

Modulated equations of Hamiltonian PDEs and dispersive shocks

Sylvie Benzoni-Gavage, Colin Mietka, L. Miguel Rodrigues

▶ To cite this version:

Sylvie Benzoni-Gavage, Colin Mietka, L. Miguel Rodrigues. Modulated equations of Hamiltonian PDEs and dispersive shocks. Nonlinearity, 2021, 34 (1), pp.578-641. 10.1088/1361-6544/abcb0a . hal-02365963v1

HAL Id: hal-02365963 https://hal.science/hal-02365963v1

Submitted on 22 Nov 2019 (v1), last revised 10 Feb 2021 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Modulated equations of Hamiltonian PDEs and dispersive shocks

Sylvie Benzoni-Gavage Colin Mietkä L. Miguel Rodrigue's November 22, 2019

Abstract

Motivated by the ongoing study of dispersive shock waves in non integrable systems, we propose and analyze a set of wave parameters for periodic waves of a large class of Hamiltonian partial di erential systems | including the generalized Korteweg{de Vries equations and the Euler{Korteweg systems | that are well-behaved in both the small amplitude and small wavelength limits. We use this parametrization to determine ne asymptotic properties of the associated modulation systems, including detailed descriptions of eigenmodes. As a consequence, in the solitary wave limit we prove that modulational instability is decided by the sign of the second derivative | with respect to speed, xing the endstate | of the Boussinesq moment of instability; and, in the harmonic limit, we identify an explicit modulational instability index, of Benjamin{Feir type.}

Keywords: Whitham modulated equations, periodic traveling waves, Hamiltonian dynamics, harmonic limit, soliton asymptotics, dispersive shock, modulational instability, abbreviated action integral, generalized Korteweg{de Vries equations, Euler{Korteweg systems.}

AMS Subject Classi cations: 35B10; 35B35; 35Q35; 35Q51; 35Q53; 37K05; 37K45.

Contents

1 Introduction 2

This work has been supported by the French National Research Agency projects NABUCO, grant ANR-17-CE40-0025, BoND, grant ANR-13-BS01-0009-01, and by the LABEX MILYON (ANR-10-LABX-0070) of Universite de Lyon, within the programestissements d'Aveni(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

^yThe doctoral scholarship of CM was directly supported by ANR-13-BS01-0009-01.

 $^{^{\}rm z}$ Research of LMR has received funding from the ANR project BoND (ANR-13-BS01-0009-01) and the city of Rennes.

2			13
	2.12.22.32.4	General framework	14 . 16
3	Asyr 3.1 3.2 3.3	mptotic expansions of parameters Expansions of action derivatives	. 30
4	Asyr 4.1 4.2 4.3	mptotics of the modulation system Extending the averaged Hamiltonian	37
5	5.1	9	
Аp	pend A	ix Explicit formula for the modulational-instability index	52
Re	eferer	nces	60

1 Introduction

Motivated by the study of dispersive shock waves, we investigate some of the universal properties of modulated equations, for a large class of Hamiltonian systems of partial di erential equations (PDE) that contains several models of mathematical physics and in particular generalized versions of the Korteweg{de Vries (KdV) equation and dispersive modi cations of the Euler equations for compressible uids - among which we nd the uid formulation via Madelung's transform of the nonlineaodiologer (NLS) equations. To place our results in context, we rst recall what are modulation systems, dispersive shock waves and their expected role in dispersive regularization. Large parts of this preliminary discussion are exploratory and conjectural since we are still lacking a rigorous analysis of dispersive shock waves and vanishing dispersive limits at the level of generality considered here. Indeed the present analysis is precisely designed as a rst step towards a general mathematically rigorous theory, still to come, and some elements of the preliminary discussion might be thought of as a roadmap for this ultimate goal.

Hamiltonian systems of Korteweg type

As in [BGNR13, BGNR14, BGMR16, BGMRar], we consider some abstract systems of the form

(1)
$$@U = @(B H[U]):$$

where the unknowly takes values in with 2 f1; 2g, B is a symmetric and nonsingular matrix so that a skew-symmetric di erential operator, and U] denotes the variational derivative at of H = H(U; U_x). We specialize to classes of systems satisfying more precise conditions described in Assumption 1, su ciently large to include quasilinear versions of the Korteweg{de Vries equation and the abovementioned Euler{Korteweg systems, hence also hydrodynamic formulations of the nonlinear equations. In the former and henceforth spatial derivatives are denoted at the large systems.

Associated with the invarianceHofby time and spatial translations comes the fact that smooth solutions of (1) also satisfy the local conservations laws

(2)
$$@(H(U;U_x)) = @_x \frac{1}{2} H[U] B H[U] + r_{U_x} H(U;U_x) @_x (B H[U])$$

(3) $@(Q(U)) = @_x (Q[U] B H[U] + r_{U_x} H(U;U_x) @_x (B Q[U]) H (U;U_x))$

for the Hamiltonian density H, generating the time evolution, and the ulse Q, given by Q(U) := $\frac{1}{2}U$ B ^{1}U , generating spatial translations. See Section 2 for details.

Modulated equations

with 0< " 1,

Modulated equations are expected to govern the evolution of modulated periodic wave-trains (also called weakly deformed soliton lattices by Dubrovin and Novikov [DN89, DN93]). Starting from a system of PDEs, such as (1), admitting families of periodic traveling waves, one may derive modulation equations through an averaging procedure, which yields PDEs on large space-time scales for the local parameters of the waves. The correspondingnsatz expected to approximate solutions to the original PDEs, looks like one periodic wave train on small scales but have variable wave parameters on larger scales, hence exhibit varying amplitude and wavelength on these large scales.

A robust way to obtain them is to consider a two-scale formal asymptotic expansion combining slow arbitrary variables and single-phase fast oscillations,

(4)
$$U(x;t) = U_0 "x;"t; \frac{(")("x;"t)}{"} + "U_1 "x;"t; \frac{(")("x;"x)}{"} + h.o.t;$$

$$(")(X;T) = _{O}(X;T) + "_{1}(X;T) + h.o.t;$$

U_j(X;T;) one-periodic in; j = 0; 1; ;

where X = X and X = X denote some rescaled spatial and time variables respectively. A leading-order identication shows that for X = X (i.e., X = X).

$$U() := U_0(X;T; k(X;T))$$

must be the pro le of a periodic, traveling wave solution to the original system, here (1), of (spatial) period X;T) = 1=k(X;T) and speedc(X;T) = ! (X;T)=k(X;T), with $k = @_{0}$ and ! = @_{0}. This already leaves as a constra@ $k = @_{1}$!, an equation known as theonservation of wavequation.

The missing part of the time evolution is obtained from constraints for the resolution of the next step of the identi cation. Indeed this step yields an a ne equation for with

linear part essentially given by the linearization abo $\underline{U}t$ of the original system, in the frame moving with speedcting on functions of with the same period $\underline{U}t$

source terms depending only by 0 and 1.

The possibility to solve this step is then equivalent to the orthogonality (fosdhar product in the-variable) of source terms to the kernel of the adjoint of the linear operator, a constraint automatically satis ed by the part of source terms. Now it turns out that elements of the latter kernel are in correspondence with local conservations laws for the original systems. In the present case the conservative nature of (1), (2), (3) is directly linked to the presence in the kernel of the adjoint of the linearization of respectively constant functions $\mathbb{Q}[\mathbb{U}]$ and $\mathbb{H}[\mathbb{U}]$. Orthogonality to those then yields time evolution equations for the averages of the quantities involved in local conservation laws. Note however that for traveling waves $\mathbb{G}[\mathbb{U}]$ is already a linear combination of $\mathbb{Q}[\mathbb{U}]$ and constants so that the local conservation law for the averages fnot generate a new independent equation but haropyfor the modulated system.

The upshot of the detailed process (for which we refer to [NR13, BGNR14]) is the modulated system

- (5a) @k @! = 0
- (5b) @ hUi @ (hB H[U]i) = 0

$$(5c) @hQ(\underline{U})i @_x hQ[\underline{U}] B H[\underline{U}] + r_{U_x}H(\underline{U};\underline{U}) @(B Q[\underline{U}]) H(\underline{U};\underline{U})i = 0$$

where brackets i stand for mean values over the periox; T(). A few comments on dimensions are worth stating (and we refer to [Rod13] for a more detailed discussion). The original Hamiltonian system (1) counts equations whereas (5a)-(5b)-(5c) involves N+2 equations. From the way the modulated system has been derived it should be clear that this N+2 breaks into 1 for the number of wavenumber N+2 breaks into 1 for the number of wavenumber N+3 breaks in N+3 breaks in N+3 breaks in N+3 breaks in N+3 breaks i

¹Up to a rescaling from to , normalizing period to 1.

²The nonlinear Schodinger equations (in original formulations) form typically a case with a two-dimensional group of symmetries. Their reduction to hydrodynamic form lowers the symmetry dimension by 1 but adds a conservation law.

for the dimension of the span $\mathfrak{S}[U]$, with F ranging along functionals that satisfy a conservation law along the ow of [U]) being a periodic traveling wave. In the identi cation process, the number of independent averaged conservat [V] have realized as related to the dimension of the kernel of the adjoint of the linearization in a moving frame, restricted to functions of the same period. This dimension must also be the dimension of the kernel of the adjoint of the linearized operator itself, hence the dimension of the family of periodic waves with xed period and speed (associated with the abovementioned wavenumber). Thus the formal argument also carries the fact that the dimension of the modulated system [V] here dimension of the dimension of the family of periodic traveling waves [V] here by the number of wavenumbers (1 here), hence agrees with the dimension of periodic wave pro les identi ed when coinciding up to translation (again [V]). The missing piece of information, about phase shifts, may be recovered a posteriori by solveg [V]0 = [V]1. As proved for instance in [V]3 BGNR14, Appendix [V]3, to a large extent, the present informal discussion on dimensions may be turned into sound mathematical arguments.

As already pointed out in Whitham's seminal work [Whi99] for KdV and NLS, it is possible to use the variational structure of systems such as (1) to derive (5a)-(5b)-(5c) from least action considerations, instead of the geometrical optics expansion (4). For recent accounts of this variational derivation the reader is referred to [KamOO, Bri17]. As for the class of systems considered here, the corresponding form in terms of an action integral along periodic wave pro les was explicited in [BGNR13] and subsequently crucially used in [BGMR16, BGMRar].

A simple situation where one expects that the dynamics of (1) is well-described by a slow modulation as atzsimilar to (4), hence obeys at leading-order a suitable version of (5a)-(5b)-(5c) is in the large-time regime starting from a smooth and localized perturbation of a single periodic traveling wave of (1), which should correspond to a nearly constant solution to (5a)-(5b)-(5c). Yet, though it is arguably the simplest relevant regime, a rigorous validation of the foregoing scenario has been obtained for none of the equations considered here. See however [BGNR14] for a spectral validation on the full class (1), [Rod18] for a linear validation on KdV, and [JNRZ13, JNRZ14] for full validations but on parabolic systems.

Small dispersion limit

Our present contribution is rather focused in regimes involving solutions to (5a)-(5b)-(5c) covering the full range of possible amplitudes, and knowispersive shock waves ese are typically expected to play a key role in the regularization of shocks by weak dispersion.

This regime may be described by introducing a small wavenumber parameter and moving to rescaled variables T() = ("x; "t). Looking rst for a non oscillatory slow expansion (instead of (4))

(6)
$$U(x;t) = U_0("x;"t) + "U_1("x;"t) + h.o.t;$$

suggests that o should satisfy

(7)
$$@_{1}U_{0} = @_{x} (Br_{U}H(U_{0}; O));$$

a rst-order system of conservation laws. To make the discussion more concrete, let us temporarily focus on the KdV case, where (1) becomes in slow variables

$$@_1 V + @_2 (\frac{1}{2}V^2) + "^2 @_2^3 V = 0$$

and (7) reduces to the Hopf | or inviscid Burgers | equation

$$@_1 V + @_2 (\frac{1}{2}V^2) = 0:$$

In the KdV case, for nonnegative initial data and as long as the Hopf equation does not develop a shock, Lax and Levermore proved in [LL83] that as the solutions to the above scaled KdV equation starting with the same initial datum converge strbfigly in to the solution of the Hopf equation. They also proved that after the shock formation a weak limit still exists but it does not solve the Hopf equation almost everywhere anymore. Instead there coexist some zones where the weak limit offcide with the square of the limit of and the latter solves the Hopf equation and other zones where this fails and the weak limit of does not satisfy an uncoupled scalar PDE but is the complained to KdV.

Since the seminal [LL83] there has been a lot of attention devoted to weak dispersion limits and their link to modulated equations (including some multi-phase versions), but for the moment all mathematically complete analyses are restricted to the consideration of completely integrable PDEs, such as KdV, the modi ed Korteweg{de Vries equation, the cubic Schodinger equations, the Benjamin-Ono equation and equations in their hierarchies. We refer the interested reader to [Ven85b, Ven85a, Ven87, Ven90, Wri93, DVZ97, JLM99, Gra02, Mil02, TVZ04, TVZ06, PT07, MX11, MX12, JM14, Jen15, MW16] for original papers and to [EJLM03, EH16, Mil16] for a detailed account of progresses made so far in this direction. Note however that, whatever the precise de nition we use for completely integrable PDEs, these correspond to speci c nonlinearities and in fact few models are completely integrable.

To unravel some of the reasons why the completely integrable case is signi cantly simpler to analyze | but still tremendously involved ! |, let us step back a little and draw some analogies with the ishing viscosity limithe natural parabolic counterpart to the KdV equation above is the viscous Burgers equation

$$@_{Y} V + @_{X} (\frac{1}{2}V^{2}) = "@_{X}^{2} V:$$

In this case, by using the Hopf-Cole [Hop50, Col51] transform, precisely introduced for this purpose, it is relatively easy to analyze the limit O⁺ and check that solutions to the Burgers equation converge to the weak solution of the Hopf equation given by the Lax-Ole nik formula.

The convergence towards a weak solution of the inviscid equation and the characterization of the vanishing viscosity limits by an entropy criterion has been extended even

beyond the scalar case [Ole57] to solutions to systems starting from initial data with small total variation [BBO5]. At the heart of these general treatments lies an understanding not only of the limiting slow behavior encoded by the solution of the inviscid equation but also of the fast part essentially supported near discontinuities of the inviscid solution. To give a heuristic avor of the latter, let us focus again on the scalar case and zoomXff om (to (T; **e) = (T; (X (**)(T))="), with **o() describing the position of a discontinuity of the limiting solution**o and X living in a neighborhood of the latter discontinuity. Then the identication of powers of uggests that the fast local structure, at time are the discontinuity located at (T) should be described by a front of the Burgers equation (in fast variables) traveling with velocity o(T) (satisfying the Rankine-Hugoniot condition) and joining vo(o(T); T) to vo(o(T)*; T) (where denote limits from above or from below). The existence of such viscous fronts plays a deep role in both the heuristic and rigorous treatment of the vanishing viscosity limit. In particular, even the rigorous masterpiece by Bianchini and Bressan [BBO5] proceeds through such a local traveling-wave decomposition of solutions.

In the dispersive case the possibility of this global-slow/local-fast scenario fails already in general by the non existence of the required traveling fronts. Indeed, elementary considerations show that whereas in the scalar di usive case the set of pairs of values that may be joined by a nondegenerate front is an open subletand the selection of the speed coincides with the one given by the Rankine-Hugoniot condition, in the scalar KdV-like case this set is a submanifold of dimension 1. At this stage it should be clear that the understanding of what are the possible fast structures replacing viscous fronts, also called viscous shock wayee join both sides of a shock should already provide a good grasp on the weak dispersion limit.

The Gurevich{Pitaevskii problem

Leaving aside the possibility that the fast part of solutions could be given by well-localized elementary blocks, steady in the frame moving with the speed of the shock they regularize and interacting with the slow part only through their limiting values at in nity, one is naturally led to the consideration as elementary fast blocks of unsteady patterns as in (4), mixing slow and fast scales but whose limits are purely slow, that is, constant with respect to the fast variable. Modulated periodic wave trains may reach these limiting constant states in two ways

by letting their amplitude go to zero, they reach a constant state by asymptoting a harmonic periodic wavetrain oscillating about the reference constant;

by letting their wavelength go to zero, they converge to a solitary wave connected to the reference constant by its limiting trail.

From the foregoing considerations arises the question of determining when two given constant states may be joined by a relaxation wave of (5a)-(5b)-(5c) in the sense that limiting values of the relaxation wave are parameters corresponding to either harmonic or

solitary waves and the limiting values of the averagh parts the prescribed constants. The corresponding unsteady, oscillatory patterns, recovered through (4), are referred to asdispersive shock wave that the question diers from the investigation of classical relaxation waves of hyperbolic systems in at least two ways. On one hand, both harmonic wavetrains with a prescribed limiting value and solitary waves with a prescribed endstate form one-dimensional families (when identied up to translation) and the knowledge of through which harmonic train or solitary wave given constant states may be joined is an important part of the unknown elements to determine. On the other hand the modulated system (5a)-(5b)-(5c) is a priori not de ned at the limiting values and yet the hope to match dispersive shock waves with solutions to (7) heavily relies on the expectation that in both limits | solitary or harmonic | (5b) uncouples from the rest of the system and converges to (7).

It is worth stressing that even though one expects to obtain, afterwards, a multi-scale pattern through (4) the foregoing proble mfise. It is a dispersive analogous to the determination of conditions under which two constants may be joined by a viscous front. Note that in the viscous version of the problem such considerations are then included in the de nition of admissibility of weak solutions to (7), and expected to determine reachability by vanishing viscosity limits. Notably, in the classical Riemann problem, one considers how to solve (7) starting from an initial datum taking one value up to some point then another value, by gluing constants, relaxation waves, admissible shocks and contact discontinuities. Solutions to the Riemann problems may then be used themselves as elementary blocks to solve the general Cauchy problem for (7) (designed from vanishing viscosity considerations). See for instance [Ser99, Bre00] for background on the classical Riemann problem. Likewise, in the dispersiveless limit, the Gurevich{Pitaevskii problem consists in joining two given constants on two complementary half-lines with constant sectors, relaxation waves of (7) and relaxation waves of (5a)-(5b)-(5c), the junction between solutions to (7) and solutions to (5a)-(5b)-(5c) being understood in the sense mentioned herein-above. This approach was introduced for KdV by Gurevich and Pitaevskii in [GP73] and has been referred to as the Gurevich{Pitaevskii problem since then, or sometimes the dispersive Riemann problem.

