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Abstract

This article presents a semi-discrete, multilayer set of equations describing the three-
dimensional motion of an incompressible �uid bounded below by topography and
above by a moving free-surface. This system is a consistent discretisation of the
incompressible Euler equations, valid without assumptions on the slopes of the inter-
faces. Expressed as a set of conservation laws for each layer, the formulation has a
clear physical interpretation and makes a seamless link between the hydrostatic Saint-
Venant equations, dispersive Boussinesq-style models and the incompressible Euler
equations. The associated numerical scheme, based on an approximate vertical pro-
jection and multigrid-accelerated column relaxations, provides accurate and e�cient
solutions for all regimes. The same model can thus be applied to study metre-scale
waves, even beyond breaking, with results closely matching those obtained using
small-scale Euler/Navier�Stokes models, and coastal or global scale dispersive waves,
with an accuracy and e�ciency comparable to extended Boussinesq wave models. The
implementation is adaptive, parallel and open source as part of the Basilisk framework
and the documented source codes su�cient to reproduce all results and �gures are
provided.

Keywords: 3D incompressible Euler; free-surface; approximate projection; adaptive; wave breaking;

Boussinesq

1 Introduction

Modelling material motion as the interaction between layers of (possibly di�erent) mater-
ials is common in solid mechanics, �uid mechanics and geophysical �uid dynamics. This
concept is useful when the system is anisotropic, as layers allow both a simple description
of the geometry and motion of interfaces, and simpli�cation of the terms which become
negligible due to anisotropy.

A typical example of this approach are the �shallow-water equations� which describe
the motion of a single layer bounded vertically by two material interfaces: the bathymetry
and free-surface. They were �rst derived by Saint-Venant using conservation of mass and
momentum in vertical slices and the assumption that the vertical pressure pro�le is essen-
tially hydrostatic. An important limitation of the Saint-Venant equations is that they are
strictly consistent only for a vertically-constant velocity pro�le (a �plug �ow�). Lifting this
limitation requires the ability to describe the vertical velocity pro�le, which can be done
by considering multiple layers.
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Since these additional layers are not generally bounded by material interfaces, their
vertical motion can be chosen freely and does not have to follow vertically-Lagrangian
dynamics. This vertically-Eulerian point of view is dominant amongst the shallow-water
models used to describe oceanic or atmospheric dynamics. It has however the important
drawback of introducing vertical advection terms which break the horizontal/vertical
decoupling due to anisotropy and thus complicate the equations, their physical inter-
pretation and numerical approximation.

The hydrostatic assumption is another obvious limitation of Saint-Venant systems,
which, as a consequence, cannot represent the dispersion of short gravity waves. If this
limitation is lifted, multilayer systems could in principle become consistent with layer
integration of the (incompressible) Euler equations with a free-surface and bathymetry.
The resulting physical, mathematical and numerical model would then be valid without
assumptions on the anisotropy of the �ow, while preserving the ability to remove terms (and
the corresponding numerical code) in anisotropic cases. It would thus provide a seamless
link between the (single layer) Saint-Venant equations and a consistent discretisation of
the incompressible free-surface Euler equations. This would be of considerable practical
interest generally, but in particular for geophysical �ows, since the resulting model hier-
archy would be applicable and e�cient for scales ranging from metres to the global scale.

The goal of this article is to present such a model. We �rst give its formal description
in Section 2 and relate it to existing work in Section 2.1. The associated numerical scheme
is described in Section 3, split into hydrostatic and non-hydrostatic parts, with a particular
emphasis on accurate dispersion relations (Section 3.5). Section 4 discusses several test
cases and applications, for a broad range of spatial scales and with measures of accuracy
and performance.

The source code necessary to reproduce all results and �gures is freely accessible (GPL
license) as part of the Basilisk framework [1].

2 Model equations
We consider n layers of an incompressible (inviscid) �uid bounded vertically by a �xed
bottom topography and a free surface (Figure 1). The properties of each layer are functions
of time and two-dimensional space only. The resulting model is thus semi-discrete i.e.
horizontally continuous and two-dimensional, and vertically discrete.

Figure 1. De�nition of the n layers. hk is the layer thickness, (u; w)k the velocity vector in the
x-z reference frame, �k the non-hydrostatic pressure, ẑk¡1/2 the height of the layer interface and
� the free-surface height. Bold letters are used for vector �elds.
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We propose the following semi-discrete approximation of the incompressible Euler equa-
tions with a free-surface and gravity.

@thk+r � (hu)k = 0; (1)
@t(hu)k+r � (huu)k = ¡g hkr�¡r(h�)k+ [�rẑ]k; (2)
@t(hw)k+r � (hwu)k = ¡[�]k; (3)

r � (hu)k+ [w¡u �rẑ]k = 0; (4)

with k the index of the layer, hk its thickness, uk;wk the horizontal and vertical components
of the velocity, g the acceleration of gravity, �k the non-hydrostatic pressure (divided by
the �uid density),

� � zb+
X
k

hk; (5)

the free-surface height, with zb the height of the bottom topography,

ẑk+1/2 � zb+
X
l=0

k

hl; (6)

the height of each layer interface (see Figure 1) and

[f ]k � fk+1/2¡ fk¡1/2; (7)

the �vertical di�erence� operator. Note that since all �elds are two-dimensional, so is the
r operator.

Equation (1) is the layer thickness evolution equation, equations (2) and (3) express
conservation of the horizontal and vertical momentum, and (4) is the semi-discrete con-
tinuity equation (or semi-discrete incompressibility condition) which expresses volume (and
thus mass) conservation.

The system must then be closed by assuming relations between the layer-averaged
values �k, wk and the layer-interface values �k+1/2, wk+1/2. We will outline a strategy to
optimise this choice in section 3:5.

Note that the formal derivation of this system is not entirely trivial, in particular for the
�slope terms�rẑ in (2) and (4). We give further details on their derivation in Appendix A.

Remark 1. One may feel that equations (1) and (4) are redundant (since they appear to
both express volume conservation). If this was the case, the system would not be closed
since there are four unknowns per layer (h, u, w and �). Note however that there is no
vertical advection term (of the form @z(huw)k) in either equations (2) or (3). This is of
course because we have assumed that the layer interfaces (as de�ned by ẑk+1/2) are material
surfaces which follow the vertical motion of the �uid i.e. the discretisation is Lagrangian
vertically. This implies a kinematic condition, relating ẑ and w, which must be added to
(2) and (3). This condition can be written

w = @tẑ+u �rẑ (8)

Using the vertical di�erence operator, the fact that hk=[ẑ]k (from the de�nition (6) of ẑk)
and (4) we get

[w]k = @t[ẑ]k+ [u �rẑ]k;
[w¡u �rẑ]k = @thk;

¡r � (hu)k = @thk;
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which is the layer evolution equation (1). Equation (1) is then equivalent to condition
(8) and comes from the particular choice of a Lagrangian vertical coordinate system. It
does not represent a speci�c physical property of the system (with the exception of the
bottom and top boundary conditions). Equation (4) on the other hand is true irrespective
of the choice of vertical coordinate and is necessary and su�cient to enforce volume/mass
conservation. This point is further discussed in relation to previous work in Section 2.1.

Remark 2. While the evolution equations for h, u and w are obvious, the evolution
equation for � is not. This is classical for incompressible �uids for which the pressure
becomes a gauge �eld used to project the velocity onto the space of divergence-free solutions
[2, 3]. Equation (4) is the equivalent semi-discrete �divergence-free� condition which will
be used to build the Poisson-like equation which � must verify.

Remark 3. Setting �= 0 and dropping the requirement of conservation of the vertical
momentum (equation (3)) gives

@thk+r � (hu)k = 0; (9)
@t(hu)k+r � (huu)k = ¡g hkr�; (10)

r � (hu)k+ [w¡u �rẑ]k = 0; (11)

which are the standard hydrostatic, multilayer Saint-Venant (or stacked shallow-water)
equations. The vertical velocity w becomes a diagnostic variable which can be obtained
from u and h using equation (11). Note that (8) could be used instead, however the
resulting value of w would then not necessarily verify the discrete continuity equation (11).

Remark 4. The system of equations (1), (2), (3) and (4) is consistent even for a single
layer for which it can be re-written

@th+r � (hu) = 0;

@t(hu)+r � (huu) = ¡g hr�¡r(h�)¡ �¡1/2rzb;
@t(hw)+r � (hwu) = �¡1/2; (12)

r � (hu)+w1/2¡u1/2 �r� = 0; (13)

where we have used the free-surface boundary condition �1/2= 0 and bottom boundary
impermeability condition (w ¡ u �rẑ)¡1/2= 0. The system is then closed by assuming
functional relationships between the bottom pressure �¡1/2 and free surface velocity (u1/2;
w1/2) and the �layer-averaged� pressure � and velocity (u; w); the simplest of which could
be �¡1/2= �, (u1/2;w1/2)=(u;w). Better choices are discussed in section 3.5 in the general
multilayer case. For a single layer, they reduce to �¡1/2=
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�, (u1/2;w1/2)= (u;w) for the

staggered scheme of section 3.6.1, and �¡1/2=2�, (u1/2;w1/2)=(u;2w) for the Keller box
scheme of section 3.6.2.

