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ABSTRACT

Epistemic logics are essential to the design of logical systems that
capture elements of reasoning about knowledge. In this paper, we
study the computability of unifiability and the unification types in
several epistemic logics.
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1. Introduction

Epistemic logics are essential to the design of logical systems that capture elements of
reasoning about knowledge. There exist variants of these logics with one or several agents,
with or without common knowledge, etc. The logical problems addressed in their setting
usually concern their axiomatisability and their decidability (see Fagin, Halpern, Moses, &
Vardi, 1995). Epistemic logics can have a number of other desirable properties which one
should establish whenever possible. Such properties concern, for example, the admissibility

problem and the unifiability problem. About the admissibility problem, an inference rule
φ1 ,...,φn
ψ

is admissible in an epistemic logic L if for all instances
φ′
1 ,...,φ

′
n

ψ ′ of the inference rule,

if φ′
1, . . . ,φ

′
n are in L then ψ ′ is in L too (see Rybakov, 1997; Wolter & Zakharyaschev, 2008).

About the unifiability problem, a formula φ is unifiable in an epistemic logic L if there exists

an instance φ′ of the formula such that φ′ is in L (see Baader & Ghilardi, 2011; Ghilardi, 2000).

Whenanepistemic logic L is axiomatically presented, its admissible inference rules canbe

added to its axiomatical presentation without changing the set of its theorems. As a result,

in order to improve the efficiency of automated theorem provers for epistemic logics,

methods for deciding the admissibility of inference rules can be used (see Babenyshev,

Rybakov, Schmidt, & Tishkovsky, 2010). The unifiability problem is easily reducible to the

admissibility problem, seeing that the formula φ is unifiable in L iff the inference rule φ
⊥

is non-admissible in L. In some cases, when L’s unification type is finitary, the admissibility

problem is reducible to the unifiability problem (see Dzik, 2007; Gencer & de Jongh, 2009;

Ghilardi, 2000). Therefore, in order to improve the efficiency of automated theorem provers

for epistemic logics, methods for deciding the unifiability of formulas can be used as well.

In this paper, we study the computability of unifiability and the unification types in several

epistemic logics.

Theunifiability problemhasbeenalready considered in restricted fragments of epistemic

logics where the uniquemodal connective is the one of common knowledge (see Rybakov,
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2002, 2011). Much remains to be done, seeing that the computability of unifiability and the 
unification types are unknown in most epistemic logics. In this paper, given an epistemic 
logic L, we examine the following questions. Is it computable whether a given formula is 
unifiable in L? When the answer is ‘yes’, how complex is the problem? When a formula 
is unifiable in L, has it a minimal complete set of unifiers? When the answer is ‘yes’, how 
large is this set? A final word about epistemic logics before entering into the details. Many 
propositional logics deserve to be called ‘epistemic logics’. In this paper, we will only interest 
in the normal modal logics K 45, KD45 and S5 and their multi-agent versions. Moreover, in 
order to avoid non-essential definitions, we will sometimes make no explicit difference 
between a class of frames and the normal modal logic it gives rise to, for instance: the class 
of all transitive frames and the normal modal logic K 4, the class of all reflexive and transitive 
frames and the normal modal logic S4, etc.

The paper is organised as follows. In Sections 2 and 3, we present the syntax and 
the semantics of ordinary modal logic. Section 4 is concerned with the computability of 
the unifiability problem in the normal modal logics K 45, KD45 and S5. In Section 5, we 
establish the unification types of some of these normal modal logics. Sections 6 and 7 are 
devoted to the unification problem in epistemic logics with parameters and in multi-agent 
epistemic logics. The unifiability problem has been studied since the beginning of logic 
(Boole, Löwenheim, etc.). But recent years have seen an increase of interest, important 
results have been obtained. In this paper, we survey what is known in the computability 
of unifiability and the unification types in epistemic logics. Some of the results presented 
below are simple adaptations of already known results whereas other results are new. We 
hope the reader will find it useful as a starting point for further research on unification in 
epistemic logics.

2. Syntax

It is now time to meet the modal language we will be working with. Let VAR be a countable 
set of atomic formulas called variables (with typical members denoted x , y, etc.). The 
formulas are defined by the rule

• φ ::= x | ⊥ | ¬φ | (φ ∨ ψ) | ✷φ.

We follow the standard rules for omission of the parentheses whereas we adopt the

standard definitions for the remaining Boolean operations. We also write ✷
+φ for φ ∧ ✷φ.

Let

• ✸φ ::= ¬✷¬φ.

We also write ✸
+φ for ¬✷

+¬φ. We write φ(x1, . . . , xn) to denote a formula whose

variables form a subset of {x1, . . . , xn}. The result of the replacement of x1, . . . , xn in their

places in φ with formulas ψ1, . . . ,ψn will be denoted φ(ψ1, . . . ,ψn). A substitution is a

function σ associating to each variable x a formula σ(x). We shall say that a substitution σ is

closed if for all variables x , σ(x) is a variable-free formula. For all formulas φ(x1, . . . , xn)

let σ(φ) be φ(σ(x1), . . . , σ(xn)). The composition σ ◦ τ of the substitutions σ and τ

associates to each variable x the formula τ(σ (x)). Obviously, this ‘composition’ operation

on substitutions is associative.



3. Semantics

A frame is a structure of the form F = (W , R) where W is a nonempty set of states and R is 
a binary relation on W . In this paper, we will consider the following important properties of 
a frame F = (W , R):

• F is Euclidean when for all s, t, u ∈ W , if sRt and sRu then tRu,

• F is reflexive when for all s ∈ W , sRs,

• F is serial when for all s ∈ W , there exists t ∈ W such that sRt,

• F is transitive when for all s, t, u ∈ W , if sRt and tRu then sRu.

A model based on a frame F = (W , R) is a triple M = (W , R, V) where V is a function

associating a subset V(x) ofW to each x ∈ VAR. We define the notion of a formula φ being

true in model M = (W , R, V) at a state s inW (in symbols M, s |= φ) as follows:

• M, s |= x iff s ∈ V(x),

• M, s 6|= ⊥,

• M, s |= ¬φ iff M, s 6|= φ,

• M, s |= φ ∨ ψ iff either M, s |= φ, or M, s |= ψ ,

• M, s |= ✷φ iff for all t ∈ W , if sRt then M, t |= φ.