It must be stressed that as for Riemann problems in the weak dissipation limit, the Gurevich{Pitaevskii problems are expected to carry a wealth of information on the weak dispersion regime. We already pointed out that a fully rigorous treatment of the weak dispersion limit is for the moment restricted to some equations, associated with Lax pairs including a scalar Schdinger operator and completely integrable through inverse scattering transforms. Unfortunately the same is true for the associated Gurevich{Pitaevskii problems. Indeed modulated systems of those particular systems inherit from the Lax pair representation of the original system, a family of strong Riemann invariants, given by edges of Lax spectral bands; see [DN74, DMN76, FFM80, DN83, FL86, Pav87] for original papers pointing this connection. The latter observation was certainly the main motivation for the introduction and the study of the classes of hyperbolic systems possessing a complete set of strong Riemann invariants, a class coined as rich by Serre [Ser00, Chapter 12] and as semi-Hamiltonian by Tsarev [Tsa85, Tsa90, Tsa00]. Along a relax-

ation wave of a rich system all but one Riemann invariant are constants. Moreover in both the solitary wave limit and the harmonic limit of PDEs associated with such Lax pairs one of the Lax spectral gaps closes so that the Riemann invariant varying along a relaxation wave of such a rich modulated system connecting two harmonic/solitary limits is actually merging in both limits with one of the steady Riemann invariants. This makes the relaxation wave problem considerably simpler to solve, at least as far as determining which states may be connected and what are the trail and edge speeds of the pattern.

Given its particular importance for some classes of applications, there have been a few attempts to propose solutions to the Gurevich{Pitaevskii not relying on strong Riemann invariants. One of the most remarkable attempt is due to El and the reader is referred to [EH16] for details on the method and to [El05, Hoe14] for two instances of application. The elegant method of El provides answers consistent with rigorous analyses of integrable cases and displays reasonably good agreement with numerical experiments. Yet unfortunately, so far, it still lacks strong theoretical support, even of a formal heuristic nature. Elucidating the mathematical validity of the approach of El may be considered as one of the key problems of the eld.

To conclude the exploratory part of the paper, we point out that even from a formal point of view there are at least two important features of the weak dispersion limit that we have left aside and on which we comment now.

Remark 1. System (5a)-(5b)-(5c) is itself a | hopefully hyperbolic | rst-order system so that it may be expected to develop shocks in nite time and the expansion in (4) to su er from a nite-time validity (in the slow variables) in the same way as the relevance of (6) stops when the corresponding solution to (7) forms a shock. Yet the formal process itself hints at ah-dispersive correction to (5a)-(5b)-(5c) | see for instance [Rod18] |, so that the phenomena may be thought itself as a weak dispersion limit in the presence of wave-breaking at the level of (single-phase) modulation equations, suggesting the presence of oscillations at this level, and resulting in a two-phase oscillation pattern at the original level. For KdV a compatible scenario (with arbitrary number of phases) was proposed in [FFM80] within the terminology of integrability by inverse scattering; it was subsequently recast in terms of averaged modulation equations in [EKV01] and proved to hold in [GT02, Gra04]. Note that the prediction includes a description of where 0-phase, 1-phase and 2-phases patterns live in the space-time diagram.

Remark 2. There has been considerable e ort devoted to the description of what is seen on a zoom in a neighborhood of a wave-breaking point. This results in a di erent asymptotic regime and a suitable scenario was rst proposed by Dubrovin [DubO6] and then proved for various integrable PDEs in [CGO9, CG12, BT13].

Structure of general modulated systems

As far as the formal description of dispersive shocks by means of modulated equations is concerned, multi-scale regions are connected to single-scale ones by either one of the two asymptotic regimes corresponding to the small amplitude limit - when the amplitude

of the waves goes to zero - and the solitary wave limit - when the wavelength of the waves goes to in nity. The understanding of both these regimes is a crucial step towards the actual construction of dispersive shocks. In particular, to analyze rarefaction waves of modulated equations connecting such asymptotic regimes, one needs to elucidate the hyperbolic nature of its eigen elds in both distinguished limits. Indeed, as for the classical Riemann problem, the resolution of the Gurevich{Pitaevskii problem crucially relies on the hyperbolicity and the structure of the eigen elds of modulated equations. This requires a study not only of averaged quantities involved in the conservative formulation but also of their derivatives, as appearing in the expanded, quasilinear form.

With this respect, note that unfortunately, the formulation of modulated equations in terms of what is arguably the most natural set of wave parameters blows up in the solitary wave limit. This issue has been partially resolved by El [ElO5] by replacing one of the parameters with the so-catedjugate wave numberowever, this new parametrization is in general limited to the large wavelength regime.

One of our main contributions here is to provide a global set of parameters. For the latter, we prove in great generality that

it may serve as a parametrization of periodic wave pro les (identi ed up to spatial translation) exactly when the original averaged quank; the continuous continuous

in these variables the modulated system possesses an Hamiltonian formulation, with Hamiltonian function the original averaged Hamiltonian energy (see Theorem 1);

these variables may be extended to solitary-wave and harmonic limits in such a way that the modulated system admits regular limits even in quasilinear form (see Theorem 4).

The proposed system of coordinates already appeared for the Euler{Korteweg system in mass Lagrangian coordinates in [GS95] (also see [BG13] for an account of Gavrilyuk{ Serre's result with our notation), but its signi cance remained unclear. As we show hereafter, it turns out to apply to our more general framework, and to give new insight on modulated systems. The point is to replace the conserved variable in Equations (5a)-(5b)-(5c) by another one, denoted merelyhereafter. This new variable tends to zero when the amplitude of the wave tends to zero | as the amplitude squared, as we shall see later on |, and has a nite limit whergoes to zero, that is, in the solitary-wave limit. Remarkably enough, this quantity can be de ned as simply as

$$(8) := \frac{1}{k} \left(hQ(\underline{U})i \ Q \ (h\underline{U}i) \right) :$$

It turns out that, as far as smooth solutions are concerned, the modulation equations take

the alternative form

is symmetric and nonsingular and

$$M := h\underline{U}i$$
; $H := hH[\underline{U}]i$:

The Hamiltonian structure of System (9) provides a form of symmetry in the spirit of Godunov's theory of hyperbolic systems. Nevertheless, this form does not automatically provide energy estimates nor imply hyperbolicity because, as our expansions show (see Remark 13), the associated potential, natural symmetrizer is not de nite in either one of the limits.

System (9) has also an appealing symmetric form with respect to the distinguished limits, k! O corresponding to the long wavelength limit and to the small amplitude limit. Yet another upshot of our analysis is a strong, somewhat surprising asymmetry as regards the asymptotic nature of the eigen elds. In the solitary wave regime, the hyperbolicity of the modulated equations is equivalent to its weak hyperbolicity and may persist even at the limit in the presence of the solitary wave speed as a double root. We see this striking property as a consequence of the strong separation of scales displayed in asymptotic expansions of large wavelength pro les (see Remark 16). By contrast, in the harmonic wave regime, in general the hyperbolicity of modulated equations is lost at the limit, the characteristic speed corresponding to the group velocity being non semi-simple associated with a Jordan block of height two. See Theorems 5 and 6.

We stress that many asymptotic properties of the modulation systems are much easier to study once a limiting system has been identified. This is precisely where we beneft from our new set of parameters. In particular, once Theorems 1 and 4 are known it is relatively easy to derive the most basic properties of the modulation systems, both mentioned and used in the preceding formal discussion of dispersive shocks. For instance Corollary 5 contains that at both limits the modulation system split into a block coinciding with the original dispersionless system, System (7), and 2 Dlock with double characteristic given by either the solitary wave speed at the long wavelength limit or with the harmonic linear group velocity at the small amplitude limit. Yet, even with good variables in hands, some further properties require ner details of higher-order expansions.

Our new set of parameters enables us to show how the eigen elds of modulated equations degenerate in the small amplitude and the large wavelength limits (see Theorems 7 and 8) but it relies on a more involve analysis. The main upshots are that

Near the harmonic limit, we derive explicit conditions determining modulational instability (see Theorem 7 and Appendix A), those being known in some cases as the Benjamin{Feir criteria.

Near the soliton limit, we prove that modulational instability is determined by exactly the same condition ruling stability of solitary waves and, as proved in [BGMRar], co-periodic stability of nearby periodic waves, that is, it is decided by the sign of the second derivative | with respect to speed, xing the endstate | of the Boussinesq moment of instability.

For the conclusions mentioned here it should be emphasized that it is relatively easy to support wrong deceptive claims when arguing formally; see for instance Remark 15. Another somewhat surprising, but not unrelated (see Remark 16), discrepancy between both limits is that the convergence of eigenvalues splitting from the double root is exponentially fast in the solitary limit.

We insist on the fact that, surprising or not, the properties of the modulation systems discussed in the present contributioprævædhere for the st time for a class of systems not restricted to integrable systems.

We conclude this introductory section with a few words on the nature of proofs contained in the rest of the paper. The most elementary ones are purely algebraic manipulations. For the other ones we rely on asymptotic expansions of the abbreviated action integral of the pro le ODE, and of its derivatives up to second order. These were derived in detail in [BGMRar] and used there to deduce some consequences on the stability of periodic waves with respect to co-periodic perturbations. As we show in the present paper, that asymptotic behavior gives insight on the modulated equations as well.

The general setting and various formulations of modulated equations are presented in Section 2. Asymptotic properties of the alternate parametrization are established in Section 3. Limits of the modulated system are derived in Section 4. Eigen elds are studied in Section 5. Appendix A contains explicit modulational instability criteria for the harmonic limit.

Acknowledgement. The rst and third author would like to express their gratitude to Gennady El, Sergey Gavrilyuk, Mark Hoefer and Michael Schearer for enlightening discussions during the preparation of the present paper.

Matrix notation. Along the text, in matrices, O may denote scalar, vector or matrix-valued zeroes. Moreover empty entries denote zeroesentriles denote values that are irrelevant for the discussion and may vary from line to line.

2 Various formulations of modulated equations

2.1 General framework

As announced in the introduction, we consider abstract systems of the form

(10)
$$@U = @_x(B H[U]):$$

where the unknowly takes values i \mathbb{R}^N , B is a symmetric and nonsingular matrix, and H[U] denotes the variational derivative JabfH = H(U; U_x). For the sake of clarity, here, we shall mostly stick to Assumption 1 below, all the more so when we are to apply results from [BGMRar].

Assumption 1. There are smooth functions and with and taking only positive values, and a nonzero real numbersuch that

eitherN = 1, U = v, H =
$$(v; v_x)$$
, and B = b,
or N = 2, U = $(v; u)^T$,
$$H = \frac{1}{2} (v) u^2 + (v; v_x); \qquad B = \begin{pmatrix} 0 & b \\ b & 0 \end{pmatrix};$$

with

$$(v, v_x) = \frac{1}{2} (v) v_x^2 + f(v)$$

in both cases.

By de nition we have

in the case
$$= 1$$
, $H[U] = \{v\} := \emptyset_v \{v; v_x\} \otimes \emptyset_x (\emptyset_v \{v; v_x\})$

in the case = 2,

$$H[U] = {0 \over 2} {0 \choose 2} u^2 + {0 \choose 2} u^2 +$$

The impulse

$$Q(U) := \frac{1}{2}U B^{-1}U;$$

generates-translations in that

$$@_{U} = @_{U}(B Q[U])$$
:

From the invariance $df(U;U_x)$ with respect to translations, that reads in di erentiated form

$$Q_x(H(U;U_x)) = H[U] Q_xU + Q_x(U_x r_{U_x}H(U;U_x));$$

stems the local conservation law

(11)
$$@Q(U) = @_x(U H[U] + LH[U]);$$

along smooth solutions of (10), where

$$LH[U] := U_x \quad r_{U_x}H(U;U_x) \quad H(U;U_x) = v_x @_{v_x} \notin v;v_x) \quad H(U;U_x):$$

The modulated system (5a)-(5b)-(5c) is also written as

(12)
$$@_1k + @_2! = 0$$

(13)
$$@_{i} hU i @_{k} hB H [U] i = 0;$$

(14)
$$@_i hQ(\underline{U})i @_k h\underline{U} H[\underline{U}] + LH[\underline{U}]i = 0;$$

where $7! \ \underline{U}(X;T)$ is the prole of a periodic, traveling wave solution to (10) of (spatial) period (X;T) = 1 = k(X;T) and speeck(X;T) = ! (X;T) = k(X;T), and bracketsh i stand for mean values over the periox T(). Again we refer to [BGNR14] for a formal derivation of the system from a geometrical optics expansion.

As proved in [BGNR14, Appendix B] and [BGMR16, Theorem 1], the fact that System (5a)-(5b)-(5c) is a closed system, of evolution type, for initial data under consideration, is equivalent to the fact that, for each xed period, periodic wave pro les under consideration form a non-degenerate manifold of dimensionwhen identi ed up to translation. In this case wave pro les may be smoothly parametrized by, $\hbar Q(U)i$. As mentioned in the introduction, from the point of view of modulation theory, the range of validity of the latter parametrization is optimal. Yet these coordinates come with at least three serious drawbacks:

they are not very explicit so that within this set of coordinates the modulation system is hard to manipulate;

they are degenerate in the solitary-wave limit, losing two dimensions instead of one dimension;

they do not provide a clear variational form for the modulation system.

We rst recall how the rst and third issues may be xed by choosing a parametrization involving constants of integration of the wave pro le ODEs.

2.2 Modulated equations in terms of constants of integration

For a traveling wav $\theta = \underline{U}(x - ct)$ of speeds to be solution to (10), there must exist a $2 R^N$ such that

(15)
$$(H + cQ)[U] + = 0;$$

which can be viewed as $t \mathbf{E} \mathbf{e} \operatorname{ler} \{ Lagrange equation L [\underline{U}] = 0 \text{ associated with the Lagrangian}$

$$L = L(U; U_x; c;) := H(U; U_x) + cQ(U) + U;$$

Exactly as (3) was derived from (1) and the invariance by translation (U_x) , it stems from the translational invariance (U_x) that solutions to (15) are such that for some 2 R

$$(16) LL[\underline{U}] = ;$$

where

$$LL[U] := U_x r_{U_x}L(U;U_x) L(U;U_x)$$
:

This more concrete point of view introduces as natural wave parameters their speed c and the integration constant \mathbb{R}^N and \mathbb{R}^N

As already pointed out in [BGNR13, BGMR16, BGMRar], many key properties of periodic traveling waves are more neatly stated in terms of the wave-speed and constants of integration by introducing the abbreviated action integral

(17)
$$(;c;) := (H[\underline{U}] + cQ(\underline{U}) + \underline{U} +)d;$$

whose de nition involves a periodic pro<u>U</u>eof fundamental period corresponding to parameter values; $(\cdot; \cdot)$. The action provides a nice closed form of the modulated equations in (12)-(13)-(14) and it encodes the duality between constants of integration and averaged quantities. Indeed, let us recall from [BGNR13] the following.

Proposition 1. Under assumption 1, consideran open subset R^{N+2} and

$$(;c;)$$
 2 7! $(\underline{U};)$ 2 L^{1} (R) $(0,+1)$

a smooth mapping such that for each value of the parameters), the function $\underline{\mathbb{U}} = (\underline{v}; \underline{u})$ is a smooth, non-constant periodic solution $\underline{\mathbb{U}}$ and is the fundamental period of \mathbb{U} .

Then the function de ned in (17) is also smooth on, and such that

(18)
$$@ = ; @_{c} = \underset{O}{R} Q(\underline{U}) dx; r = \underset{O}{R} \underline{U} dx:$$

Corollary 1. In the framework of Proposition 1,

³That is, we choose one branch of waves.

1. the system in(12)-(13)-(14) equivalently reads, as far as smooth solutions are concerned,

2. the mapping

(;c;) 2 7!
$$k = 1 = ; h\underline{U}i = \frac{1}{0} \frac{R}{U} dx; hQ(\underline{U})i = \frac{1}{0} \frac{R}{U} Q(\underline{U}) dx$$

is a local di eomorphism if and only if

$$\det r_{:c:}^2$$
 (;c;) 60;8(;c;)2 :

Remark 3. The simple, closed form in (19) of modulated equations is well-known for the KdV equation. It is for instance pointed out by Kamchatnov [KamOO, eq. (3.135)], who says that 'despite the simple appearance of these equations, they are not very useful in practice'.

Exactly as pointed out in the introduction for System (9), the symmetric form of (19) does not readily imply that this system is hyperbolic. This would be the case if the matrixr $\frac{2}{3c}$ were de nite, which is not the case in general. As was shown in [BGMRar, Corollaries 1 and 2], in non-degenerate cases, has a negative signature | or Morse index | equal to N for small amplitude waves and equal either two toN +1 for those of large wavelength. In addition, as follows from [BGMR16], for a de nite Hessian matrixr $\frac{2}{3c}$ is incompatible with the spectral stability of the underlying periodic wave.

An important drawback of the formulation of modulated equations in the variables (;c;) is that all the quantities appearing in the time derivatives in (19) blow up in the solitary wave limit. Indeed = = 1 = k goes to in nity when goes to zero, as well as r = hU i and @ = hQ(U)i.

