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Epistemic logics are essential to the design of logical systems that capture elements of reasoning about knowledge. In this paper, we study the computability of unifiability and the unification types in several epistemic logics.

Introduction

Epistemic logics are essential to the design of logical systems that capture elements of reasoning about knowledge. There exist variants of these logics with one or several agents, with or without common knowledge, etc. The logical problems addressed in their setting usually concern their axiomatisability and their decidability (see [START_REF] Fagin | Reasoning About Knowledge[END_REF]. Epistemic logics can have a number of other desirable properties which one should establish whenever possible. Such properties concern, for example, the admissibility problem and the unifiability problem. About the admissibility problem, an inference rule φ 1 ,...,φ n ψ is admissible in an epistemic logic L if for all instances φ ′ 1 ,...,φ ′ n ψ ′ of the inference rule, if φ ′ 1 , . . . , φ ′ n are in L then ψ ′ is in L too (see [START_REF] Rybakov | Admissibility of Logical Inference Rules[END_REF][START_REF] Wolter | Undecidability of the unification and admissibility problems for modal and description logics[END_REF]. About the unifiability problem, a formula φ is unifiable in an epistemic logic L if there exists an instance φ ′ of the formula such that φ ′ is in L (see [START_REF] Baader | Unification in modal and description logics[END_REF][START_REF] Ghilardi | Best solving modal equations[END_REF].

When an epistemic logic L is axiomatically presented, its admissible inference rules can be added to its axiomatical presentation without changing the set of its theorems. As a result, in order to improve the efficiency of automated theorem provers for epistemic logics, methods for deciding the admissibility of inference rules can be used (see [START_REF] Babenyshev | A tableau method for checking rule admissibility in S4[END_REF]. The unifiability problem is easily reducible to the admissibility problem, seeing that the formula φ is unifiable in L iff the inference rule φ ⊥ is non-admissible in L. In some cases, when L's unification type is finitary, the admissibility problem is reducible to the unifiability problem (see [START_REF] Dzik | Unification Types in Logic[END_REF][START_REF] Gencer | Unifiability in extensions of K4[END_REF][START_REF] Ghilardi | Best solving modal equations[END_REF]. Therefore, in order to improve the efficiency of automated theorem provers for epistemic logics, methods for deciding the unifiability of formulas can be used as well.

In this paper, we study the computability of unifiability and the unification types in several epistemic logics.

The unifiability problem has been already considered in restricted fragments of epistemic logics where the unique modal connective is the one of common knowledge (see [START_REF] Rybakov | Unification in common knowledge logics[END_REF][START_REF] Rybakov | Agents' logics with common knowledge and uncertainty: Unification problem, algorithm for construction solutions[END_REF]. Much remains to be done, seeing that the computability of unifiability and the unification types are unknown in most epistemic logics. In this paper, given an epistemic logic L, we examine the following questions. Is it computable whether a given formula is unifiable in L? When the answer is 'yes', how complex is the problem? When a formula is unifiable in L, has it a minimal complete set of unifiers? When the answer is 'yes', how large is this set? A final word about epistemic logics before entering into the details. Many propositional logics deserve to be called 'epistemic logics'. In this paper, we will only interest in the normal modal logics K 45, KD45 and S5 and their multi-agent versions. Moreover, in order to avoid non-essential definitions, we will sometimes make no explicit difference between a class of frames and the normal modal logic it gives rise to, for instance: the class of all transitive frames and the normal modal logic K 4, the class of all reflexive and transitive frames and the normal modal logic S4, etc.

The paper is organised as follows. In Sections 2 and 3, we present the syntax and the semantics of ordinary modal logic. Section 4 is concerned with the computability of the unifiability problem in the normal modal logics K 45, KD45 and S5. In Section 5, we establish the unification types of some of these normal modal logics. Sections 6 and 7 are devoted to the unification problem in epistemic logics with parameters and in multi-agent epistemic logics. The unifiability problem has been studied since the beginning of logic (Boole, Löwenheim, etc.). But recent years have seen an increase of interest, important results have been obtained. In this paper, we survey what is known in the computability of unifiability and the unification types in epistemic logics. Some of the results presented below are simple adaptations of already known results whereas other results are new. We hope the reader will find it useful as a starting point for further research on unification in epistemic logics.

Syntax

It is now time to meet the modal language we will be working with. Let VAR be a countable set of atomic formulas called variables (with typical members denoted x, y, etc.). The formulas are defined by the rule

• φ ::= x | ⊥ | ¬φ | (φ ∨ ψ) | ✷φ.
We follow the standard rules for omission of the parentheses whereas we adopt the standard definitions for the remaining Boolean operations. We also write ✷ + φ for φ ∧ ✷φ. Let

• ✸φ ::= ¬✷¬φ.

We also write ✸ + φ for ¬✷ + ¬φ. We write φ(x 1 , . . . , x n ) to denote a formula whose variables form a subset of {x 1 , . . . , x n }. The result of the replacement of x 1 , . . . , x n in their places in φ with formulas ψ 1 , . . . , ψ n will be denoted φ(ψ 1 , . . . , ψ n ). A substitution is a function σ associating to each variable x a formula σ (x). We shall say that a substitution σ is closed if for all variables x, σ (x) is a variable-free formula. For all formulas φ(x 1 , . . . , x n ) let σ (φ) be φ(σ (x 1 ), . . . , σ (x n )). The composition σ • τ of the substitutions σ and τ associates to each variable x the formula τ (σ (x)). Obviously, this 'composition' operation on substitutions is associative.

Semantics

A frame is a structure of the form F = (W, R) where W is a nonempty set of states and R is a binary relation on W. In this paper, we will consider the following important properties of a frame F = (W, R):

• F is Euclidean when for all s, t, u ∈ W, if sRt and sRu then tRu, • F is reflexive when for all s ∈ W, sRs, • F is serial when for all s ∈ W, there exists t ∈ W such that sRt, • F is transitive when for all s, t, u ∈ W, if sRt and tRu then sRu.

