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In the ordinary modal language, KD is the modal logic determined by the class of all serial 
frames. In this paper, we demonstrate that KD is nullary.

1. Introduction

The unification problem in a logical system L can be defined as follows: given a
formula φ(x1, . . . , xn), determine whether there exists formulas ψ1, . . . , ψn such that
φ(ψ1, . . . , ψn) is in L. The research on unification was motivated by a closely related
and more general decision problem, namely the admissibility problem for rules of infer-

ence: given a rule φ1(x1,...,xn),...,φm(x1,...,xn)
ψ(x1,...,xn)

, decide whether for all formulas χ1, . . . , χn, if

φ1(χ1, . . . , χn), . . ., φm(χ1, . . . , χn) are in L then ψ(χ1, . . . , χn) is in L. The admissibility
problem for rules was put forward by (Friedman, 1975) who asked whether there exists
a decision procedure for deciding whether a given rule preserves validity in intuitionistic
logic.

Friedman’s problem was solved by (Rybakov, 1984; Rybakov, 1985) who demon-
strated that the admissibility problem in intuitionistic logic and modal logic S4 is
decidable. See also (Iemhoff, 2001; Rybakov, 2001; Rybakov, Terziler, & Gencer, 1999)
for a study of unification and inference rules for modal logics. Later on, (Ghilardi, 1999),
proving that intuitionistic logic has a finitary unification type, yielded a new solution of
Friedman’s problem, seeing that deciding whether a given rule preserves validity in intu-
itionistic logic is equivalent to checking whether the finitely many maximal unifiers of its
premises are unifiers of its conclusion. See also (Ghilardi, & Sacchetti, 2004) for a study
of unification and most general unifiers in modal logics. With respect to the complexity
issue, (Jerábek, 2007) established the coNEXPTIME-completeness of the admissibility
problem for several intermediate logics and several K4-extensions, in contrast with
the admissibility problem for modal logics contained in K4 which is undecidable
if one considers a language with the universal modality (Wolter, & Zakharyaschev,
2008). See also (Gencer, & de Jongh, 2009) for a study of unifiability in extensions of K4.

Is the situation better if the language is restricted? (Cintula, & Metcalfe, 2010)
considered the negation-implication fragment of intuitionistic logic and proved that
the associated admissibility problem was PSPACE-complete. Unification of concept
terms has been introduced by (Baader, & Narendran, 2001) as a tool for detecting



redundancies in knowledge bases. In this respect, (Baader, & Küsters, 2001) established
the EXPTIME-completeness of the unification problem in the description logic FL0

whereas (Baader, & Morawska, 2009; Baader, & Morawska, 2010) established the
NP-completeness of the unification problem in the description logic EL.

Tense logics and epistemic logics provide formalisms for expressing properties
about programs, time, knowledge, etc. Within their context, (Dzik, 2007; Dzik, 2011)
has studied the relationships between the unification type of a fusion of modal logics
and the unification types of the modal logics composing this fusion. The unification
type of non-classical logics such as common knowledge logics and linear temporal
logics has also been studied by (Babenyshev, & Rybakov, 2011) and (Rybakov, 2002;
Rybakov, 2005; Rybakov, 2008).

Nevertheless, very little is known about the unification problem in some of the
most important description and modal logics considered in Computer Science and
Artificial Intelligence. For example, the decidability of the unification problem for the
following description and modal logics remains open: description logic ALC, modal
logic K, multimodal variants of K, sub-Boolean fragments of modal logics.

In the ordinary modal language, the modal logic KD is the least normal logic
containing the formula �x → ♦x. It is also the modal logic determined by the class
of all frames (W,R) such that R is serial on W . Seeing that �⊥, �⊤, ♦⊥ and ♦⊤
are, respectively, equivalent in KD to ⊥, ⊤, ⊥ and ⊤, it is a well-known fact that
KD-unification is in NP. As for the unification type of KD, in this paper, following a
line of reasoning suggested by (Jerábek, 2013) within the context of the modal logic K,
we demonstrate that KD is nullary.