2.3 An important averaged variable

We claim that, despite their complicated and implicit form, Equations in (12)-(13)-(14) admit an equivalent form in a system of coordinates that is rather well suited for the study of dispersive shocks, in that it allows to take both the small amplitude limit and the solitary wave limit ((0)), in a most symmetric manner. We achieve this goal by replacing the conserved variable (0) i with another one, which we merely denote by and that is given by

$$:= \frac{1}{k} (hQ(\underline{U})i \ Q \ (h\underline{U}i)) = \frac{1}{k} hQ(\underline{U} \ h\underline{U}i)i:$$

As already pointed out above and proved below, this new variable tends to zero when the amplitude of tends to zero and has a nite limit when the amplitude of tends to zero and has a nite limit when

 \underline{U} eventually becomes a solitary wave pro le. Indeed, rst we observe \underline{U} indeed to zero when the amplitude \underline{U} fgoes to zero, because goes to the nonzeharmonic wave number and \underline{U} i and \underline{U} (\underline{U}) i and \underline{U} both go to the value \underline{U} fat the constant limiting state of the small amplitude wave. As to the limit where so zero, we see that

$$Z = (Q(\underline{U}()) Q (\underline{H}\underline{U}i)) d$$

$$Z = (Q(\underline{U}()) Q (\underline{H}\underline{U}i)) d$$

$$= (Q(\underline{U}()) Q (\underline{H}\underline{U}i) r_{\underline{U}} Q (\underline{H}\underline{U}i) (\underline{U}() h_{\underline{U}i})) d$$

$$Z = (Q(\underline{U}^{s}()) Q (\underline{U}^{s}()) r_{\underline{U}} Q (\underline{U}^{s}()) U_{s}) d$$

$$= (Q(\underline{U}^{s}()) Q (\underline{U}^{s}()) r_{\underline{U}} Q (\underline{U}^{s}()) U_{s}) d$$

when goes to in nity, whete denotes the limiting, solitary wave pro le, homoclinic to U_s , the limit of \underline{U}_i . The asymptotic behavior of in these limits is proved in more details in Subsection 3.2.

Another remarkable property of is that, at least for our main models of interest, scalar equation (= 1) and Euler (Korteweg systems, one may determine the sign of in terms of parameters governing the traveling pro les.

Proposition 2. Under Assumption 1,

if N = 1 then has the sign dof

if N = 2 and = Id, then has the sign of 2i

if N = 2 and 1, then has the sign of c.

Proof. The simplest case is for scalar equations, for $\Omega(v) + v^2 = (2b)$, so that

$$2b = h\underline{v}^2i + h \cdot 1i + h \cdot \underline{v}i^2 > 0$$

by the Cauchy{Schwarz inequality, sin<u>c</u> is not constant.

If N = 2 thenQ(v; u) = v u=b Yet, when 1, it follows from (15) that $(\underline{cv})=b$ is constant so that the Cauchy{Schwarz inequality implies that

$$hQ(\underline{v};\underline{u})i \quad Q \quad (\underline{h}\underline{v}i;\underline{h}\underline{u}i) = \frac{C}{h^2}(\underline{h}\underline{v}^2i \quad h \quad 1i \quad h \quad \underline{v}i^2)$$

is of the same sign asc. Indeed from the relation between and \underline{v} it follows that is not constant sinct is not constant. Likewise when Id, $\underline{u} + \underline{v} = v$ is constant and

$$hQ(\underline{v};\underline{u})i \quad Q \quad (\underline{h}\underline{v}i;\underline{h}\underline{u}i) = \frac{2}{b} \quad \underline{h}\underline{v}i \quad \frac{1}{v} \quad h \cdot 1i^2$$

is of the sign of \$2\$=bby the Cauchy{Schwarz inequality again, since \$\overline{b}\$ and \$1\$=\$\overline{b}\$ are independent. \$\Box\$

Remark 4. The case wher = 2 and = 1 ld includes Eulerian formulations of the Euler (Korteweg systems, whereas the case Wher = 2 and = 1 encompasses mass Lagrangian formulations of such systems. Each element of the latter class is conjugated to an element of the former and vice versa. As pointed out in [BG13], correspondences respect traveling wave types, and, as proved in [BGNR14], they also respect details of (the nonzero part of) the spectrum of linearizations about periodic waves. Obviously the foregoing proposition is consistent with corresponding conjugacies. Indeed, denoting with subscript and quantities corresponding to each formulation, it follows from [BGNR14] that $b_E = 1$, $b_C = 1$, $b_C = 0$, $b_C = 0$ and

$$\frac{E}{k_F} = \frac{L}{k_I}$$
:

2.4 Alternative form of modulated equations

Returning to our general framework, we claim that variables $\mathbb{N} := h\underline{\mathbb{U}}(1)$ may be used exactly where $\mathbb{N}(\mathbb{N}; hQ(\underline{\mathbb{U}})(1))$ may be used and that using the former yields an alternate formulation of the modulated equations (19) that still has a nice symmetric-looking structure, and is now well-suited for both the small amplitude limit $\mathbb{N}(1, \mathbb{N})$ and the solitary wave limit $\mathbb{N}(1, \mathbb{N})$.

To begin with, note that the vector (M) is deduced from (M; hQ(\underline{U})i) through the map (K; M; P) 7! (k; (P Q (M))=k;M), which is obviously a (local) di eomorphism so that parametrizations are indeed equivalent. In particular, Corollary 1 provides a characterization of when parametrization (M) is possible.

Now we provide counterparts to Proposition 1 and Corollary 1 for vakiables)(Here, the role of in (19) is to some extent played by the averaged Hamiltonian

$$H := hH[\underline{U}]i$$
:

Remark 5. Remarkably the action integral and the averaged Hamiltonian H are closely related. It follows indeed from the de nition of in (17) and the expression of its derivatives in (18) that

$$= H + c@ + r + @ :$$

Would be strictly convex, we would recognize

(20)
$$H = c@ + r + @$$

as being the onjugate function of .

Theorem 1. In the framework of Proposition 1, assume that the acdimed in (17) has a nonsingular Hessian at all points in Then the mapping (c; c; d) 7! (k; ; M) defined by

$$k = \frac{1}{k}$$
; $= \frac{1}{k} (hQ(\underline{U})i Q (h\underline{U}i))$; $M = h\underline{U}i$;

is a local di eomorphism. Moreover

1. as a function of (k; ; M) the averaged Hamiltonian

$$H := hH[U]i$$

is such that,

(21)
$$@_kH = c; @_H = kc; r_MH = h H [U]i;$$

2. the modulated equations($\ln 2$)(13)(14)| or equivalently (19)| have a closed form in the variable(x; ; M), which reads

Proof. We have already established the rst assertion. However, for later use let us point out more precisely that the relations in (18) | linked to the fact that is indeed an abbreviated action integral | imply that

(23)
$$k = \frac{1}{@}$$
; $M = \frac{r}{@}$; $= @_c$ (@) $Q = \frac{r}{@}$; (24) $@ = \frac{1}{k}$; $r = \frac{M}{k}$; $@_c = +\frac{1}{k}Q(M)$:

In order to compute the partial derivatives of H in the variables M), it is expedient to use (20). Indeed, in this way, by combining classical cancellation of derivatives of conjugate functions with relations (24), we derive

$$Q_k H = \frac{H}{k} + C \frac{Q(M)}{k} + \frac{M}{k} + \frac{1}{k} = C;$$

 $Q(M) = Ck;$
 $Q(M) = h H [U]i;$

where the last relation is obtained by averaging (15).

It follows at once that equations (12)-(13), which are also the rst and last lines of (19), are equally written as

(25)
$$@_k = @_k (@H) = 0;$$

(26)
$$@M @(Br_MH) = 0$$
:

So the only remaining task is to manipulate (19) to obtain an equationByousing (23), (19) and the symmetry Bofone derives

$$(@ + c@) = (@ + c@) @ \frac{Q(r)}{@}$$

= $@ @_x + r @_x + \frac{Q(r)}{@} @_x c$
= $@_x @_x c$

thus

(27)
$$@_{H} = @_{X} (@_{X} H) :$$

Remark 6. The 'symmetric form of (22) readily implies that H is a mathematin database for this system. Indeed, along smooth solutions of (22) we have

$$@H = @(@H)(@H) + \frac{1}{2}(r_M H) Br_M H$$

by the symmetry of. For the sake of consistency, we now check that this conservation law for H coincides with the averaging of (2) | the original conservation law for along wave pro les. On one hand from (15), (16) and (20) stems

$$hr_{\underline{U}_{x}}H[\underline{U}] @_{x}(B H[\underline{U}])i = chr_{\underline{U}_{x}}H[\underline{U}] @_{x}\underline{U}i$$

$$= c(+ chQ(\underline{U})i + M + H)$$

$$= ck :$$

On the other hand from (15) and the symmet By for flows

$$\begin{split} h_{\overline{2}}^1 & \, H \, [\underline{U}] \, i \, = \, \frac{1}{2} h \, H \, [\underline{U}] i \, B \, h \, H \, [\underline{U}] i \, + \, c^2 h \, Q (\underline{U} \, M) i \\ & = \, \frac{1}{2} h \, H \, [\underline{U}] i \, B \, h \, H \, [\underline{U}] i \, + \, c^2 \, (h \, Q (\underline{U}) i \, Q \, (M)) \\ & = \, \frac{1}{2} h \, H \, [\underline{U}] i \, B \, h \, H \, [\underline{U}] i \, + \, c^2 \, k \, : \end{split}$$

Combining the foregoing with (21) proves the claim.

Remark 7. The conservation law (14) itself also admits a nice formulation in terms of H. It equivalently reads

$$\mathfrak{P}_{\mathsf{H}} = \mathfrak{P}_{\mathsf{H}} + \mathfrak{P}_{\mathsf{H}} = \mathfrak{P}_{\mathsf{H}} + \mathfrak{P}_{\mathsf{H}} +$$

where

$$H := k@_{K}H + @_{H} + M r_{M}H H;$$

(H would be theonjugatefunction of H if this function were strictly convex). Indeed it already follows from previous computations that

$$HLH[U]i = k H:$$

Moreover from (15) and the symmetry of deduce

$$h\underline{U} H[\underline{U}]i = M hH[\underline{U}]i 2chQ(\underline{U} M)i$$

= $M hH[\underline{U}]i 2ck$

so that the claim follows from (21).

20

The quasilinear form of (22) reads

so that (22) is hyperbolic at points in the state space where the $m_{\tilde{e}}$ trixH is diagonalizable with real eigenvalues. A rst, natural approach to check hyperbolicity is to try and use the symmetry of the matrices, H and B.

Corollary 2. In the framework of Theorem 1, Hf is a strictly convexfunction of (k; ; M), then the modulated syst(22) is hyperbolic.

Proof. This follows from the fact that the Hessian, H of H is a symmetrizer for (22) whenever $_{k;+M}^2$ H is positive de nite. Indeed, as soon as nonsingular the quasilinear form (28) of (22) is equivalent to

Since the matrix $^2_{k;+M}$ H Br $^2_{k;+M}$ H is symmetric, if in addition $^2_{k;+M}$ H is positive denite then (22) is necessarily hyperbolic by a standard observation in the theory of hyperbolic systems (see for instance [Ser99, Theorem 3.1.6]).

However, our numerical experiments tend to show that H is hardly ever de nite positive [Mie17]. Moreover, as made explicit in Remark 13, our analysis proves that $r_{k;\pm M}^2H$ is not de nite positive in either one of the small amplitude limit and the large wavelength limit. Indeed, the upper diagonal block in the limits $_{k;\pm M}^2H$ found in Theorems 5 and 6 has signature [1] and therefore $_{k;\pm M}^2H$ cannot be de nite.

The main purpose of subsequent sections is to draw rigorous conclusions on the modulated system in quasilinear form (28), in the small amplitude and soliton limits, when either ! O ork ! O. Required expansions are derived from expansions of obtained in [BGMRar]. Thus, before going to the most technical part of the present paper, we need to point out the explicit connection between the Hessian of the averaged Hamiltonian H as as function of (M) and the Hessian of the abbreviated action as a function of parameters (M).

Proposition 3. In the framework of Theorem 1,

(29)
$$r_{k;;M}^{2} H = \frac{1}{k} A^{T} (r_{;c;}^{2})^{-1} A \quad cB^{-1};$$

with

$$A = A(k; M) := \begin{cases} 0 & \frac{1}{k} & 0 & 0 \\ \frac{Q(M)}{k} & k & r_{U}Q(M)^{T} & K \end{cases} :$$

$$\frac{M}{k} = 0 \qquad I_{N}$$

Proof. Along the proof we nd it convenient to use rst and second di erentials, denoted with d and d, rather than gradients and Hessians. We proceed by di erentiating at points (k; ; M) (left implicit) in an arbitrary direction (; M) (made explicit). In the present proof all functions are implicitly considered as functions; of M).

The starting point is the di erentiation of (20), already used in the proof of Theorem 1,

$$dH(k; \pm M) = \frac{k}{k}H + k @ c^{A} + d(r_{c}; -)(k; \pm M)$$

that we di erentiate once more to derive

(30)
$$d^{2}H((k; \pm M); (k; \pm M)) \qquad 0 \qquad 1$$

$$= k d^{@} c^{A} (k; \pm M) \quad r^{2}_{;c;} \quad d^{@} c^{A} (k; \pm M)$$

$$0 \qquad 1$$

$$\frac{1}{k} @ c^{A} \quad d^{2}k^{2}d(r_{;c;}) (k; \pm M) \quad (k; \pm M)$$

Now di erentiating (24) yields

$$d(r_{(c)})(k; \pm M) = \frac{1}{k}A @ A$$

which also implies

(31)
$$C^{\text{@}} C^{\text{A}} (k; \pm M) = \frac{1}{k} (r_{;c;}^{2})^{-1} A^{\text{@}} A^{\text{A}} : M$$

In turn

$$d(kA)(k; \pm M) = \begin{cases} 0 & 0 & 0 & 0 \\ 0 & r & Q(M) & M & 2kk & kr & Q(M)^T + kr & Q(M)^T & K \\ M & 0 & kl_N & 0 & 0 & 0 \end{cases}$$

so that

Inserting (31) and (32) in (30) achieves the proof by identication of relevant symmetric matrices with corresponding quadratic forms since

$$0 \quad 1 \quad 0 \quad 1$$

 $2k_{-} + 2Q(M) = @ A B @ A : M$

Remark 8. Relation (29) leaves the possibilityrfor $_{\rm M}$ H to be de nite withourt $_{\rm (c)}^2$ being so, and vice and versa. This could be of importance since any of those yields hyperbolicity of the modulated system and it was shown in [BGMR16] that the negative signature of $_{\rm (c)}^2$ must be equal to $_{\rm (c)}$ modulo an even number for the underlying wave to be spectrally stable. Yet as already mentioned, in practice, this is hardly ever the case; see [Mie17] for numerous numerical experiments, and [BGMRar] and Remark 13 for the analysis of signatures in either one of the extreme regimes, small amplitude or large wavelength.

As seen on the quasilinear form (28), the characteristic matrix of System (22) reads

(33)
$$W := Br_{k; M}^2 H:$$

We refer to in the sequel as the Whitham matrix of (22). It can be rewritten using Equation (29) as

$$W = \frac{1}{k} B A^{T} (r_{;c;}^{2})^{-1} A + c I_{N+2}$$
:

Remark 9. For comparison, the characteristic matrix of System (19) in variables (is

$$\frac{1}{k}(r_{;c;}^{2})^{-1}S + cI_{N+2}$$

with

As follows from (31)r ℓ_{cc}) 1 A provides a change of basis between characteristic matrices. This may be checked directly thanks to the identity

$$S = ABA^T$$
:

Asymptotic expansions of parameters 3

Expansions of action derivatives

Our study of extreme regimes hinges on asymptotic expansions of the action and its derivatives, obtained in [BGMRar] and that we partially recall here.

To conveniently write some of the coe cients of the expansions, we rst make more explicit the pro le equations (15)-(16). As in [BGMRar] we introduce the potential W(v; c;) de ned in the cas $\aleph = 1$ by

$$W(v; c;) := f(v) \frac{1}{2b}v^2 v;$$

and in the cas \aleph = 2 by

$$W(v; c;) := f(v) \frac{1}{2} (v) g(v; c; _2)^2 \frac{c}{b} v g(v; c; _2) \frac{1}{2} v g(v; c; _2)$$

with

$$g(v; c;) := \frac{1}{(v)} \frac{c}{b} v + :$$

The point is that (15)-(16) is equivalently written

$$(\underline{V}) \underline{V}_{XX} + \frac{1}{2} (\underline{V}) \underline{V}_{X}^{2} + W(\underline{V}; C;) = 0; \qquad \qquad \frac{1}{2} (\underline{V}) \underline{V}_{X}^{2} + W(\underline{V}; C;) = ;$$

completed, in the case = 2, with

$$\underline{\mathbf{u}} = \mathbf{g}(\underline{\mathbf{v}}; \mathbf{c}; 2)$$
:

We only consider non-degenerate limits. The nature of the non-degeneracy is made precise in the following set-up.