A model based on a frame F = (W, R) is a triple M = (W, R, V ) where V is a function associating a subset V (x) of W to each x ∈ VAR. We define the notion of a formula φ being true in model M = (W, R, V ) at a state s in W (in symbols M, s |= φ) as follows:

• M, s |= x iff s ∈ V (x), • M, s |= ⊥, • M, s |= ¬φ iff M, s |= φ, • M, s |= φ ∨ ψ iff either M, s |= φ, or M, s |= ψ, • M, s |= ✷φ iff for all t ∈ W, if sRt then M, t |= φ.

As a result,

• M, s |= ✸φ iff there exists t ∈ W such that sRt and M, t |= φ.

A formula φ is globally true in a model M = (W, R, V ) (in symbols M |= φ) if for all s ∈ W, M, s |= φ. A formula φ is valid on a frame F (in symbols F |= φ) if for all models M based on F, M |= φ. A formula φ is valid on a class C of frames (in symbols C |= φ) if for all frames F in C, F |= φ. Let C be a class of frames. A substitution σ is C-equivalent to a substitution τ (in symbols σ ≃ C τ ) if for all variables x, C |= σ (x) ↔ τ (x).
A substitution σ is more C-general than a substitution τ (in symbols σ ≤ C τ ) if there exists a substitution µ such that σ • µ ≃ C τ . Obviously, this 'more C-general than' relation between substitutions is transitive. In this paper, we will mainly interest in the classes C K 45 of all transitive and Euclidean frames, C KD45 of all serial, transitive and Euclidean frames and C S5 of all reflexive, transitive and Euclidean frames underlying the normal modal logics K 45, KD45 and S5.

Unifiability problem

Let C be a class of frames. A formula φ is C-unifiable if there exists a substitution σ such that C |= σ (φ). In this case, σ is a C-unifier of φ.

Example:

The formula φ = ✷x ∨ ✷¬x is C K 45 -unifiable, the substitution σ such that σ (x) = ✷x being one of its C K 45 -unifiers. Since C K 45 contains C KD45 and C S5 , φ is C KD45unifiable and C S5 -unifiable as well. Moreover, the C K 45 -unifiers of φ are also C KD45 -unifiers and C S5 -unifiers of φ.

Example:

The formula φ = ✸x ∨ ✸¬y is C KD45 -unifiable, the substitution σ such that σ (x) = x and σ (y) = ✷x being one of its C KD45 -unifiers. Since C KD45 contains C S5 , φ is C S5 -unifiable as well. Moreover, the C KD45 -unifiers of φ are also C S5 -unifiers of φ. Note that φ is not C K 45 -unifiable.

Given a class C of frames, we study the computability of the following decision problem: input: a formula φ, output: determine whether φ is C-unifiable.

Lemma 1: If φ possesses a C-unifier, then φ possesses a closed C-unifier.

Proof: This follows from the fact that for all C-unifiers σ of φ and for all closed substitutions τ , σ • τ is a closed C-unifier of φ.

Lemma 2: Let φ(x 1 , . . . , x n ) be a Boolean formula. The following conditions are equivalent:

(1) φ(x 1 , . . . , x n ), considered as a Boolean formula, is satisfiable.

(2) φ(x 1 , . . . , x n ), considered as a modal formula, is C-unifiable.

Proof: Suppose φ(x 1 , . . . , x n ), considered as a Boolean formula, is satisfiable. Hence, there exists formulas ψ 1 , . . . ,

ψ n in {⊥, ⊤} such that φ(ψ 1 , . . . , ψ n ) is classically equivalent to ⊤. Thus, φ(ψ 1 , . . . , ψ n ) is C-equivalent to ⊤. Consequently, φ(x 1 , . . . , x n ), considered as a modal formula, is C-unifiable.
Reciprocally, suppose φ(x 1 , . . . , x n ), considered as a modal formula, is

C-unifiable. Let σ be a C-unifier of φ(x 1 , . . . , x n ). Let M = (W, R, V ) be a C-model and s ∈ W. Since σ is a C-unifier of φ(x 1 , . . . , x n ), therefore M, s |= φ(σ (x 1 ), . . . , σ (x n )). Let ψ 1 , . . . , ψ n be formulas in {⊥, ⊤} such that for all i ∈ {1, . . . , n}, if M, s |= σ (x i ) then ψ i = ⊤ else ψ i = ⊥. Since M, s |= φ(σ (x 1 ), . . . , σ (x n )), therefore φ(ψ 1 , . . . , ψ n ) is classically equivalent to ⊤. Hence, φ(x 1 , . . . , x n ), considered as a Boolean formula, is satisfiable. Lemma 3: If either C is C K 45 , or C is C KD45 , or C is C S5 then

the following decision problem is in P:

input: a variable-free formula φ, output: determine whether C |= φ.

Proof: This is a well-known property.

Lemma 4:

If either C is C KD45 , or C is C S5 then every variable-free formula is either C-equivalent to ⊥, or C-equivalent to ⊤.
Proof: This is a well-known property.

Lemma 5: If either C is C KD45 , or C is C S5 then every closed substitution is C-equivalent to a substitution σ such that for each variable x, either σ (x) = ⊥, or σ (x) = ⊤. Proof: By Lemma 4. Lemma 6: Let φ be a formula. If either C is C KD45 , or C is C S5 then the following conditions are equivalent:
(1) φ is C-unifiable.

(2) There exists a C-unifier σ of φ such that for all variables x, either σ (x) = ⊥, or σ (x) = ⊤.

Proof: By Lemmas 1 and 5. Proof: This is a well-known property.