2.1 Related work

2.1.1 Hydrostatic system

The single layer limit of the hydrostatic system (9), (10) and (11) is the classical Saint-
Venant system [4]. Its multilayer generalisation is also well-known and is discussed in many
textbooks on geophysical �uid dynamics, in particular in connection with the theoretical
study of internal wave dynamics, using the two-layer version [5, 6, 7]. From a modelling
perspective, this system is also the basis for isopycnal hydrostatic discretisations of the
equations of oceanic motion [8] or isentropic discretisations of the atmospheric equations
[9, 10].
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Another classical variant of the hydrostatic system (9), (10) and (11) is the corres-
ponding general �quasi Eulerian� vertical discretisation for which the layer positions ẑk+1/2
are diagnosed from the other variables rather than computed as part of the solution (using
equation (9)). In this case, the vertical advection �uxes must be added to equation (10)
and the layer evolution equation (9) is replaced by the evolution equation for the total
depth. Classical examples of this type of discretisation are the z- and �-coordinates models
typically used for ocean modelling [11]: for z-coordinates the layer positions are constant i.e.
the discretisation is strictly Eulerian vertically, while for �-coordinates the layer positions
are proportional to the total depth and thus vary in both space and time (i.e. quasi-
Eulerian).

Interesting overviews of the pros and cons of the purely Lagrangian (i.e. isopycnal) ver-
tical discretisation versus Eulerian or quasi-Eulerian discretisations (z- or �-coordinates)
are given by Gri�es et al. (2000) [11], Adcroft & Hallberg (2006) [12] and Chassignet et al.
(2011) [13]. Either versions of the multilayer hydrostatic equations have also been studied
fairly recently by applied mathematicians in a di�erent context, more closely linked to
hydraulic engineering, seeking to clarify the consistency of shock-like solutions (hydraulic
jumps) in the presence of viscous dissipation [14, 15, 16].

2.1.2 Non-hydrostatic system

The generalisation of the layered equations to include non-hydrostatic e�ects is more
recent. In ocean modelling this e�ort has been driven in particular by the increase in
computing power which allows to resolve spatial scales for which non-hydrostatic e�ects
are not negligible or even dominant. This �convergence of scales� also means that the
approaches developed in scienti�c communities which were formerly interested in di�erent
scales are now also converging.

For example coastal engineers have long been interested in describing oceanic motion
(mostly waves) at scales of order of metres. This motivated some of the earliest devel-
opments in the non-hydrostatic description of the motion of �uid layers, starting from
Boussinesq [17] and much later, Serre (for hydraulic engineering in dams rather than
the ocean) [18], Peregrine [19] and Green and Naghdi [20]. Since then these �extended-
Boussinesq� wave models have known major developments which are summarised in the
interesting review by Brocchini (2013) [21] (see also [22]).

The equations typically used in these models are closely related to the hydrostatic Saint-
Venant system, often with a single layer (see Lynett & Liu (2004) [23] or Chazel et al. (2009)
[24] for multilayer versions), but without the additional vertical momentum or continuity
equations (12) and (13). Rather, the e�ects of the non-hydrostatic pressure are modelled
by including source terms on the right-hand-side of the mass and/or momentum equations
(9) and (10). These terms are typically obtained through asymptotic expansion/truncation
of the Euler velocity potential. While these equations are thus structurally di�erent from
the non-hydrostatic single or multi-layer equations above, a common goal is the accurate
description of short waves and in particular their dispersion relation as well as non-linear
behaviour.

In parallel with these developments, interest in small-scale hydrodynamics with free
surfaces and interfaces also led to extensive work on suitable numerical methods. Key devel-
opments in this area are the invention of the staggered (MAC or C-grid) discretisation and
associated projection method for incompressible �ows. Interestingly these were discovered
independently in di�erent communities by Harlow and Welch (1965) [25] (small-scale free-
surface incompressible �ows) and Arakawa (1966) [26] (large-scale geophysical �ows). This
gap between communities was only closed relatively recently, for example with the work of
Marshall and Adcroft to include non-hydrostatic terms in the MITgcm ocean model, using
the MAC projection scheme within a z-coordinate ocean model [27].
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Also in the late 1990s, coastal engineers started adapting these small-scale non-hydro-
static numerical methods to speci�c aspects of their �eld. Representative examples of this
trend are the work of Casulli [28] and Stelling & Zijlema [29]. Both of these schemes still
use a z-coordinate in the vertical so do not di�er fundamentally from standard MAC/C-
grid incompressible solvers (with a free-surface). Later work by Zijlema & Stelling, however,
generalises the numerical scheme to a � vertical coordinate [30]. The resulting system
of equations is thus related to the semi-discrete system (1), (2), (3) and (4), with the
fundamental di�erence of a quasi-Eulerian treatment of the vertical coordinate.

Larger-scale ocean modellers have also been interested in including non-hydrostatic
e�ects, in particular in the �-coordinate models often used for �regional� ocean studies [31].
These schemes are generally based on the approaches developed by Casulli, Stelling and
Zijlema and the resulting set of equations do not di�er fundamentally.

Non-hydrostatic, vertically-Lagrangian descriptions of the equations of motion are thus
rare, which may be partly due to the confusion between the layer evolution equation and
the continuity equation mentioned in Remark 1 above (see in particular [12] and [32]
for a clari�cation). A notable exception is the article by Vitousek & Fringer (2014) [33]
which presents a mild slope approximation of the non-hydrostatic equations expressed in
isopycnal coordinates. The authors derive an interesting scaling analysis to justify the
validity of the mild slope assumption for the oceanic scales they are interested in. We
will show later that these terms cannot be neglected for typical coastal-engineering-scale
processes, even when the slopes are relatively mild. We will also show how these terms can
be retained while keeping the structure and numerical e�ciency of the simpli�ed system.

In parallel with these developments, the search for e�cient short-wave models applic-
able to coastal engineering led to the idea that these multilayer non-hydrostatic models,
used with as few layers as possible (ideally a single one), could be an e�cient alternative to
Boussinesq-type models. Zijlema and Stelling showed in particular (somewhat empirically)
that a particular version of their numerical scheme had good dispersion properties even for
(very) short waves using only two layers [29, 34]. This led Yamazaki et al. (2008) [35] to
propose a single-layer model similar to the single-layer model in Remark 4 above, with the
notable di�erence of the absence of the convective term in the vertical momentum equation
(12) and neglecting all metric/slope terms (essentially a linearised version). This single-
layer model was also re-derived more recently by Bristeau et al. (2015) [36] who pointed
out that the inclusion of the convective term is necessary for energy consistency.

2.2 Properties

The semi-discrete system (1), (2), (3) and (4) has a number of favourable features. It
only relies on layer-averaging of the incompressible Euler equations, without any other
approximation. In particular it is consistent irrespective of the slope of the layers. The
vertically-Lagrangian discretisation eliminates any numerical vertical di�usion which is
particularly important for long-term integration of ocean models [8]. When using �ux-
based �nite-volume schemes for transport, horizontal momentum as well as tracers are
exactly conserved in each layer. Finally, the main advantage of this system is that it
provides a clear and natural hierarchy of models, of increasing accuracy (and complexity):
single layer Saint-Venant, multilayer (hydrostatic) Saint-Venant, (non-hydrostatic) mul-
tilayer free-surface Euler (and Navier�Stokes).

The drawbacks are few. The most obvious one is the addition of the layer thicknesses as
prognostic variables. The added complexity and computational cost are low however, since
they are passive tracers which will be transported using the same scheme as other tracers.
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The multilayer Saint-Venant system is known to be non-hyperbolic [14] with possibly non-
unique solutions for the layer thicknesses. This is not surprising and re�ects the lack of
physical coupling between layers. This is cured in the non-hydrostatic case, due to the
coupling between layers induced by the elliptic non-hydrostatic pressure, and/or when
using vertical remapping (see section 3.3), due to (numerical) viscous coupling between
layers.

3 Numerical scheme

The numerical scheme is designed in a modular fashion, to match the increasing com-
plexity and accuracy of the successive theoretical approximations. The goal is a numerical
tool where mathematical terms (and the corresponding code), can be added one-by-one
depending on the balance required between accuracy, complexity and numerical e�ciency.

3.1 Hydrostatic scheme

We �rst build a numerical scheme to approximate the multi-layer, hydrostatic system (9),
(10) and (11). This system is an hyperbolic system of conservation laws and is often solved
based on characteristic (approximate) Riemann solutions. This is important in particular
when considering the consistency of shock-like solutions [37, 38]. The resulting numerical
schemes are classical but reasonably complex and expensive. They also have the drawback
that special measures must be taken to guarantee that the trivial �lake-at-rest� solution
is recovered when bathymetry is included [37]. We follow a simpler approach, often taken
when building ocean models, which does not explicitly take into account the existence of
shock-like solutions.

The time integration of (9), (10) and (11) is split into a �rst step where all the conserved
quantities sk are advected according to

hi;k
n+1¡hi;kn

�t
=

F
i¡1/2;k
n+1/2 ¡F

i+1/2;k
n+1/2

�
;

(h s)i;k
n+1¡ (h s)i;kn

�t
=

(s F )i¡1/2;k
n+1/2 ¡ (sF )i+1/2;k

n+1/2

�
;

where si;k is either the horizontal velocity, vertical velocity or any additional tracer and
Fi+1/2;k is the thickness �ux (h u)i+1/2;k, evaluated using the (Lax-Wendro�-like) Bell�
Collela�Glaz (BCG) third-order-upwind advection scheme [39], with a staggered velocity
ui+1/2;k to be de�ned later. Space is discretised in intervals xi+1/2¡xi¡1/2=�. For sim-
plicity, all the conserved variables are collocated and treated as cell-averages over [xi¡1/2;
xi+1/2]. Note that this step is standard and could be performed using a broad range of
advection schemes. Desirable properties include: exact conservation (which is guaranteed
for �ux-based �nite-volume schemes as here), monotonicity/positivity which is necessary
for consistency in particular when �drying� of the layers occur (i.e. hk! 0) (this is guar-
anteed here by upwinding and min-mod limiting).