Assumption 2. <u>Harmonic limi</u>tFix $(\underline{}_0;\underline{}_0;\underline{}_0)$ 2 such that there exists> 0 such that

$$\underline{\ \ }_{0} = \ W \left(\underline{v}_{0}; \underline{c}_{0}; \underline{\ \ }_{0} \right); \qquad @_{v} W \left(\underline{v}_{0}; \underline{c}_{0}; \underline{\ \ }_{0} \right) = 0; \qquad @_{v}^{2} W \left(\underline{v}_{0}; \underline{c}_{0}; \underline{\ \ }_{0} \right) > 0:$$

Then there exists a connected open neighborhood $\underline{c}_0 \underline{c}_0$ and smooth functions: ! (0,1) and \underline{o} : ! R such that $\underline{(v_0; \underline{o})(\underline{c}_0; \underline{o})} = (\underline{v}_0; \underline{o})$ and for any $\underline{(c; \underline{o})}$ 2

! (0, 1) and
$$_0$$
: ! R such that $(v_0; _0)(\underline{c}_0; _0) = (\underline{v}_0; _0)$ and for any $(c;)$ 2

Moreover one may ensure that for some > 0

⁴Up to choosing the correct branch of parametrization and extending if necessary. Implisitly chosen consistently.

and there exists and v_3 smooth maps de ned on such that for any = (; c;) 2 $^{r_0}_0$,

$$0 < v_2() < v_0(c;) < v_3();$$
 = $W(v_2();c;) = W(v_3();c;);$
 $@_vW(v_2();c;) \in O;$ = $W(v_3();c;) \in O;$
 $8v = 2(v_2();v_3());$ $e = W(v_2();c;) = W(v_3();c;);$

 $\underline{Soliton\ limi}tFix\ (\underline{\ \ };\underline{c_s;}\underline{\ \ }_s)\ 2\ \underline{\ \ } such\ that\ there\ exi\underline{\ \ v}^s\ such\ that$

Moreover one may ensure that for some O

and there exist₁, v_2 and v_3 three smooth maps de ned of such that for any = (;c;) 2 r_0 ,

For all (c;) 2 , we consider

either
$$_{0} := (c; ; _{0}(c;));$$
 or $_{s} := (c; ; _{s}(c;));$

which both belong to and the corresponding harmonic limit ($^{\circ}$ $_{0}$) and soliton limit ($!^{\circ}$ $_{s}$). Actually it is more convenient and su cient to (c;) 2 and consider either! $_{0}(c;)^{+}$ or ! $_{s}(c;)$, provided one ensures local uniformity

The choice that $(\underline{w}, \underline{w}, \underline{c}; \underline{c};$

with respect to () 2 . By acting in this way, in [BGMRar] we derived asymptotic expansions in terms of two small parameters going to zero:

$$= (v_3 v_2)=2$$

in the harmonic limit and

$$\%:= \frac{V_2}{V_3} \frac{V_1}{V_2}$$

in the soliton limit. These expansions are recalled below after a few preliminaries.

First, for the sake of concision, in the case we introduce notation := Q(v; g(v; c;)), still with g(v; c;) = ((c=b)v +)= (v). Note that in the seque and qare evaluated at = 2, the second component of For convenience we adopt a similar convention in the case = 1 with merelyq(v) := Q(v). In the statement that follows, we omit to write the dependence | if any | of these functions on the parameters (in order to shorten formulas a little bit and stress symmetry betwekin-casesd N = 2. We also make use of the symmetric matrix ned in (34).

Now we introduce a set of vectors that are crucially involved in the above-mentioned asymptotic expansions, and provide associated key cancellations proved in [BGMRar, Lemma 11.

Proposition 4 ([BGMRar]). For both indice's = 0 and i = s we introduce the following vectors oR $^{N+2}$: for N=2

These vectors are such that

$$\begin{cases} 8 & V_{i} S^{1}V_{i} = 0; V_{i} S^{1}W_{i} = 0; V_{i} S^{1}T_{i} = 0; \\ V_{i} S^{1}Z_{i} = W_{i} S^{1}W_{i}; T_{i} S^{1}T_{i} = 0; T_{i} S^{1}Z_{i} = 0; \\ E V_{i} = 1; E W_{i} = 0; E Z_{i} = 0; E T_{i} = 0; \end{cases}$$

At last, we introduce the Boussinesq moment of instability involved in solitary wave limits. We stress that it is both convenient and classical to parameterize solitary wave pro les<u>U</u>^s not by $(c; U_s)$ with U_s the corresponding endstate. The associated is then recovered through

$$= s(c; U_s) := r_U(H + cQ)(U_s; 0)$$

and s is simply obtained as

$$_{S} = (H + cQ)(U_{S}, 0) + r_{U}(H + cQ)(U_{S}, 0) U_{S}$$
:

The Boussinesq moment of instability is then de ned as

$$Z_{+1}$$

$$M(c;U_s) = (H[\underline{U}^s] + \omega(\underline{U}^s) + \underline{s} \underline{U}^s + \underline{s}) d$$

$$Z_{+1}^{-1}$$

$$= (H + \omega)[\underline{U}^s] (H + \omega)(U_s; 0) r_U(H + \omega)(U_s; 0) (\underline{U}^s U_s) d :$$

Note that, $since(H + cQ)[\underline{U}^s] + s = 0$, we do have

The following statement gathers elements from [BGMRar, Theorems 4 and 5] and their proofs.

Theorem 2 ([BGMRar]). Under Assumptions 1-2 we have the following asymptotics for the action derivatives.

<u>Harmonic limi</u>tThere exist real numbers, b_0 and a positive number | depending smoothly on the parameters) | such that when goes to zero

(38)
$$\frac{4c_0}{c_0} r_{(c)} = 4 c_0 V_0 + (a_0 V_0 + b_0 W_0 + c_0 Z_0)^{-2} + O(^4)$$

$$(39) \quad \frac{1}{_{0}} r_{;c;}^{2} = a_{0} V_{0} \quad V_{0} + b_{0} (V_{0} \quad W_{0} + W_{0} \quad V_{0}) \quad T_{0} \quad T_{0}$$

$$+ 2 c_{0} W_{0} \quad W_{0} + c_{0} (V_{0} \quad Z_{0} + Z_{0} \quad V_{0}) + O(^{2})$$

where $_0$ denotes the harmonic periodvatthat is, $_0 = \frac{p}{(v_0) = @W(v_0; c;)}$. Soliton limitThere exist real numbers, b_s , positive numbers, h_s , a vectorX $_s$ and a symmetric matri Ω_s | depending smoothly on the parameters) | such that

$$(40) - r_{s} r_{c} = V_{s} \ln \% X_{s} + \frac{\%}{2} V_{s} \frac{1}{2h_{s}} (a_{s} V_{s} + b_{s} W_{s} + c_{s} Z_{s}) \% \ln \% + O \%$$

$$(41)$$

$$-\frac{1}{s} r_{(c)}^{2} = h_{s} \frac{1+\%}{\%} V_{s} \quad V_{s} + (a_{s} V_{s} \quad V_{s} + b_{s} (V_{s} \quad W_{s} + W_{s} \quad V_{s})) \ln\%$$

$$+ (T_{s} \quad T_{s} + 2c_{s} W_{s} \quad W_{s} + c_{s} (Z_{s} \quad V_{s} + V_{s} \quad Z_{s})) \ln\%$$

$$+ O_{s} + O \, \% \ln\%$$

when%goes to zero, where denotes the harmonic periodyabf waves associated with the opposite 'capillarity' coe cient, that is,:= $(v_s) = @W(v_s; c;)$. In addition, we have

(42)
$$\stackrel{s}{-}$$
 (S¹V_s) X_s = @M (c, U_s); $\stackrel{s}{-}$ (S¹V_s) O_s S¹V_s = @M (c, U_s);

where $U_s = v_s$ in the case $V_s = 1$ and $V_s = (v_s, g(v_s))$ in the case $V_s = 2$.

In the latter theorem and elsewhere in the present paper, for any two/veotbrs W in R^d, thought of as column vecto/rs, W stands for the rank-one, square matrix of sized

$$V W = VW^T$$

whateved.

Observing that the matrices involved in the expansions of in both the harmonic and the soliton limit have similar structures, we not useful to have at hand the following set of algebraic properties, which are either simple reformulations of relations in Proposition 4 or explicit computations from the de nition of

Corollary 3. Case N = 1 With

(43)
$$P_i := S^{-1} F_i V_i W_i$$
;

we have

$$D_{i} := P_{i}^{T} S P_{i} = B^{1} = 0 & 1 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & b^{1} \end{cases};$$

⁶This comes from the proof of Theorem 5 in [BGMRar], the statement of which lacked the prefactor $\stackrel{\cdot}{=}$ in the relation between M and the W-term in the expansion $\mathfrak{of}^2_{;c;}$. We have corrected this omission in (42).

$$P_{i}^{T} A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ \hline Q(v_{i} & h \underline{v}i) = k & k & (v_{i} & h \underline{v}i) = b & \xi \\ \hline Q(v_{i} & h \underline{v}i) = (bk) & 0 & 1 = b & 1 \\ \hline Q(v_{i} & h \underline{v}i) = (bk) & 0 & 0 & 0 \\ \hline Q(v_{i} & h \underline{v}i) = k & 1 = k & (v_{i} & h \underline{v}i) = k & \xi \\ \hline V_{i} & h \underline{v}i & 0 & b & \xi \end{bmatrix};$$

and, for any real number(sa; b; c, m)

Case N = 2 With

(44)
$$P_i := S^1 F_i V_i T_i W_i$$
;

(45)
$$\begin{cases} 8 \\ \vdots & := T_{i} S^{-1}W_{i} = \frac{1}{b} \frac{1}{(v)}; \\ W_{i} & := W_{i} S^{-1}W_{i} = \frac{2g_{v}(v_{i})}{b}; \\ \vdots & := Z_{i} S^{-1}W_{i} = \frac{g_{vv}(v_{i})}{b}; \end{cases}$$

and

(46)
$$A_{i} := \begin{array}{ccc} 0 & 1 & \overline{(v_{i})} \\ 1 & g_{v}(v_{i}) \end{array} = \begin{array}{ccc} 0 & b_{i} \\ 1 & \frac{b}{2}w_{i} \end{array};$$

we have

$$D_{i} := P_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & i \\ 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i} = \underbrace{\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & i & W_{i} \\ 0 & 0 & 0 & i & W_{i} \end{matrix}}_{i}^{T} S P_{i}^{T} S$$

and, for any real number(sa; b; c, m; n)

$$\begin{split} P_{i}^{T}(aV_{i} & V_{i} + b(V_{i} & W_{i} + W_{i} & V_{i}) + mW_{i} & W_{i} + c(V_{i} & Z_{i} + Z_{i} & V_{i}) + nT_{i} & T_{i})P_{i} \\ & = \underbrace{B}_{@} \frac{cw_{i} & O & O & O}{b_{i} & O & m_{i}^{2} & m_{i}w_{i}} \stackrel{C}{A} : \\ & bw_{i} + c_{i} & O & m_{i}w_{i} & mw_{i}^{2} + n_{i}^{2} \end{split}$$

For later reference, let us point out here that in any case

$$(47) D_i := P_i^T S P_i :$$

To unify case\$N = 1 and N = 2, it is also useful to extend to = 1 de nitions in (45) and to se\$N = 1 when N = 1.

3.2 Expansions of modulated variables

By (18) we have = @ so that we readily obtain expansions for the period by projecting (38) and (40) onto their rst component | which amounts to taking the inner product with This gives

$$= _{0} 1 + \frac{a_{0}}{4c_{0}} ^{2} + O(^{4}) ; ! 0;$$

$$= _{s} In\% E X_{s} + \frac{\%}{2} \frac{a_{s}}{2h_{s}} \% In\% + O \% ; \%! 0;$$

from which we can of course infer expansions for the local wavekneumber

$$k = k_0 \quad 1 \quad \frac{a_0}{4c_0} \quad ^2 + O(\ ^4) \quad ; \qquad \qquad ! \quad 0;$$

$$k = \frac{1}{s} \quad \frac{1}{\ln \%} + \frac{E \quad X_s}{(\ln \%^2)} \quad \frac{\%}{2(\ln \%^2)} \quad \frac{(E \quad X_s)^2}{(\ln \%^3)} + \frac{(E \quad X_s)\%}{(\ln \%^3)} + O(\frac{\%}{\ln \%} \quad ; \quad \%! \quad 0;$$

where $k_0 = 1 = 0$.

Thanks to (18) again, the projections of (38) and (40) onto their intermediate and last components together with the expansions for the mean values $hQ(\underline{U})$ and $h\underline{U}$. To carry this out, it is convenient to introduce N the N that N is the N interval N in N

$$\begin{array}{c|cccc}
O & & & 1 \\
I := @ O O & & I_N & A
\end{array}$$

of the projection onto last components, and to observe that taking the projection on the second component of vector \mathbb{R}^{N} in amounts to taking the inner product with We also recall that $0 := V_0$ and $V_s := V_s$.

Regarding the expansions of the mean value hui we get from (38) that

$$M = \frac{0}{4c_0} U_0 + \frac{1}{4c_0} (a_0 U_0 + b_0 IW_0 + c_0 IZ_0)^2 + O(4)$$

$$= 1 \frac{a_0}{4c_0}^2 + O(4) U_0 + \frac{1}{4c_0} (a_0 U_0 + b_0 IW_0 + c_0 IZ_0)^2 + O(4)$$

$$= U_0 + Y_0^2 + O(4);$$

when goes to zero, with

(48)
$$Y_0 := \frac{1}{4c_0} (b_0 IW_0 + c_0 IZ_0);$$

and from (40) that

$$\begin{split} M &= \frac{-s}{-} \qquad U_s \ln \% \quad IX_s + \frac{\%}{2} U_s \quad \frac{1}{2h_s} (a_s U_s + b_s IW_s + c_s IZ_s) \% \ln \% + O \% \\ &= \frac{1}{\ln \%} + \frac{E_s X_s}{(\ln \%^2)} \quad \frac{\%}{2(\ln \%^2)} \quad \frac{(E_s X_s)^2}{(\ln \%^3)} + \frac{(E_s X_s) \%}{(\ln \%^3)} + O \frac{\%}{\ln \%} \\ &U_s \ln \% \quad IX_s + \frac{\%}{2} U_s \quad \frac{1}{2h_s} (a_s U_s + b_s IW_s + c_s IZ_s) \% \ln \% + O \% \\ &= U_s + \frac{Y_s}{\ln \%} \quad \frac{E_s X_s}{(\ln \%^2)} Y_s + \frac{\%}{2(\ln \%^2)} Y_s \quad \frac{(E_s X_s) \%}{(\ln \%^3)} IX_s + O \% ; \end{split}$$

when%goes to zero, with

$$(49) Y_s := IX_s (E X_s) U_s:$$

Now that we have necessary pieces of notation, we gather in the following the behaviors found here above fok; $(\underline{U}i)$ with the expansions proved below for

Corollary 4. Under Assumptions 1-2 and with notation from Theor (48) and (49) we have

Harmonic limit

when goes to zero.

Soliton limit

when%goes to zero.

Remark 10. One can always look at the soliton limit as being the limit kwhens to zero and Corollary 4 in particular contains in this regime

$$= @M(c_i U_s) + O(k);$$
 $hUi = U_s + O(k):$

Likewise, assuming that

(52)
$$W_0 := W_0 S^1 W_0$$

is nonzero, we can equivalently look at the harmonic limit as the lignoits to zero and then

$$k = k_0 + O();$$
 $h\underline{U}i = U_0 + O():$

Remark 11. As already observed in [BGMRar], we can check in practical cases that $w_0 = W_0$ S 1W_0 \in O. Indeed, W_0 S $^1W_0 = 1$ =bin the caseN = 1 and in the caseN = 2, W_0 S $^1W_0 = 2@_vg(v_0)$ =bis nonzero both whenis constant | which is the case for the Euler{Korteweg system in mass Lagrangian coordinatesc|&araband when is linear inv | which is the case for the Euler{Korteweg system in Eulerian coordinates | and $_2$ \in O. We stress that the latter conditions are exactly the same conditions encountered in Proposition 2 where the signas finvestigated. In particular as pointed out in Remark 4 both conditions are conjugated by the passage between mass Lagrangian and Eulerian formulations.

Proof. The only thing left is to expand our variable In order to do so, by using (18) we can conveniently write it as

$$= F r_{;c;} \frac{Ir_{;c;}}{2E r_{;c;}} B^{-1}Ir_{;c;} :$$

From (38) and Proposition 37 we obtain

$$\begin{split} & - \frac{1}{0} = Q(U_0) + \frac{1}{4c_0} (a_0 Q(U_0) - b_0 F - W_0 - c_0 F - Z_0)^{-2} + O(^{-4}) \\ & - \frac{1}{1 + \frac{a_0}{4c_0}^{-2} + O(^{-4})} Q(U_0 + \frac{1}{4c_0} (a_0 U_0 + b_0 IW_0 + c_0 IZ_0)^{-2} + O(^{-4})) \\ & = Q(U_0) + \frac{1}{4c_0} (a_0 Q(U_0) - b_0 F - W_0 - c_0 F - Z_0)^{-2} + O(^{-4}) \\ & - \frac{1}{1 + \frac{a_0}{4c_0}^{-2} + O(^{-4})} - Q(U_0) + U_0 - B^{-1} \frac{1}{4c_0} (a_0 U_0 + b_0 IW_0 + c_0 IZ_0)^{-2} + O(^{-4}) \end{split}$$

in which there are some simpli cations because by (37)

So we eventually nd that

$$= \frac{W_0 S^{1}W_0}{4c_0k_0}^{2} + O(^{4}):$$

Likewise, from (40) and Proposition 37 we get

which eventually simpli es into

$$\frac{1}{s} = F X_s + U_s B^{-1}IX_s Q (U_s) (E X_s) + \frac{Q(Y_s)}{\ln \%} + O \frac{1}{(\ln \%)^2};$$

or equivalently, sincle $X_s + U_s$ B 1IX_s Q (U_s) (E X_s) = (S 1V_s) X_s ,

=
$$@M(c, U_s) + \frac{sQ(Y_s)}{\ln \%} + O \frac{1}{(\ln \%)^2}$$

thanks to (42).

3.3 Extending the parametrization

We can even go further and show tkat (M) are 'good' variables up to the limkts O and = O.

Theorem 3. Under Assumptions 1-2 and with notation from Theorem 2 we have Harmonic limitThe continuous extension of

$$(^{2};c;)$$
 7! $(k;;M)$

or equivalently of

to fOg de nes a C^1 map in a connected open neighborhoodR(in) of fOg which, provided th does not vanish on, is also a C^1 -di eomorphism. Soliton limitThe continuous extension of the map

$$(\frac{1}{\ln \%}; c;)$$
 7! $(k;; M)$

or equivalently of the map

$$(\frac{1}{\ln(s(c;))};c;)$$
 7! (k;; M)

tof Og de nes aC^1 map in a connected open neighborhood (in) of fOg , which, provided that, for ar(y;) 2 , POG M (c; $U_s(c;))$ 6 0, is also aC^1 -di eomorphism.