Proposition 1: If either C is C KD45 , or C is C S5 then the C-unifiability problem is NP-complete. Proof: Suppose either C is C KD45 , or C is C S5 . In
Lemma 8: Every closed substitution is C K 45 -equivalent to a substitution σ such that for each variable x, either σ (x) = ⊥, or σ (x) = ⊤, or σ (x) = ✷⊥, or σ (x) = ✸⊤.

Proof: By Lemma 7.

Lemma 9: Let φ be a formula. The following conditions are equivalent:

(1) φ is C K 45 -unifiable.

(2) There exists a C K 45 -unifier σ of φ such that for all variables x, either σ (x) = ⊥, or σ (x) = ⊤, or σ (x) = ✷⊥, or σ (x) = ✸⊤.

Proof: By Lemmas 1 and 8.

Proposition 2: The C K 45 -unifiability problem is NP-complete.

Proof: In order to determine whether a given formula φ(x 1 , . . . , 

x n ) is C K 45 -
⊤ if C K 45 |= φ(ψ 1 , . . . , ψ n ).
Otherwise, it returns the Boolean value ⊥. By Lemma 3, it can be implemented as a deterministic Turing machine working in polynomial time. By Lemma 9, the procedure UNI 45 ( • ) accepts its input φ(x 1 , . . . , x n ) iff φ(x 1 , . . . , x n ) is C 45 -unifiable. It can be implemented as a nondeterministic Turing machine working in polynomial time. Hence, the C 45 -unifiability problem is in NP. As for the NP-hardness of the C 45 -unifiability problem, it follows from Lemma 2.

In [START_REF] Rybakov | An essay on unification and inference rules for modal logics[END_REF], syntactic characterisations have been given for the unifiability problem in normal modal logics like KD4 and S4. Later on, in Gencer and de Jongh (2009), similar syntactic characterisations have been given for the unifiability problem in normal modal logics like GL and K 4.3. Now, we give syntactic characterisations for the unifiability problem in normal modal logics like K 45, KD45 and S5. As for S5, the syntactic characterisation looks like those considered in Gencer and de Jongh (2009); [START_REF] Rybakov | An essay on unification and inference rules for modal logics[END_REF].

Proposition 3: Let φ(x 1 , . . . , x n ) be a formula. The following conditions are equivalent:

(1) φ(x 1 , . . . , x n ) is C S5 -unifiable. (2) C S5 |= φ(x 1 , . . . , x n ) → {✸x i ∧ ✸¬x i : 1 ≤ i ≤ n}. Proof: Suppose φ(x 1 , . . . , x n ) is C S5 -unifiable and C S5 |= φ(x 1 , . . . , x n ) → {✸x i ∧ ✸¬x i : 1 ≤ i ≤ n}. By Lemma 6, let ψ 1 , . . . , ψ n be formulas in {⊥, ⊤} such that C S5 |= φ(ψ 1 , . . . , ψ n ). Since C S5 |= φ(x 1 , . . . , x n ) → {✸x i ∧✸¬x i : 1 ≤ i ≤ n}, therefore C S5 |= φ(ψ 1 , . . . , ψ n ) → {✸ψ i ∧ ✸¬ψ i : 1 ≤ i ≤ n}. Since C S5 |= φ(ψ 1 , . . . , ψ n ), therefore C S5 |= {✸ψ i ∧ ✸¬ψ i : 1 ≤ i ≤ n}. Since for all formulas ψ in {⊥, ⊤}, the formula ✸ψ ∧ ✸¬ψ is C S5 -equivalent to ⊥, therefore C S5 |= ⊥: a contradiction. Reciprocally, suppose C S5 |= φ(x 1 , . . . , x n ) → {✸x i ∧ ✸¬x i : 1 ≤ i ≤ n}. Let M = (W, R, V
) be a C S5 -model and s ∈ W be such that M, s |= φ(x 1 , . . . , x n ) and for all i ∈ {1, . . . , n}, either M, s |= ✷x i , or M, s |= ✷¬x i . Without loss of generality, we can assume that M is generated from s. Let ψ 1 , . . . , ψ n be formulas in {⊥, ⊤} such that for all i ∈ {1, . . . , n}, if M, s |= ✷x i then

ψ i = ⊤ else ψ i = ⊥. Since M, s |= φ(x 1 , . . . , x n ), therefore M, s |= φ(ψ 1 , . . . , ψ n ). Since φ(ψ 1 , . . . , ψ n ) is variable-free, therefore C S5 |= φ(ψ 1 , . . . , ψ n ). Thus, φ(x 1 , . . . , x n ) is C S5 -unifiable.
Concerning KD45, the syntactic characterisation is similar to the one for S5.

Proposition 4: Let φ(x 1 , . . . , x n ) be a formula. The following conditions are equivalent:

(1) φ(x 1 , . . . , x n ) is C KD45 -unifiable. (2) C KD45 |= φ(x 1 , . . . , x n ) → {(x i ∨ ✸x i ) ∧ (¬x i ∨ ✸¬x i ) : 1 ≤ i ≤ n}.
Proof: Similar to the proof of Proposition 3. About K 45, things are different: the syntactic characterisation uses the universal modality. We will make use of the following abbreviation where [U] is universal modality:

• (φ ≡ ψ) ::= [U](✷⊥ ∨ (φ ↔ ψ) ∨ ✸(φ ↔ ψ)) ∨ [U](✸⊤ ∨ (φ ↔ ψ) ∨ ✸(φ ↔ ψ)).
The universal modality is interpreted in models by the universal relation. More precisely, a formula

[U]φ is true in model M = (W, R, V ) at a state s in W iff φ is globally true in M.
See [START_REF] Goranko | Using the universal modality: Gains and questions[END_REF] for details about the extension of the ordinary language of modal logic by means of the universal modality.