In a second step, the pressure gradient term (r.h.s. of (10)) is added to the horizontal
momentum, with some care. The free-surface position is �rst calculated as

�i
n+1= zi;b+Hi

n+1 with Hi
n+1=

X
k

hi;k
n+1
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The horizontal staggered acceleration is then obtained as

ai+1/2;k=¡g
�i+1;k¡ �i;k

�
(14)

The staggered velocity/�ux �eld is then computed as

(hu)i+1/2;k
n+1 =

(hu)i+1;k
n+1 +(hu)i;k

n+1

2
+�t (h a)i+1/2;k (15)

where hi+1/2
n+1 is computed using BCG face reconstruction. Note that the robustness of this

step relies on the fact that u and h are collocated and transported using the same advection
scheme. Finally the pressure gradient term is added to velocity as

ui;k
n+1 ui;k

n+1+�t
(h a)i+1/2;k+(h a)i¡1/2;k

hi+1/2;k+hi¡1/2;k
(16)

Since time integration is fully explicit, we can expect that the classical stability condition

�t <
�

gH
p (17)

applies. This scheme is simple, conservative and robust to wetting and drying. We will
also show that it can recover shock-like solutions. It is of course only formally �rst-order
accurate in time and is constrained by the maximum speed of gravity waves. Note however
that it could be replaced by more sophisticated schemes, using for example implicit time
integration [28] or barotropic/baroclinic mode-splitting [40], without a�ecting its articula-
tion with the (viscous, non-hydrostatic etc.) extensions presented later.

3.2 Vertical viscosity

In the case of �ows with large aspect ratios, di�usion is expected to be controlled essentially
by its vertical component which can be added to the momentum equations (2) and (3) as

@t(hu)k+r � (huu)k = ¡g hkr�¡r(h�)k+ [�rẑ]k+ [� @zu]k;

@t(hw)k+r � (hw u)k = ¡[�]k+ [� @zw]k;

with � the �uid kinematic viscosity.
Boundary conditions on the top and bottom layers need to be added to close the system

for the viscous stresses. We chose to impose a Neumann condition on the free-surface i.e.

@zujt=u_ t

and a Navier slip condition on the bottom i.e.

ujb=ub+�b @zujb (18)

The default boundary conditions are free-slip on the free-surface (i.e. u_ t=0) and no-slip
on the bottom (i.e. ub=�b=0).

Note that for practical coastal engineering or ocean modelling applications, vertical
di�usion of (ensemble averaged) momentum usually includes subgrid-scale models of tur-
bulent di�usion [41]. The bottom boundary conditions are also chosen to obtain bottom
�uxes consistent with turbulence modelling assumptions. The formulation above is general
enough to accommodate these turbulence models.
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For stability, we discretise the viscous friction term implicitly as

(huk)
n+1¡ (huk)?
� t

= �

 
uk+1¡uk
hk+1/2

¡ uk¡uk¡1
hk¡1/2

!n+1
This can be expressed as the linear system

Mun+1= rhs;

where M is a tridiagonal matrix. A more detailed description of the general algorithm can
be found in [16] and in the documented source code (http://basilisk.fr/src/layered/
diffusion.h).

3.3 Vertical remapping
Lagrangian methods have the well-known drawback that as times passes discretisation ele-
ments become more and more distorted, up to a point where the results loose consistency.
A solution is to periodically �remap� the solution onto a �clean� discretisation. The quality
of this remapping then largely controls the overall quality of the method. In multiple
dimensions this is not a simple operation, in particular when conservation of the remapped
quantities is required [42]. In the one-dimensional case we are interested in, this is much
simpler and can be done using for example Piecewise Polynomial Reconstruction [43]. In
our implementation we have used the quadratic piecewise remapping of the PPR library
of Engwirda and Kelley (2016, https://github.com/dengwirda/PPR).

The choice of the target remapped discretisation is entirely �exible and could be based
on physical considerations (i.e. the wish to resolve certain features: e.g. boundary layers,
material interfaces etc.) and/or approximation error analysis [44, 45]. For the moment,
we have only applied a simple remapping to ��-coordinates� i.e. equal layer thicknesses
proportional to the local water depth. This remapping is applied at every timestep just
after the advection step of the hydrostatic algorithm.

Note that a subset of the possible remappings can be interpreted as �uxes of the layer-
integrated quantities through the layer interfaces (see [45] for an example). The associated
�remapping� velocity is the time derivative of the (desired) vertical displacement of the
layers. This is in fact a discrete representation of the vertical advection term required
when considering the equations in a moving (vertical) reference frame, and is known as
an Arbitrary Lagrangian�Eulerian (ALE) (vertical) discretisation. We prefer to avoid this
terminology since it is more restrictive than the remapping concept and has historically
caused signi�cant confusion (due to an erroneous interpretation of the physical meaning
of the remapping velocity: it has none in general). See also [32] for a recent discussion.

As noted above, Lagrangian remapping in arbitrary dimensions is complex and the
associated computational cost can be a concern. In the one-dimensional case we are inter-
ested in, remapping can be implemented using exactly the same algorithms as for one-
dimensional vertical advection [45], and more sophisticated techniques (such as [43]) are
also closely related to higher-order Eulerian advection schemes. The computational cost of
one-dimensional remapping should thus be comparable to that of one-dimensional Eulerian
advection.

3.4 Adaptivity and parallelism
The numerical schemes are implemented within the Basilisk framework [1] which provides
transparent quadtree adaptivity and OpenMP/MPI parallelism for Cartesian numerical
schemes. A detailed description is beyond the scope of this paper but we refer the interested
reader to the web site as well as [46, 47].

Numerical scheme 9

http://basilisk.fr/src/layered/diffusion.h
http://basilisk.fr/src/layered/diffusion.h
http://basilisk.fr/src/layered/diffusion.h
http://basilisk.fr/src/layered/diffusion.h
http://basilisk.fr/src/layered/diffusion.h
http://basilisk.fr/src/layered/diffusion.h
http://basilisk.fr/src/layered/diffusion.h
http://basilisk.fr/src/layered/diffusion.h
http://basilisk.fr/src/layered/diffusion.h
https://github.com/dengwirda/PPR
https://github.com/dengwirda/PPR
https://github.com/dengwirda/PPR
https://github.com/dengwirda/PPR
https://github.com/dengwirda/PPR
https://github.com/dengwirda/PPR
https://github.com/dengwirda/PPR


3.5 Generic dispersion analysis

The semi-discrete formulation (1), (2), (3) and (4) is well-suited for a generic study of the
dispersive properties of various choices of vertical discretisations. Using standard linear
perturbation analysis, we look for wave-like solutions of the form

hk = h�k+hk
0 ei(k̂x¡!t);

uk = uk
0 ei(k̂x¡!t);

wk = wk
0 ei(k̂x¡!t);

�k = �k
0 ei(k̂x¡!t);

with ! the frequency, k̂ the wavenumber, h�k the unperturbed layer thicknesses and hk
0 , uk

0 ,
wk
0 and �k vanishingly-small perturbations.
The vertical discretisation scheme essentially amounts to the choice of functional rela-

tionships between the layer interface values �k+1/2, wk+1/2, . . . and the �layer-averaged�
values �k, wk, . . . (as for the single layer model in Remark 4 above).

Figure 2. Conventions used for the indices of vertically staggered �elds, for the generic dispersion
analysis. (left) Staggered vertical discretisation. (right) Keller box scheme.

3.5.1 Staggered vertical discretisation

We �rst consider the simple choice

�k¡1/2 = �k;

wk+1/2 = wk;

which can be interpreted as a vertically-staggered discretisation of the velocity (i.e. pressure
at the centre of the layer and vertical velocity on the layer interface, see Figure 2, left).
The perturbations are then solutions of the linearised version of (1), (2), (3) and (4) (for
a �at bathymetry)

¡!hk0 +h�kuk
0 k̂ = 0; (19)

¡h�kuk0 ! = ¡g k̂ h�k
X

hk
0 ¡h�k k̂ �k0 ; (20)

¡h�kwk0 ! i = �k
0 ¡ �k+10 ; (21)

h�kuk
0 k̂ i+wk

0 ¡wk¡10 = 0 (22)
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The system must be closed with the (linearised) bottom impermeability condition

w¡1
0 = 0;

and a condition for the top pressure �n. With this choice of variable staggering, the top
pressure is above the free surface and we must use an approximation of the free-surface
boundary condition �=0, such as the third-order accurate interpolation (valid for identical
layer depths)

�n =
�n¡2¡ 6 �n¡1

3
(23)

The dispersion relation can then be obtained by considering non-trivial solutions of (19),
(20), (21) and (22) i.e. solutions for which the determinant of the system vanishes. For a
single layer, this gives

!1
2(k̂) = 8 g

h0 k̂2

3h0
2 k̂2+8

(24)

(where we have dropped the � for convenience) and for two layers one �nds

!2
2(k̂) = 8 g

h0h1
2 k̂4+(h1+h0) k̂2

3h0
2h1

2 k̂4+3 (3h0
2+h0h1+h1

2) k̂2+8

The calculation for an increasing number of layers becomes rapidly cumbersome but can
be carried out using a symbolic algebra package. We give explicit formulae for a larger
number of layers in Appendix C. The general form is the rational function

!n
2(k̂) = g

P
i=1
n a2i(hk) k̂

2iP
i=0
n b2i(hk) k̂2i

;

with a2i and b2i polynomial functions of hk.
The discrete dispersion relations above are an approximation of the exact linear dis-

persion relation for waves in arbitrary water depth

!2(k̂) = g k̂ tanh(k̂ h)

It this clear that a larger number of layers should improve the approximation of the
hyperbolic function since the degree of the rational function increases with the number of
layers. The details of this convergence will matter in practice however, and will depend
on the details of the discretisation. The analysis of this convergence is thus a good way of
choosing between di�erent potential schemes.

