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Abstract

KD45 is the least modal logic containing the formulas ✷x → ✸x, ✷x → ✷✷x

and ✸x → ✷✸x. It is determined by the class of all serial, transitive and Euclidean

frames. The elementary unifiability problem in KD45 is to determine, given a formula

ϕ(x1, . . . , xn), whether there exists formulas ψ1, . . . , ψn such that ϕ(ψ1, . . . , ψn) is
in KD45. It is well-known that the elementary unifiability problem in KD45 is NP-

complete. In our paper, we show that every KD45-unifiable formula has a projective

unifier. As a corollary, we conclude that KD45 has unitary type for elementary unifi-

cation.

Keywords: Modal logic KD45. Elementary unification. Most general unifier. Projective

formula. Unification type.

1 Introduction

Modal logics like S5 or KD45 are essential to the design of logical systems that capture

elements of reasoning about knowledge [13, 21]. There exists variants of these logics with

one or several agents, with or without common knowledge, etc. As in any modal logic, the

questions addressed in their setting usually concern their axiomatizability and their decid-

ability. Another desirable question which one should address whenever possible concerns

the unifiability of formulas. A formulaϕ(x1, . . . , xn) is unifiable in a modal logic L iff there

exists formulas ψ1, . . . , ψn such that ϕ(ψ1, . . . , ψn) is in L. See [1, 11, 14, 15] for details.
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Results about the unifiability problem have been already obtained in many modal logics.

Rybakov [22, 23] demonstrated that the unifiability problem in transitive modal logics like

K4 and G is decidable. Wolter and Zakharyaschev [24] showed that the unifiability problem

is undecidable for any modal logic between K and K4 extended with the universal modality.

The notion of projectivity has been introduced by Ghilardi [15] to determine the unification

type, finitary, of transitive modal logics like K4 and G. The unification type, nullary, of

modal logics like K, KD and KT has been established in [6, 18].

Within the context of description logics, checking subsumption of concepts is not suffi-

cient and new inference capabilities are required. One of them, the unifiability of concept

terms, has been introduced by Baader and Narendran [4] for FL0. Baader and Küsters [2]

established the EXPTIME-completeness of the unifiability problem in FLreg whereas

Baader andMorawska [3] established the NPTIME-completeness of the unifiability problem

in EL. Much remains to be done, seeing that the computability of the unifiability problem

and the unification types are unknown in multifarious modal logics and description logics.

KD45 is the least modal logic containing the formulas ✷x → ✸x, ✷x → ✷✷x and

✸x → ✷✸x. It is determined by the class of all serial, transitive and Euclidean frames.

The elementary unifiability problem in KD45 is to determine, given a parameter-free for-

mula ϕ(x1, . . . , xn), whether there exists parameter-free formulas ψ1, . . . , ψn such that

ϕ(ψ1, . . . , ψn) is in KD45. It is well-known that the elementary unifiability problem in

KD45 is NP-complete. Moreover, as proved by Ghilardi and Sacchetti [16], the unifiability

problem in KD45 is directed and, consequently, KD45 has either unitary type, or nullary

type. See also [7, 19]. The directedness of KD45 is a consequence of the characterization

by Ghilardi and Sacchetti of the normal extensions of K4 with a directed unifiability prob-

lem. This characterization uses advanced notions from algebraic and relational semantics

of normal modal logics.

In our paper, we directly show that every KD45-unifiable parameter-free formula has 
a projective unifier. As an immediate corollary, we conclude that KD45 has unitary type 
for elementary unification. Section 2 defines the syntax and the semantics of KD45. In 
Section 3, definitions about the elementary unifiability problem in KD45 are given. Sec-
tions 4–6 introduce and study arrows, setarrows and tips which will be our main tools for 
proving our results. In Section 7, definitions about acceptable agreements as a simplified 
version of bounded morphisms are given. Section 8 introduces and studies types which are 
sets of tips. In Sections 9–11, intermediate results about types needed to show that every 
KD45-unifiable parameter-free formula has a projective unifier are proved.