2. Syntax

Let V AR be a nonempty countable set of propositional variables (with typical members
denoted x, y, etc) and PAR be a nonempty countable set of propositional parameters
(with typical members denoted p, q, etc). In this paper, we will always assume that
V AR 6= ∅. The set L of all formulas (with typical members denoted φ, ψ, etc) is
inductively defined as follows:

• φ, ψ ::= x | p | ⊥ | ¬φ | (φ ∨ ψ) | �φ.

We write φ(x1, . . . , xn) to denote a formula whose variables form a subset of {x1, . . . , xn}.
The Boolean connectives ⊤, ∧, → and ↔ are defined by the usual abbreviations. Let ♦
be the modal connective defined as follows:

• ♦φ ::= ¬�¬φ.

For all parameters p, the modal connective [p] is defined as follows:

• [p]φ ::= �(p→ φ).

For all parameters p, the modal connective [p]k is inductively defined as follows for each
k ∈ IN:

• [p]0φ ::= φ,
• [p]k+1φ ::= [p][p]kφ.

For all parameters p, the modal connective [p]<k is inductively defined as follows for
each k ∈ IN:



• [p]<0φ ::= ⊤,
• [p]<k+1φ ::= [p]<kφ ∧ [p]kφ.

We adopt the standard rules for omission of the parentheses.

Example 1. φ = (x → p) ∧ (x → [p]x) is a readable abbreviation for the less readable
formula ¬(¬(¬x ∨ p) ∨ ¬(¬x ∨�(¬p ∨ x))).

The degree of a formula φ (in symbols deg(φ)) is inductively defined as follows:

• deg(x) = 0,
• deg(p) = 0,
• deg(⊥) = 0,
• deg(¬φ) = deg(φ),
• deg(φ ∨ ψ) = max{deg(φ), deg(ψ)},
• deg(�φ) = deg(φ) + 1.

A substitution is a function σ associating to each variable x a formula σ(x). We shall say
that a substitution σ is closed if for all variables x, σ(x) is a variable-free formula. For
all formulas φ(x1, . . . , xm), let σ(φ(x1, . . . , xm)) be φ(σ(x1), . . . , σ(xn)). The composition
σ ◦ τ of the substitutions σ and τ associates to each variable x the formula τ(σ(x)).

Example 2. If φ is the formula considered in Example 1 and σp is the substitution
defined by σp(x) = p then σp(φ) = (p→ p) ∧ (p→ [p]p).

Example 3. If φ is the formula considered in Example 1, k ∈ IN and σk is the sub-
stitution defined by σk(x) = p ∧ [p]<kx ∧ [p]k⊥ then σk(φ) = (p ∧ [p]<kx ∧ [p]k⊥ →
p) ∧ (p ∧ [p]<kx ∧ [p]k⊥ → [p](p ∧ [p]<kx ∧ [p]k⊥)).

3. Semantics

A frame is a relational structure of the form F = (W,R) where W is a nonempty set
of states (with typical members denoted s, t, etc) and R is a binary relation on W . A
model based on a frame F = (W,R) is a relational structure of the form M = (W,R, V )
where V is a function associating to each variable x a set V (x) of states and to each
parameter p a set V (p) of states. The relation formula φ is true in model M at state s
(in symbols M, s |= φ) is inductively defined as follows:

• M, s |= x iff s ∈ V (x),
• M, s |= p iff s ∈ V (p),
• M, s 6|= ⊥,
• Ms |= ¬φ iff M, s 6|= φ,
• M, s |= φ ∨ ψ iff either M, s |= φ, or M, s |= ψ,
• M, s |= �φ iff for all states t ∈W , if sRt then M, t |= φ.

Let C be a class of frames. We shall say that a formula φ is C-valid (in symbols C |= φ)
if for all frames F = (W,R) in C, for all models M = (W,R, V ) based on F and for all
states s ∈W , M, s |= φ.

Example 4. The following formulas are valid in the class of all frames:

• [p]p,
• [p]<kx ∧ [p]k⊥ → [p]([p]<kx ∧ [p]k⊥).

Let C be a class of frames. We shall say that a substitution σ is C-equivalent to a
substitution τ (in symbols σ ≃C τ) if for all variables x, C |= σ(x) ↔ τ(x). We shall
say that a substitution σ is more C-general than a substitution τ (in symbols σ �C τ) if



there exists a substitution υ such that σ ◦ υ ≃C τ .