For example, the single-layer system approximates the hyperbolic function as (according
to (24))

tanh(x) � x
3

8
x2+1

; (25)

which can be compared with the Padé [1/2] approximant

tanh(x) � x
3

9
x2+1

The choice of the second-order top pressure interpolation

�n=¡�n¡1; (26)
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instead of (23) gives a di�erent discrete dispersion relation and the approximation

tanh(x) � x
1

2
x2+1

;

which is obviously less accurate than (25).

3.5.2 Keller box scheme

Stelling and Zijlema (2003) [29] noted that their z-coordinate implementation of the �Keller
box scheme� [48] had much better dispersion characteristics than another implementation
(similar to the one above but with a di�erent treatment of boundary conditions). Zhu et
al. (2014) [34] more recently derived an analytical dispersion relation for this scheme and
proposed optimised layer thicknesses. We repeat brie�y this analysis here, but using the
simpler framework presented above.

The box scheme relies on a collocated discretisation of the vertical velocity w and
non-hydrostatic pressure �, both de�ned on the layer interfaces (see Figure 2, right). The
layer-averaged horizontal pressure gradient required in the horizontal momentum equation
(2) is then obtained by averaging the corresponding layer-interface gradients. In a similar
manner, the evolution equation (3) for the vertical momentum in each layer is written as the
average of the evolution equations for the layer-interface momenta (see Section 3.6.2 for a
detailed description). Using the notations above, the corresponding linearised perturbation
system can be written

¡!hk0 +h�kuk
0 k̂ = 0;

¡h�kuk0 ! = ¡g k̂ h�k
X

hk
0 ¡h�k k̂

�k+1
0 + �k

0

2
;

¡h�k
wk
0 +wk¡1

0

2
! i = �k

0 ¡ �k+10 ;

h�kuk
0 k̂ i+wk

0 ¡wk¡10 = 0;

with the (linearised) bottom impermeability condition

w¡1
0 = 0;

and the (exact) top pressure boundary condition

�n
0 = 0

Computing the determinant then gives the dispersion relations (see Appendix C). For a
single layer, the corresponding approximation is

tanh(x) � x
1

4
x2+1

(27)

which seems worse than (25) (using the Padé approximant as reference).
To better appreciate the di�erence between schemes, we display in Figure 3 the ratio

of the discrete phase velocity c=!/ k̂ to the exact Stokes phase velocity

ce =
g

k̂
tanh(k̂ h)

r
as functions of k̂ h. We have also included the dispersion relations of the extended
Boussinesq two-layer model of Chazel et al. (2009) [24] and of the optimised one-para-
meter Serre�Green�Naghdi model [49].
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Figure 3. Ratio of the discrete phase velocity to the exact phase velocity for a range of numerical
schemes and number of layers. The symbols indicate the number of layers: �, one layer; �, two
layers; M, three layers; r, four layers.

The two-layer model of Chazel et al. (2009) has excellent dispersion properties, which
is expected since Boussinesq models are designed based on their dispersion characteristics.
The range of validity of the staggered schemes of section 3.5.1 and of the Keller box
scheme both increase with an increasing number of layers, as expected. Using the third-
order free-surface pressure condition (23) instead of the second-order condition (26) also
signi�cantly improves the range of validity of the staggered scheme. The range of validity
of the Keller box scheme is however much broader than that of the staggered schemes. One
can note in particular that the two-layers Keller scheme is superior to the single-parameter
optimised Green-Naghdi model and that the three- and four-layers (uniform thicknesses)
Keller schemes are competitive with the two-layer Boussinesq model of Chazel et al. (2009).
Using an �optimal� layer thickness distribution of 68%�26.5%�5.5%, as in [34], gives a three-
layer Keller model with less than 1% error for a very broad range of k̂ h.

It is also interesting to note that the one-layer Keller box scheme, with a dispersion
relying on approximation (27), has a much broader range of validity than the one-layer,
third-order, staggered scheme, even though (25) is closer to the Padé approximant. Of
course, this increase in the range of validity comes at the expense of a lesser accuracy for
small values of k̂ h.

3.6 Non-hydrostatic scheme

The non-hydrostatic extension is derived from the classical �projection method� [2, 3].
Note that when using Eulerian discretisations and in particular z-coordinates, the natural
projection scheme is a straightforward extension of the staggered MAC or C-grid scheme,
applied to the vertical coordinate [27] (also known as a �Lorenz grid� in atmospheric models
[50]). This corresponds to the linearised scheme studied in section 3.5.1 and Figure 2 (left).
For general coordinates, including the Lagrangian formulation we use here, the slope of
the layers must be taken into account.
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3.6.1 Staggered vertical discretisation

To illustrate the principle of the method, we start with the simpler staggered vertical
discretisation of section 3.5.1. Using the semi-discrete notation introduced above, the non-
hydrostatic scheme can be derived as the following extension of the hydrostatic scheme:

1. Compute hk
n+1, (hu)k?, (hw)k? using hk

n, uk
n, wk

n and the hydrostatic scheme described
in the previous section. Note that the vertical momentum (hw) has been added to
the list of advected tracers. The ? denotes intermediate values which do not include
the hydrostatic and non-hydrostatic pressure terms.

2. Project the (huk? ; hwk?) vector using �k so that the incompressibility condition (4)
is veri�ed. Following (2) and (3), the momentum at n+1 is obtained as

(hu)k
n+1 = (hu)k

? ¡�t (@x(h�)¡ [�@xẑ])k; (28)
(hw)k

n+1 = (hw)k
?¡�t [�]k: (29)

Replacing the corresponding expressions in (4) then gives the Poisson-like equation

@x (@x(h�)¡ [�@xẑ])k+�
[�]
h
¡
�
@x(h�)¡ [�@xẑ]

h

�
@xẑ

�
k

=
@x(hu?)k+ [w?¡u? @xẑ]k

�t
; (30)

with uk
? computed using (15), wk? = (h w)k

? /hk
n+1 and where the terms in colour

depend on the slope of the layers. If these terms are neglected, the standard struc-
ture of a discrete Poisson problem is recovered (the �rst term in the l.h.s. is the
horizontal second derivative, the second term is the vertical second derivative and
the r.h.s. is the divergence of the intermediate velocity �eld).

3. Use (28) and (29) to compute the �nal values of (h u)k
n+1 and (hw)k

n+1 (see also
Appendix B).

As for any incompressible �ow solver, the overall e�ciency of the scheme depends on the
linear solver used to invert the Poisson-like system (30). We use the generic geometric
multigrid solver built into Basilisk, which also works in parallel and on quadtree-adaptive
grids. A more detailed description of this solver is given in [51] where it is used to invert
the pseudo-elliptic Green�Naghdi operator. To improve robustness and convergence rate,
column relaxation is used in the vertical direction: in the discretised version of the l.h.s.
of (30), the o�-diagonal values of � in the horizontal directions, �i+1;k and �i¡1;k are
supposed to be known, which then gives a linear, tri-diagonal system of equations for �i;k
which can be inverted e�ciently using Thomas algorithm. This vertical column relaxation
is combined with multigrid acceleration to obtain the solution to within a speci�ed toler-
ance. The value of this tolerance is also important for e�ciency. A good balance between
accuracy and e�ciency is obtained using the following criterion

jhk (r � (hu)k+ [w¡u �rẑ]k)j1
jhkj12

�t < �; (31)

where the max norm jj1 and average jj1 are computed over all layers and all elements.
The tolerance � can be interpreted as the maximum relative change of volume allowed for
any discretisation element during one timestep. Unless otherwise indicated it will be set
to 10¡3 in the numerical applications below.
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This scheme works well in practice but is reasonably complicated to implement, in
particular due to the slope terms in (30). Its extension to the more complicated Keller
box scheme is thus not straightforward. Thankfully all the slope terms in (30) are not
equally important. The terms in blue and green in the l.h.s. are in particular O(�t) less
important than the term in red in the r.h.s. Indeed neglecting them would only contribute
to increasing the existing O(�t) time-splitting error of the projection scheme. Furthermore
the blue term depends on the vertical di�erence of the layer slopes (i.e. a second-derivative),
while the green terms depend on even higher-order derivatives.

To test these assumptions, we compared the results obtained using the full scheme and
a simpli�ed scheme neglecting the slope terms (green and blue) in (30), for all the test
cases presented in section 4 and found negligible di�erences. As expected, ignoring the blue
term has the largest (but still negligible) impact. Note that all other slope terms must be
retained, in particular in the r.h.s. of (30) and in (28).

Remark 5. It is important to note that this approximation is possible only because of the
choice of a Lagrangian vertical discretisation. In the case of an Eulerian or quasi-Eulerian
discretisation the vertical velocity is used to transport tracers in the vertical direction.
Volume, mass and tracer conservation at the discrete level thus rely on verifying exactly
the discrete non-divergence condition. The corresponding discrete Laplacian operator, used
in the l.h.s. of the Poisson equation, must then be the exact composition of the discrete
divergence and discrete gradient operators and not just an approximation.

For the Lagrangian vertical discretisation on the other hand, volume, mass and tracer
conservation do not depend on the vertical velocity �eld (which is not used for transport)
but is guaranteed by the consistent advection of the layer thicknesses and of the tracers.
Using an �approximate vertical projection� may thus a�ect the accuracy of the non-hydro-
static terms but not the conservation properties.