As a result,

• M, s |= ✸φ iff there exists t ∈ W such that sRt and M, t |= φ.

A formula φ is globally true in a model M = (W , R, V ) (in symbols M |= φ) if for all 
s ∈ W , M, s |= φ. A formula φ is valid on a frame F (in symbols F |= φ) if for all models M 
based on F , M |= φ. A formula φ is valid on a class C of frames (in symbols C |= φ) if for 
all frames F in C, F |= φ. Let C be a class of frames. A substitution σ is C-equivalent to a 
substitution τ (in symbols σ ≃C τ ) if for all variables x , C |= σ (x) ↔ τ (x). A substitution σ 
is more C-general than a substitution τ (in symbols σ ≤C τ ) if there exists a substitution µ 
such that σ ◦ µ ≃C τ . Obviously, this ‘more C-general than’ relation between substitutions 
is transitive. In this paper, we will mainly interest in the classes CK 45 of all transitive and 
Euclidean frames, CKD45 of all serial, transitive and Euclidean frames and CS5 of all reflexive, 
transitive and Euclidean frames underlying the normal modal logics K 45, KD45 and S5.

4. Unifiability problem

Let C be a class of frames. A formula φ is C-unifiable if there exists a substitution σ such that 
C |= σ (φ). In this case, σ is a C-unifier of φ.

Example: The formula φ = ✷x ∨ ✷¬x is CK 45-unifiable, the substitution σ such that 
σ (x) = ✷x being one of its CK 45-unifiers. Since CK 45 contains CKD45 and CS5, φ is CKD45-
unifiable and CS5-unifiable as well. Moreover, the CK 45-unifiers of φ are also CKD45-unifiers 
and CS5-unifiers of φ.

Example: The formula φ = ✸x ∨ ✸¬y is CKD45-unifiable, the substitution σ such that 
σ (x) = x and σ (y) = ✷x being one of its CKD45-unifiers. Since CKD45 contains CS5, φ is 
CS5-unifiable as well. Moreover, the CKD45-unifiers of φ are also CS5-unifiers of φ. Note that φ 
is not CK 45-unifiable.



Given a class C of frames, we study the computability of the following decision problem:

input: a formula φ,

output: determine whether φ is C-unifiable.

Lemma 1: If φ possesses a C-unifier, then φ possesses a closed C-unifier.

Proof: This follows from the fact that for all C-unifiers σ ofφ and for all closed substitutions

τ , σ ◦ τ is a closed C-unifier of φ. �

Lemma 2: Let φ(x1, . . . , xn) be a Boolean formula. The following conditions are equivalent:

(1) φ(x1, . . . , xn), considered as a Boolean formula, is satisfiable.

(2) φ(x1, . . . , xn), considered as amodal formula, is C-unifiable.

Proof: Suppose φ(x1, . . . , xn), considered as a Boolean formula, is satisfiable. Hence, there

exists formulas ψ1, . . . ,ψn in {⊥,⊤} such that φ(ψ1, . . . ,ψn) is classically equivalent to

⊤. Thus, φ(ψ1, . . . ,ψn) is C-equivalent to ⊤. Consequently, φ(x1, . . . , xn), considered as a

modal formula, is C-unifiable.

Reciprocally, suppose φ(x1, . . . , xn), considered as a modal formula, is C-unifiable. Let σ

be a C-unifier of φ(x1, . . . , xn). Let M = (W , R, V) be a C-model and s ∈ W . Since σ is a

C-unifier of φ(x1, . . . , xn), thereforeM, s |= φ(σ(x1), . . . , σ(xn)). Letψ1, . . . ,ψn be formulas

in {⊥,⊤} such that for all i ∈ {1, . . . , n}, if M, s |= σ(xi) then ψi = ⊤ else ψi = ⊥. Since

M, s |= φ(σ(x1), . . . , σ(xn)), therefore φ(ψ1, . . . ,ψn) is classically equivalent to ⊤. Hence,

φ(x1, . . . , xn), considered as a Boolean formula, is satisfiable. �

Lemma 3: If either C is CK45, or C is CKD45, or C is CS5 then the following decision problem is in

P:

input: a variable-free formula φ,

output: determine whether C |= φ.

Proof: This is a well-known property. �

Lemma 4: If eitherC isCKD45, orC isCS5 then every variable-free formula is eitherC-equivalent

to⊥, or C-equivalent to⊤.

Proof: This is a well-known property. �

Lemma 5: If either C is CKD45, or C is CS5 then every closed substitution is C-equivalent to a

substitution σ such that for each variable x, either σ(x) = ⊥, or σ(x) = ⊤.

Proof: By Lemma 4. �

Lemma 6: Let φ be a formula. If either C is CKD45, or C is CS5 then the following conditions are

equivalent:

(1) φ is C-unifiable.

(2) There exists a C-unifier σ ofφ such that for all variables x, either σ(x) = ⊥, or σ(x) = ⊤.

Proof: By Lemmas 1 and 5. �

Proposition 1: If either C is CKD45, or C is CS5 then the C-unifiability problem is NP-complete.



Proof: Suppose either C is CKD45, or C is CS5. In order to determinewhether a given formula

φ(x1, . . . , xn) is C-unifiable, let us consider the following procedure:

procedure UNI(φ(x1, . . . , xn))

begin

guess a tuple (ψ1, . . . ,ψn) of formulas in {⊥,⊤}

bool := BG(φ(x1, . . . , xn), (ψ1, . . . ,ψn))

if bool then accept else reject

end

The function BG( · ) takes as input a formula φ(x1, . . . , xn) and a tuple (ψ1, . . . ,ψn) of

formulas in {⊥,⊤}. It returns the Boolean value ⊤ if C |= φ(ψ1, . . . ,ψn). Otherwise, it

returns the Boolean value ⊥. By Lemma 3, it can be implemented as a deterministic Turing

machine working in polynomial time. By Lemma 6, the procedure UNI( · ) accepts its input

φ(x1, . . . , xn) iff φ(x1, . . . , xn) is C-unifiable. It can be implemented as a nondeterministic

Turing machine working in polynomial time. Hence, the C-unifiability problem is in NP. As

for the NP-hardness of the C-unifiability problem, it follows from Lemma 2. �

Lemma 7: Every variable-free formula is either CK45-equivalent to ⊥, or CK45-equivalent to

⊤, or CK45-equivalent to✷⊥, or CK45-equivalent to✸⊤.