4. Unification problem

Let C be a class of frames. We shall say that a formula φ is C-unifiable if there exists a
substitution σ such that C |= σ(φ). In that case, σ is a C-unifier of φ.

Example 5. Let C be a class of frames. If φ is the formula considered in Example 1
then the substitution σp considered in Example 2 is a C-unifier of φ.

Example 6. Let C be a class of frames. If φ is the formula considered in Example 1
and k ∈ IN then the substitution σk considered in Example 3 is a C-unifier of φ.

Given a class C of frames, an important question is the following:

C-unification: given a formula φ, decide whether φ is C-unifiable.

Let Cser be the class of all serial frames, Cref be the class of all reflexive frames and
Csym be the class of all symmetrical frames.

Proposition 1. If PAR = ∅ then Cser-unification and Cref -unification are in NP.

Proof. Suppose PAR = ∅.
Cser-unification: Hence, in Cser, every variable-free formula is equivalent to ⊥ or ⊤.
This is a well-known fact. It partly follows from the fact that �⊥, �⊤, ♦⊥ and ♦⊤
are, respectively, Cser-equivalent to ⊥, ⊤, ⊥ and ⊤. Thus, every closed substitution σ is
Cser-equivalent to a substitution τ such that for each variable x, τ(x) = ⊥ or τ(x) = ⊤.
Moreover, if a formula φ possesses a Cser-unifier then φ possesses a closed Cser-unifier.
This follows from the fact that for all Cser-unifiers σ of φ and for all closed substitutions
τ , σ ◦ τ is a closed Cser-unifier of φ. Consequently, for all formulas φ, the following
conditions are equivalent: φ is Cser-unifiable; there exists a Cser-unifier σ of φ such that
for all variables x, σ(x) = ⊥ or σ(x) = ⊤. Hence, for all formulas φ(x1, . . . , xn), to
decide whether φ(x1, . . . , xn) is Cser-unifiable, it suffices to nondeterministically guess
ψ1, . . . , ψn ∈ {⊥,⊤} and to determine whether φ(ψ1, . . . , ψn) is C

ser-equivalent to ⊥ or
⊤. Obviously, this can be done in polynomial time.
Cref -unification: Similar to Cser-unification.

The decidability status of Cser-unification and Cref -unification are unknown when
PAR 6= ∅. The decidability status of Csym-unification is unknown both when PAR 6= ∅
and when PAR = ∅. Let Cpar be the class of all partitions.

Proposition 2. If PAR = ∅ then Cpar-unification is in NP.

Proof. Similar to the proof of Proposition 1.

Cpar-unification remains decidable when PAR 6= ∅. See (Balbiani, & Gencer, 2015)
for details. Let Cdet be the class of all deterministic frames.

Proposition 3. Cdet-unification is in PSPACE.

Proof. See (Balbiani, & Tinchev, 2014).

Let Ctra be the class of all transitive frames, Crt be the class of all reflexive transitive
frames and Ctwf be the class of all transitive well-founded frames.

Proposition 4. (1) Ctra-unification is decidable.
(2) Crt-unification is decidable (in NP when PAR = ∅).
(3) Ctwf -unification is decidable.



Proof. See (Ghilardi, 2000).

As for the decidability status of unification in the class Call of all frames, it is unknown.

5. Unification type

Let C be a class of frames. We shall say that a set Σ of unifiers of a unifiable formula φ
is complete if for all unifiers σ of φ, there exists a unifier τ of φ in Σ such that τ �C σ.
An important question is the following: when a formula is unifiable, has it a minimal
complete set of unifiers? When the answer is “yes”, how large is this set? We shall say
that a unifiable formula

• φ is nullary if there exists no minimal complete set of unifiers of φ,
• φ is infinitary if there exists an infinite minimal complete set of unifiers of φ but
there exists no finite one,

• φ is finitary if there exists a finite minimal complete set of unifiers of φ but there
exists no with cardinality 1,

• φ is unitary if there exists a minimal complete set of unifiers of φ with cardinality
1.

