful development of a micro-total-analysis system for the continuous detection of the low-limits 

gaseous formaldehyde is highly desired since this possibly carcinogenic substance largely used in the 

fabrication of household products is continually released indoors. In this work, a laboratory prototype was 

developed based on the Hantzsch reaction coupled to the optical fluorescence detection method, and composed 

of two sub-devices: a gas-liquid micro-contactor relying on a disposable PMMA gas-liquid contacting chip 

that uses as separation medium a hydrophobic polymer membrane, and a fluorescence optical detection system 

combining the contact sensing of a disposable glass interrogation fluidic cell with the CMOS-based 

spectroscopy. After the successful fabrication of the sub-systems, further results are expected in order to 

experimentally prove the concept. 
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Fig. 3. (a) Longitudinal cross-section: (1) – LED, (2) – CMOS sensor, (3) – disposable fluidic cell, (4) 

– upper holder, (5) – lower holder. (b) Glass fluidic cell. (d) – Anitoa ULS 24 CMOS image sensor 