Proposition 5: Let φ(x 1 , . . . , x n ) be a formula. The following conditions are equivalent:

(1) φ(x 1 , . . . , x n ) is C K 45 -unifiable. (2) C K 45 |= [U]φ(x 1 , . . . , x n ) → { {x i ≡ ψ : ψ ∈ {⊥, ⊤, ✷⊥, ✸⊤}} : 1 ≤ i ≤ n}. Proof: Suppose φ(x 1 , . . . , x n ) is C K 45 -unifiable and C K 45 |= [U]φ(x 1 , . . . , x n ) → { {x i ≡ ψ : ψ ∈ {⊥, ⊤, ✷⊥, ✸⊤}} : 1 ≤ i ≤ n}. By Lemma 9, let ψ 1 , . . . , ψ n be formulas in {⊥, ⊤, ✷⊥, ✸⊤} such that C K 45 |= φ(ψ 1 , . . . , ψ n ). Since C K 45 |= [U]φ(x 1 , . . . , x n ) → { {x i ≡ ψ : ψ ∈ {⊥, ⊤, ✷⊥, ✸⊤}} : 1 ≤ i ≤ n}, therefore C K 45 |= [U]φ(ψ 1 , . . . , ψ n ) → { {ψ i ≡ ψ : ψ ∈ {⊥, ⊤, ✷⊥, ✸⊤}} : 1 ≤ i ≤ n}. Since C K 45 |= φ(ψ 1 , . . . , ψ n ), therefore C K 45 |= { {ψ i ≡ ψ : ψ ∈ {⊥, ⊤, ✷⊥, ✸⊤}} : 1 ≤ i ≤ n}. Since for all i ∈ {1, . . . , n}, the formula {ψ i ≡ ψ : ψ ∈ {⊥, ⊤, ✷⊥, ✸⊤}} is C K 45 -equivalent to the formula [U]✷⊥ ∨ [U]✸⊤, therefore C K 45 |= [U]✷⊥ ∨ [U]✸⊤: a contradiction. Reciprocally, suppose C K 45 |= [U]φ(x 1 , . . . , x n ) → { {x i ≡ ψ : ψ ∈ {⊥, ⊤, ✷⊥, ✸⊤}} : 1 ≤ i ≤ n}. Let M = (W, R, V ) be a C K 45 -model and s ∈ W be such that M, s |= [U]φ(x 1 , . . . , x n
) and for all i ∈ {1, . . . , n}, M, s |= {x i ≡ ψ : ψ ∈ {⊥, ⊤, ✷⊥, ✸⊤}}. This time, because we are using formulas containing the universal modality, we cannot assume that M is generated from s. Let ψ 1 , . . . , ψ n be formulas in {⊥, ⊤, ✷⊥, ✸⊤} such that for all i ∈ {1, . . . , n}, M,

s |= U (✷⊥ ∧ (x i ↔ ψ i ) ∧ ✷(x i ↔ ψ i )) ∧ U (✸⊤ ∧ (x i ↔ ψ i ) ∧ ✷(x i ↔ ψ i )). Since M, s |= [U]φ(x 1 , . . . , x n ), therefore M, s |= U (✷⊥ ∧ φ(ψ 1 , . . . , ψ n )) ∧ U (✸⊤ ∧ φ(ψ 1 , . . . , ψ n )). Since φ(ψ 1 , . . . , ψ n ) is a variable-free formula, therefore C K 45 |= φ(ψ 1 , . . . , ψ n ). Thus, φ(x 1 , . . . , x n ) is C K 45 -unifiable.

Unification types

Let C be a class of frames. A C-unifier σ of a formula φ is a most C-general unifier if for all C-unifiers τ of φ, σ ≤ C τ . A set of C-unifiers of a C-unifiable formula φ is complete if for all C-unifiers σ of φ, there exists a C-unifier τ of φ in such that τ ≤ C σ . In some cases, every C-unifiable formula possesses a most C-general unifier. This is the case if C is the class C S5 . See Proposition 6. Moreover, in some other cases, every C-unifiable formula possesses a finite minimal complete set of C-unifiers. This is the case if C is the class C K 4 (see [START_REF] Ghilardi | Best solving modal equations[END_REF]. Finally, in some other cases, there exists C-unifiable formulas possessing no minimal complete set of C-unifiers at all. This is the case if C is the class C K of all frames (see [START_REF] Jeȓábek | Blending margins: The modal logic K has nullary unification type[END_REF]. Hence, now, the question is: When a formula is C-unifiable, has it a minimal complete set of C-unifiers? When the answer is 'yes', how large is this set? Given a C-unifiable formula, these questions of the existence and, when it exists, the cardinality of a minimal complete set of C-unifiers for this formula is central (see [START_REF] Baader | Unification in modal and description logics[END_REF][START_REF] Dzik | Unitary unification of S5 modal logics and its extensions[END_REF][START_REF] Dzik | Unification Types in Logic[END_REF][START_REF] Ghilardi | Best solving modal equations[END_REF][START_REF] Jeȓábek | Blending margins: The modal logic K has nullary unification type[END_REF]. It can be formalised as follows. Let φ be a C-unifiable formula. We will say that • φ is of type unitary (1) for C iff φ possesses a most C-general unifier, • φ is of type finitary (ω) for C iff there exists a finite minimal complete set of C-unifiers of φ but φ does not possess a most C-general unifier, • φ is of type infinitary (∞) for C iff there exists a minimal complete set of C-unifiers of φ but there exists no such a set with finite cardinality, • φ is of type nullary (0) for C iff there exists no minimal complete set of C-unifiers of φ.

As for the class C, we will say that • C is unitary if every C-unifiable formula is of type unitary, • C is finitary if there exists a C-unifiable formula of type finitary and every C-unifiable formula is either of type unitary, or of type finitary, • C is infinitary if there exists a C-unifiable formula of type infinitary and every C-unifiable formula is either of type unitary, or of type finitary, or of type infinitary, • C is nullary if there exists a C-unifiable formula of type nullary.

Another interesting notion related to the existence and, when they exist, the cardinality of minimal complete sets of C-unifiers for C-unifiable formulas is the notion of directedness.