3.6.2 Keller box scheme

We have seen in section 3.5 that the staggered vertical scheme is not competitive with
extended Boussinesq models, even when a (prohibitively) large number of layers is used.
This motivates the generalisation of the non-hydrostatic algorithm to the Keller scheme.
The horizontal momentum and vertical velocity are now given by

(hu)k
n+1 = (hu)k

? ¡�t (@x(h�)¡ [�@xẑ])k;�
wk¡1/2+wk+1/2

2

�n+1
= wk

?¡�t [�]k
hk
n+1

;

and the pressure gradient in the middle of the layer is approximated as

@x(h�)k =
@x(hk�k¡1/2)+ @x(hk�k+1/2)

2
(32)

Using the incompressibility condition (4), the pressures �k+1/2 and velocities wk+1/2 are
then solutions of the system

wk¡1/2+wk+1/2
2

=wk
?¡�t

�k+1/2¡ �k¡1/2
hk

; (33)

@x(hu)k
?¡ [u? @xẑ]k¡�t

@x@x(hk�k¡1/2)+ @x@x(hk�k+1/2)

2
+ [w]k=0;
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where we have neglected the terms equivalent to the green and blue terms in (30), and
dropped the n+1 indices for convenience. To obtain a system of equations for �, we need
to express [w]k as a function of �. This is readily done using the recursion relation (derived
from (33))

wk+1/2=2

�
wk
?¡�t

�k+1/2¡ �k¡1/2
hk

�
¡wk¡1/2;

which gives

wk+1/2=2
X
l=0

k

(¡1)k+l
�
wl
?¡�t

�l+1/2¡ �l¡1/2
hl

�
;

and

[w]k=2

�
wk
?¡�t

�k+1/2¡ �k¡1/2
hk

�
+4

X
l=0

k¡1

(¡1)k+l
�
wl
?¡�t

�l+1/2¡ �l¡1/2
hl

�
The pressure equation is then

@x@x(hk�k¡1/2)+ @x@x(hk�k+1/2)+

4
�k+1/2¡ �k¡1/2

hk
+8

X
l=0

k¡1
(¡1)k+l

�l+1/2¡ �l¡1/2
hl

=

2
�t

 
@x(hu)k

?¡ [u? @xẑ]k+2wk
?+4

X
l=0

k¡1
(¡1)k+lwl?

!
(34)

We see that the value of the pressure in a given layer is now dependent on the values in
all the layers below it. Compared to the staggered scheme derived previously (equation
(30)), the structure of the linear problem has thus changed from a sparse, multi-diagonal
system to a dense, block-Hessenberg system. This has important implications for the
expected performance of the linear solver and lead Stelling & Zijlema [30] to propose an
approximation of their quasi-Eulerian box scheme which neglects this vertical coupling.
We tried their approach without success. In particular, all our implementations of their
scheme were unstable for a number of layers larger than �ve. Similar unstable results were
obtained when using their open-source implementation SWASH [52].

It turns out that system (34) can be solved e�ciently using a multigrid-accelerated
column relaxation technique similar to that used to solve (30). Assuming known values
of �i+1;k+1/2 and �i¡1;k+1/2 leads to an Hessenberg system for �i;k+1/2 in each column i.
An Hessenberg matrix is the sum of a triangular and a tri-diagonal matrix. The resulting
system can be solved e�ciently using the algorithm of Henry (1994) [53]. Note however that
the cost of solution for each column relaxation will scale like O(n2) rather than O(n) for a
tridiagonal system. We will demonstrate later that this does not preclude e�cient solutions.

The resulting algorithm can be summarised as follows:

1. Compute hk
n+1, (hu)k?, (hw)k? using hk

n, uk
n, wk

n and the hydrostatic scheme (without
pressure gradients).

2. Compute �k+1/2 using multigrid-accelerated Hessenberg column-relaxations to solve
(34).
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3. Update the staggered accelerations and velocities

�i+1/2;k  @x(h�)i+1/2;k¡ [�@xẑ]i+1/2;k
(h a)i+1/2;k  (h a)i+1/2;k¡�i+1/2;k
(hu)i+1/2;k  (hu)i+1/2;k¡�i+1/2;k�t

where @x(h�)i+1/2;k is approximated using (32).

4. Compute (hu)i;k
n+1 and (hw)i;k

n+1 using (16) and (29).

The corresponding documented code is available on the Basilisk web site (http://
basilisk.fr/src/layered/nh.h).

3.6.3 Stability of the non-hydrostatic scheme

Since we use explicit timestepping, we can expect the timestep to be limited according to

�t <
�
juj+ c

;

with c the phase speed of gravity waves. Note that juj does not include the vertical velocity
component since vertical advection is Lagrangian and thus not subject to a CFL constraint.

The phase speed should take into account dispersion and thus be g/ k̂ tanh(k̂ H)
q

rather

than just gH
p

(as for the hydrostatic case). The wavenumber k̂ can be taken as the
inverse of the smallest possible wavelength i.e. 1/�. Re-arranging the terms then gives
the condition

�t <
�

juj+ gH
p

(�/H) tanh(H /�)
p (35)

The di�erence with the hydrostatic case can be better understood using the approximation

(�/H) tanh(H /�)
p

�

(
1 if �>H
�/H

p
if �<H

which shows that the increase in the timestep is proportional to H /�
p

whenever the mesh
size is smaller than the water depth. We will see later that this relaxed stability condition
can lead to large gains for practical cases.

Note that this condition is based on the exact dispersion relation, not its numerical
approximation (as displayed on Figure 3). We can expect the schemes for which the exact
dispersion relation is an (approximate) upper bound to respect this condition: that is all
schemes on Figure 3 with the exception of the optimised Green�Naghdi model.

3.6.4 Wave breaking

Since �(x; t) describes the free surface as the graph of a (uni-valued) function, it cannot
represent the overturning motion characteristic of breaking waves. This is a classical issue
for Boussinesq models of wave motion [54]. In the case of the Saint-Venant equations, the
corresponding limiting case is the formation of an hydraulic jump (i.e. a shock-like solution)
which is known to be a remarkably good model of breaking (given its simplicity) [55]. The
classical approach in Boussinesq models is thus to turn o� dispersive terms when breaking
is detected [51]. This approach does not seem to generalise easily to the present model.
We found instead that the somewhat ad hoc following recipe works well.
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Breaking is characterised both by steep free-surface slopes and large vertical velocities.
Dissipation, linked to the unresolved turbulent motions occurring during breaking, can be
introduced by limiting the maximum vertical velocity. This is done after application of the
vertical non-hydrostatic pressure gradient (equation (29)) using

wk
n+1 sign(wk

n+1)min
¡
jwkn+1j; b g jH j1

p �
; (36)

where g jH j1
p

is assumed to be the characteristic horizontal velocity scale of the breaking
wave and the breaking parameter b is a number smaller than one. In the case of strong
breaking (see the example in section 4.6) this is not su�cient to guarantee the stability
of the non-hydrostatic solver and the following slope-limiting is added to @xẑ in equations
(28) and (34)

@xẑ 
�
@xẑ if j@xẑ j< tan(30�)
sign(@xẑ) otherwise

(37)

3.6.5 Wetting and drying

Although wetting and drying, and the associated �coastline representation�, has often been
considered a di�cult issue in ocean models, it is now well-known that the Saint-Venant
equations are physically and mathematically well-posed even in the limit of vanishing
water depth [37]. The idea of a �coastline� separating dry from wet (or �topography� from
�bathymetry�) thus appears to be a misleading concept, as demonstrated in particular by
tsunami/�ood models based on the Saint-Venant equations [46, 56]. The same approach is
taken here. The only adaptation speci�c to the wet/dry transition is for the solution of the
Poisson equation (30) or (34) which is �rst multiplied by hk to avoid any division by zero.

4 Numerical results

We present a range of numerical results which illustrate the generality and e�ciency of
the model. When not otherwise indicated, results have been obtained using the non-
hydrostatic Keller box scheme and a timestep given by the stability condition (35). The
layer-slope limiting (37) is always turned on but the vertical-velocity limiting (36) is turned
o� by default. The performances indicated were obtained on an 8 cores Intelr Core™ i7-
8550U CPU @ 1.80GHz with 8 GB of memory. The links to the source codes su�cient to
reproduce all the results and �gures are given in the captions. Note also that other tests
and examples are available at http://basilisk.fr/src/layered/hydro.h#usage

4.1 Dispersion relation
This �rst case veri�es that the numerical dispersion relation follows the linear analysis
of section 3.5 and Figure 3. A standing wave is initialised in a periodic domain and its
frequency is measured using the zero-crossings of the wave amplitude over ten periods of
oscillation. To ensure spatially-converged results, the wavelength is resolved using 128 grid
points. The total water depth H is varied to obtain results for a broad range of k̂H . The
convergence criterion (31) is decreased to �= 10¡6. This is necessary to obtain accurate
results at large k̂ H . Figure 4 illustrates the results obtained for a range of numerical
schemes and a varying number of layers. The Green�Naghdi results were obtained using
the numerical scheme described in [51]. Close agreement is obtained with the theoretical
dispersion relations.
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All results were obtained using a timestep given by the stability condition (35), with
the exception of the Green�Naghdi model which proved unstable, as expected, and had to
use the more restrictive hydrostatic condition (17). Note that for the maximum value of
k̂H�60 displayed on the �gure and for 128 grid points per wavelength, the ratio of the non-
hydrostatic timestep to hydrostatic timestep is approximately H /�

p
= 128 k̂H /2�
q

�
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Figure 4. Dispersion relation. The lines are the analytical solutions and the symbols the numerical
results (http://basilisk.fr/src/test/dispersion.c).

The same test case is used to estimate the numerical total energy variation per period,
computed as the sum of the discrete potential and kinetic energies. The results are dis-
played in Figure 5. All schemes appear to conserve energy very well.
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test/dispersion.c).
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4.1.1 Pro�le of vertical velocity

The theoretical vertical pro�le of the vertical velocity component under a linear wave is
given by Stokes' theory as [24]

ws(z)=
Agk
!

sinh(k z)
cosh(kH)

sin(! t¡ kx);

with A the amplitude of free-surface displacement. It reaches its maximum for multiples of
T /4 with T the Stokes wave period. Figure 6 displays the normalised pro�les of vertical
velocity obtained numerically at t = 37 T /4, for di�erent values of k H . As the wave
shortens, its velocity �eld becomes shallower ans thus harder to resolve with a �xed number
of equidistant layers.