Proof: This is a well-known property. �

Lemma 8: Every closed substitution is CK45-equivalent to a substitution σ such that for each

variable x, either σ(x) = ⊥, or σ(x) = ⊤, or σ(x) = ✷⊥, or σ(x) = ✸⊤.

Proof: By Lemma 7. �

Lemma 9: Let φ be a formula. The following conditions are equivalent:

(1) φ is CK45-unifiable.

(2) There exists a CK45-unifier σ of φ such that for all variables x, either σ(x) = ⊥, or

σ(x) = ⊤, or σ(x) = ✷⊥, or σ(x) = ✸⊤.

Proof: By Lemmas 1 and 8. �

Proposition 2: The CK45-unifiability problem is NP-complete.

Proof: In order to determine whether a given formula φ(x1, . . . , xn) is CK45-unifiable, let us

consider the following procedure:

procedure UNI45(φ(x1, . . . , xn))

begin

guess a tuple (ψ1, . . . ,ψn) of formulas in {⊥,⊤,✷⊥,✸⊤}

bool := BG45(φ(x1, . . . , xn), (ψ1, . . . ,ψn))

if bool then accept else reject

end

The function BG45( · ) takes as input a formula φ(x1, . . . , xn) and a tuple (ψ1, . . . ,ψn)

of formulas in {⊥,⊤,✷⊥,✸⊤}. It returns the Boolean value ⊤ if CK45 |= φ(ψ1, . . . ,ψn).

Otherwise, it returns the Boolean value ⊥. By Lemma 3, it can be implemented as a deter-

ministic Turing machine working in polynomial time. By Lemma 9, the procedure UNI45( · )

accepts its input φ(x1, . . . , xn) iff φ(x1, . . . , xn) is C45-unifiable. It can be implemented as a

nondeterministic Turing machine working in polynomial time. Hence, the C45-unifiability

problem is in NP. As for the NP-hardness of the C45-unifiability problem, it follows from

Lemma 2. �



In Rybakov, Terziler, and Gencer (1999), syntactic characterisations have been given for

the unifiability problem in normal modal logics like KD4 and S4. Later on, in Gencer and de

Jongh (2009), similar syntactic characterisationshavebeengiven for theunifiability problem

in normal modal logics like GL and K4.3. Now, we give syntactic characterisations for the

unifiability problem in normal modal logics like K45, KD45 and S5. As for S5, the syntactic

characterisation looks like those considered in Gencer and de Jongh (2009); Rybakov et al.

(1999).

Proposition 3: Let φ(x1, . . . , xn) be a formula. The following conditions are equivalent:

(1) φ(x1, . . . , xn) is CS5-unifiable.

(2) CS5 6|= φ(x1, . . . , xn) →
∨

{✸xi ∧ ✸¬xi : 1 ≤ i ≤ n}.

Proof: Suppose φ(x1, . . . , xn) is CS5-unifiable and CS5 |= φ(x1, . . . , xn) →
∨

{✸xi ∧ ✸¬xi :

1 ≤ i ≤ n}. By Lemma 6, letψ1, . . . ,ψn be formulas in {⊥,⊤} such that CS5 |= φ(ψ1, . . . ,ψn).

SinceCS5 |= φ(x1, . . . , xn) →
∨

{✸xi∧✸¬xi : 1 ≤ i ≤ n}, thereforeCS5 |= φ(ψ1, . . . ,ψn) →
∨

{✸ψi ∧✸¬ψi : 1 ≤ i ≤ n}. Since CS5 |= φ(ψ1, . . . ,ψn), therefore CS5 |=
∨

{✸ψi ∧✸¬ψi :

1 ≤ i ≤ n}. Since for all formulas ψ in {⊥,⊤}, the formula ✸ψ ∧ ✸¬ψ is CS5-equivalent to

⊥, therefore CS5 |= ⊥: a contradiction.

Reciprocally, suppose CS5 6|= φ(x1, . . . , xn) →
∨

{✸xi ∧ ✸¬xi : 1 ≤ i ≤ n}. Let M =

(W , R, V) be a CS5-model and s ∈ W be such that M, s |= φ(x1, . . . , xn) and for all i ∈

{1, . . . , n}, either M, s |= ✷xi , or M, s |= ✷¬xi . Without loss of generality, we can assume

that M is generated from s. Let ψ1, . . . ,ψn be formulas in {⊥,⊤} such that for all i ∈

{1, . . . , n}, if M, s |= ✷xi then ψi = ⊤ else ψi = ⊥. Since M, s |= φ(x1, . . . , xn), therefore

M, s |= φ(ψ1, . . . ,ψn). Since φ(ψ1, . . . ,ψn) is variable-free, therefore CS5 |= φ(ψ1, . . . ,ψn).

Thus, φ(x1, . . . , xn) is CS5-unifiable. �

Concerning KD45, the syntactic characterisation is similar to the one for S5.

Proposition 4: Let φ(x1, . . . , xn) be a formula. The following conditions are equivalent:

(1) φ(x1, . . . , xn) is CKD45-unifiable.

(2) CKD45 6|= φ(x1, . . . , xn) →
∨

{(xi ∨ ✸xi) ∧ (¬xi ∨ ✸¬xi) : 1 ≤ i ≤ n}.

Proof: Similar to the proof of Proposition 3. �

About K45, things are different: the syntactic characterisation uses the universal modal-

ity. We will make use of the following abbreviation where [U] is universal modality:

• (φ ≡ ψ) ::= [U](✷⊥ ∨ (φ ↔ ψ) ∨ ✸(φ ↔ ψ)) ∨ [U](✸⊤ ∨ (φ ↔ ψ) ∨ ✸(φ ↔ ψ)).

The universal modality is interpreted in models by the universal relation. More precisely,

a formula [U]φ is true in model M = (W , R, V) at a state s in W iff φ is globally true in M.

See (Goranko & Passy, 1992) for details about the extension of the ordinary language of

modal logic by means of the universal modality.

Proposition 5: Let φ(x1, . . . , xn) be a formula. The following conditions are equivalent:

(1) φ(x1, . . . , xn) is CK45-unifiable.