We shall say that

• C is nullary if there exists a nullary formula,
• C is infinitary if every unifiable formula is either infinitary, or finitary, or unitary
and there exists a infinitary formula,

• C is finitary if every unifiable formula is either finitary, or unitary and there exists
a finitary formula,

• C is unitary if every unifiable formula is unitary.

Proposition 5. If PAR 6= ∅ then Cser is nullary.

Proof. See Section 6.

The unification type of Cser is unknown when PAR = ∅. The unification type of Cref

and the unification type of Csym are unknown both when PAR 6= ∅ and when PAR = ∅.

Proposition 6. Cpar is unitary.

Proof. See (Baader:, & Ghilardi, 2011).

Proposition 7. Cdet is nullary.

Proof. See (Balbiani, & Tinchev, 2014).

Proposition 8. (1) Ctra is finitary.
(2) Crt is finitary.
(3) Ctwf is finitary.

Proof. See (Ghilardi, 2000).

As for the unification type of Call, it is nullary (Jerábek, 2013).



6. KD is nullary

In this section, we will always assume that PAR 6= ∅. Let C be a class of frames such
that for all k, l ∈ IN, if k < l then C 6|= p ∧ [p]l⊥ → [p]k⊥. Remark that the class Cser of
all serial frames is of that kind whereas neither the class Cref of all reflexive frames, nor
the class Csym of all symmetrical frames are of that kind. Let φ = (x→ p) ∧ (x→ [p]x)
be the formula considered in Example 1. Let Σ = {σp} ∪ {σk : k ∈ IN} where σp is the
substitution defined by σp(x) = p and considered in Example 2 and for all k ∈ IN, σk is
the substitution defined by σk(x) = p∧ [p]<kx∧ [p]k⊥ and considered in Example 3. By
Examples 5 and 6, we know that Σ is a set of unifiers of φ.

Lemma 1. Let k, l ∈ IN. If k ≤ l then σl �C σk.

Proof. Suppose k ≤ l. Let υ be the substitution defined by υ(x) = x∧ [p]k⊥. The reader
may easily verify that C |= υ(σl(x))↔ σk(x). Hence, σl �C σk.

Lemma 2. Let k, l ∈ IN. If k < l then σk 6�C σl.

Proof. Suppose k < l and σk �C σl. Let υ be a substitution such that σk ◦ υ ≃C σl.
Hence, C |= υ(σk(x)) ↔ σl(x). Thus, C |= p ∧ [p]<lx ∧ [p]l⊥ → [p]k⊥. Consequently,
C |= p ∧ [p]l⊥ → [p]k⊥: a contradiction.

Remark that the proof of Lemma 2 is the only one in this section where we use the
fact that for all k, l ∈ IN, if k < l then C 6|= p ∧ [p]l⊥ → [p]k⊥. As for Lemma 2, its use
will be crucial in the proof of Lemma 7.

Lemma 3. Let σ be a substitution. The following conditions are equivalent:

(1) σp ◦ σ ≃C σ.
(2) σp �C σ.
(3) C |= σ(x)↔ p.

Proof. (1.⇒ 2) : By definition of �C .
(2. ⇒ 3) : Suppose σp �C σ. Let υ be a substitution such that σp ◦ υ ≃C σ. Hence,
C |= υ(σp(x))↔ σ(x). Thus, C |= σ(x)↔ p.
(3.⇒ 1) : Suppose C |= σ(x)↔ p. Hence, C |= σ(σp(x))↔ σ(x). Thus, σp ◦ σ ≃C σ.

Lemma 4. Let k ∈ IN. Let σ be a unifier of φ. The following conditions are equivalent:

(1) σk ◦ σ ≃C σ.
(2) σk �C σ.
(3) C |= σ(x)→ [p]k⊥.