2 Syntax and semantics

Let VAR be a countable set of variables (with typical members denoted x, y, etc). Let

(x1, x2, . . .) be an enumeration of VAR without repetitions. The set FOR of all formulas

(with typical members denoted ϕ, ψ, etc) is inductively defined as follows:

• ϕ ::= x | ⊥ | ¬ϕ | (ϕ ∨ ψ) | ✷ϕ.

We write ϕ(x1, . . . , xn) to denote a formula whose variables form a subset of {x1, . . . , xn}.
The result of the replacement in ϕ(x1, . . . , xn) of variables x1, . . . , xn in their places with

formulas ψ1, . . . , ψn will be denoted by ϕ(ψ1, . . . , ψn). We define the other Boolean con-

structs as usual. We will follow the standard rules for omission of the parentheses. Let ϕ be

a formula. We will write ✸ϕ for ¬✷¬ϕ. We will respectively write ϕ⊥ and ϕ⊤ for ¬ϕ and

ϕ. Let Γ be a finite set of formulas. Considering that
∨

∅ = ⊥ and
∧

∅ = ⊤, we will write

▽Γ for the conjunction of the following formulas:

• ✷
∨

{ϕ : ϕ is a formula in Γ},

•

∧
{✸ϕ : ϕ is a formula in Γ}.

A model is a function V : VAR −→ 2N associating to each variable x a set V (x) of non-
negative integers. We inductively define the truth of a formula ϕ in model V at nonnegative

integer s, in symbols V, s |= ϕ, as follows:

• V, s |= x iff s ∈ V (x),

• V, s Ó|= ⊥,

• V, s |= ¬ϕ iff V, s Ó|= ϕ,

• V, s |= ϕ ∨ ψ iff either V, s |= ϕ, or V, s |= ψ,

• V, s |= ✷ϕ iff for all positive integers t, V, t |= ϕ.

As a result, V, s |= ✸ϕ iff there exists a positive integer t such that V, t |= ϕ. Moreover,

V, s |= ϕ⊥ iff V, s Ó|= ϕ and V, s |= ϕ⊤ iff V, s |= ϕ. In other respect, V, s |= ▽Γ iff

• for all positive integers t, there exists ϕ ∈ Γ such that V, t |= ϕ,

• for all ϕ ∈ Γ, there exists a positive integer t such that V, t |= ϕ.

We shall say that a model V is uniform iff for all variables x, either V (x) = ∅, or V (x) = N. 
We shall say that a formula ϕ is satisfiable iff there exists a model V such that V, 0 |= ϕ. We 
shall say that a formula ϕ is valid, in symbols |= ϕ, iff for all models V , V, 0 |= ϕ. The fol-
lowing result is well-known and can be proved by using the canonical model construction, 
the technique of the generated subframe and the bounded morphism lemma [10].



Proposition 1. For all formulas ϕ, |= ϕ iff ϕ ∈ KD45.

Proof. Left to the reader.

3 Unification

A substitution is a function σ : VAR −→ FOR associating to each variable a formula. We

shall say that a substitution σ is closed iff for all variables x, σ(x) is a variable-free formula.

For all formulas ϕ(x1, . . . , xn), let σ(ϕ(x1, . . . , xn)) be ϕ(σ(x1), . . . , σ(xn)). The com-

position σ ◦ τ of the substitutions σ and τ is the substitution associating to each variable x

the formula τ(σ(x)). We shall say that a substitution σ is equivalent to a substitution τ , in

symbols σ ≃ τ , iff |= σ(x) ↔ τ(x) for all variables x. We shall say that a substitution σ is

more general than a substitution τ , in symbols σ ° τ , iff there exists a substitution υ such

that σ ◦ υ ≃ τ . Note that the notation τ ° σ is also used in many papers. We shall say that

a formula ϕ is unifiable iff there exists a substitution σ such that |= σ(ϕ). In that case, σ is

a unifier of ϕ. We shall say that a unifiable formula ϕ is projective iff there exists a unifier

σ of ϕ such that |= ϕ ∧ ✷ϕ → (σ(x) ↔ x) for all variables x. The following results are

well-known [1].

Proposition 2. Let ϕ be a formula. If ϕ is unifiable then ϕ possesses a closed unifier.