Proof. Expansions (50) and (51) show that the maps under consideration possess continuous extensions. To prove that these extensions, awe only need to prove that their Jacobian maps also extend continuously to Og. After that, by the Inverse Function Theorem, the proof will be achieved provided we also derive from extra assumptions that at any point of f Og the limit of the Jacobian map is nonsingular. In both limits our starting point is (31), that yields

with A as in Proposition 3.

In the harmonic limit we set= 2 and observe that the chain rule yields follows from

Sincek has a nonzero $limik_{O_r}$ it is trivial to check that both and A admit invertible limits when ! O. To deal with the factor involving_{c;} we extract from [BGMRar, Proposition 4], expressed in our current notation,

$$r_{;c;} = 4c_0V_0 + O(^2)$$

⁷See Remark 11.

that implies readily that

possesses an invertible limit. At last, the factrified possesses a limit when 0 is a direct consequence of (39). The invertibility of the corresponding limit when (de ned in (52)) is nonzero follows from straightforward computations based on the limit of P_0^T (r 2 _{cc}) P_0 obtained from Corollary 3.

More delicate is the soliton limit, in which all matrices involved in (53) blow up. To begin with we set= 1=ln%and extract from [BGMRar, Proposition 5]

$$r_{;c;} = \frac{h_s}{(\% n \%^2)} ((1 + \frac{3}{2}\% V_s + O(\%));$$

To make the most of computations already carried out in Corollary 3, we use the factorization

stemming from the chain rule. To do so, rst we observe that

with

$$K_{s} = O \mid I_{N+1} \quad P_{s}^{T} @ \underbrace{O}_{I_{N+1}} A$$

easily seen to be invertible so that the last matrix in (55) possesses an invertible limit when%! O. Now we stress that

$$P_{s}^{\mathsf{T}} A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & k & 0 & k & 0 & k & 0 \\ \hline 0 & 0 & 1_{N} & k & k & k & 0 \end{bmatrix} \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & k & 0 & k & 0 & k \\ 0 & 0 & 1_{N} & k & k & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & k & 0 & k & k \\ 0 & 0 & 0 & 1_{N} & k & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & k & 0 & k \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & k & 0 & k \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & k & 0 & k \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1_{N} & k \end{bmatrix}}_{A_{s} B^{-1} (U_{s} M) = k} \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 &$$

and that it follows from (51) that the last matrix in (56) possesses an invertible limit when%! O.

Combining (54)-(55)-(56) with (51) reduces the issue to the inspection of the matrix

(57)
$$L := \frac{1}{\ln(\%)} \stackrel{O}{@} \frac{(\%\ln\%)^2 | O}{O | I_{N+1}} \stackrel{A}{A} P_s^T(r_{;c;}^2) P_s \stackrel{O}{@} \frac{\frac{1}{\ln(\%)} | O | O}{O | O | I_N} \stackrel{C}{A} :$$

It follows from Theorem 2 and Corollary 3 that, When2

$$-\frac{1}{s}L = \begin{cases} 0 & h_s & 0 & 0 & 0 \\ 0 & (S^{1}V_s) & O_sS^{1}V_s & 0 & 0 \\ 0 & (S^{1}T_s) & O_sS^{1}V_s & 2c_s\frac{2}{s} & 2c_s w_s \\ 0 & (S^{1}W_s) & O_sS^{1}V_s & 2c_s w_s & 2c_sw_s^2 + \frac{2}{s} \end{cases} + 0 \frac{1}{(\ln \%)}$$

while when N = 1

$$-\frac{1}{s} L = {\overset{0}{@}} \frac{h_s}{0} {\overset{0}{(S^{1}V_s)}} {\overset{0}{O_s}S^{1}V_s} {\overset{0}{O}} {\overset{A}{A}} + 0 \frac{1}{(\ln \%)} :$$

This implies that possesses a limit which O and that this limit is invertible provided that $(S^{1}V_{s})$ O_s $S^{1}V_{s}$ 6 O, and nishes the proof.

4 Asymptotics of the modulation system

4.1 Extending the averaged Hamiltonian

Our goal is now to show that the averaged Hamiltonian H extends 2 distraction of (k; ; M) both to the zero-amplitude regime $^{}$ O and to the zero-wavelength regime $^{}$ k = 0.

Under natural assumptions required by Theorem 1, it is quite elementary, by using the de nition of H and relations (21), to check that H does extend an approach both to = 0 and tok = 0. This is already su cient to take the relevant limits of the conservative form (22) of the modulated system. Yet to ensure that hyperbolic properties of the limiting system do transfer to the original ones in relevant regimes one needs to be able to take limits in the quasilinear form (28) hence to $\text{prov}\mathfrak{C}^2$ thetension property we discuss now.

To state the following theorem in a precise way, let us denote, in the harmonic limit, as $_0$ the image of by (c;) 7! $(k_0; Q, U_0)$ and, in the soliton limit, as $_s$ the image of by (c;) 7! $(Q, Q, M, (c; U_s); U_s)$.

Theorem 4. Under Assumptions 1-2 and with notation from Theorem 2 we have <u>Harmonic limitProvided that</u> does not vanish on,

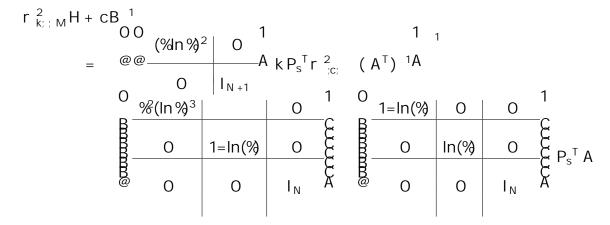
the averaged Hamiltonian extends as $\&^2$ function of(k; ; M) to a connected open neighborhood ($^{\circ}$ NR (sign(w₀) R₊) R) of $_{\circ}$. Soliton limitProvided that, for an(yc;) 2 , $^{\circ}$ QM (c, U $_{s}$ (c;)) $\stackrel{\leftarrow}{=}$ O, the averaged Hamiltonian extends as $^{\circ}$ QP function of(k; ; M) to a connected open neighborhood (iR $_{+}$ R R) of $_{s}$.

Proof. The proof is similar to the one of Theorem 3. In particular the issue is readily reduced to checking that the assumptions of Theorem 4 ensure that in the relevant regimes $r_{(c)}^2$ is invertible and $r_{(k),M}^2$ H possesses a limit, the study of the latter relying on (29).

In the harmonic limit, we have already checked all the required claims along the proof of Theorem 3 since there we have checked that possesses an invertible limit.

The soliton limit requires slightly more work. We already know from the proof of Theorem 3 that both

possess invertible limits. Thus the result stems from



derived from (29).

4.2 Basic features of the limiting modulated systems

A detailed inspection of the proof of Theorem 4 provides explicit formulas for limiting values of $\frac{2}{k_{::M}}H$ thus of the Whitham matriw = $\frac{2}{k_{::M}}H$ in terms of coe cients from Theorem 2. Yet rst we restrain from giving these and focus instead on what can be derived from more elementary arguments, using only the conclusion from Theorem 4,

⁸Note that since is connected has a de nite sign on 0.

that is, C^2 regularity of H. Along the discussion we shall still denote as H the extension of H to either $_0$ or $_{s^*}$

To do so, we rst point out the elementary

$$@_kH = c = 0 \text{ on } _0;$$
 $@_H = kc = 0 \text{ on } _s;$

which by di erentiating tangentially yield

$$@^2_k H = 0$$
 and $@_k r_M H = 0$ on $_0$; $@^2_k H = 0$ and $@_k r_M H = 0$ on $_s$:

In particular,

and a direct computation of a characteristic polynomial shows that, on or the spectrum but is the union, with multiplicity, of the spectrum but 2_M H and twice 2_M H.

The fact that some second order derivatives of H are easier to compute is no accident. Since it is easy to extend H a \mathbb{S}^1 amap it is also straightforward to extend its second-order derivatives that contain at most one normal derivative. The hard parts of Theorem 4 are the extensions \mathbb{A}^2 H to $_0$ and, even more, \mathbb{A}^2 H to $_s$. To illustrate this further let us stress that fo \mathbb{D} f \mathbb{D} sq

$$H(k; ; U_i) = H(U_i; O)$$
 on $_i;$ thus $r_M^2 H(k; ; U_i) = r_U^2 H(U_i; O)$ on $_i$

so that, on i, Br $_{M}^{2}$ H(k; ; U i) is the characteristic matrixUa;t of the dispersionless system (7). Likewise, for anky;(U $_{0}$) such that K $_{0}$; Q, U $_{0}$) 2 $_{0}$

$$@_{k}^{2} H(k_{0}; O, U_{0}) = @_{k}(k_{0}; U_{0}) = v_{g}(k_{0}; U_{0});$$

 $@ r_{M} H(k_{0}; O, U_{0}) = k_{0} r_{U} c_{0}(k_{0}; U_{0});$

where $v_g(k_0; U_0)$ is the linear group velocity of the harmonic wavetraling cart wavelengthk. Similarly, at the soliton limit, we have for any (l_s) 2

$$@_{c}H(O_{c}@_{c}M(c_{s};U_{s});U_{s}) = M(c_{s};U_{s}) \quad c_{s}@_{c}M(c_{s};U_{s})$$

so that for anyc(; Us) 2

$$Q_{k}^{2} H(O_{s} Q_{c}M(C_{s}; U_{s}); U_{s}) = C_{s};$$

 $Q_{k}r_{M}H(O_{s} Q_{c}M(C_{s}; U_{s}); U_{s}) = r_{U}M(C_{s}; U_{s}):$

Going back to the cancellations $\mathbf{Bin}_{k;:M}^2 H$, we make the following elementary algebraic observation, whose proof follows from a short computation | left to the reader.

Lemma 1. For any real numbers and a, any vectors, r_0 in R^N and any N M matrix M such that is not an eigenvalue of we have

with

$$I := (M^{T} VI_{N})^{-1}I_{O}; \qquad r := (M VI_{N})^{-1}r_{O}:$$

Note that the two matrices considered in Lemma 1 are obtained one from the other merely by exchanging the rst and second coordinates. We have introduced these two cases just to emphasize that this algebraic lemma applies to both kinds of limit.

For convenience, let us summarize part of the foregoing ndings in the following statement.

Corollary 5. Under the assumptions of Theorem 4, still denoting its extension to either $_0$ or $_{s_1}$ we have

<u>Harmonic limi</u>tAt any point(k_0 ; Q U $_0$) of $_0$, the spectrum of the characteristic matrix of the modulation system $r_{k; ; M}^2 H(k_0; Q U _0)$ is given, with algebraic multiplicity, by the spectrum of the dispersionless characteristic metrix $r_k^2 H(U_0; Q)$ and twice the linear group velocity $r_k^2 (k_0; U_0) = r_k^2 H(k_0; Q U_0)$, so that in particular the modulation system is weakly hyperbolic if and only if the dispersionless system is so.

Moreover, $V_g(k_0; U_0)$ is a semisimple characteristic (2f2)if and only if $@^2H(k_0; Q, U_0)$ coincides with

$$(@r_M H)^T (r_M^2 H (@_k^2 H) B^{-1})^{-1} @r_M H$$

= $k_0^2 (r_U c_0)^T (r_U^2 H (U_0; O) + v_g B^{-1})^{-1} r_U c_0$

so that the modulation system is hyperbolic if and only if the foregoing condition is satised and the dispersionless system is hyperbolic.

Soliton limitFor any $(c_s; U_s)$ of , the spectrum of the characteristic matrix of the modulation system B r $^2_{K; ; M}$ H(Q,@,M $(c_s; U_s); U_s$) is given, with algebraic multiplicity, by the spectrum of the dispersionless characteristic mBtri $^2_{K}$ H(U $_s$; O) and twice the soliton velocityc $_s = ^2_{K}$ H(Q,@,M $(c_s; U_s); U_s$), so that in particular the modulation system is always weakly hyperbolic.

Moreover c_s is a semisimple characteristic (222) if and only if $c_s^2H(0, c_s; U_s); U_s$

⁹The left-hand side being evaluated $at_0(0, 0, 0)$ and the right-hand side $at_0(0, 0, 0)$.

coincides with

$$(@_k r_M H)^T (r_M^2 H (@_k^2 H) B^{-1})^{-1} @_k r_M H$$

= $(r_U M)^T (r_U^2 H (U_S; 0) + c_S B^{-1})^{-1} r_U M$

so that the modulation system is hyperbolic if and only if the foregoing condition is satis ed.

Proof. At the soliton limit, the only thing left is to check that from the assumptions of Theorem 4 stem that is not an eigenvalue of Br $_{\rm U}^2$ H (U $_{\rm S}$; O) and that eigenvalues of the latter matrix are real and distinct. Yet a relatively direct computation (for which the reader is referred to Appendix A and [BGMRar, Appendix A]) shows that

$$\det(\beta r_{U}^{2}H(U_{S}; 0) + c_{S}I_{N}) = \begin{cases} b_{V}^{2}W(v_{S}; c_{S}; s) & \text{if } N = 1 \\ b_{V}^{2}(v_{S})_{V}^{2}W(v_{S}; c_{S}; s) & \text{if } N = 2 \end{cases}$$

so that the conditions stem from Assumption 2 that $confliction(v_s; c_s; s) < 0$.

At the harmonic limit, we only need to check that from the assumptions of Theorem 4 stems that v_g is not an eigenvalue of Br 2_U H (U $_0$; O). We rst stress that the relation pointed out above also holds for (instead of v_s) so that

$$\det(\beta \, r_{\,\, U}^{\,\, 2} \, H \, (U_{\,\, 0}; \, 0) \, + \, c_{0}(k_{0}; \, U_{\,\, 0}) \, I_{\,\, N}) \, = \, \begin{pmatrix} \\ b(2\,\,)^{2}k_{0}^{\,2} \, (v_{0}) & \text{if} & N \, = \, 1 \\ b^{2} \, (v_{0}) \, (2\,\,)^{2}k_{0}^{\,2} \, (v_{0}) & \text{if} & N \, = \, 2 \end{pmatrix} \, .$$

Multiplying rst the latter bky_0 then di erentiating it with respectk to yield by the N-linearity of the determinant

$$\begin{split} \det(\beta \ r_{(U_0; O)}^{\ 2} & H(U_0; O) + v_g(k_0; U_0) \, I_N) \\ &= \frac{3b(2)^2 k_0^2 \ (v_0)}{3b^2 \ (v_0) \, (2)^2 k_0^2 \ (v_0) + (k_0@_k c_0(k_0; U_0))^2 \ \ \text{if} \quad N = 1}{3b^2 \ (v_0) \, (2)^2 k_0^2 \ (v_0) + (k_0@_k c_0(k_0; U_0))^2} \, . \end{split}$$

This proves the claim.

Remark 12. Concerning the case = 2, at the harmonic limit, note that $^2_U H(U_0; O)$ is never diagonal and that

$$(tr(B r_{U}^{2} H (U_{O}; O)))^{2} + det(B r_{U}^{2} H (U_{O}; O)) = 4b^{2} (v_{O}) + \frac{1}{2} o(v_{O}) + \frac{1}{2} o(v_{O}) u_{O}^{2}$$

so that the dispersionless system is weakly hyperbolic (resp. hyperbolic) and only if $f^0(v_0) + \frac{1}{2} {}^0(v_0) u_0^2 = 0$ (resp. $f^0(v_0) + \frac{1}{2} {}^0(v_0) u_0^2 > 0$). In particular when is a ne, as is the case for Euler-Korteweg systems, this condition reduces to the requirement that f be convex, which is the usual hyperbolicity condition for the Euler systems in terms of pressure monotonicity.

¹⁰The left-hand side being evaluated at **②**M (c_s; U_s); U_s) and the right-hand side at_s(U_s).

Despite the symmetry of Corollary 5 with respect to permutation of the kvariables , the harmonic and soliton limits di er signi cantly in terms of the hyperbolic nature of the limiting system. Indeed as it follows from the analysis expounded in next subsection, the condition of Corollary 5 ensuring the semisimplicity of the characteristies value is always satis ed at the soliton limit whereas in general it fails at the harmonic limit. In particular as we show in Appendix A the latter condition does fail for the classical Korteweg{de Vries equation.

Note however that the direct consequences of this discrepancy on the original modulation systems (and not their limiting extensions) are almost immaterial. Indeed whereas the failure of weak hyperbolicity (as potentially caused here by the failure of weak hyperbolicity of the dispersionless system) is stable under perturbation, neither hyperbolicity nor failure of hyperbolicity are stable phenomena in the presence of a multiple root. The determination of the nature of the original modulation systems will require an even ner analysis than the one carried out in next subsection.

4.3 Explicit formulas for the limiting modulation systems

Now, to push our analysis a bit further, we extract from the proof of Theorem 4 explicit formulas for the limiting values of H, in particular for H in the harmonic limit and for H in the soliton limit.

Let us begin with the harmonic limit. For concision's sake we rst introduce

so that it follows from Theorem 2 and Corollary 3 that

and

thus its inverse is

From this stems that BAT (r $^2_{\text{cc}}$) 1 A equals

In particular, on o,

Translating, by identi cation, the foregoing computations into the notation of Corollary 5 yields the following result.