(2) CK45 6|= [U]φ(x1, . . . , xn) →
∨

{
∧

{xi ≡ ψ : ψ ∈ {⊥,⊤,✷⊥,✸⊤}} : 1 ≤ i ≤ n}.

Proof: Suppose φ(x1, . . . , xn) is CK45-unifiable and CK45 |= [U]φ(x1, . . . , xn) →
∨

{
∧

{xi ≡

ψ : ψ ∈ {⊥,⊤,✷⊥,✸⊤}} : 1 ≤ i ≤ n}. By Lemma 9, let ψ1, . . . ,ψn be formulas

in {⊥,⊤,✷⊥,✸⊤} such that CK45 |= φ(ψ1, . . . ,ψn). Since CK45 |= [U]φ(x1, . . . , xn) →
∨

{
∧

{xi ≡ ψ : ψ ∈ {⊥,⊤,✷⊥,✸⊤}} : 1 ≤ i ≤ n}, therefore CK45 |= [U]φ(ψ1, . . . ,ψn) →



∨
{
∧

{ψi ≡ ψ : ψ ∈ {⊥, ⊤, ✷⊥, ✸⊤}} : 1 ≤ i ≤ n}. Since CK 45 |= φ(ψ1, . . . , ψn), therefore CK 45 |= 
∨

{
∧

{ψi ≡ ψ : ψ ∈ {⊥, ⊤, ✷⊥, ✸⊤}} : 1 ≤ i ≤ n}. Since for all 
i ∈ {1, . . . , n}, the formula 

∧
{ψi ≡ ψ : ψ ∈ {⊥, ⊤, ✷⊥, ✸⊤}} is CK 45-equivalent to the 

formula [U]✷⊥ ∨ [U]✸⊤, therefore CK 45 |= [U]✷⊥ ∨ [U]✸⊤: a contradiction.
Reciprocally, suppose CK 45 6|= [U]φ(x1, . . . , xn) → 

∨
{
∧

{xi ≡ ψ : ψ ∈ {⊥, ⊤, ✷⊥, ✸⊤}} : 
1 ≤ i ≤ n}. Let M = (W , R, V ) be a CK 45-model and s ∈ W be such that M, s |= 
[U]φ(x1, . . . , xn) and for all i ∈ {1, . . . , n}, M, s 6|= 

∧
{xi ≡ ψ : ψ ∈ {⊥, ⊤, ✷⊥, ✸⊤}}. 

This time, because we are using formulas containing the universal modality, we cannot 
assume that M is generated from s. Let ψ1, . . . , ψn be formulas in {⊥, ⊤, ✷⊥, ✸⊤} such 
that for all i ∈ {1, . . . , n}, M, s |= 〈U〉(✷⊥ ∧ (xi ↔ ψi ) ∧ ✷(xi ↔ ψi )) ∧ 〈U〉(✸⊤ ∧ 
(xi ↔ ψi ) ∧ ✷(xi ↔ ψi )). Since M, s |= [U]φ(x1, . . . , xn), therefore M, s |= 〈U〉(✷⊥ ∧ 
φ(ψ1, . . . , ψn)) ∧ 〈U〉(✸⊤ ∧ φ(ψ1, . . . , ψn)). Since φ(ψ1, . . . , ψn) is a variable-free formula, 
therefore CK 45 |= φ(ψ1, . . . , ψn). Thus, φ(x1, . . . , xn) is CK 45-unifiable. �

5. Unification types

Let C be a class of frames. A C-unifier σ of a formula φ is a most C-general unifier if for all 
C-unifiers τ of φ, σ ≤C τ . A set 6 of C-unifiers of a C-unifiable formula φ is complete if for 
all C-unifiers σ of φ, there exists a C-unifier τ of φ in 6 such that τ ≤C σ . In some cases, 
every C-unifiable formula possesses a most C-general unifier. This is the case if C is the class 
CS5. See Proposition 6. Moreover, in some other cases, every C-unifiable formula possesses 
a finite minimal complete set of C-unifiers. This is the case if C is the class CK 4 (see Ghilardi, 
2000). Finally, in some other cases, there exists C-unifiable formulas possessing no minimal 
complete set of C-unifiers at all. This is the case if C is the class CK of all frames (see Jer̆ábek, 
2015). Hence, now, the question is: When a formula is C-unifiable, has it a minimal complete 
set of C-unifiers? When the answer is ‘yes’, how large is this set? Given a C-unifiable formula, 
these questions of the existence and, when it exists, the cardinality of a minimal complete 
set of C-unifiers for this formula is central (see Baader & Ghilardi, 2011; Dzik, 2003, 2007; 
Ghilardi, 2000; Jer̆ábek, 2015). It can be formalised as follows. Let φ be a C-unifiable formula. 
We will say that

• φ is of type unitary (1) for C iff φ possesses a most C-general unifier,

• φ is of type finitary (ω) for C iff there exists a finite minimal complete set of C-unifiers

of φ but φ does not possess a most C-general unifier,

• φ is of type infinitary (∞) for C iff there exists a minimal complete set of C-unifiers of φ

but there exists no such a set with finite cardinality,

• φ is of type nullary (0) for C iff there exists no minimal complete set of C-unifiers of φ.

As for the class C, we will say that

• C is unitary if every C-unifiable formula is of type unitary,

• C is finitary if there exists a C-unifiable formula of type finitary and every C-unifiable

formula is either of type unitary, or of type finitary,

• C is infinitary if there exists a C-unifiable formula of type infinitary and every C-unifiable

formula is either of type unitary, or of type finitary, or of type infinitary,

• C is nullary if there exists a C-unifiable formula of type nullary.

Another interesting notion related to the existence and, when they exist, the cardinality

ofminimal complete sets of C-unifiers for C-unifiable formulas is the notion of directedness.



We will say that the class C is directed iff for all C-unifiable formulas φ and for all C-unifiers

σ , τ of φ, there exists a C-unifier µ of φ such that µ ≤C σ and µ ≤C τ .

Lemma 10: If C is directed then either C is unitary, or C is nullary.

Proof: Suppose C is directed and neither C is unitary, nor C is nullary. Hence, either C is

finitary, or C is infinitary. Let φ be a C-unifiable formula either of type finitary, or of type

infinitary. LetŴ be aminimal complete set of C-unifiers of φ. Since φ is either of type finitary,

or of type infinitary, therefore Card(Ŵ) ≥ 2. Let σ , τ in Ŵ be such that σ 6= τ . Such σ , τ in

Ŵ exists because Card(Ŵ) ≥ 2. Let µ be a C-unifier of φ such that µ ≤C σ and µ ≤C τ .