Proof. Since the set of all valid formulas is closed with respect to the rule of uniform sub-

stitution, therefore if σ is a unifier of ϕ then for all closed substitutions τ , σ ◦ τ is a closed

unifier of ϕ.

Proposition 3. Let ϕ(x1, . . . , xn) be a ✷-free formula. The following conditions are equiv-

alent:

1. ϕ(x1, . . . , xn), considered as a Boolean formula, is satisfiable.

2. ϕ(x1, . . . , xn), considered as a modal formula, is unifiable.

Proof. Suppose ϕ(x1, . . . , xn), considered as a Boolean formula, is satisfiable. Hence, 
there exists (ψ1, . . . , ψn) in {⊥, ⊤}n such that ϕ(ψ1, . . . , ψn) is classically equivalent to ⊤. 
Thus, ϕ(ψ1, . . . , ψn) is KD45-equivalent to ⊤. Consequently, ϕ(x1, . . . , xn), considered as 
a modal formula, is unifiable.
Reciprocally, suppose ϕ(x1, . . . , xn), considered as a modal formula, is unifiable. Let σ 
be a unifier of ϕ(x1, . . . , xn). Let V be a model. Since σ is a unifier of ϕ(x1, . . . , xn), 
therefore V, 0 |= ϕ(σ(x1), . . . , σ(xn)). Let (ψ1, . . . , ψn) in {⊥, ⊤}n be such that for all i ∈ 
{1, . . . , n}, if V, 0 Ó|= σ(xi) then ψi = ⊥ else ψi = ⊤. Since V, 0 |= ϕ(σ(x1), . . . , σ(xn)), 
therefore ϕ(ψ1, . . . , ψn) is classically equivalent to ⊤. Hence, ϕ(x1, . . . , xn), considered 
as a Boolean formula, is satisfiable.



Proposition 4. The elementary unifiability problem in KD45 is NP-complete.

Proof. Remark that every variable-free formula is either KD45-equivalent to ⊥, or

KD45-equivalent to ⊤. Hence, by Proposition 2, in order to determine if a given formula

ϕ(x1, . . . , xn) is unifiable, it suffices to nondeterministically choose (ψ1, . . . , ψn) in {⊥, ⊤}n

such that |= ϕ(ψ1, . . . , ψn). Since the validity of a given variable-free formula can be

checked in polynomial time, therefore the elementary unifiability problem in KD45 is in

NP. As for the NP-hardness of the elementary unifiability problem in KD45, it follows from

Proposition 3.

Proposition 5. Let ϕ be a unifiable formula. If ϕ is projective then ϕ possesses a most

general unifier.

Proof. Suppose ϕ is projective. Let σ be a unifier of ϕ such that |= ϕ ∧✷ϕ → (σ(x) ↔ x)
for all variables x. Let τ be a unifier of ϕ and x be a variable. Hence, |= τ(ϕ) and

|= ϕ ∧ ✷ϕ → (σ(x) ↔ x). Thus, |= τ(ϕ) ∧ ✷τ(ϕ). Since |= ϕ ∧ ✷ϕ → (σ(x) ↔ x),
therefore |= τ(ϕ) ∧ ✷τ(ϕ) → ((σ ◦ τ)(x) ↔ τ(x)). Since |= τ(ϕ) ∧ ✷τ(ϕ), therefore
|= (σ ◦ τ)(x) ↔ τ(x). Since x is an arbitrary variable, therefore σ ◦ τ ≃ τ . Consequently,

σ ° τ .

From now on, let us fix n ∈ N.

Formulas of the form ϕ(x1, . . . , xn) will be called n-formulas. From now on, they will be

denoted ϕ(þx).

4 Arrows

We define An = {⊥, ⊤}n. Elements of An are n-tuples of bits. They will be called n-

arrows. They will be denoted α, β, etc. Remark that Card(An) = 2n. For all n-arrows

α = (α1, . . . , αn), we will write α̃(þx) for the associated n-formula

• α̃(þx) = xα1

1 ∧ . . . ∧ xαn

n .

The following result says that the n-formula associated to an n-arrow is always satisfiable.

Lemma 6. Let α be an n-arrow. There exists a model V such that V, 0 |= α̃(þx).