Proof. (1.⇒ 2) : By definition of �C .
(2. ⇒ 3) : Suppose σk �C σ. Let υ be a substitution such that σk ◦ υ ≃C σ. Hence,
C |= υ(σk(x))↔ σ(x). Thus, C |= σ(x)→ [p]k⊥.
(3.⇒ 1) : Suppose C |= σ(x)→ [p]k⊥. Since σ is a unifier of φ, therefore C |= σ(x)→ p

and C |= σ(x) → [p]σ(x). Hence, C |= σ(x) → [p]<kσ(x). Since C |= σ(x) → [p]k⊥ and
C |= σ(x)→ p, therefore C |= σ(x)→ σ(σk(x)). Now, we consider the following 2 cases.
Case k = 0: Thus, C |= [p]k⊥ → σ(x).
Case k ≥ 1: Consequently, C |= [p]<kσ(x)→ σ(x).
In both cases, C |= σ(σk(x)) → σ(x). Since C |= σ(x) → σ(σk(x)), therefore C |=
σ(σk(x))↔ σ(x). Hence, σk ◦ σ ≃C σ.

Lemma 5. Let σ be a unifier of φ. If C = Cser then one of the following conditions
holds:



(1) σp �C σ.
(2) There exists k ∈ IN such that σk �C σ.

Proof. Suppose C = Cser and none of the above conditions holds. By Lemmas 3 and 4,
C 6|= σ(x) ↔ p and C 6|= σ(x) → [p]deg(σ(x))⊥. Since σ is a unifier of φ, therefore
C |= σ(x) → p. Let F = (W,R) and F ′ = (W ′, R′) be frames in C, M = (W,R, V )
and M′ = (W ′, R′, V ′) be models based respectively on F and F ′ and s ∈ W and
s′ ∈ W ′ be pairwise distinct states such that M, s 6|= p → σ(x) and M′, s′ 6|= σ(x) →
[p]deg(σ(x))⊥. Hence, M, s |= p, M, s 6|= σ(x), M′, s′ |= σ(x) and M′, s′ 6|= [p]deg(σ(x))⊥.
Let t′0, . . . , t

′

deg(σ(x)) ∈W ′ be states such that t′0 = s′ and for all i ∈ IN, if i < deg(σ(x))

then t′iR
′t′i+1 and t′i+1 ∈ V ′(p). Since C = Cser, therefore without loss of generality,

we may assume that t′0, . . . , t
′

deg(σ(x)) are pairwise distinct and constitute the shortest

p-path in W ′ between t′0 and t′deg(σ(x)). Thus, this path is of length deg(σ(x)). Let

M′′ = (W ′′, R′′, V ′′) be the model defined as follows:

• W ′′ =W ∪W ′,
• R′′ = R ∪R′ ∪ {(t′deg(σ(x)), s)},

• V ′′ = V ∪ V ′.

Since M, s |= p and M, s 6|= σ(x), therefore M′′, s |= p and M′′, s 6|= σ(x). Since
t′0, . . . , t

′

deg(σ(x)) is the shortest p-path in W ′ between t′0 and t
′

deg(σ(x)), M
′, s′ |= σ(x),

t′0 = s′ and for all i ∈ IN, if i < deg(σ(x)) then t′iR
′t′i+1 and t′i+1 ∈ V ′(p), therefore

M′′, s′ |= σ(x). Since σ is a unifier of φ, therefore C |= σ(x)→ [p]σ(x). Since M′′, s |= p

and M′′, s′ |= σ(x), therefore M′′, s |= σ(x): a contradiction.

Lemma 6. If C = Cser then Σ is a complete set of unifiers of φ.

Proof. By Lemma 5.

Lemma 7. If C = Cser then there exists no minimal complete set of unifiers of φ.

Proof. Suppose C = Cser and let Γ be a minimal complete set of unifiers of φ. Remark
that by definition of Σ, σ0 ∈ Σ. Moreover, in any class of frames, σ0(x) is equivalent to
⊥. Let γ ∈ Γ be such that γ �C σ0. Since C = Cser, therefore by Lemma 6, let σ ∈ Σ be
such that σ �C γ. Now, we consider the following 2 cases.
Case σ = σp: Since γ �C σ0, therefore σ �C σ0. Let υ be a substitution such that
σ ◦ υ ≃C σ0. Hence, C |= υ(σ(x))↔ σ0(x). Thus, C |= ¬p: a contradiction.
Case σ = σk for some k ∈ IN: Remark that by definition of Σ, σk+1 ∈ Σ. Let γ′ ∈ Γ be
such that γ′ �C σk+1. Since σ �C γ, therefore by Lemma 1, γ

′ �C γ. Since Γ is a minimal
complete set of unifiers of φ, therefore γ′ = γ. Since γ′ �C σk+1 and σ �C γ, therefore
σk �C σk+1. Since k < k + 1, therefore by Lemma 2, σk 6�C σk+1: a contradiction.