Such C-unifier of φ exists because C is directed. Let υ in Ŵ be such that υ ≤C µ. Such υ in Ŵ

exists because Ŵ is a complete set of C-unifiers of φ. Since µ ≤C σ and µ ≤C τ , therefore

υ ≤C σ and υ ≤C τ . Since Ŵ is minimal, therefore υ = σ and υ = τ . Hence, σ = τ : a

contradiction. �

Consider a formula φ and a substitution σ . Let τσφ be the substitution defined by τσφ (x) =

(✷φ ∧ x) ∨ (✸¬φ ∧ σ(x)).

Lemma 11: Letψ be a formula.

(1) CS5 |= ✷φ → (τσφ (ψ) ↔ ψ).

(2) CS5 |= ✸¬φ → (τσφ (ψ) ↔ σ(ψ)).

Proof: (1) The proof is done by induction on ψ . The case when ψ = x is easy whereas the

Boolean cases are left to the reader. Thus, we only give the proof of the case ψ = ✷ψ ′. By

induction hypothesis, we know that

CS5 |= ✷φ → (τσφ (ψ
′) ↔ ψ ′). Then,

CS5 |= ✷✷φ → ✷(τσφ (ψ
′) ↔ ψ ′). Since,

CS5 |= ✷φ → ✷✷φ, therefore,

CS5 |= ✷φ → ✷(τσφ (ψ
′) ↔ ψ ′). Since,

CS5 |= ✷(τσφ (ψ
′) ↔ ψ ′) → (✷τσφ (ψ

′) ↔ ✷ψ ′), therefore,

CS5 |= ✷φ → (✷τσφ (ψ
′) ↔ ✷ψ ′). Consequently,

CS5 |= ✷φ → (τσφ (✷ψ
′) ↔ ✷ψ ′).

(2) Similar to the proof of (1), this time using the fact that CS5 |= ✸¬φ → ✷✸¬φ. �

Lemma 12: If σ is a CS5-unifier of φ then τσφ is a CS5-unifier of φ.

Proof: Suppose σ is a CS5-unifier of φ. By Lemma 11,

CS5 |= ✷φ → (τσφ (φ) ↔ φ). Hence,

CS5 |= ✷φ → (φ → τσφ (φ)). Since

CS5 |= ✷φ → φ, therefore

CS5 |= ✷φ → τσφ (φ). By Lemma 11,

CS5 |= ✸¬φ → (τσφ (φ) ↔ σ(φ)). Thus,

CS5 |= ✸¬φ → (σ (φ) → τσφ (φ)). Since σ is a CS5-unifier of φ, therefore

CS5 |= ✸¬φ → τσφ (φ). Since

CS5 |= ✷φ → τσφ (φ), therefore

CS5 |= τσφ (φ). Consequently, τ
σ
φ is a CS5-unifier of φ. �

Lemma 13: Ifµ is a CS5-unifier of φ then τσφ ≤CS5
µ.

Proof: Suppose µ is a CS5-unifier of φ. Hence, CS5 |= ✷µ(φ). Let x be an arbitrary variable.

By Lemma11, CS5 |= ✷φ → (τσφ (x) ↔ x). Thus, CS5 |= ✷µ(φ) → (µ(τσφ (x)) ↔ µ(x)). Since



CS5 |= ✷µ(φ), therefore CS5 |= µ(τσφ (x)) ↔ µ(x). As x is an arbitrary variable, τσφ ◦µ ≃CS5
µ.

Consequently, τσφ ≤CS5
µ. �

Proposition 6: CS5 is unitary.

Proof: Letφ be a CS5-unifiable formula. Letσ be a CS5-unifier ofφ. By Lemmas 12 and 13, τσφ
is amost CS5-general unifier ofφ. Hence,φ is of type unitary. Asφ is an arbitrary CS5-unifiable

formula, CS5 is unitary. �

Example: Consider again the formula φ = ✷x∨✷¬x . The substitution σ such that σ(x) =

✷x is oneof itsCS5-unifiers. Let τ
σ
φ be the substitutiondefinedby τσφ (x) = (✷φ∧x)∨(✸¬φ∧

σ(x)). In CS5, τ
σ
φ (x) is equivalent to ✷x . By Lemmas 12 and 13, this means that σ is a most

CS5-general unifier ofφ. Remark that the substitution σ ′ such that σ ′(x) = ✸x is a CS5-unifier

of φ too. Let τσ
′

φ be the substitution defined by τσ
′

φ (x) = (✷φ ∧ x) ∨ (✸¬φ ∧ σ ′(x)). In CS5,

τσ
′

φ (x) is equivalent to ✸x . By Lemmas 12 and 13, this means that σ ′ is a most CS5-general

unifier of φ too. In other respect, the reader may easily verify that σ ≤CS5
σ ′ and σ ′ ≤CS5

σ

by showing that σ ◦ σ ′ ≃CS5
σ ′ and σ ′ ◦ σ ≃CS5

σ .

Example: Consider again the formula φ = ✸x ∨ ✸¬y. The substitution σ such that

σ(x) = x and σ(y) = ✷x is one of its CS5-unifiers. Let τ
σ
φ be the substitution defined

by τσφ (x) = (✷φ ∧ x)∨ (✸¬φ ∧ σ(x)) and τσφ (y) = (✷φ ∧ y)∨ (✸¬φ ∧ σ(y)). In CS5, τ
σ
φ (x)

is equivalent to x and τσφ (y) is equivalent to (✸x ∨ ✸¬y) ∧ y. Remark that the substitution

σ ′ such that σ ′(x) = x and σ ′(y) = ✸x is a CS5-unifier of φ too. Let τσ
′

φ be the substitution

defined by τσ
′

φ (x) = (✷φ ∧ x)∨ (✸¬φ ∧ σ ′(x)) and τσ
′

φ (y) = (✷φ ∧ y)∨ (✸¬φ ∧ σ ′(y)). In

CS5, τ
σ ′

φ (x) is equivalent to x and τσ
′

φ (y) is equivalent to (✸x ∨ ✸¬y) ∧ y.