It is interesting to note that the behaviour of the Keller box scheme used here is quite
di�erent from that of the staggered scheme (not shown). As illustrated in Figure 3, the
staggered scheme would have much larger dispersion errors. This would lead to large phase
errors at t= 37 T /4 and it would not be possible to compare the velocity pro�les with
linear theory, unless a very large number of layers was used.

Remarkably, with the Keller scheme the phase is accurate, even though the number
of layers and their distribution are insu�cient to estimate an accurate vertical velocity
pro�le, as illustrated for kH = 24.7065 in Figure 6 (triangular symbols). This pro�le also
su�ers from a clear grid-scale oscillation which is probably due to the vertical colocation
of pressure and vertical velocity. This could be a concern but has not caused problems
in any of the cases we present. Furthermore, the amplitude of these spurious oscillations
vanishes with increasing vertical resolution.

As expected, these grid-scale oscillations are absent when using the vertically-staggered
scheme (not shown), however the velocity pro�le extends much deeper than predicted by
theory, which also explains the corresponding dispersion/phase error.
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Figure 6. Normalised pro�les of the vertical component of velocity under a linear wave, for
di�erent values of kH. The numerical results (symbols) are obtained using the Keller box scheme
with �ve layers (http://basilisk.fr/src/test/dispersion.c).
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4.2 Sinusoidal wave propagation over a bar

We next consider a classical test case for the Boussinesq models used in coastal engineering.
Beji and Battjes [57] and Luth et al. [58] studied experimentally the transformation of
sinusoidal waves propagating over a submerged bar (or reef). This is a good test case
for dispersive models as higher harmonics are non-linearly generated and released with
phase shifts corresponding to the dispersion relation. Note that wave breaking also occurs
experimentally on top of the submerged bar. See section 4.2 of [35] for a detailed description
of the setup and results using a one-layer model.

The results displayed on Figure 7 were obtained using the two-layer Keller scheme
with a breaking parameter b= 0.1 (see (36)) and 2048 grid points (for a domain length of
50 metres). The agreement with measurements is excellent, in particular for gauge eleven
which is the farthest from the reef and thus most a�ected by dispersion errors. Using only
a single layer (not shown), the results are comparable up to gauge nine but dispersion
errors clearly a�ect the results for gauges ten and eleven. The results of Figure 7 can be
compared to Figure 4 of [35] and are of comparable quality up to gauge eight, but much
better for the last three gauges.
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Figure 7. Computed (solid line) and measured (symbols) free-surface elevations for the wave
propagation over a bar obtained experimentally by Beji and Battjes [57]. The numerical results
are obtained with two layers (http://basilisk.fr/src/test/bar-ml.c).

4.3 Dispersive tsunami

While tsunamis are often modelled using the non-dispersive Saint-Venant equations, it is
now well-known that dispersive e�ects are often not negligible [59, 60, 51]. To illustrate the
applicability and robustness of the layered model to such a case, we consider the Japanese
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Tohoku tsunami of 11th March 2011, which we already studied using both the Green�
Naghdi [51] and Saint-Venant [56] models. The setup is identical to these previous papers
where a more detailed description and discussion can be found. The results obtained using
the one-layer Keller scheme are displayed on Figure 8. This simulation combines wet-
ting and drying, dispersion, quadtree-adaptivity and complex bathymetry (reconstructed
dynamically using the algorithm described in the Appendix of [46]). The results of Figure
8 can be compared with Figure 12 of Popinet (2015) [51].

Figure 8. Tohoku tsunami. Evolution of the free-surface elevation (left column) and adaptive
grid (right column). The elevation scale ranges from ¡1 metre (dark blue) to +2 metres (dark
red). The level of re�nement ranges from 5 (� 250 km, dark blue) to 13 (� 1 km, dark red). The
times are from top to bottom: 1, 2 and 3 hours after the fault rupture (http://basilisk.fr/src/
examples/tohoku.c).
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The importance of dispersion on long-distance wave propagation is highlighted on
Figure 9 where three di�erent models are compared. The Serre�Green�Naghdi results
(obtained using the solver described in [51]) are clearly close to those obtained using
the one-layer non-hydrostatic model, the most signi�cant di�erence being the longer �tail�
of dispersive waves obtained using the one-layer model. This re�ects the lower numer-
ical dissipation of this scheme, compared to that of the second-order MUSCL/Riemann
scheme used in [51]. Besides the absence of a dispersive tail, the hydrostatic scheme also
produces a much steeper leading wave: a result consistent with previous studies and the
expectation that the lack of dispersive terms leads to over-steepening of wave fronts (and
eventually the formation of hydraulic jumps).

Serre�Green�Naghdi One-layer non-hydrostatic One-layer hydrostatic

Figure 9. Close-up views of the leading wave front for the times of Figure 8, obtained using dif-
ferent models. Left-column: Serre�Green�Naghdi; Central-column: non-hydrostatic one-layer model;
Right-column: hydrostatic one-layer model (http://basilisk.fr/src/examples/tohoku.c).

The ability of the model to deal robustly with wetting and drying is illustrated on Figure
10 which shows a detail of the maximum �ood level. The area displayed is approximately
140� 200 km and includes the extensively-�ooded Sendai plain as well as extremely high
runup on the Oshika peninsula. These results are consistent with both satellite data and
previous simulations (right panel), although the resolution here is signi�cantly lower (a
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maximum of 1 km compared to 250 metres)

Figure 10. (left) Detail of �ooding in the Ofunato, Miyagi and Fukushima districts. The black
line indicates the normal coastline. The colorscale is the maximum �ood level (maximum water
elevation above normal) in meters (http://basilisk.fr/src/examples/tohoku.c). (right) Maps
of inundation extent for the Miyagi prefecture area: zero and ten meters water level contours (red),
satellite estimate of inundation extent on 12 March 2011 (green), �eld survey data points (blue).
The corresponding area is shown by the black box on the left panel. See also [56].

Finally, Table 1 gives the runtimes of the di�erent models, corresponding to six and
a half hours (390 minutes) of physical time. Since the mesh is adaptive, the number of
grid points indicated is the average over the entire simulation time. Eight cores were
used with OpenMP parallelism. While the highest computation speed is obtained with
the hydrostatic solver, the shortest computation time is given by the non-hydrostatic
solver. This re�ects the signi�cant gain in number of timesteps due to the relaxed stability
condition (35). The Serre�Green�Naghdi solver [51] is substantially slower, even though it
uses less grid points (due to increased numerical dissipation of small waves).

Model # Timesteps # Points Runtime Speed
Hydrostatic one-layer 17 532 500 666 318 460 000
Non-hydrostatic one-layer 7945 503 230 258 258 000
Serre�Green�Naghdi 17 168 330 161 448 211 000

Table 1. Runtimes (minutes) for the dispersive tsunami case. The speeds are given in points�
timesteps/sec. The number of grid points is a time average.

4.4 Large-amplitude standing wave

After this validation of the numerical scheme in the context of dispersive waves, resolved
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with only a few layers, we now move to applications illustrating the consistency of the
model for the incompressible Euler/Navier-Stokes equations with a free-surface. A simple
initial condition is given by a large amplitude sinusoidal perturbation of the free-surface

�(x; 0)= 0.5+ 0.07 cos(2� x);

and zero initial velocity, in a one meter wide domain with free-slip side walls. The acceler-
ation of gravity is set to 9.81 m/s2. The horizontal dimension is discretised with 512 grid
points and 20 layers are used in the vertical. The evolution of the free surface is illustrated
in Figure 11. Strong non-linearity and vertical accelerations give raise to a vertical �jet�
of liquid which then falls back due to gravity. The evolution with time of the maximum
vertical velocity and free-surface slope is illustrated in Figure 12. The vertical acceleration
is of the order of the acceleration of gravity, i.e. the �ow is strongly non-hydrostatic, and
the maximum slope is of order one. Clearly in this case the metric/slope terms cannot be
neglected, which is con�rmed when comparing the results obtained when neglecting the
slope terms @xẑ in expressions (28) and (34) (dotted line on Figure 11).

Since analytical solutions are not available for this non-linear problem, a calculation
is also done using a completely di�erent solver: the incompressible, two-phase, Volume-
Of-Fluid, Euler/Navier�Stokes solver described in [61]. This scheme, also implemented in
Basilisk, uses a �xed regular Cartesian grid and a VOF description of the interface separ-
ating the two phases. The equations of motion are solved both in the dense phase below the
interface and the light phase above the interface. The density ratio is set to 1/1000 which is
small enough to ensure that the motion of the light phase does not a�ect the results. The
1� 1 metre domain is resolved using 256� 256 grid points. The corresponding interface
evolution is displayed in Figure 11 (dashed lines). The agreement with the layered model
is clearly excellent at all times.
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Figure 11. Free-surface evolution. The free-surface is displayed at times t= 0.1 sec to 0.5 sec in
0.1 sec intervals (http://basilisk.fr/src/test/large.c).
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Figure 12. Timeseries of maximum vertical velocity and maximum slope (http://basilisk.fr/
src/test/large.c).

4.5 Viscous hydraulic jump
Shocks are a well-known characteristic of the hyperbolic nature of the Saint-Venant equa-
tions. It is also well-known that they can be a useful theoretical model of a wide range of
real features observed in geophysical �ows and/or hydraulic engineering e.g. wave breaking
[55], bores and hydraulic jumps [16]. The inclusion of viscous and non-hydrostatic e�ects
into this theoretical model is di�cult however, and numerical models (combined with
experiments) are a useful way to improve our understanding of these complex processes.