Remark that the last argument in the proof of Lemma 7 heavily relies on Lemma 2.
Therefore, unfortunately, it cannot be repeated when, as in the cases C = Cref and
C = Csym, there exists k, l ∈ IN such that k < l and C |= p ∧ [p]l⊥ → [p]k⊥. Finally, we
obtain the

Proposition 9. Cser is nullary.

Proof. By Lemma 7.



7. Additional comments

In the context of modal logics, classes of frames such as the ones underlying K and KD
give rise to quite similar sets of valid formulas for what concerns axiomatization and
decidability. Putting known results adapted from (Baader, & Ghilardi, 2011; Dzik, 2003;
Dzik, 2007; Ghilardi, 2000; Jerábek, 2013) together with new ones enables us to establish
basic facts and outline open problems. See Tab. 1. While the study of K and KD has
now limited mathematical interest for what concerns axiomatization and decidability,
considering unification types in modal logics is justified from the following perspectives:
methods for deciding the unifiability of formulas can be used to improve the efficiency
of automated theorem provers (Babenyschev, Rybakov, Schmidt, & Tishkovsky, 2010);
deciding the unifiability of formulas like φ ↔ ψ helps us to understand what is the
overlap between the properties φ and ψ correspond to (Baader, & Ghilardi, 2011); in
description logics, unification algorithms are used to detect redundancies in knowledge-
based systems (Baader, Borgwardt, & Morawska, 2012). One readily observes that, while
attacking the above-mentioned problems, little, if anything, from the standard tools in
modal logics (canonical models, filtrations, etc) is helpful. In order to successfully solve
them, new techniques in modal logics must be developed and much remains to be done.
The study of unification types in modal logics has still many secrets to reveal. The
most intriguing of them possibly being, both when PAR 6= ∅ and when PAR = ∅, the
unification types of Cref and Csym.
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modal logic as a general tool for the formalization of human reasoning has exerted a
profound influence on our research. To our knowledge, this paper does not relate in any
way to Luis’ own papers. We hope it can constitute the subject of a joint work in the
near future.

References

Baader, F., Borgwardt, S., & Morawska, B. (2012). Extending unification in EL to-
wards general TBoxes. In Brewka, G. et al. (editors): Principles of Knowledge
Representation and Reasoning. AAAI Press (2012) 568–572.

Baader, F., & Ghilardi, S. (2011). Unification in modal and description logics. Logic
Journal of the IGPL 19 (2011) 705–730.
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Class PAR Computability Type
Cser = ∅ in NP (Proposition 1) ?

Cref = ∅ in NP (Proposition 1) ?
Csym = ∅ ? ?
Cpar = ∅ in NP (Proposition 2) unitary (Baader, & Ghilardi, 2011)

Cdet = ∅ in PSPACE (Balbiani, Tinchev, 2014) nullary (Balbiani, & Tinchev, 2014)
Ctra = ∅ decidable (Rybakov, 1997) finitary (Ghilardi, 2000)
Crt = ∅ in NP (Proposition 2) finitary (Ghilardi, 2000)

Ctwf = ∅ decidable (Rybakov, 1997) finitary (Ghilardi, 2000)

Call = ∅ ? nullary (Jerábek, 2013)
Cser 6= ∅ ? nullary (Proposition 9)

Cref 6= ∅ ? ?
Csym 6= ∅ ? ?
Cpar 6= ∅ decidable (Balbiani, & Gencer, 2015) unitary

Cdet 6= ∅ in PSPACE (Balbiani, & Tinchev, 2014) nullary (Balbiani, & Tinchev, 2014)
Ctra 6= ∅ decidable (Rybakov, 1997) finitary (Ghilardi, 2000)
Crt 6= ∅ decidable (Rybakov, 1997) finitary (Ghilardi, 2000)

Ctwf 6= ∅ decidable (Rybakov, 1997) finitary (Ghilardi, 2000)

Call 6= ∅ ? nullary (Jerábek, 2013)
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