The results contained in Lemmas 11–13 and Proposition 6 have previously been dis-

cussed in Baader and Ghilardi (2011); Dzik (2003); Ghilardi (2000), sometimes with no proof.

The proofs that we have given above allow the reader to exactly understand where the

specific properties of CS5-frames (reflexivity, transitivity and Euclideanity) are used. In this

respect, the proof of Lemma 12 uses the fact, corresponding to the reflexivity of CS5-frames,

that CS5 |= ✷φ → φ. Hence, it cannot be repeated in the case of CK45 and CKD45. The main

drawback with CK45 and CKD45 is that the universal modality (interpreted in models by the

universal relation) is not definable in our language for these classes of frames. Nevertheless,

it can be proved that unification is directed both in CK45 and in CKD45. The directedness

of unification in CK45 and in CKD45 is a consequence of the characterisation by Ghilardi

and Sacchetti (2004) of the normal extensions of K4 with a directed unification problem.

More precisely, Ghilardi and Sacchetti demonstrate in their Theorem 8.4 that a normal

extension L of K4 has a directed unification problem iff ✸
+
✷

+x → ✷
+
✸

+x is in L. Since

✸
+
✷

+x → ✷
+
✸

+x is both CK45-valid and CKD45-valid, therefore, by Ghilardi and Sacchetti

(2004, Theorem 8.4), unification is directed both in CK45 and in CKD45. The proof presented

by Ghilardi and Sacchetti uses advanced notions from algebraic and relational semantics of

normal modal logics. In the remaining part of this Section, we give an explicit and simpler

proof of the directedness of unification in CK45 and in CKD45. Consider substitutions σ , τ .

Suppose for all variables x , the variable y occurs neither in σ(x), nor in τ(x). Let ασ ,τKD45 be

the substitution defined by ασ ,τKD45(x) = (✷y ∧ σ(x)) ∨ (✸¬y ∧ τ(x)).

Lemma 14:

(1) α
σ ,τ
KD45 ≤CKD45

σ .

(2) α
σ ,τ
KD45 ≤CKD45

τ .



Proof:

(1) Let β be the substitution defined by β(y) = ⊤. Since the variable y occurs neither

in σ(x), nor in τ(x), the reader may easily verify that ασ ,τKD45 ◦ β ≃CKD45
σ . Hence,

α
σ ,τ
KD45 ≤CKD45

σ .

(2) Similar to the proof of (1), this time using the substitution γ defined by γ (y) = ⊥.

�

Lemma 15: Letψ be a formula.

(1) CKD45 |= ✷y → (α
σ ,τ
KD45(ψ) ↔ σ(ψ)).

(2) CKD45 |= ✸¬y → (α
σ ,τ
KD45(ψ) ↔ τ(ψ)).

Proof: (1) The proof is done by induction on ψ . The case when ψ = x is easy whereas the

Boolean cases are left to the reader. Thus, we only give the proof of the case ψ = ✷ψ ′. By

induction hypothesis, we know that

CKD45 |= ✷y → (α
σ ,τ
KD45(ψ

′) ↔ σ(ψ ′)). Then

CKD45 |= ✷✷y → ✷(α
σ ,τ
KD45(ψ

′) ↔ σ(ψ ′)). Since

CKD45 |= ✷y → ✷✷y, therefore

CKD45 |= ✷y → ✷(α
σ ,τ
KD45(ψ

′) ↔ σ(ψ ′)). Since

CKD45 |= ✷(α
σ ,τ
KD45(ψ

′) ↔ σ(ψ ′)) → (✷α
σ ,τ
KD45(ψ

′) ↔ ✷σ(ψ ′)), therefore

CKD45 |= ✷y → (✷α
σ ,τ
KD45(ψ

′) ↔ ✷σ(ψ ′)). Consequently,

CKD45 |= ✷y → (α
σ ,τ
KD45(✷ψ

′) ↔ σ(✷ψ ′)).

(2) Similar to the proof of (1), this time using the fact that CKD45 |= ✸¬y → ✷✸¬y. �

Lemma 16: Let φ be a formula. If σ and τ are CKD45-unifiers of φ then ασ ,τKD45 is a CKD45-unifier

of φ.

Proof: Suppose σ and τ are CKD45-unifiers of φ. By Lemma 15,

CKD45 |= ✷y → (α
σ ,τ
KD45(φ) ↔ σ(φ)) and

CKD45 |= ✸¬y → (α
σ ,τ
KD45(φ) ↔ τ(φ)). Hence,

CKD45 |= ✷y → (σ (φ) → α
σ ,τ
KD45(φ)) and

CKD45 |= ✸¬y → (τ (φ) → α
σ ,τ
KD45(φ)). Since σ and τ are CKD45-unifiers of φ, therefore

CKD45 |= ✷y → α
σ ,τ
KD45(φ) and

CKD45 |= ✸¬y → α
σ ,τ
KD45(φ). Thus,

CKD45 |= α
σ ,τ
KD45(φ). Consequently, α

σ ,τ
KD45 is a CKD45-unifier of φ. �

Proposition 7: Unification in CKD45 is directed.

Proof: Let φ be a CKD45-unifiable formula. Let σ , τ be CKD45-unifiers of φ. By Lemmas 14

and 16, ασ ,τKD45 is a CKD45-unifier of φ such that ασ ,τKD45 ≤CKD45
σ and ασ ,τKD45 ≤CKD45

τ . As φ is an

arbitrary CKD45-unifiable formula, CKD45 is directed. �

Consider substitutions σ , τ . Suppose for all variables x , the variable y occurs neither in

σ(x), nor in τ(x). Let ασ ,τK45 be the substitution defined by ασ ,τK45(x) = ((✷y ∧ (y ∨ ✸⊤)) ∧

σ(x)) ∨ ((✸¬y ∨ (¬y ∧ ✷⊥)) ∧ τ(x)).

Lemma 17:

(1) α
σ ,τ
K45 ≤CK45 σ .

(2) α
σ ,τ
K45 ≤CK45 τ .

Proof: Similar to the proof of Lemma 14. �

Lemma 18: Letψ be a formula.



(1) CK45 |= ✷y ∧ (y ∨ ✸⊤) → (α
σ ,τ
K45(ψ) ↔ σ(ψ)).

(2) CK45 |= ✸¬y ∨ (¬y ∧ ✷⊥) → (α
σ ,τ
K45(ψ) ↔ τ(ψ)).