4.5.1 Hydrostatic
We �rst consider the viscous, hydrostatic transcritical �ow over a bump, driven by a
parabolic velocity pro�le at in�ow and an out�ow at a given depth. The in�ow rate and
water depth at the out�ow are chosen so that the Froude number U / gH

p
is smaller than

one at in�ow, larger than one over the bump and smaller than one at the out�ow (i.e. the
�ow is transcritical). The domain is 30 metres long and roughly one metre deep, so not
unlike a typical channel �ow one would encounter in hydraulic engineering. The bump
geometry is given by the Gaussian function

zb(x)= 0.4 e¡
(x¡10)2

5

The out�ow depth is set to 0.6 metres and the in�ow pro�le is given by

u(0; z)=
3
2

Q

H(0)

�
1¡
�

z

H(0)
¡ 1
�2�

;

with the �ow rate Q set to one m2/s. The (vertical) kinematic viscosity is set to 10¡2 m2/s
and the acceleration of gravity is g = 9.81 m/s2. Note that viscosity drastically changes
the expected solution, since it controls the position of the (stationary) hydraulic jump: in
the absence of viscosity the hydraulic jump is simply advected out of the domain.

The horizontal is discretised with 512 grid points and the vertical with 20 layers. We
consider two di�erent numerical models: the present multilayer model run in hydrostatic
mode with vertical viscosity and remapping and the shock-capturing, Riemann, quasi-
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Eulerian multilayer model described in [16], itself inspired from [15].
The simulation is started from rest with a constant water level of 0.6 metres. The

corresponding evolution of the free surface is illustrated on Figure 13. As �uid �ows in from
the left and hits the �xed-depth right boundary, an hydraulic jump forms just downstream
of the bump and eventually reaches a stationary position (after about 60 seconds). The
agreement between the two models is clearly very good, both for the time evolution and
the stationary solution, with a slightly sharper shock for the Riemann-based scheme.
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Figure 13. Evolution of the free-surface obtained with the two models indicated in the legend.
The time interval between pro�les is 5 seconds (http://basilisk.fr/src/test/gaussian.c).

This agreement is con�rmed by the comparison of the stationary horizontal velocity
�elds displayed on Figure 14. The white isoline indicates the presence of a (barely resolved)
weak recirculation zone behind the bump.

Figure 14. Horizontal velocity. (top) Hydrostatic multilayer model. (bottom) De Vita et al. The
white isoline indicates u=0 (http://basilisk.fr/src/test/gaussian.c).
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4.5.2 Non-hydrostatic

We repeat the same simulation using the non-hydrostatic multilayer solver. This leads
to a very di�erent stationary solution, as illustrated in Figures 15, 16 and 17. Vertical
inertia is not negligible and leads to the formation of a dispersive wave train rather than
a shock-like solution. This is a much more realistic solution than the hydrostatic version
and recalls the waves �rst studied by Favre [62] in the context of dam over�ows. The non-
hydrostatic pressure �eld displayed in Figure 18 further con�rms that non-hydrostatic
e�ects are important (i.e. the non-hydrostatic pressure divided by the density is of order
one, so is comparable to the hydrostatic pressure).
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Figure 15. Evolution of the free-surface. The time interval between pro�les is 5 seconds (http://
basilisk.fr/src/test/gaussian.c).

Multilayer

Navier�Stokes VOF

Figure 16. Horizontal velocity �eld computed with the multilayer solver (http://basilisk.fr/
src/test/gaussian.c) and the VOF Navier�Stokes solver (http://basilisk.fr/src/examples/
gaussian-ns.c). The white isoline indicates u=0.
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Multilayer

Navier�Stokes VOF

Figure 17. Vertical velocity �eld computed with the multilayer solver and the VOF Navier�Stokes
solver.

Figure 18. Non-hydrostatic pressure �eld (divided by the �uid density) computed with the
multilayer solver (http://basilisk.fr/src/test/gaussian.c).

In Figures 16 and 17, the horizontal and vertical components of the velocity are com-
pared with solutions obtained using the Navier�Stokes/VOF solver introduced in section
4.4. The solution is signi�cantly more di�cult to compute in the present case, in particular
due to the large horizontal to vertical aspect ratio. Converged results required an equivalent
resolution of 1024� 50 grid points for the Navier�Stokes solver. The agreement between
the two solutions is clearly qualitatively good, including for the weak recirculation zone
behind the bump, which is now properly resolved. Figure 19 gives a more quantitative
comparison of the �nal free-surface pro�les. The importance of including the metric/slope
terms is clear, even for this con�guration with a relatively mild maximum slope of 0.25. The
source of the remaining discrepancies between the Navier�Stokes and multilayer solutions
is unclear. An obvious candidate could be the lack of horizontal viscosity in the multilayer
model, but its addition does not seem to signi�cantly change the results, which is not so
surprising given the 1/30 aspect ratio of the �ow. An explanation could be some remaining
numerical errors in the Navier�Stokes VOF solution.
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Figure 19. Final free-surface pro�les (http://basilisk.fr/src/test/gaussian.c).

Finally Table 2 gives a summary of the performances of all solvers for this case. The
gain in number of timesteps due to the relaxed stability condition (35) is signi�cant again,
but not su�cient to o�set the overhead due to the resolution of the Poisson equation
(when comparing the runtimes of the hydrostatic and non-hydrostatic multilayer solvers).
The hydrostatic multilayer solver is signi�cantly slower than the quasi-Eulerian, Riemann
solver of [16]. This is due to the added cost of vertical remapping and re�ects the poor
performance of the PPR library we are using. The gain in runtime between the multilayer
and Navier�Stokes/VOF solutions is remarkable, even if the comparison is somewhat unfair
since the VOF solver cannot at the moment use anisotropic meshes which would allow to
optimise the discretisation.

Model # Timesteps Runtime Speed Remap
Hydrostatic (De Vita et al.) 13078 28 4 782 811 n.a.
Hydrostatic (multilayer) 12945 41 3 233 092 47.6%
Non-hydrostatic (multilayer) 8448 147 588 486 10.4%
Non-hydrostatic (NS/VOF) 14754 4448 186 000 n.a.

Table 2. Runtimes (seconds) for the viscous hydraulic jump case. The speeds are given in points�
timesteps�layers/sec. NS/VOF run on eight cores, others run on a single core. The �Remap�
column gives the proportion of the total runtime taken by vertical remapping.

4.6 Breaking Stokes wave

Since the study and prediction of (very) short waves is one of the primary motivation for
the development of dispersive wave models, we now choose an example which illustrates
that the multilayer model can handle robustly and accurately the detailed modelling of
very steep water waves up to, and even beyond their threshold of stability. In previous
work we have studied in detail the evolution of unstable Stokes waves, including breaking
and bubble cloud formation [63, 64]. We reuse this setup here, with an initial free-surface
and velocity �eld given by a third-order Stokes wave solution [65]. Since we do not include
surface tension, there are only two parameters: the Reynolds number Re= g �3

p
/� and
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the initial steepness a k̂, with �= 2 �/ k̂ the wavelength and a the wave amplitude. The
water depth is set to half the wavelength and is assumed to be deep enough to have a
negligible in�uence on the results. The solution is obtained using both the two-phase
Navier�Stokes/VOF solver (with density and viscosity ratios set to air/water) and the free-
surface, non-hydrostatic multilayer solver.

The Reynolds number is set to Re= 40000 and the steepness to a k̂ = 0.35, which
corresponds to a spilling/overturning con�guration [63]. The multilayer solver uses 256
grid points in the horizontal and 60 vertical layers. The Navier�Stokes/VOF solver uses
an adaptive mesh with a maximum equivalent resolution of 5122. Figure 20 illustrates
the free-surface evolution for both solvers. The time interval between pro�les is T /4
with T = k̂/ g k̂

q
the Stokes wave period. The agreement between the two solutions is

clearly excellent right up to the point of breaking at t� 5 T /4. The multilayer code
cannot be expected to match the VOF solution after breaking, since the interface becomes
multivalued, however it is still able to robustly compute a solution which is in remarkable
qualitative agreement with the VOF solution. The runtimes and speeds given in Table 3
are also favourable.

Note that this test case only touches upon the potential of the model for more sophist-
icated parameterisations of breaking than the simple approach presented in section 3.6.4.
This should only be seen as a starting point, which already gives results similar to those
of Boussinesq-style models for a range of classical test cases (section 4.2 and [66, 67]). The
fact that the model can produce very accurate results (when compared to DNS) right up
to the point of breaking opens up perspectives for parameterisations of breaking which go
beyond what would be doable with Boussinesq-style models.

Figure 20. Free-surface evolution. Time increases from top to bottom in intervals of T /4 with T
the Stokes wave period. Left column: layered model. Right column: Navier�Stokes/VOF (http://
basilisk.fr/src/test/stokes.c).
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Model # Timesteps Runtime Speed Remap
Multilayer 1489 69 332 400 6.4%
Navier-Stokes/VOF 3079 215 97 200 n.a.

Table 3. Runtimes (seconds) for the breaking Stokes wave case. The speeds are given in points�
layers�timesteps/sec/core. Run on a single core. The �Remap� column gives the proportion of the
total runtime taken by vertical remapping.

5 Conclusion and perspectives

The semi-discrete system (1), (2), (3) and (4) is a consistent discretisation of the incom-
pressible Euler equations with topography and a free-surface, valid without assumptions
on the slopes of the interfaces. Expressed as a set of conservation laws for each layer, the
formulation has a clear physical interpretation and makes a seamless link between the
hydrostatic Saint-Venant equations, dispersive Boussinesq-style models and the incom-
pressible Euler equations.

The associated numerical scheme follows this consistent hierarchy and provides accurate
and e�cient solutions for all regimes. For surface gravity waves the same model can then
be used to study metre-scale waves, even beyond breaking, with results closely matching
those obtained using small-scale Euler/Navier�Stokes models, and coastal or global scale
dispersive waves, with an accuracy and e�ciency comparable to extended Boussinesq wave
models.