We will say that the class C is directed iff for all C-unifiable formulas φ and for all C-unifiers σ , τ of φ, there exists a C-unifier µ of φ such that µ ≤ C σ and µ ≤ C τ .

Lemma 10: If C is directed then either C is unitary, or C is nullary.

Proof: Suppose C is directed and neither C is unitary, nor C is nullary. Hence, either C is finitary, or C is infinitary. Let φ be a C-unifiable formula either of type finitary, or of type infinitary. Let Ŵ be a minimal complete set of C-unifiers of φ. Since φ is either of type finitary, or of type infinitary, therefore Card(Ŵ) ≥ 2. Let σ , τ in Ŵ be such that σ = τ . Such σ , τ in Ŵ exists because Card(Ŵ) ≥ 2. Let µ be a C-unifier of φ such that µ ≤ C σ and µ ≤ C τ . Such C-unifier of φ exists because C is directed. Let υ in Ŵ be such that υ ≤ C µ. Such υ in Ŵ exists because Ŵ is a complete set of C-unifiers of φ. Since µ ≤ C σ and µ ≤ C τ , therefore υ ≤ C σ and υ ≤ C τ . Since Ŵ is minimal, therefore υ = σ and υ = τ . Hence, σ = τ : a contradiction.

Consider a formula φ and a substitution σ . Let τ σ φ be the substitution defined by τ σ φ (x) = (✷φ ∧ x) ∨ (✸¬φ ∧ σ (x)).

Lemma 11: Let ψ be a formula.

(1)

C S5 |= ✷φ → (τ σ φ (ψ) ↔ ψ). (2) C S5 |= ✸¬φ → (τ σ φ (ψ) ↔ σ (ψ)). Proof: (1)
The proof is done by induction on ψ. The case when ψ = x is easy whereas the Boolean cases are left to the reader. Thus, we only give the proof of the case ψ = ✷ψ ′ . By induction hypothesis, we know that

C S5 |= ✷φ → (τ σ φ (ψ ′ ) ↔ ψ ′ ). Then, C S5 |= ✷✷φ → ✷(τ σ φ (ψ ′ ) ↔ ψ ′ ). Since, C S5 |= ✷φ → ✷✷φ, therefore, C S5 |= ✷φ → ✷(τ σ φ (ψ ′ ) ↔ ψ ′ ). Since, C S5 |= ✷(τ σ φ (ψ ′ ) ↔ ψ ′ ) → (✷τ σ φ (ψ ′ ) ↔ ✷ψ ′ ), therefore, C S5 |= ✷φ → (✷τ σ φ (ψ ′ ) ↔ ✷ψ ′ ). Consequently, C S5 |= ✷φ → (τ σ φ (✷ψ ′ ) ↔ ✷ψ ′ ).
(2) Similar to the proof of (1), this time using the fact that C S5 |= ✸¬φ → ✷✸¬φ.

Lemma 12: If σ is a C S5 -unifier of φ then τ σ φ is a C S5 -unifier of φ. Proof: Suppose σ is a C S5 -unifier of φ. By Lemma 11, C S5 |= ✷φ → (τ σ φ (φ) ↔ φ). Hence, C S5 |= ✷φ → (φ → τ σ φ (φ)). Since C S5 |= ✷φ → φ, therefore C S5 |= ✷φ → τ σ φ (φ). By Lemma 11, C S5 |= ✸¬φ → (τ σ φ (φ) ↔ σ (φ)). Thus, C S5 |= ✸¬φ → (σ (φ) → τ σ φ (φ)). Since σ is a C S5 -unifier of φ, therefore C S5 |= ✸¬φ → τ σ φ (φ). Since C S5 |= ✷φ → τ σ φ (φ), therefore C S5 |= τ σ φ (φ). Consequently, τ σ φ is a C S5 -unifier of φ. Lemma 13: If µ is a C S5 -unifier of φ then τ σ φ ≤ C S5 µ. Proof: Suppose µ is a C S5 -unifier of φ. Hence, C S5 |= ✷µ(φ). Let x be an arbitrary variable. By Lemma 11, C S5 |= ✷φ → (τ σ φ (x) ↔ x). Thus, C S5 |= ✷µ(φ) → (µ(τ σ φ (x)) ↔ µ(x)). Since C S5 |= ✷µ(φ), therefore C S5 |= µ(τ σ φ (x)) ↔ µ(x). As x is an arbitrary variable, τ σ φ •µ ≃ C S5 µ. Consequently, τ σ φ ≤ C S5 µ. Proposition 6: C S5 is unitary.
Proof: Let φ be a C S5 -unifiable formula. Let σ be a C S5 -unifier of φ. By Lemmas 12 and 13, τ σ φ is a most C S5 -general unifier of φ. Hence, φ is of type unitary. As φ is an arbitrary C S5 -unifiable formula, C S5 is unitary.

Example: Consider again the formula φ = ✷x ∨ ✷¬x. The substitution σ such that σ (x) = ✷x is one of its C S5 -unifiers. Let τ σ φ be the substitution defined by τ σ φ (x) = (✷φ∧x)∨(✸¬φ∧ σ (x)). In C S5 , τ σ φ (x) is equivalent to ✷x. By Lemmas 12 and 13, this means that σ is a most C S5 -general unifier of φ. Remark that the substitution σ ′ such that σ ′ (x) = ✸x is a C S5 -unifier of φ too. Let τ σ ′ φ be the substitution defined by

τ σ ′ φ (x) = (✷φ ∧ x) ∨ (✸¬φ ∧ σ ′ (x)). In C S5 , τ σ ′ φ (x)
is equivalent to ✸x. By Lemmas 12 and 13, this means that σ ′ is a most C S5 -general unifier of φ too. In other respect, the reader may easily verify that σ ≤