Proof: Similar to the proof of Lemma 15, this time using the fact that CK45 |= ✷y ∧ (y ∨

✸⊤) → ✷(✷y ∧ (y ∨ ✸⊤)) and CK45 |= ✸¬y ∨ (¬y ∧ ✷⊥) → ✷(✸¬y ∨ (¬y ∧ ✷⊥)). �

Lemma 19: Let φ be a formula. If σ and τ are CK45-unifiers of φ then ασ ,τK45 is a CK45-unifier of

φ.

Proof: Similar to the proof of Lemma 16. �

Proposition 8: Unification in CK45 is directed.

Proof: Similar to the proof of Proposition 7. �

Proposition 9:

(1) Either CK45 is unitary, or CK45 is nullary.

(2) Either CKD45 is unitary, or CKD45 is nullary.

Proof: By Lemma 10 and Propositions 7 and 8. �

We conjecture that CK45 is unitary and CKD45 is unitary.

6. Unifiability with parameters

In Sections 4 and 5, we have considered that a formula φ is unifiable if there exists a 
substitution σ such that σ (φ) is valid. But it rarely happens that we accept all variables to 
be possibly replaced by formulas. This leads us to a new definition of the syntax. Let PAR be 
a countable set of new atomic formulas called parameters (with typical members denoted 
p, q, etc.). The formulas are now defined by the rule:

• φ ::= p | x | ⊥ | ¬φ | (φ ∨ ψ) | ✷φ.

We write φ(p1, . . . , pm) to denote a formula whose parameters form a subset of

{p1, . . . , pm}, φ(x1, . . . , xn) to denote a formula whose variables form a subset of {x1, . . . , xn}

and φ(p1, . . . , pm, x1, . . . , xn) to denote a formula whose parameters form a subset of

{p1, . . . , pm} and whose variables form a subset of {x1, . . . , xn}. Like in Section 2, the result

of the replacement of x1, . . . , xn in their places in φ(x1, . . . , xn)with formulasψ1, . . . ,ψn will

be denoted φ(ψ1, . . . ,ψn). A substitution is still a function σ associating to each variable x a

formula σ(x). And again, we shall say that a substitution σ is closed if for all variables x , σ(x)

is a variable-free formula. Nevertheless, when σ is a closed substitution, for some variable

x , the formula σ(x) may contain parameters. We shall say that a substitution σ is a closed

substitution with parameters in {p1, . . . , pm} if for all variables x , σ(x) is a closed formula

whose parameters form a subset of {p1, . . . , pm}. As before, for all formulas φ(x1, . . . , xn),

we define σ(φ) to be the formula φ(σ(x1), . . . , σ(xn)). And about the composition σ ◦ τ of

the substitutions σ and τ , it still associates to each variable x the formula τ(σ (x)). Now, the

semantics. Concerning the frames, there is no change: frames are still structures of the form

F = (W , R)whereW is a nonempty set of states and R is a binary relation onW . The change

in the semantics is concerning the models. More precisely, in a model M = (W , R, V), the

valuation V is not only a function associating a subset V(x) ofW to each x ∈ VAR, it is also a

function associating a subset V(p) ofW to each p ∈ PAR. And of course, the truth conditions

now include the following line:

• M, s |= p iff s ∈ V(p).



Let C be a class of frames. A formula φ (possibly containing parameters) is C-unifiable

if there exists a substitution σ such that C |= σ(φ). In this case, σ is a C-unifier of φ. The

unification problem is still defined to be the following decision problem:

input: a formula φ (possibly containing parameters),

output: determine whether φ is C-unifiable.

Example: The formula φ = ✷p ∨ ✷¬x is CK45-unifiable, the substitution σ such that

σ(x) = ✷p being one of its CK45-unifiers.

Example: The formula φ = ✸p ∨ ✸¬x is CKD45-unifiable, the substitution σ such that

σ(x) = ✷p being one of its CKD45-unifiers.

In this variant with parameters, what happens to the unifiability problem? If either C is

CK45, or C is CKD45, or C is CS5, is it still computable whether a given formula is unifiable?

When the answer is ‘yes’, how complex is the problem?When a formula is unifiable, has it a

minimal complete set of unifiers? When the answer is ‘yes’, how large is this set?

Lemma 20: Let φ(p1, . . . , pm, x1, . . . , xn) be a formula. If φ possesses a C-unifier, then φ

possesses a closed C-unifier with parameters in {p1, . . . , pm}.

Proof: This follows from the fact that for all C-unifiers σ ofφ and for all closed substitutions

τ , σ ◦ τ is a closed C-unifier of φ and the fact that for all parameter-free variable-free

formulas ψ1, . . . ,ψn, if a closed formula φ(p1, . . . , pm, q1, . . . , qn) is C-valid then the closed

formula φ(p1, . . . , pm,ψ1, . . . ,ψn) obtained from φ(p1, . . . , pm, q1, . . . , qn) as the result of

the replacement of q1, . . . , qn in their places in φ(p1, . . . , pm, q1, . . . , qn) with formulas

ψ1, . . . ,ψn is C-valid too. �

Proposition 10: If either C is CK45, or C is CKD45, or C is CS5 then the C-unifiability problem

with parameters is decidable.

Proof: Letφ(p1, . . . , pm, x1, . . . , xn)bea formula. By Lemma20, todetermine ifφ(p1, . . . , pm,

x1, . . . , xn) is C-unifiable, it suffices to guess variable-free formulas ψ1, . . . ,ψn based on the

parameters p1, . . . , pm such that C |= φ(p1, . . . , pm,ψ1, . . . ,ψn). Suppose either C is CK45, or

C is CKD45, or C is CS5. As is well-known, there exists finitely many pairwise non-C-equivalent

variable-free formulas based on the parameters p1, . . . , pm. Moreover, these formulas can

be enumerated. Since C-validity is decidable, therefore the C-unifiability problem with

parameters is decidable. �

The exact complexity of the unifiability problem with parameters in CK45, CKD45 or CS5 is

still unknown. Now, with parameters, we want to determine the C-unification type when C

is one of the classes CK45, CKD45 and CS5. It happens that the proofs of Lemmas 10–19 can

be repeated. As a result,

Proposition 11: Unification with parameters in CS5 is unitary.