Theorem 5. Under the assumptions of Theorem 4, let us still den blandy W their extensions to₀. Then at any point(k_0 ; 0, U₀) of ₀, we have

$$e^{2}H = k_{0}^{4}(@_{k}c_{0})^{2}a_{0} + k_{0}^{2}r_{U}c_{0}^{T}(r_{U}^{2}H(U_{0}; 0) + c_{0}B^{-1})^{-1}r_{U}c_{0}$$

$$0 \qquad 0 \qquad c_{0} \qquad k_{0}@_{k}c_{0} \qquad 0 \qquad 1$$

$$r_{k::M}^{2}H = \begin{cases} c_{0} & c_{0} & k_{0}@_{k}c_{0} & c_{0} \\ c_{0} & k_{0}@_{k}c_{0} & e^{2}H & k_{0}r_{U}c_{0}^{T} \end{cases}$$

$$0 \qquad k_{0}r_{U}c_{0} \qquad r_{U}^{2}H(U_{0}; 0) \qquad A$$

$$0 \qquad c_{0} + k_{0}@_{k}c_{0} \qquad e^{2}H \qquad k_{0}r_{U}c_{0}^{T} \qquad 1$$

$$0 \qquad c_{0} + k_{0}@_{k}c_{0} \qquad 0 \qquad e^{2}H \qquad k_{0}r_{U}c_{0}^{T} \qquad 1$$

$$0 \qquad c_{0} + k_{0}@_{k}c_{0} \qquad 0 \qquad e^{2}H \qquad k_{0}r_{U}c_{0}^{T} \qquad 1$$

$$0 \qquad c_{0} + k_{0}@_{k}c_{0} \qquad 0 \qquad e^{2}H \qquad k_{0}r_{U}c_{0}^{T} \qquad 1$$

$$0 \qquad c_{0} + k_{0}@_{k}c_{0} \qquad 0 \qquad e^{2}H \qquad k_{0}r_{U}c_{0}^{T} \qquad 0$$

$$0 \qquad k_{0}Br_{U}c_{0} \qquad Br_{U}^{2}H(U_{0}; 0) \qquad A$$

wherea₀ is as in Theorem 2

$$a_0 = k_0 @^2 (_0; c_0; _0):$$

with

As already announced, in general is not zero and possesses a Jordan block associated with. In particular, in Appendix A we check that no vanishing occurs for the classical KdV equation.

Now we turn to the soliton limit. For concision's sake we rst introduce

¹¹The left-hand side being evaluated Δt_0 (O, U $_0$) and the right-hand side Δt_0 (U $_0$).

and

$$y_{s} = \begin{cases} S^{1}W_{s} & O_{s}S^{1}V_{s} \\ S^{1}T_{s} & O_{s}S^{1}V_{s} \\ S^{1}W_{s} & O_{s}S^{1}V_{s} \end{cases}$$
 if N = 2

so that it follows from Theorem 2 and Corollary 3 that

$$\frac{1}{\ln(\%)} \stackrel{O}{=} \frac{(\% \ln \%)^{2}}{O} \stackrel{I}{=} \frac{1}{O} \frac{A \ k P_{s}^{T}(r^{2};c;)(A^{T})^{-1}B^{-1}}{O \ -s h_{s}Q(Y_{s}) -s h_{s} \ h_{s}Y_{s}^{T}B^{-1}} \stackrel{I}{=} \frac{1}{O} \frac{e^{2}M}{O} \stackrel{O}{=} \frac{A \ k P_{s}^{T}(r^{2};c;)(A^{T})^{-1}B^{-1}}{O} \frac{1}{(\ln \%)}$$

and its inverse is

From this stems that B A $^{\rm T}$ (r $^2_{\ \ ;c;}$) $^{-1}$ A equals

In particular, on s,

Translating again, by identication, into the notation of Corollary 5 yields the following result.

Theorem 6. Under the assumptions of Theorem 4, let us still den**bleamy**W their extensions to_s. Then for any(c_s ; U $_s$) of , we hav²

Remark 13. In both limits, the 2 2 principal block of ²H has negative determinant hence signature;(11), and therefore ²H is neither positive de nite nor negative de nite in either regime.

5 Asymptotics of the modulation eigen elds

Since limiting characteristic matrices exhibit double roots, we need to perform a higherorder asymptotic analysis so as to determine the hyperbolic nature of modulation systems not at the limit of interest but near the distinguished limit. We undertake this task now.

5.1 Small amplitude regime

In the harmonic regime, the eigenvalues arising from those Bfr $_{\rm U}^2$ H (U $_{\rm O}$; O) may be analyzed by standard spectral perturbation analysis. We only need to blow up the two eigenvalues near and we shall do it by inverting and scalling $v_{\rm g}I_{\rm N+2}$ so as to reduce the problem to the spectral perturbation of simple eigenvalues.

The left-hand side being evaluated at $(QM (c_s; U_s); U_s)$ and the right-hand side at (U_s) .

The scaling process will reveal the prominent role played by some of the higher-order correctors not made explicit in Theorem 2. With this in mind, note that the proof of Theorem 2, in [BGMRar], also gives that under the assumptions of Theorem 2, possesses a limit with convergence O(t) when ! O. This implies that possesses as a function of:() a C^3 extension to the limit = O with convergence rate O(t). In turn this implies, under the assumptions of Theorem 3, that H as a function of O(t) possesses O(t) extension to O(t) with convergence rate O(t). Then proceeding as in Subsection 4.2, we deduce that

$$Q_k^2 H(k_0; ; U_0) = Q_{kk}^3 H(k_0; 0, U_0) + O(^3);$$

 $Q_k r_M H(k_0; ; U_0) = Q_k^2 r_M H(k_0; 0, U_0) + O(^3);$

with

$$Q_{kk}^3 H(k_0; O, U_0) = Q_k^2(k_0; U_0) = 2Q_k C_0(k_0; U_0) + k_0 Q_k^2 C_0(k_0; U_0);$$

 $Q_k^2 r_M H(k_0; O, U_0) = Q_k r_U (k_0; U_0) = r_U C_0(k_0; U_0) + k_0 Q_k r_U C_0(k_0; U_0);$

As a consequence, with notation from Theorem 5, we have

$$P_{0}^{1}W(k_{0}; ; U_{0})P_{0} = 0$$

$$V_{g} + O(^{2}) \qquad e_{0} + O(^{2}) \qquad O(^{2}) \qquad 1$$

$$P_{0}^{3}W(k_{0}; ; U_{0})P_{0} = 0$$

$$P_{0}^{4}W(k_{0}; U_{0})P_{0} = 0$$

$$P_{0}^{4}W(k_{0};$$

so that whe \mathbf{a}_0 \mathscr{Q}_k^2 r $_M$ H(k_0 ; 0, U $_0$) \in 0

is invertible (provided that is su ciently small) and its inverse is

At last we may apply elementary spectral perturbation theory to the latter matrix to study its two simple eigenvalues near $a_0 = \frac{1}{a_0} \frac{1}{$

Theorem 7. Under the assumptions of Theorem 4, let us still denth tets yextension to $_{0}$ and consider (k_{0} ; 0, 0, 0) 2 $_{0}$, with associated linear group velocity

$$V_g(k_0; U_0) = Q_k^2 H(k_0; 0, U_0) = C_0(k_0; U_0) + k_0Q_k C_0(k_0; U_0)$$
:

Then in the small amplitude regime, the spectrum of the Whitham \(\mathbb{M}(\) (\) contains

1. two eigenvalues near, that expand as

$$v_g = \frac{p}{MI} + O()$$

(where here $\stackrel{\text{p}}{=}$ denotes some determination of the square root function), with corresponding eigenvectors

provided that the modulational-instability indax(k₀; U₀), given by³

is not zero;

2. and N eigenvalues near the the eigenvalues of the dispersionless characteristic matrix B r $_{IJ}^{2}$ H (U $_{O}$; O), that expand as

$$z_j + O(); j 2 f1; Ng$$

with associated eigenvectors

where z_j , j = 2 f 1; N g, are the eigenvalues of $B r \frac{2}{U} H (U_0; O)$, with corresponding eigenvector s_j , j = 2 f 1; N g, provided that the see eigenvalues are distinct.

¹³With evaluation either atk(; U 0) or at (k0; O, U 0), depending on terms.

Moreover all the bounds are locally uniform with respectute).

Note that the existence of an expansion into powersoffthe eigenvalues of and) perturbation of a matrix possessing a double root from which they emerge is consistent with the general | worst-case | algebraicity theory for the spectrum of matrices.

Remark 14. Instead of using MI, a simpli ed criterion on PH QH or PH A H is sometimes incorrectly invoked. This is based on the deceptive guess that relevant conclusions may be derived from the consideration of the (arti cially uncoupled) 2 block of the Whitham matrix concerning the wave number and the amplitude (see for instance [Whi99, p.490]).

Remark 15. We recall that it was proved in [BGNR14] that the failure of weak hyperbolicity of the modulation system does imply a slow side brastability of the background periodic wave, hence the use of the term modulational instability here. It follows from our analysis that such an instability occurs near the harmonic limit when the dispersionless system fails to be weakly hyperbolic or swighting) MI is negative - recall from Corollary 4 and Remark 11 that the sigmoffictates the one ofin the harmonic limit. For this reason, given its practical importance, we make the latter sign more explicit in Appendix A.

5.2 Small wavenumber regime

As in the harmonic regime, the eigenvalues arising from those $Bfr_{11}^2 H(U_s; 0)$ may be analyzed by standard spectral perturbation analysis. We only need to blow up the two eigenvalues near and we shall do it by inverting and scalling d_{N+2} . To do so we rst observe that, since ABA T and $D_{s} = P_{s}^{T}SP_{s}$, we have

W
$$d_{N+2} = (P_s^T A)^{-1} k P_s^T (r_{(c)}^2) P_s D_s^{-1}^{-1} P_s^T A$$

so that it is equivalent to study two blowing-up eigenvalues f(r) = 0 or r = 0. Now for concision's sake we introduce

$$D_{s} = \begin{cases} 8 & b^{1} & \text{if } N = 1 \\ 0 & s & \text{if } N = 2 \end{cases}$$

$$D_{s} = \begin{cases} 0 & s & \text{if } N = 2 \end{cases}$$

and

¹⁴That is, with small spectral parameter and small Floquet exponent.

It follows from Theorem 2 and Corollary 3 that

$$P_{s}^{T}O_{s}P_{s}D_{s}^{1} = \underbrace{B}_{e}^{-\underline{s}}\underbrace{e^{2}M}_{c}(c_{s};U_{s}) \underbrace{y_{s}^{T}D_{s}^{1}}_{A}C_{s}^{C}$$

so that

To the latter matrix we may apply elementary spectral perturbation analysis to study the two simple eigenvalues arising from h_s $_s@M =$ (where here $_s$ denotes any determination of the square root function).

Theorem 8. Under the assumptions of Theorem 4, cons(detUs) 2 @M (c_s; U_s) 6 0. Then in the large period regime, the spectrum of the Whitham matrix $W(k; @^2M(c_s; U_s); U_s)$ is given by

1. two eigenvalues expanding as

$$c_s = p \frac{\%^{p} - }{h_{s-s} @M(c_s; U_s); U_s)} + O(\% ln(\%)$$

(where here — denotes some determination of the square root function), with cor-

¹⁵We recall that $= (s \ln(\%))$ in the solitary wave limit.

2. and N eigenvalues expanding as

$$z_j + O(k);$$
 j 2 f1; N g

with associate eigenvectors

where z_j , j = 2 f1; N g, are the distinct and real eigenvalues $Bfr = \frac{2}{U} H (U_s; O)$, with corresponding eigenvector; s, j = 2 f1; N g.

Moreover all the bounds are locally uniform with respectute.

Remark 16. Though diagonilizability of the limiting modulation systems has little direct impact on the hyperbolicity of modulation systems near the limit, in the reverse direction the expansions derived in Theorems 7 and 8 shed some light on the asymmetry between the harmonic and the soliton limits in terms of diagonalizability of the asymptotic systems. Indeed, in the latter limit, the convergence of the eigenvalues towards the double root occurs exponentially faster |%ds %| than the convergence of eigenvectors, which converge as=In %and this may be proved to import sepersistence of diagonalizability at the limit. In contrast, in the former limit the perturbations of eigenvectors and eigenvalues are of the same order | namely leaving room for a limiting Jordan block.

Appendix

A Explicit formula for the modulational-instability index

The goal of this section is to make explicit $\log t$ and MI that are involved in the hyperbolicity of the Whitham system near or at the harmonic limit.

$$P_{s}^{T} A = B = A_{s}^{T} A_{s}^$$

This requires the extraction from [BGMRar] of an explicit value for the coacient in Theorem 2 (denoted in [BGMRar]). First we recall from [BGMRar] that

$$a_0 := \quad \frac{1}{3} \frac{ \mathscr{Q}_v^3 W \left(v_0 \right) }{ (\mathscr{Q}_v^2 W \left(v_0 \right))^2 } \frac{ \mathscr{Q}_v Y \ ^0 + \ 2 \, \mathscr{Q}_z Y \ ^0 }{ Y \ ^0 } + \frac{2}{ \mathscr{Q}_v^2 W \left(v_0 \right) } \frac{\frac{1}{4} \, \mathscr{Q}_v^2 Y \ ^0 + \ \mathscr{Q}_z^2 Y \ ^0 }{ Y \ ^0 } \frac{ \mathscr{Q}_v^2 Y \ ^0 }{ Y \ ^0 }$$

where

$$Y (v; w; z) := \frac{S}{\frac{2 (v)}{R (v; w; z)}};$$

$$Z_{1}Z_{1}$$

$$R (v; w; z) := t W(w + t(z w) + ts(v z)) dsdt :$$

Here we omit to specify the dependence and Y on parameters (x_0) since they are held xed along the computation, and the expondentotes that functions of (v; w; z) are evaluated at $(v; v_0; v_0)$.

First we recall from [BGMRar, Appendix B] that is a symmetric function and we observe that

$$R^{0} = \frac{1}{2} @_{v}^{2} W(v_{0}); \qquad @_{v} R^{0} = \frac{1}{6} @_{v}^{3} W(v_{0});$$

$$@_{v}^{2} R^{0} = \frac{1}{12} @_{v}^{4} W(v_{0}); \qquad @_{wz}^{2} R^{0} = \frac{1}{24} @_{v}^{4} W(v_{0}):$$

Moreover direct computations yield

$$\frac{@_{v}Y^{\circ}}{Y^{\circ}} = \frac{1}{2} \frac{?_{v}V_{o}}{?_{v}} = \frac{1}{2} \frac{?_{v}R^{\circ}}{R^{\circ}}; \qquad \qquad \frac{@_{v}Y^{\circ}}{Y^{\circ}} = \frac{1}{2} \frac{?_{v}R^{\circ}}{R^{\circ}}; \\ \frac{@_{v}Y^{\circ} + 2@_{v}Y^{\circ}}{Y^{\circ}} = \frac{1}{2} \frac{?_{v}V_{o}}{?_{v}} = \frac{1}{2} \frac{?_{v}R^{\circ}}{R^{\circ}}; \qquad \qquad \frac{@_{v}Y^{\circ}}{Y^{\circ}} = \frac{1}{2} \frac{?_{v}R^{\circ}}{R^{\circ}};$$

and

$$\frac{e_{V}^{2}Y^{0}}{Y^{0}} = \frac{e_{V}^{2}Y^{0}}{Y^{0}}^{2} + \frac{1}{2} \frac{e_{V}^{2}(V_{0})}{e_{V_{0}}} + \frac{e_{V}^{2}X^{0}}{e_{V_{0}}} + \frac{1}{2} \frac{e_{V}^{2}X^{0}}{e_{V_{0}}} + \frac{1$$

so that

$$\frac{\frac{1}{4} e_{V}^{2} Y^{0} + e_{Z}^{2} Y^{0}}{Y^{0}} = \frac{\frac{1}{8} \frac{e_{V}^{2} Y^{0}}{V_{0}}}{\frac{e_{V}^{2} Y^{0}}{V_{0}}} = \frac{\frac{1}{8} \frac{e_{V}^{2} Y^{0}}{V_{0}} + \frac{e_{V}^{2} Y^{0}}{V_{0}}}{\frac{e_{V}^{2} Y^{0}}{V_{0}}} = \frac{\frac{1}{8} \frac{e_{V}^{2} Y^{0}}{V_{0}}}{\frac{e_{V}^{2} Y^{0}}{V_{0}}} + \frac{\frac{1}{8} e_{V}^{2} Y^{0}}{\frac{e_{V}^{2} Y^{0}}{V_{0}}} = \frac{1}{8} \frac{e_{V}^{2} Y^{0}}{\frac{e_{V}^{2} Y^{0}}{V_{0}}} + \frac{1}{2} \frac{e_{V}^{2} Y^{0}}{\frac$$

thus

$$\frac{e_{v}^{2}W(v_{0}) a_{0}}{4} = \frac{1}{(v_{0})} + \frac{1}{2} + \frac{(v_{0})}{(v_{0})} + \frac{1}{2} + \frac{(v_{0})}{(v_{0})} + \frac{e_{v}^{2}W(v_{0})}{4} + \frac{1}{2} + \frac{1}{2} + \frac{e_{v}^{2}W(v_{0})}{4} + \frac{1}{2} + \frac{1}{2$$

To go further with computations we nd it convenient to separate the scalar and system case.