C S5 σ ′ and σ ′ ≤ C S5 σ by showing that σ • σ ′ ≃ C S5 σ ′ and σ ′ • σ ≃ C S5 σ .
Example: Consider again the formula φ = ✸x ∨ ✸¬y. The substitution σ such that σ (x) = x and σ (y) = ✷x is one of its C S5 -unifiers. Let τ σ φ be the substitution defined by τ σ φ (x) = (✷φ ∧ x) ∨ (✸¬φ ∧ σ (x)) and τ σ φ (y) = (✷φ ∧ y) ∨ (✸¬φ ∧ σ (y)). In C S5 , τ σ φ (x) is equivalent to x and τ σ φ (y) is equivalent to (✸x ∨ ✸¬y) ∧ y. Remark that the substitution σ ′ such that σ ′ (x) = x and σ ′ (y) = ✸x is a C S5 -unifier of φ too. Let τ σ ′ φ be the substitution defined by τ σ ′ φ (x) = (✷φ ∧ x) ∨ (✸¬φ ∧ σ ′ (x)) and τ σ ′ φ (y) = (✷φ ∧ y) ∨ (✸¬φ ∧ σ ′ (y)). In C S5 , τ σ ′ φ (x) is equivalent to x and τ σ ′ φ (y) is equivalent to (✸x ∨ ✸¬y) ∧ y. The results contained in Lemmas 11-13 and Proposition 6 have previously been discussed in [START_REF] Baader | Unification in modal and description logics[END_REF]; [START_REF] Dzik | Unitary unification of S5 modal logics and its extensions[END_REF]; [START_REF] Ghilardi | Best solving modal equations[END_REF], sometimes with no proof. The proofs that we have given above allow the reader to exactly understand where the specific properties of C S5 -frames (reflexivity, transitivity and Euclideanity) are used. In this respect, the proof of Lemma 12 uses the fact, corresponding to the reflexivity of C S5 -frames, that C S5 |= ✷φ → φ. Hence, it cannot be repeated in the case of C K 45 and C KD45 . The main drawback with C K 45 and C KD45 is that the universal modality (interpreted in models by the universal relation) is not definable in our language for these classes of frames. Nevertheless, it can be proved that unification is directed both in C K 45 and in C KD45 . The directedness of unification in C K 45 and in C KD45 is a consequence of the characterisation by [START_REF] Ghilardi | Filtering unification and most general unifiers in modal logic[END_REF] of the normal extensions of K 4 with a directed unification problem. More precisely, Ghilardi and Sacchetti demonstrate in their Theorem 8.4 that a normal extension L of K 4 has a directed unification problem iff ✸ + ✷ + x → ✷ + ✸ + x is in L. Since ✸ + ✷ + x → ✷ + ✸ + x is both C K 45 -valid and C KD45 -valid, therefore, by Ghilardi and Sacchetti (2004, Theorem 8.4), unification is directed both in C K 45 and in C KD45 . The proof presented by Ghilardi and Sacchetti uses advanced notions from algebraic and relational semantics of normal modal logics. In the remaining part of this Section, we give an explicit and simpler proof of the directedness of unification in C K 45 and in C KD45 . Consider substitutions σ , τ . Suppose for all variables x, the variable y occurs neither in σ (x), nor in τ (x). Let α σ ,τ KD45 be the substitution defined by α σ ,τ KD45 (x) = (✷y ∧ σ (x)) ∨ (✸¬y ∧ τ (x)). Lemma 14:

(1) α σ ,τ KD45 ≤ C KD45 σ . (2) α σ ,τ KD45 ≤ C KD45 τ .

  order to determine whether a given formula φ(x 1 , . . . , x n ) is C-unifiable, let us consider the following procedure:procedure UNI(φ(x 1 , . . . , x n )) begin guess a tuple (ψ 1 , . . . , ψ n ) of formulas in {⊥, ⊤} bool := BG(φ(x 1 , . . . , x n ), (ψ 1 , . . . , ψ n )) if bool then accept else reject end The function BG( • ) takes as input a formula φ(x 1 , . . . , x n ) and a tuple (ψ 1 , . . . , ψ n ) of formulas in {⊥, ⊤}. It returns the Boolean value ⊤ if C |= φ(ψ 1 , . . . , ψ n ). Otherwise, it returns the Boolean value ⊥. By Lemma 3, it can be implemented as a deterministic Turing machine working in polynomial time. By Lemma 6, the procedure UNI( • ) accepts its input φ(x 1 , . . . , x n ) iff φ(x 1 , . . . , x n ) is C-unifiable. It can be implemented as a nondeterministic Turing machine working in polynomial time. Hence, the C-unifiability problem is in NP. As for the NP-hardness of the C-unifiability problem, it follows from Lemma 2. Every variable-free formula is either C K 45 -equivalent to ⊥, or C K 45 -equivalent to ⊤, or C K 45 -equivalent to ✷⊥, or C K 45 -equivalent to ✸⊤.

	Lemma 7:

  unifiable, let us consider the following procedure: procedure UNI 45 (φ(x 1 , . . . , x n )) begin guess a tuple (ψ 1 , . . . , ψ n ) of formulas in {⊥, ⊤, ✷⊥, ✸⊤} bool := BG 45 (φ(x 1 , . . . , x n ), (ψ 1 , . . . , ψ n )) if bool then accept else reject end The function BG 45 ( • ) takes as input a formula φ(x 1 , . . . , x n ) and a tuple (ψ 1 , . . . , ψ n ) of formulas in {⊥, ⊤, ✷⊥, ✸⊤}. It returns the Boolean value

Acknowledgements

This paper has been written on the occasion of a 3-months visit of Çi ˘gdem Gencer during the Fall 2015 in Toulouse that was supported by the Paul Sabatier University ('Professeurs invités 2015') and the Institut de recherche en informatique de Toulouse ('Actions spécifiques 2015'). We make a point of thanking the colleagues of the Institut de recherche en informatique de Toulouse who contributed to the development of the work we present today. Special acknowledgement is also heartly granted to the two anonymous referees for their feedback: their helpful comments and their useful suggestions have been essential for improving the correctness and the readability of the submitted version of our paper.