Proposition 12: Unification with parameters in CKD45 is directed.

Proposition 13: Unification with parameters in CK45 is directed.

Proposition 14:

(1) Unification with parameters in CK45 is either unitary, or nullary.

(2) Unification with parameters in CKD45 is either unitary, or nullary.



7. Multi-agent setting

In Sections 4–6, we have considered languages with only one modal connective. But it 
rarely happens that we are only interested in one agent. This leads us to the following 
new syntax. Let AGT be a finite set of agents (with typical members denoted a, b, etc.) and 
n = Card(AGT ). We assume n ≥ 2. The formulas are now defined by the rule

• φ ::= x | ⊥ | ¬φ | (φ ∨ ψ) | ✷aφ.

Let

• ✸aφ ::= ¬✷a¬φ.

Concerning substitutions, we will use the definitions introduced in Section 2. Now, the

semantics. In a frameF = (W , R), R is now a function associating a binary relation R(a) onW

to each a ∈ AGT . In this multi-agent setting, the truth conditions in a modelM = (W , R, V)

now include the following line:

• M, s |= ✷aφ iff for all t ∈ W , if sR(a)t then M, t |= φ.

Let Cn
K45 be the class of all transitive and Euclidean frames, Cn

KD45 be the class of all serial,

transitive and Euclidean frames and Cn
S5 be the class of all reflexive, transitive and Euclidean

frames. Now, defining unifiability, unifiers and unification types as in Sections 4 and 5, what

happens to the unifiability problem?

Example: The formula φ = ✷ax ∨ ✷b¬x is Cn
K45-unifiable, the substitutions σ⊥ such that

σ⊥(x) = ⊥ and σ⊤ such that σ⊤(x) = ⊤ being two of its Cn
K45-unifiers.

Suppose either C is Cn
KD45, or Cn

S5. Arguments similar to the ones considered in

Section 4 about Cn
KD45 and Cn

S5 can be repeated here. In fact, every variable-free formula

is C-equivalent to ⊥ or ⊤. Hence, to determine if φ(x1, . . . , xn) is C-unifiable, it suffices to

guess formulas ψ1, . . . ,ψn in {⊥,⊤} such that C |= φ(ψ1, . . . ,ψn). Since, given a variable-

free formula φ, determining whether C |= φ can be done in polynomial time, therefore this

provesmembership inNP of the C-unifiability problem. As for itsNP-hardness, an argument

similar to the one considered in the second part of the proof of Proposition 1 can be easily

repeated. Thus,

Proposition 15: If eitherC isCn
KD45, or C isCn

S5 then theC-unifiability problem is NP-complete.

As for the computability of the Cn
K45-unifiability problem, it is still an open question. This

issue seems to be a difficult one, similar to the computability of the unifiability problem

in ordinary normal modal logic K . Now, what about the C-unification type when C is one

of the classes Cn
K45, C

n
KD45 and Cn

S5? About the type of unification in Cn
S5, it is still unknown.

In fact, the proof of Proposition 6 cannot be repeated: in the definition of the substitution

τσφ associated there to the formula φ and the substitution σ , which modal connective in

{✷a : a ∈ AGT } to use instead of the modal connective ✷? As for the types of unification

in Cn
KD45 and Cn

K45, they are still unknown too. In fact, the proof of Proposition 9 cannot be

repeated: in the definition of the substitution µσ ,τ associated there to the substitutions

σ and τ , again, which modal connective in {✷a : a ∈ AGT } to use instead of the modal

connective ✷?



Table 1. Cl: classes of frames; MuAg: Multi-agent; Pa: parameters; CoUn: computability of unifiability;
UnTy: unification types.

♯ Cl MuAg Pa CoUn UnTy

1 CK45 No No NP-complete (Proposition 2) 1 or 0 (Proposition 9)
2 CKD45 No No NP-complete (Proposition 1) 1 or 0 (Proposition 9)
3 CS5 No No NP-complete (Proposition 1) 1 (Proposition 6)
4 CK45 No Yes Decidable (Proposition 10) 1 or 0 (Proposition 14)
5 CKD45 No Yes Decidable (Proposition 10) 1 or 0 (Proposition 14)
6 CS5 No Yes Decidable (Proposition 10) 1 (Proposition 11)
7 C

n

K45 Yes No ? ?

8 C
n

KD45 Yes No NP-complete (Proposition 15) ?

9 C
n

S5 Yes No NP-complete (Proposition 15) ?

10 C
n

K45 Yes Yes ? ?

11 C
n

KD45 Yes Yes ? ?

12 C
n

S5 Yes Yes ? ?

KD45 and Cn
S5

8. Conclusion

In the context of epistemic logics, classes of frames such as the ones underlying K 45, KD45 
and S5 give rise to quite similar sets of valid formulas for what concerns axiomatisation 
and decidability but have different properties for what concerns unifiability and unification
types. For instance, unifiability is NP-complete in Cn whereas the computability

of the unifiability problem in Cn
K45 seems to be a difficult issue. Putting known results

adapted from Baader and Ghilardi (2011); Dzik (2003, 2007); Ghilardi (2000); Jer̆ábek (2015) 
together with new ones enables us to establish basic facts and outline open problems. See 
the lines 1–9 of Table 1 which present results that have been proved in this paper (the lines 
10–12 concern unifiability and unification types in multi-epistemic logics with parameters). 
While the study of K 45, KD45 and S5 has limited logical value, considering unifiability and 
unification types in epistemic logics is justified from applied perspectives: methods for 
deciding the unifiability of formulas can be used to improve the efficiency of automated 
theorem provers as in Babenyshev et al. (2010); deciding the unifiability of formulas like 
φ ↔ ψ helps us to understand what is the overlap between the properties φ and ψ 
correspond to as in Baader and Ghilardi (2011); in description logics, unification algorithms 
are used to detect redundancies in knowledge-based systems as in Baader, Borgwardt, 
and Morawska (2012). Depending on the level of abstractness and precision (with one or 
several agents, with or without common knowledge, etc.), one readily observes that, while 
attacking the above-mentioned open problems, little, if anything, from the standard tools 
in epistemic logics (canonical models, filtrations, etc.) is helpful. In order to successfully 
solve them, new techniques in epistemic logics must be developed. The study of unifiability 
and unification types in epistemic logics has still many secrets to reveal.
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