This e�ciency is obtained through the introduction of an �approximate vertical projec-
tion� which does not compromise conservation properties due to the decoupling provided by
the vertically-Lagrangian discretisation. Accurate discrete dispersion relations are obtained
thanks to the multigrid-accelerated, Hessenberg column-relaxation solution of a Keller box
scheme vertical projection.

The method allows simple and robust wetting and drying on complex topography as
demonstrated by adaptive solutions of the dispersive propagation and inundation during
the Japanese Tohoku tsunami. Remarkably, for this type of application the introduction of
a relaxed stability condition, based on the dispersive properties of non-hydrostatic waves,
leads to shorter runtimes for the dispersive model than for the hydrostatic version.

This solid basis opens a number of perspectives. From a computational point of view,
the performance of the vertical remapping should be improved. Since vertical remapping
is comparable to one-dimensional advection (see Section 3.3), there is no reason for its
computational cost to be three times as large, as is the case in our implementation using
the PPR library. The model is already very e�cient but this optimisation should further
increase the overall performance.

The �exibility of vertical remapping should also be explored with the goal of developing
�vertically adaptive� methods able to automatically track material interfaces, steep gradi-
ents and boundary layers [44].

The ability of the model to provide accurate solutions right up to the point of breaking
allows a much deeper exploration of wave breaking parameterisations than what is done
in Section 3.6.4, or than what is possible with Boussinesq-style models. A �rst step could
be detailed comparisons with available experimental and DNS data [68, 64] of the pro�les
of velocity and associated enery dissipation before, during and after breaking.

Finally, as suggested in the introduction, an obvious extension is the inclusion of vari-
able material properties, starting with density. We envisage to take into account both
large density di�erences and Boussinesq-style small density variations. This would allow
to e�ciently model both multi-material �ows, such as wind-driven waves or submarine

32 Section 5



avalanches and the more classical temperature/salinity strati�ed �ows typical for oceanic
motion. This will be the topic of a follow-up publication.
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Appendix A Derivation of slope terms

The set of equations (1), (2), (3) and (4) can be derived using di�erent methods: for
example one could start from the incompressible Euler equations, written in Cartesian
coordinates and use the general vertical coordinate transformation proposed by Kasahara
(1974) [9], followed by formal vertical integration over the layer thicknesses (see also [12]).
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Another approach is to apply conservation principles directly to thin vertical slices
for each of the layers, a technique close to that used by Saint-Venant to derive the single-
layer system. We will assume here that the hydrostatic equations (9) and (10) are given
(see e.g. [7]) and will �rst deal with the non-hydrostatic pressure terms in the horizontal
momentum equation (2).

Figure 21. Thin vertical slice through a layer k:

If we consider a thin vertical slice 
 of width � through a layer bounded vertically by
[ẑk¡1/2; ẑk+1/2] (Figure 21), the variation in the total horizontal momentum of this slice
due to pressure can be written
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where @
 denotes the boundary of 
: This can be further developed asZ
@
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where we have used the de�nitions of the layer thicknesses hk= ẑk+1/2¡ ẑk¡1/2 and of the
vertical di�erence operator. The+ and¡ superscripts denote average values on the x��/2
vertical boundaries. For a vanishing �, we have f+¡ f¡= �@xf , where f is a di�erentiable
function. This readily gives Z

@

p dz = � @x(p h)k¡ � [p @xẑ]k

Since the integrated horizontal momentum can be writtenZ


�u d
= � � hkuk;

with uk the layer-averaged horizontal velocity, we get
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@t(� hkuk) = ¡@x(p h)k+ [p @xẑ]k;

which, for � constant and �= p/�, corresponds to the non-hydrostatic pressure terms in
equation (2). Note that the corresponding derivation for the vertical momentum equation
(3) is trivial since the x� �/2 boundaries are strictly vertical.
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We next consider the continuity equation (4). Conservation of volume can be written
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which is the one-dimensional version of (4).

Appendix B Colocated horizontal pressure gradient

While the pressure gradient term in (29) is clearly de�ned (due to the vertically staggered
discretisation), the discretisation of the horizontal pressure gradient in (28) must be
described. The classical projection scheme uses the MAC or C-grid staggered velocity/pres-
sure arrangement to avoid velocity/pressure decoupling. On the other hand, as discussed
previously, the natural discretisation of the (hyperbolic) hydrostatic system of conservation
laws relies on a collocated discretisation of the velocity components (i.e. Arakawa A- or B-
grid). We solve this problem using collocated pressure and horizontal velocity/momentum
components and an �approximate projection� method [69], which matches the compu-
tation of the hydrostatic pressure gradient in (14) and (16). The non-hydrostatic pressure
gradient is �rst added to the staggered acceleration as

(h a)i+1/2;k (h a)i+1/2;k¡
hi+1;k
n+1 �i+1;k¡hi;kn+1 �i;k

�
+ [�@xẑ]i;k;

the updated acceleration is then used to compute (h u)i+1/2;k
n+1 and (h u)i;k

n+1 according to
(15) and (16).

Appendix C Discrete dispersion relations

The discrete dispersion relation is given by

!n
2(k̂)= g

P
i=1
n a2i k̂2iP
i=0
n b2i k̂2i

The following coe�cients can be computed using the Maxima [70] script available at
http://basilisk.fr/src/test/dispersion.mac

C.1 Keller box scheme
One layer:

a2 = 4h0

b0 = 4

b2 = h0
2
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Two layers:

a2 = 16 (h1+h0)

a4 = 4h1 (h0
2+h0h1)

b0 = 16
b2 = 4 (h1

2+4h0h1+h0
2)

b4 = h0
2h1

2

Three layers:

a2 = 64 (h2+h1+h0)

a4 = (16h1+ 16h0)h22+(16h12+ 64h0h1+ 16h02)h2+ 16h0h12+ 16h02h1
a6 = (4h0h1

2+4h0
2h1)h2

2+4h0
2h1

2h2

b0 = 64
b2 = 16h22+(64h1+ 64h0)h2+ 16h12+ 64h0h1+ 16h02

b4 = (4h1
2+ 16h0h1+4h0

2)h2
2+(16h0h12+ 16h02h1)h2+4h0

2h1
2

b6 = h0
2h1

2h2
2

Four layers:

a2 = 256 (h3+h2+h1+h0)

a4 = (64h2+64h1+64h0)h32+(64h22+(256h1+256h0)h2+64h12+256h0h1+64h02)h3+
(64h1+ 64h0)h22+(64h12+ 256h0h1+ 64h02)h2+ 64h0h12+ 64h02h1

a6 = ((16h1+ 16h0)h22+(16h12+ 64h0h1+ 16h02) h2+ 16h0h12+ 16h02h1)h32+((16h12+
64h0h1+ 16h02)h22+(64h0h12+ 64h02h1)h2+ 16h02h12)h3+(16h0h12+ 16h02h1)h22+
16h02h12h2

a8 = ((4h0h1
2+4h0

2h1)h2
2+4h0

2h1
2h2)h3

2+4h0
2h1

2h2
2h3

b0 = 256
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64h02
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256h0h1+64h02)h2+64h0h12+64h02h1)h3+(16h12+64h0h1+16h02)h22+(64h0h12+
64h02h1)h2+ 16h02h12

b6 = ((4 h1
2 + 16 h0 h1 + 4 h0

2) h2
2 + (16 h0 h12 + 16 h02 h1) h2 + 4 h0

2 h1
2) h3

2 + ((16 h0 h12 +
16h02h1)h22+ 16h02h12h2)h3+4h0

2h1
2h2

2

b8 = h0
2h1

2h2
2h3

2

C.2 Staggered scheme (third-order)

One layer:

a2 = 8h0

b0 = 8

b2 = 3h0
2
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Two layers:

a2 = 8 (h1+h0)

a4 = 8h0
2h1

b0 = 8

b2 = 3 (h1
2+h0h1+3h0

2)

b4 = 3h0
2h1

2

Three layers:

a2 = 8 (h2+h1+h0)

a4 = 8 ((h1
2+h0h1+h0

2)h2+h0
2h1)

a6 = 8h0
2h1

2h2

b0 = 8

b2 = 3h2
2+(3h1+3h0)h2+9h1

2+9h0h1+8h0
2

b4 = (3h1
2+3h0h1+3h0

2)h2
2+3h0

2h1h2+9h0
2h1

2

b6 = 3h0
2h1

2h2
2

Four layers:

a2 = 8 (h3+h2+h1+h0)

a4 = 8 ((h2
2+(h1+h0)h2+h1

2+h0h1+h0
2)h3+(h1

2+h0h1+h0
2)h2+h0

2h1)

a6 = 8 (((h1
2+h0h1+h0

2)h2
2+h0

2h1h2+h0
2h1

2)h3+h0
2h1

2h2)

a8 = 8h0
2h1

2h2
2h3

b0 = 8

b2 = 3h3
2+(3h2+3h1+3h0)h3+9h2

2+(9h1+9h0)h2+8h1
2+8h0h1+8h0

2

b4 = (3 h2
2 + (3 h1 + 3 h0) h2 + 3 h1

2 + 3 h0 h1 + 3 h0
2) h3

2 + ((3 h1
2 + 3 h0 h1 + 3 h0

2) h2 +

3h0
2h1)h3+(9h1

2+9h0h1+9h0
2)h2

2+9h0
2h1h2+8h0

2h1
2

b6 = ((3h1
2+3h0h1+3h0

2)h2
2+3h0

2h1h2+3h0
2h1

2)h3
2+3h0

2h1
2h2h3+9h0

2h1
2h2

2

b8 = 3h0
2h1

2h2
2h3

2
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