Proof:

(1) Let β be the substitution defined by β(y) = ⊤. Since the variable y occurs neither in σ (x), nor in τ (x), the reader may easily verify that α σ ,τ KD45 • β ≃ C KD45 σ . Hence, α σ ,τ KD45 ≤ C KD45 σ . (2) Similar to the proof of (1), this time using the substitution γ defined by γ (y) = ⊥.

Lemma 15: Let ψ be a formula.

(1) C KD45 |= ✷y → (α σ ,τ KD45 (ψ) ↔ σ (ψ)).

(2) C KD45 |= ✸¬y → (α σ ,τ KD45 (ψ) ↔ τ (ψ)). Proof: (1) The proof is done by induction on ψ. The case when ψ = x is easy whereas the Boolean cases are left to the reader. Thus, we only give the proof of the case ψ = ✷ψ ′ . By induction hypothesis, we know that

(2) Similar to the proof of (1), this time using the fact that C KD45 |= ✸¬y → ✷✸¬y.

Lemma 16: Let φ be a formula. If σ and τ are C KD45 -unifiers of φ then α σ ,τ KD45 is a C KD45 -unifier of φ.

Proof: Suppose σ and τ are C KD45 -unifiers of φ. By Lemma 15,

Consider substitutions σ , τ . Suppose for all variables x, the variable y occurs neither in σ (x), nor in τ (x). Let α σ ,τ K 45 be the substitution defined by α σ ,τ

Lemma 17:

(

Similar to the proof of Lemma 14.

Lemma 18: Let ψ be a formula.

(1)

). Proof: Similar to the proof of Lemma 15, this time using the fact that C K 45 |= ✷y ∧ (y ∨ ✸⊤) → ✷(✷y ∧ (y ∨ ✸⊤)) and C K 45 |= ✸¬y ∨ (¬y ∧ ✷⊥) → ✷(✸¬y ∨ (¬y ∧ ✷⊥)).

Lemma 19: Let φ be a formula. If σ and τ are C K 45 -unifiers of φ then α σ ,τ K 45 is a C K 45 -unifier of φ.

Proof: Similar to the proof of Lemma 16.

Proposition 8: Unification in C K 45 is directed.

Proof: Similar to the proof of Proposition 7.

Proposition 9:

(1) Either C K 45 is unitary, or C K 45 is nullary.

(2) Either C KD45 is unitary, or C KD45 is nullary.

Proof: By Lemma 10 and Propositions 7 and 8.

We conjecture that C K 45 is unitary and C KD45 is unitary.

Unifiability with parameters

In Sections 4 and 5, we have considered that a formula φ is unifiable if there exists a substitution σ such that σ (φ) is valid. But it rarely happens that we accept all variables to be possibly replaced by formulas. This leads us to a new definition of the syntax. Let PAR be a countable set of new atomic formulas called parameters (with typical members denoted p, q, etc.). The formulas are now defined by the rule:

We write φ(p 1 , . . . , p m ) to denote a formula whose parameters form a subset of {p 1 , . . . , p m }, φ(x 1 , . . . , x n ) to denote a formula whose variables form a subset of {x 1 , . . . , x n } and φ(p 1 , . . . , p m , x 1 , . . . , x n ) to denote a formula whose parameters form a subset of {p 1 , . . . , p m } and whose variables form a subset of {x 1 , . . . , x n }. Like in Section 2, the result of the replacement of x 1 , . . . , x n in their places in φ(x 1 , . . . , x n ) with formulas ψ 1 , . . . , ψ n will be denoted φ(ψ 1 , . . . , ψ n ). A substitution is still a function σ associating to each variable x a formula σ (x). And again, we shall say that a substitution σ is closed if for all variables x, σ (x) is a variable-free formula. Nevertheless, when σ is a closed substitution, for some variable x, the formula σ (x) may contain parameters. We shall say that a substitution σ is a closed substitution with parameters in {p 1 , . . . , p m } if for all variables x, σ (x) is a closed formula whose parameters form a subset of {p 1 , . . . , p m }. As before, for all formulas φ(x 1 , . . . , x n ), we define σ (φ) to be the formula φ(σ (x 1 ), . . . , σ (x n )). And about the composition σ • τ of the substitutions σ and τ , it still associates to each variable x the formula τ (σ (x)). Now, the semantics. Concerning the frames, there is no change: frames are still structures of the form F = (W, R) where W is a nonempty set of states and R is a binary relation on W. The change in the semantics is concerning the models. More precisely, in a model M = (W, R, V ), the valuation V is not only a function associating a subset V (x) of W to each x ∈ VAR, it is also a function associating a subset V (p) of W to each p ∈ PAR. And of course, the truth conditions now include the following line:

Let C be a class of frames. A formula φ (possibly containing parameters) is C-unifiable if there exists a substitution σ such that C |= σ (φ). In this case, σ is a C-unifier of φ. The unification problem is still defined to be the following decision problem: input: a formula φ (possibly containing parameters), output: determine whether φ is C-unifiable.

Example:

The formula φ = ✷p ∨ ✷¬x is C K 45 -unifiable, the substitution σ such that σ (x) = ✷p being one of its C K 45 -unifiers.

Example:

The formula φ = ✸p ∨ ✸¬x is C KD45 -unifiable, the substitution σ such that σ (x) = ✷p being one of its C KD45 -unifiers.

In this variant with parameters, what happens to the unifiability problem?

still computable whether a given formula is unifiable? When the answer is 'yes', how complex is the problem? When a formula is unifiable, has it a minimal complete set of unifiers? When the answer is 'yes', how large is this set?