A.1 The scalar case

In the scalar case, note that the computations in the proof of Corollary 5 provide

$$e_{v}^{2}W(v_{0}) = f^{0}(v_{0}) \frac{c_{0}(k_{0}; v_{0})}{b} = (2)^{2}k_{0}^{2} (v_{0})$$

$$b e_{v}^{2}H(v_{0}; 0) + c_{0}(k_{0}; v_{0}) = b e_{v}^{2}W(v_{0})$$

$$b e_{v}^{2}H(v_{0}; 0) + v_{0}(k_{0}; v_{0}) = 3b e_{v}^{2}W(v_{0})$$

and observe that when 3, $@_vW(v_0) = f^{(')}(v_0)$. From this one readily derives

$$\begin{array}{rcl} k_0 \, @ \, C_0(k_0; \, v_0) & = & 2b \, @ \, W \, (v_0) \, ; \\ k_0 \, (& 2 @ \, C_0(k_0; \, v_0) & k_0 \, @ \, C_0(k_0; \, v_0)) & = & 6b \, @ \, W \, (v_0) \, ; \\ & & @_{v_0} \, C_0(k_0; \, v_0) & = & b \, @ \, W \, (v_0) & b \frac{q(v_0)}{(v_0)} \, @ \, W \, (v_0) \, ; \end{array}$$

so that

$$\begin{split} \frac{e_0}{b^2 k_0^2 \mathscr{Q}_v^2 W (v_0)} &= 4 \mathscr{Q}_v^2 W (v_0) \, a_0 + \frac{2}{3} \, \frac{\mathscr{Q}_v^3 W (v_0)}{\mathscr{Q}_v^2 W (v_0)} \, \frac{\mathsf{q}(v_0)}{(v_0)} \, ^2 \\ &= \frac{\mathsf{q}(v_0)}{(v_0)} \, \frac{1}{2} \, \frac{\mathsf{q}(v_0)}{(v_0)} \, ^2 + \frac{\mathsf{q}(v_0)}{(v_0)} \, \frac{\mathscr{Q}_v^3 W (v_0)}{\mathscr{Q}_v^2 W (v_0)} + \frac{1}{2} \mathscr{Q}_v^2 W (v_0)} \, \frac{5}{6} \, \frac{\mathscr{Q}_v^3 W (v_0)}{\mathscr{Q}_v^2 W (v_0)} \, ^2 \\ &= \frac{\mathsf{q}(v_0)}{(v_0)} + \frac{5}{6} \, \frac{\mathsf{q}(v_0)}{(v_0)} \, ^2 + \frac{1}{3} \, \frac{\mathsf{q}(v_0)}{(v_0)} \, \frac{\mathsf{f}(v_0)}{(v_0)} \, \frac{\mathsf{f}(v_0)}{(v_0)} \, ^2 + \frac{1}{6} \, \frac{\mathsf{f}(v_0)}{(v_0)} \, ^2 + \frac{1}{2} \, \frac{\mathsf{f}(v_0)}{(v_0)} \, ^2 + \frac{1}{2} \, \frac{\mathsf{q}(v_0)}{(v_0)} \, ^2 + \frac{\mathsf$$

From the foregoing computations we also derive that

$$MI = \Theta_0 2 Q_k C_0 + k_0 Q_k^2 C_0 = 6 b^3 k_0 (Q_v^2 W(v_0))^2$$

Recall from Proposition 2 that in the scalar case the signs of the sign by the sign of so that we are interested in the sign of. We stress moreover that this sign may be determined by considering a second-order polynomial in the $\operatorname{unk}_{0}^{2}$ other varies in (0,1), with coe cients depending on.

We leave this general discussion to the reader and focus now on the most classical case when is constant. To begin, note that for the 'genuine' Korteweg-de Vries equation, is cubic and is constant so that bot \mathbf{a}_0 and \mathbf{b}_{MI} are positive. Likewise, when's constant, we have

when either $f({}^{O}(\mathbb{V}_{O}) \in O$ and $f({}^{OO}(\mathbb{V}_{O}) = O)$ or $f({}^{OO}(\mathbb{V}_{O}) < O$, \mathbf{a}_{O} and \mathbf{b}_{MI} are positive;

when $f^{OQ}(V_0) = 0$ and $f^{OO}(V_0) < 0$, a_0 and b_{MI} are negative;

when $f^{00}(V_0) \in O$ and $f^{00}(V_0) < O$, the common sign of a_0 and b_{MI} depends on the harmonic wavenumber, modulational instability occurring for wavenumbers k_0 larger than the critical wavenumber

$$k_c(v_0) := p \frac{1}{3} \frac{j f^{oo}(v_0)j}{(v_0)j f^{oo}(v_0)j} :$$

It is worth pointing out that the general case wisearbitrary is richer and that there are situations when two critical wavenumbers appear in the analysis.

A.2 The system case

As a preliminary to computations in the system case, we recall that

b (v)
$$g(v; c;) = c v b ;$$

$$W(v; c;) = f(v) \frac{1}{2} (v) (g(v; c; _2))^2 \frac{c}{b} v g(v; c; _2) \qquad (v; g(v; c; _2));$$

so that

and

In particular, it follows recursively that for 2, @, $g(v; c; _2)$ and @, $W(v; c; _)$ may be written as functions w, $g(v; c; _2)$ and @, $g(v; c; _)$, independently of and c. We also observe, essentially as in the proof of Corollary 5, that

$$tr(B r_U^2 H((v;g(v;c;));O) + cI_N) = 2b(v)@_vg(v;c;_2);$$

 $det(B r_U^2 H((v;g(v;c;));O) + cI_N) = b^2(v)@_v^2 W(v;c;_2):$

Now we point out that $(k_0; U_0)$ is de ned by

$$\det(B r_{U}^{2} H(U_{O}; O) + c_{O}(k_{O}; U_{O}) I_{N}) = b^{2} (v_{O}) (2)^{2} k_{O}^{2} (v_{O})$$

more explicitly written as

$$(c_0(k_0; U_0))^2 + c_0(k_0; U_0) tr(B r_0^2 H(U_0; O)) + det(B r_0^2 H(U_0; O)) = b^2 (v_0) (2)^2 k_0^2 (v_0)$$

and that this de nition makes sense if and only if

$$k_0^2 \quad \frac{\det(\beta \ r \ _0^2 \ H \ (U_0; O)) \quad \frac{1}{4}(tr(\beta \ r \ _0^2 \ H \ (U_0; O)))^2}{b^2 \ (v_0) \ (2\)^2 \ (v_0)} \ = \quad \frac{f^0(v_0) + \frac{1}{2} \ o(v_0) + \frac{1}{2} \ o(v_0) + \frac{1}{2} \ o(v_0)}{(2\)^2 \ (v_0)} :$$

Yet the latter prescribes a minimal value knownly if $f^0(v_0) + \frac{1}{2} o^0(v_0) u_0^2 < 0$, that is, only if the corresponding dispersionless system already fails to be hyperbolic. Moreover when the inequality oko is strictly satis ed there are actually two possible values for $c_0(k_0; U_0)$. This de nes two branches for and henceforth we follow one such branch.

By di erentiating the relation de ning with respect thowe derive

(where again here and from now on we omit to mark dependenciand only and W).

At this stage, we could di erentiate with respedt two computer $_{U}$ $c_{0}(k_{0}; U_{0})$ and conclude as in the scalar case. Yet, instead we shall directly use the relatively explicit formula derived in Subsection 4.3. The only missing piece to carry out this task is to extract from [BGMRar] a formula for the coe claptrom Theorem 2 (denoted in [BGMRar]). With notation introduced above,

$$\begin{split} b_0 &:= & \frac{1}{3} \frac{@^3_v W \left(v_0\right)}{(@^2_v W \left(v_0\right))^2} + \frac{1}{@^2_v W \left(v_0\right)} \frac{@_v Y}{Y^0} \\ &= & \frac{1}{3} \frac{@^3_v W \left(v_0\right)}{(@^2_v W \left(v_0\right))^2} + \frac{1}{@^2_v W \left(v_0\right)} \frac{1}{2} \frac{{}^0_v (v_0)}{(v_0)} & \frac{1}{6} \frac{@^3_v W \left(v_0\right)}{@^3_v W \left(v_0\right)} \\ &= & \frac{1}{2} \frac{1}{@^3_v W \left(v_0\right)} & \frac{{}^0_v W \left(v_0\right)}{(v_0)} & \frac{{}^0_v W \left(v_0\right)}{@^3_v W \left(v_0\right)} & \vdots \end{split}$$

Now with notation from Subsection 4.3

thus at the harmonic limit

$$\begin{split} & @^{2}H = \frac{k_{0}^{2}}{c_{0}^{2}W_{0}^{2}} \ a_{0} \ x_{0}^{T}(\ _{0})^{-1}x_{0} \\ & = \frac{\frac{1}{4}b^{2}k_{0}^{2}}{c_{0}^{2}W(c_{0}^{2}g)^{2}} \ -\frac{0}{2} \ \frac{1}{2} \ -\frac{0}{2} \ (c_{0}^{2}W)^{2} \ -c_{0}^{3}W c_{0}^{2}W \\ & \qquad \qquad \frac{1}{2}c_{0}^{4}W c_{0}^{2}W + \frac{5}{6} c_{0}^{3}W^{2} \ -c_{0}^{2}W c_{0}^{3}W^{2} + (c_{0}^{2}W) (c_{0}^{2}g)^{2} \\ & = \frac{\frac{1}{4}b^{2}k_{0}^{2}}{c_{0}^{2}W(c_{0}^{2}g)^{2}} \ \frac{1}{2}c_{0}^{4}W c_{0}^{2}W \ \frac{1}{6} c_{0}^{3}W^{2} + -c_{0}^{3}W c_{0}^{2}W \\ & \qquad \qquad + \frac{0}{2} \ \frac{3}{2} \ -\frac{1}{2}c_{0}^{4}W c_{0}^{2}W^{2} + (c_{0}^{2}W) (c_{0}^{2}g)^{2} : \end{split}$$

To proceed we now consider at the harmonic limit

$$\begin{split} & (@ \ r \ _{M} \ H)^{T} \left(r \ _{M}^{2} \ H \right) \ (@_{k}^{2} \ H) \ B \ ^{1}) \ ^{1} @ \ r \ _{M} \ H \\ & = \ \frac{k_{O}^{2}}{c_{O}^{2} W_{O}^{2}} x_{O}^{T} (\ _{O}) \ ^{1} A_{O} B \ ^{1} \ B \ ^{1} A_{O}^{T} (\ _{O}) \ ^{1} A_{O} B \ ^{1} + \frac{1}{c_{O} W_{O}} B \ ^{1} \ ^{1} \ B \ ^{1} A_{O}^{T} (\ _{O}) \ ^{1} x_{O}$$

and observe that on one hand

and that on the other hand

Thus

$$\begin{split} &(@\ r\ _{M}\ H)^{T}\,(r\ _{M}^{2}\ H\)\ (@^{2}_{K_{0}}^{2}\ H)\ B\ ^{1})\ ^{1}@\ r\ _{M}\ H} \\ &= \frac{b^{2}k_{0}^{2}}{4c_{0}^{3}\ _{0}^{4}(2\ _{0}^{2}+3c_{0}w_{0}^{2})}\ \frac{2c_{0}}{b^{2}}(b_{0}\ _{0}^{2}+c_{0}^{2}\ _{0}w_{0})^{2}\ \frac{4c_{0}^{2}\ _{0}}{b}(b_{0}\ _{0}^{2}+c_{0}^{2}\ _{0}w_{0})\ \frac{c_{0}w_{0}}{b}+\frac{2\frac{2}{6}}{bw_{0}} \\ &+ \frac{4c_{0}^{4}\ _{0}^{2}}{b^{2}}\ \frac{c_{0}w_{0}^{2}}{2}\ \frac{2}{0} \\ &= \frac{k_{0}^{2}}{2c_{0}^{2}w_{0}\ _{0}^{2}(2\ _{0}^{2}+3c_{0}w_{0}^{2})}\ b_{0}^{2}\ _{0}^{2}w_{0}\ \ 4b_{0}c_{0}\ _{0}^{2}\ _{0}\ \ 6c_{0}^{3}\ _{0}^{2}w_{0} \\ &= \frac{\frac{1}{4}b^{2}k_{0}^{2}}{e_{0}g(e_{0}^{2}W)(e_{0}^{2}W+3\ (e_{0}^{2}g)^{2})}\ e_{0}g\ -e_{0}^{2}W\ \ e_{0}^{2}W\ \ e_{0}^{2}W\ \ e_{0}^{2}g(e_{0}^{2}g)^{2} \\ &= \frac{\frac{1}{4}b^{2}k_{0}^{2}}{e_{0}g(e_{0}^{2}W)(e_{0}^{2}W+3\ (e_{0}^{2}g)^{2})}\ e_{0}g(e_{0}^{2}W)^{2}+2e_{0}^{2}W\ e_{0}^{2}W\ \ -e_{0}^{2}g+e_{0}^{2}g\ \\ &= \frac{\frac{1}{4}b^{2}k_{0}^{2}}{e_{0}g(e_{0}^{2}W)(e_{0}^{2}W+3\ (e_{0}^{2}g)^{2})}\ e_{0}g(e_{0}^{2}W)^{2}+2e_{0}^{2}W\ e_{0}^{2}W\ \ e_{0}^{2}g(e_{0}^{2}g)^{2}\ \\ &= \frac{1}{4}b^{2}k_{0}^{2}\ \ e_{0}^{2}g(e_{0}^{2}W)(e_{0}^{2}W+3\ (e_{0}^{2}g)^{2})}\ e_{0}g(e_{0}^{2}W)^{2}+2e_{0}^{2}W\ e_{0}^{2}W\ e_{0}^{2}W\ \ e_{0}^{2}g(e_{0}^{2}g)^{2}\ \\ &= \frac{1}{4}b^{2}k_{0}^{2}\ \ e_{0}^{2}g(e_{0}^{2}W)(e_{0}^{2}W+3\ (e_{0}^{2}g)^{2})}\ e_{0}g(e_{0}^{2}W)^{2}+2e_{0}^{2}W\ e_{0}^{2}W\ e_{0}^{2}W\ \ e_{0}^{2}g(e_{0}^{2}g)^{2}\ \\ &= \frac{1}{4}b^{2}k_{0}^{2}\ \ e_{0}^{2}g(e_{0}^{2}W)(e_{0}^{2}W+3\ \ e_{0}^{2}g(e_{0}^{2}W)^{2}+2e_{0}^{2}W\ e_{0}^{2}W\ e_{0}^{2}W\ e_{0}^{2}g(e_{0}^{2}g)^{2}\ \\ &= \frac{1}{4}b^{2}k_{0}^{2}\ \ e_{0}^{2}W\ e_{0}^{2}g(e_{0}^{2}W)^{2}+2e_{0}^{2}W\ e_{0}^{2}W\ e_{0}^{2}W\ e_{0}^{2}G(e_{0}^{2}g)^{2}\ \ e_{0}^{2}W\ e_{0}^{2}G(e_{0}^{2}W)^{2}+2e_{0}^{2}W\ e_{0}^{2}W\ e_{0}^{2}W\ e_{0}^{2}G(e_{0}^{2}W)^{2}+2e_{0}^{2}W\ e_{0}^{2}W\ e_{0}^{2}W\ e_{0}^{2}G(e_{0}^{2}W)^{2}+2e_{0}^{2}W\ e_{0}^{2}W\ e_{0}^{2$$

Finally

$$\begin{split} \mathbf{a}_0 &= \ \mathscr{C}^2 \mathbf{H} \quad (\mathscr{C}_{\mathsf{M}} \ \mathsf{H})^\mathsf{T} \, (\mathsf{r}_{2\mathsf{M}}^2 \, \mathsf{H} \quad (\mathscr{C}_{\mathsf{k}}^2 \, \, \mathsf{H}) \, \mathsf{B}^{-1})^{-1} \, \mathsf{C}_{\mathsf{M}} \, \mathsf{H} \\ &= \frac{\frac{1}{4} \mathsf{D}^2 \mathsf{K}_0^2}{(\mathscr{C}_{\mathsf{Q}}^2 \mathsf{Q}^2 \mathsf{W}) (\mathscr{C}_{\mathsf{Q}}^2 \mathsf{W} + 3 \ (\mathscr{C}_{\mathsf{Q}}^2)^2)} \quad (\mathscr{C}_{\mathsf{Q}}^2 \mathsf{Q}^2)^2 (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 \\ &\quad + 2 \mathscr{C}_{\mathsf{Q}}^3 \mathsf{W} \, \mathscr{C}_{\mathsf{Q}}^3 \mathsf{W} \, (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{Q}) - \mathscr{C}_{\mathsf{Q}}^3 \mathsf{Q} + \mathscr{C}_{\mathsf{Q}}^3 \mathsf{Q} \\ &\quad + (\mathscr{C}_{\mathsf{Q}}^2 \mathsf{W})^2 \, \mathscr{C}_{\mathsf{Q}}^3 \, \mathsf{Q} - \mathscr{C}_{\mathsf{Q}}^3 \mathsf{Q} \, 2 - \mathscr{C}_{\mathsf{Q}}^3 \mathsf{Q} \, 3 \mathscr{C}_{\mathsf{Q}}^3 \mathsf{W}^{-2} (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{Q})^2 (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{Q})^2 \\ &\quad + (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W} + 3 \ (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{Q}^2) \, \frac{1}{2} \mathscr{C}_{\mathsf{Q}}^4 \mathsf{W} \, \mathscr{C}_{\mathsf{Q}}^3 \mathsf{W} \, \frac{1}{6} \, \mathscr{C}_{\mathsf{Q}}^3 \mathsf{W} \, \mathscr{C}_{\mathsf{Q}}^2 \mathsf{W} + - \mathscr{C}_{\mathsf{Q}}^3 \mathsf{W} \, \mathscr{C}_{\mathsf{Q}}^3 \mathsf{W} \\ &\quad + - \mathscr{C}_{\mathsf{Q}}^3 \, \frac{3}{2} \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 + (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 + (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 \\ &\quad = \frac{\frac{1}{4} \mathsf{D}^2 \mathsf{K}_0^2}{(\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W}) (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W} + 3 \ (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{Q})^2)} \, \frac{1}{2} \mathscr{C}_{\mathsf{Q}}^4 \mathsf{W} \, \mathscr{C}_{\mathsf{Q}}^3 \mathsf{W} \, \mathscr{C}_{\mathsf{Q}}^3 \mathsf{W} + (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 \\ &\quad + - \mathscr{C}_{\mathsf{Q}}^3 \, \frac{3}{2} \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \\ &\quad + - \mathscr{C}_{\mathsf{Q}}^3 \, \frac{3}{2} \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \\ &\quad + (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 \, (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 \, 3 - \mathscr{C}_{\mathsf{Q}}^3 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \\ &\quad + (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 \, (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \\ &\quad + (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \\ &\quad + (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \\ &\quad + (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \\ &\quad + (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \\ &\quad + (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \, - (\mathscr{C}_{\mathsf{Q}^3 \mathsf{W})^3 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \\ &\quad + (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^2 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \, - (\mathscr{C}_{\mathsf{Q}^3 \mathsf{W})^3 \, - (\mathscr{C}_{\mathsf{Q}^3 \mathsf{W})^3 \, - (\mathscr{C}_{\mathsf{Q}}^3 \mathsf{W})^3 \, - (\mathscr{C}_{\mathsf{Q}^3 \mathsf{W})^3 \, -$$

and

$$\begin{split} &\frac{4 \ (@,g)^5}{b^3k_0} \frac{@_v^2W + 3 \ (@,g)^2}{@_v^2W + 3 \ (@,g)^2} \quad \text{MI} \\ &= \quad \frac{1}{2} @_v^4W \ @_v^2W \ (@_v^2W + 3 \ (@,g)^2) \\ &\quad \frac{1}{6} \ @_v^3W \ ^2 \ (@_v^2W \ 3 \ (@,g)^2) + @_v^3W \ @_v^2W \ - (@_v^2W + \ (@,g)^2) + 2 \ (@,g) @_v^2g \\ &\quad + \ - \frac{00}{3} \ \frac{3}{2} \ - \frac{1}{3} \ (@_v^2W)^3 \\ &\quad + \ (@_v^2W)^2 \ (@,g)^2 \ 3 - \frac{7}{2} \ - \frac{0}{3} \ 2 - \frac{0}{3} \ (@,g)^2 \ ; \end{split}$$

Recall that is of the sign $\mathbf{w}f_0 = 2 @_{\mathbf{g}} = \mathbf{b}$ so that this is the sign $\mathbf{w}f_0 = \mathbf{b}$ hence of the quantity written above, that matters here. We observe that in order to write this

criterion directly in terms of; (U₀), one may use that

$$e_{V}^{2}W(V_{0}) = (2)^{2}k_{0}^{2}(V_{0});$$
 $e_{V}g(V_{0}) = p \frac{1}{(V_{0})}q \frac{e_{V}^{2}H(U_{0}; 0) + (2)^{2}k_{0}^{2}(V_{0})}{e_{V}^{2}H(U_{0}; 0) + (2)^{2}k_{0}^{2}(V_{0})}$

with the sign choice corresponding to the choice of a brack(k_0 fbr $_0$) and that all other quantities have already been expressed in terbhsamfd @, $g(v_0)$. Note however that $since g(v_0)$, thus c_0 , is not a polynomial function but the range of possibilities is significantly harder to analyze in terms k_0 f U(0) than in the scalar case. It may be preferable instead to express the criterion in terbhs; $g(g(v_0))$.