Lemma 20: Let φ(p 1 , . . . , p m , x 1 , . . . , x n ) be a formula. If φ possesses a C-unifier, then φ possesses a closed C-unifier with parameters in {p 1 , . . . , p m }.

Proof: This follows from the fact that for all C-unifiers σ of φ and for all closed substitutions τ , σ • τ is a closed C-unifier of φ and the fact that for all parameter-free variable-free formulas ψ 1 , . . . , ψ n , if a closed formula φ(p 1 , . . . , p m , q 1 , . . . , q n ) is C-valid then the closed formula φ(p 1 , . . . , p m , ψ 1 , . . . , ψ n ) obtained from φ(p 1 , . . . , p m , q 1 , . . . , q n ) as the result of the replacement of q 1 , . . . , q n in their places in φ(p 1 , . . . , p m , q 1 , . . . , q n ) with formulas ψ 1 , . . . , ψ n is C-valid too.

unifiability problem with parameters is decidable.

Proof: Let φ(p 1 , . . . , p m , x 1 , . . . , x n ) be a formula. By Lemma 20, to determine if φ(p 1 , . . . , p m , x 1 , . . . , x n ) is C-unifiable, it suffices to guess variable-free formulas ψ 1 , . . . , ψ n based on the parameters p 1 , . . . , p m such that C |= φ(p 1 , . . . , p m , ψ 1 , . . . ,

As is well-known, there exists finitely many pairwise non-C-equivalent variable-free formulas based on the parameters p 1 , . . . , p m . Moreover, these formulas can be enumerated. Since C-validity is decidable, therefore the C-unifiability problem with parameters is decidable. (1) Unification with parameters in C K 45 is either unitary, or nullary.

(2) Unification with parameters in C KD45 is either unitary, or nullary.

Multi-agent setting

In Sections 4-6, we have considered languages with only one modal connective. But it rarely happens that we are only interested in one agent. This leads us to the following new syntax. Let AGT be a finite set of agents (with typical members denoted a, b, etc.) and n = Card(AGT ). We assume n ≥ 2. The formulas are now defined by the rule

Let

• ✸ a φ ::= ¬✷ a ¬φ.

Concerning substitutions, we will use the definitions introduced in Section 2. Now, the semantics. In a frame F = (W, R), R is now a function associating a binary relation R(a) on W to each a ∈ AGT . In this multi-agent setting, the truth conditions in a model M = (W, R, V ) now include the following line:

Let C n K 45 be the class of all transitive and Euclidean frames, C n KD45 be the class of all serial, transitive and Euclidean frames and C n S5 be the class of all reflexive, transitive and Euclidean frames. Now, defining unifiability, unifiers and unification types as in Sections 4 and 5, what happens to the unifiability problem?

Arguments similar to the ones considered in Section 4 about C n KD45 and C n S5 can be repeated here. In fact, every variable-free formula is C-equivalent to ⊥ or ⊤. Hence, to determine if φ(x 1 , . . . , x n ) is C-unifiable, it suffices to guess formulas ψ 1 , . . . , ψ n in {⊥, ⊤} such that C |= φ(ψ 1 , . . . , ψ n ). Since, given a variablefree formula φ, determining whether C |= φ can be done in polynomial time, therefore this proves membership in NP of the C-unifiability problem. As for its NP-hardness, an argument similar to the one considered in the second part of the proof of Proposition 1 can be easily repeated. Thus,

As for the computability of the C n K 45 -unifiability problem, it is still an open question. This issue seems to be a difficult one, similar to the computability of the unifiability problem in ordinary normal modal logic K . Now, what about the C-unification type when C is one of the classes C n K 45 , C n KD45 and C n S5 ? About the type of unification in C n S5 , it is still unknown. In fact, the proof of Proposition 6 cannot be repeated: in the definition of the substitution τ σ φ associated there to the formula φ and the substitution σ , which modal connective in {✷ a : a ∈ AGT } to use instead of the modal connective ✷? As for the types of unification in C n KD45 and C n K 45 , they are still unknown too. In fact, the proof of Proposition 9 cannot be repeated: in the definition of the substitution µ σ ,τ associated there to the substitutions σ and τ , again, which modal connective in {✷ a : a ∈ AGT } to use instead of the modal connective ✷? [START_REF] Baader | Unification in modal and description logics[END_REF][START_REF] Dzik | Unitary unification of S5 modal logics and its extensions[END_REF][START_REF] Dzik | Unification Types in Logic[END_REF]; [START_REF] Ghilardi | Best solving modal equations[END_REF]; [START_REF] Jeȓábek | Blending margins: The modal logic K has nullary unification type[END_REF] together with new ones enables us to establish basic facts and outline open problems. See the lines 1-9 of Table 1 which present results that have been proved in this paper (the lines 10-12 concern unifiability and unification types in multi-epistemic logics with parameters). While the study of K 45, KD45 and S5 has limited logical value, considering unifiability and unification types in epistemic logics is justified from applied perspectives: methods for deciding the unifiability of formulas can be used to improve the efficiency of automated theorem provers as in [START_REF] Babenyshev | A tableau method for checking rule admissibility in S4[END_REF]; deciding the unifiability of formulas like φ ↔ ψ helps us to understand what is the overlap between the properties φ and ψ correspond to as in [START_REF] Baader | Unification in modal and description logics[END_REF]; in description logics, unification algorithms are used to detect redundancies in knowledge-based systems as in [START_REF] Baader | Extending unification in EL towards general TBoxes[END_REF]. Depending on the level of abstractness and precision (with one or several agents, with or without common knowledge, etc.), one readily observes that, while attacking the above-mentioned open problems, little, if anything, from the standard tools in epistemic logics (canonical models, filtrations, etc.) is helpful. In order to successfully solve them, new techniques in epistemic logics must be developed. The study of unifiability and unification types in epistemic logics has still many secrets to reveal.
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