Alternatively, since the general computations are somewhat tedious, from now on we shall rather make the extra assumption, satis ed by the most standard cases that is a ne. This ensures that the expression to study is indeed a polynomial with coe cients depending out o. In this direction, note that in this case

$$\begin{aligned} &(@,g(v_0))^2 = f^{0}(v_0) + @_v^2W(v_0); \\ &@_v^2g(v_0) = 2\frac{(v_0)}{(v_0)} @_vg(v_0); \\ &@_v^3W(v_0) = f^{0}(v_0) 3\frac{(v_0)}{(v_0)} (v_0)(@_vg(v_0))^2; \\ &@_v^4W(v_0) = f^{00}(v_0) + 12\frac{(v_0)}{(v_0)}^2 (v_0)(@_vg(v_0))^2; \end{aligned}$$

Thus under the same assumption the range of admissible parameters is described by

$$\begin{array}{lll} & \overset{\text{\tiny 4}}{\text{\tiny 4}} \overset{\text{\tiny 6}}{\text{\tiny 9}} \overset{\text{\tiny 4}}{\text{\tiny 4}} \overset{\text{\tiny 4}}{\text{\tiny 4}} \overset{\text{\tiny 4}}{\text{\tiny 6}} \overset{\text{\tiny 4}}{\text{\tiny 4}} \overset{\text{\tiny 4}}{\text{\tiny 4}} \overset{\text{\tiny 4}}{\text{\tiny 6}} \overset{\text{\tiny 4}}{\text{\tiny 4}} \overset{\text{\tiny 4}}} \overset{\text{\tiny 4}}{\text{\tiny 4}} \overset{\text{\tiny 4}}{\text{\tiny 4}}} \overset{\text{\tiny 4}}{\text{\tiny 4}} \overset{\text{\tiny 4}}{\text{\tiny 4}} \overset{\text{\tiny 4}}{\text{\tiny 4}}} \overset{\text{\tiny 4}}{\text{\tiny 4}} \overset{\text{\tiny 4}}} \overset{\text{\tiny 4}}{\text{\tiny 4}} \overset{\text{\tiny 4}}} \overset{\text{\tiny 4}}{\text{\tiny 4}} \overset{\text{\tiny 4}}$$

Recall that ${}^{2}_{V}W(v_{0}) = (v_{0})(2)^{2}k_{0}^{2}$ so that the latter expression is indeed a third-order polynomial expression i k_{0}^{2} with coe cients depending v_{0} , k_{0}^{2} being allowed to vary in $(max(f_{0}, f_{0})=(v_{0})(2)^{2})g)$; 1) and that this is negativity of the expression that yields modulational instability.

Note that if one specializes to the cases arising from the hydrodynamic formulation of a nonlinear Schodinger equation (see [BG13] for instance)

$$i@_{x} = @_{x}^{2} + f^{0}(j j^{2})$$
;

then = Id and is given by (v) = 1 = (4v) so that the foregoing expression is reduced $to v_0^2$ times the second-order polynomial

$$\begin{split} &(\mathscr{Q}^{2}_{v}W)^{2} \quad 4v_{0}^{2}f^{00} + 8v_{0}^{1}f^{000} 2f^{0000} \\ &+ \mathscr{Q}^{2}_{v}W \quad 9v_{0}^{2}(f^{0})^{2} + 10v_{0}^{1}f^{00}f^{000} \frac{1}{3}(f^{0})^{2} + \frac{3}{2}f^{00}f^{0000} \\ &+ \frac{1}{2}f^{00}f^{000} 3v_{0}^{1}f^{000} : \end{split}$$

We remind the reader that $(V_0) < 0$ is already known to yield modulational instability through non hyperbolicity of the dispersionless system. We observe furthermore that in the case under consideration where $(V_0) > 0$, $(V_0) = 0$ and $(V_0) = 0$ then any $(V_0) = 0$ is admissible and no modulational instability occurs. In particular for the hydrodynamic formulations of cubic Soldinger equations, that is, where an a ne function, modulational instability is completely decided by the sign (V_0) independently of (V_0) , that is, it is driven by the focusing/defocusing nature of the equation.

Going back to the general case (whenarbitrary and is a ne), we stress, as in Remark 4, the consistency of the foregoing computations with the Eulerian/mass Lagrangian conjugation (see [BG13, BGNR14]). To be more explicit, we denote with subscripts and $_{\rm L}$ quantities corresponding to each formulation. First we obserbe $_{\rm L}$ and $_{\rm L}$ 0. Moreover

$$f_L(v) = v f_E \frac{1}{v}$$
; $L(v) = \frac{1}{v^5} E \frac{1}{v}$

and at the harmonic limit

$$(v_L)_O = \frac{1}{(v_E)_O};$$
 $(k_L)_O = \frac{(k_E)_O}{(v_E)_O}:$

Our observation is that when going from mass Lagrangian to Eulerian formulations the third-order polynomial is simply multiplied by $(6)^{-11}$.

References

- [BG13] S. Benzoni Gavage. Planar traveling waves in capillary uidiserential Integral Equation \$26(3-4):433{478, 2013.
- [BGMR16] S. Benzoni-Gavage, C. Mietka, and L. M. Rodrigues. Co-periodic stability of periodic waves in some Hamiltonian PDEsonlinearity 29(11):3241, 2016.
- [BGMRar] S. Benzoni-Gavage, C. Mietka, and L. M. Rodrigues. Stability of periodic waves in Hamiltonian PDEs of either long wavelength or small amplitude. Indiana Univ. Math. J., to appear.
- [BGNR13] S. Benzoni-Gavage, P. Noble, and L. M. Rodrigues. Stability of periodic waves in Hamiltonian PDEs. InfourneesEquations aux derivees partielles number 2, pages 1{22. Biarritz, 2013.
- [BGNR14] S. Benzoni-Gavage, P. Noble, and L. M. Rodrigues. Slow modulations of periodic waves in Hamiltonian PDEs, with application to capillary ulds. Nonlinear Sci, 24(4):711{768, 2014.

- [BT13] M. Bertola and A. Tovbis. Universality for the focusing nonlinear sictorier equation at the gradient catastrophe point: rational breathers and poles of the tritronque solution to Painleve IComm. Pure Appl. Math. 66(5):678(752, 2013.
- [BB05] S. Bianchini and A. Bressan. Vanishing viscosity solutions of nonlinear hyperbolic systems. of Math. (2)161(1):223{342, 2005.
- [BreOO] A. BressanHyperbolic systems of conservation, landsme 20 of Oxford Lecture Series in Mathematics and its Application University Press, Oxford, 2000. The one-dimensional Cauchy problem.
- [Bri17] T. J. Bridges.Symmetry, phase modulation and nonlinear waxed me 31 of Cambridge Monographs on Applied and Computational Mathematics bridge University Press, Cambridge, 2017.
- [CGO9] T. Claeys and T. Grava. Universality of the break-up pro le for the KdV equation in the small dispersion limit using the Riemann-Hilbert approach. Comm. Math. Phys.286(3):979{1009, 2009.
- [CG12] T. Claeys and T. Grava. The KdV hierarchy: universality and a Painleve transcendent Math. Res. Not. IMRN (22):5063 (5099, 2012.
- [Col51] J. D. Cole. On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9:225{236, 1951.
- [DVZ97] P. Deift, S. Venakides, and X. Zhou. New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems. Internat. Math. Res. Notice(6):286(299, 1997.
- [DubO6] B. Dubrovin. On Hamiltonian perturbations of hyperbolic systems of conservation laws. II. Universality of critical behavio@pmm. Math. Phys. 267(1):117{139, 2006.
- [DMN76] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov. Nonlinear equations of Korteweg-de Vries type, nite-band linear operators and Abelian varieties. Uspehi Mat. Nauk31(1(187)):55{136, 1976.
- [DN74] B. A. Dubrovin and S. P. Novikov. A periodic problem for the Korteweg-de Vries and Sturm-Liouville equations. Their connection with algebraic geometry. Dokl. Akad. Nauk SSSR 219:531{534, 1974.
- [DN83] B. A. Dubrovin and S. P. Novikov. Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov-Whitham averaging method.Dokl. Akad. Nauk SSSR 270(4):781{785, 1983.

- [DN89] B. A. Dubrovin and S. P. Novikov. Hydrodynamics of weakly deformed soliton lattices. Di erential geometry and Hamiltonian the bypekhi Mat. Nauk 44(6(270)):29{98, 203, 1989.
- [DN93] B. A. Dubrovin and S. P. Novikov. Hydrodynamics of soliton lattices ume 9 of Soviet Scienti c Reviews, Section C: Mathematical Physics Reviews Harwood Academic Publishers GmbH, Yverdon, 1993.
- [EIO5] G. A. El. Resolution of a shock in hyperbolic systems modi ed by weak dispersion. Chaos 15(3):037103, 21, 2005.
- [EH16] G. A. El and M. A. Hoefer. Dispersive shock waves and modulation theory. Phys. D, 333:11{65, 2016.
- [EKVO1] G. A. El, A. L. Krylov, and S. Venakides. Uni ed approach to KdV modulations. Comm. Pure Appl. Math. 54(10):1243(1270, 2001.
- [EJLMO3] N. M. Ercolani, S. Jin, C. D. Levermore, and W. D. MacEvoy, Jr. The zero-dispersion limit for the odd ows in the focusing Zakharov-Shabat hierarchy. Int. Math. Res. Not. (47):2529{2564, 2003.
- [FFM80] H. Flaschka, M. G. Forest, and D. W. McLaughlin. Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries eq**Cation**. Pure Appl. Math, 33(6):739{784, 1980.
- M. G. Forest and J. E. Lee. Geometry and modulation theory for the periodic nonlinear Schodinger equation. In scillation theory, computation, and methods of compensated compactness (Minneapolis, Minn,, VD) 2 of IMA Vol. Math. Appl., pages 35{69. Springer, New York, 1986.
- [GS95] S. L. Gavrilyuk and D. Serre. A model of a plug-chain system near the thermodynamic critical point: connection with the Korteweg theory of capillarity and modulation equations. Waves in liquid/gas and liquid/vapour two-phase systems (Kyoto, 19,9%) ume 31 of luid Mech. Appl, pages 419{428. Kluwer Acad. Publ., Dordrecht, 1995.
- [GraO2] T. Grava. Riemann-Hilbert problem for the small dispersion limit of the KdV equation and linear overdetermined systems of Euler-Poisson-Darboux type. Comm. Pure Appl. Math.55(4):395{430, 2002.
- [GraO4] T. Grava. Whitham equations, Bergmann kernel and Lax-Levermore minimizer. Acta Appl. Math. 82(1):1{86, 2004.
- [GTO2] T. Grava and F.-R. Tian. The generation, propagation, and extinction of multiphases in the KdV zero-dispersion limitomm. Pure Appl. Math. 55(12):1569{1639, 2002.

- [GP73] A. V. Gurevich and L. P. Pitaevskii. Nonstationary structure of a collisionless shock wave.Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki5:590{604, 1973.
- [Hoe14] M. A. Hoefer. Shock waves in dispersive Eulerian UidNonlinear Sci., 24(3):525{577, 2014.
- [Hop50] E. Hopf. The partial di erential equati $\mathbf{q}\mathbf{n}$ $\mathbf{u}\mathbf{u}_x = \mathbf{u}_{xx}$. Comm. Pure Appl. Math, 3:201{230, 1950.
- [Jen15] R. Jenkins. Regularization of a sharp shock by the defocusing nonlinear Schrödinger equationNonlinearity 28(7):2131{2180, 2015.
- [JM14] R. Jenkins and K. D. T.-R. McLaughlin. Semiclassical limit of focusing NLS for a family of square barrier initial datamm. Pure Appl. Math.67(2):246{ 320, 2014.
- [JLM99] S. Jin, C. D. Levermore, and D. W. McLaughlin. The semiclassical limit of the defocusing NLS hierarclomm. Pure Appl. Math.52(5):613(654, 1999.
- [JNRZ13] M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun. Nonlocalized modulation of periodic reaction di usion waves: the Whitham equartibn. Ration. Mech. Anal, 207(2):669{692, 2013.
- [JNRZ14] M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun. Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations. Math. 197(1):115{213, 2014.
- [KamOO] A. M. KamchatnovNonlinear periodic waves and their modulations rld Scienti c Publishing Co., Inc., River Edge, NJ, 2000. An introductory course.
- [LL83] P. D. Lax and C. D. Levermore. The small dispersion limit of the Korteweg-de Vries equation. II.Comm. Pure Appl. Math. 36(5):571{593, 1983.
- [Mie17] C. Mietkæ eriodic waves in some Hamiltonian PDEs: stability, modulations and dispersive shockend thesis, Universite de Lyon, 2017.
- [MilO2] P. D. Miller. Asymptotics of semiclassical soliton ensembles: rigorous justi cation of the WKB approximation. Math. Res. Noţ.(8):383{454, 2002.
- [Mil16] P. D. Miller. On the generation of dispersive shock vPahyess.D, 333:66{83, 2016.
- [MW16] P. D. Miller and A. N. Wetzel. The scattering transform for the Benjamin-Ono equation in the small-dispersion limphys. D, 333:185{199, 2016.

- [MX11] P. D. Miller and Z. Xu. On the zero-dispersion limit of the Benjamin-Ono Cauchy problem for positive initial data. Comm. Pure Appl. Math, 64(2):205{ 270, 2011.
- [MX12] P. D. Miller and Z. Xu. The Benjamin-Ono hierarchy with asymptotically re ectionless initial data in the zero-dispersion limit. Commun. Math. Sci, 10(1):117{130, 2012.
- [NR13] P. Noble and L. M. Rodrigues. Whitham's modulation equations and stability of periodic wave solutions of the Korteweg-de Vries-Kuramoto-Sivashinsky equation. Indiana Univ. Math. J., 62(3):753{783, 2013.
- [Ole57] O. A. Olenik. Discontinuous solutions of non-linear di erential equations. Uspehi Mat. Nauk (N.S.) 12(3(75)):3{73, 1957.
- [Pav87] M. V. Pavlov. The nonlinear Schodinger equation and the Bogolyubov-Whitham averaging method. Teoret. Mat. Fiz., 71(3):351{356, 1987.
- [PT07] V. Pierce and F.-R. Tian. Large time behavior of the zero dispersion limit of the fth order KdV equation. Dyn. Partial Di er. Equ., 4(1):87{109, 2007.
- [Rod13] L. M. Rodrigues. Asymptotic stability and modulation of periodic wavetrains, general theory & applications to thin Im ows. Habilitation a diriger des recherches, Universite Lyon 1, 2013.
- [Rod18] L. M. Rodrigues. Linear asymptotic stability and modulation behavior near periodic waves of the Korteweg{de Vries equation J. Funct. Anal., 274(9):2553{2605, 2018.
- [Ser99] D. SerreSystems of conservation laws.. 1Cambridge University Press, Cambridge, 1999. Hyperbolicity, entropies, shock waves, Translated from the 1996 French original by I. N. Sneddon.
- [Ser00] D. SerreSystems of conservation laws.. Zambridge University Press, Cambridge, 2000. Geometric structures, oscillations, and initial-boundary value problems, Translated from the 1996 French original by I. N. Sneddon.
- [TVZ04] A. Tovbis, S. Venakides, and X. Zhou. On semiclassical (zero dispersion limit) solutions of the focusing nonlinear Scholinger equation. Comm. Pure Appl. Math., 57(7):877{985, 2004.
- [TVZ06] A. Tovbis, S. Venakides, and X. Zhou. On the long-time limit of semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schringer equation: pure radiation case.Comm. Pure Appl. Math, 59(10):1379{1432, 2006.