Proof. Left to the reader.

Remark that for all n-arrows α = (α1, . . . , αn) and for all n-tuples þψ of formulas,

α̃(þψ) = ψα1

1 ∧ . . . ∧ ψαn

n . As a result,



Lemma 7. Let þψ be an n-tuple of formulas, V be a model and s be a nonnegative integer.

For all n-arrows α, β, if V, s |= α̃(þψ) and V, s |= β̃(þψ) then α = β.

Proof. Let α, β be n-arrows. Suppose V, s |= α̃(þψ), V, s |= β̃(þψ) and α Ó= β. Let i ∈
{1, . . . , n} be such that either αi = ⊥ and βi = ⊤, or αi = ⊤ and βi = ⊥. Without loss

of generality, assume αi = ⊥ and βi = ⊤. Since V, s |= α̃(þψ) and V, s |= β̃(þψ), therefore
V, s |= ¬ψi and V, s |= ψi: a contradiction.

For all n-tuples þψ of formulas, for all models V and for all nonnegative integers s, let

α[þψ, V, s] be the n-arrow such that for all i ∈ {1, . . . , n},

• if V, s Ó|= ψi then αi[þψ, V, s] = ⊥ else αi[þψ, V, s] = ⊤.

As a result, α̃[þψ, V, s](þx) = x
α1[ þψ,V,s]
1 ∧ . . . ∧ x

αn[ þψ,V,s]
n and

Lemma 8. Let þψ be an n-tuple of formulas, V be a model and s be a nonnegative integer.

V, s |= α̃[þψ, V, s](þψ).

Proof. By definition of α[þψ, V, s].

Moreover,

Lemma 9. Let þψ be an n-tuple of formulas, V be a model and s be a nonnegative integer.

α[þψ, V, s] is the unique n-arrow α such that V, s |= α̃(þψ).

Proof. By Lemmas 7 and 8.

The following result will be useful when we study the most general unifiers of unifiable

n-formulas.

Lemma 10. Let V be a model. For all n-arrows α, there exists a model V ′ such that

V ′, 0 |= α̃(þx) and for all variables x and for all positive integers s, s ∈ V ′(x) iff s ∈ V (x).

Proof. Left to the reader.

5 Setarrows

Let Sn = 2An \ {∅}. Elements of Sn are nonempty sets of n-arrows. They will be called

n-setarrows. They will be denoted a, b, etc. Remark that Card(Sn) = 22n

− 1. For all

n-setarrows a = {α0, . . . , αk}, we will write ã(þx) the associated n-formula

• ã(þx) = ▽{α̃0(þx), . . . , α̃k(þx)}.



The following result says that the n-formula associated to an n-setarrow is always satisfi-

able.

Lemma 11. Let a be an n-setarrow. There exists a model V such that V, 0 |= ã(þx).

Proof. Left to the reader.

Remark that for all n-setarrows a = {α0, . . . , αk} and for all n-tuples þψ of formulas,

ã(þψ) = ▽{α̃0(þψ), . . . , α̃k(þψ)}. As a result,

Lemma 12. Let þψ be an n-tuple of formulas and V be a model. For all n-setarrows a, b, if

V, 0 |= ã(þψ) and V, 0 |= b̃(þψ) then a = b.

Proof. Let a, b be n-setarrows. Suppose V, 0 |= ã(þψ), V, 0 |= b̃(þψ) and a Ó= b. Let α be an

n-arrow such that either α ∈ a and α Ó∈ b, or α Ó∈ a and α ∈ b. Without loss of generality,

assume α ∈ a and α Ó∈ b. Since V, 0 |= ã(þψ), therefore there exists a positive integer s such

that V, s |= α̃(þψ). Since V, 0 |= b̃(þψ) and α Ó∈ b, therefore by Lemma 7, for all positive

integers s, V, s Ó|= α̃(þψ): a contradiction.

For all n-tuples þψ of formulas and for all models V , let a[þψ, V ] be the n-setarrow

• a[þψ, V ] = {α[þψ, V, s] : s is a positive integer}.

As a result, ã[þψ, V ](þx) = ▽{x
α1[ þψ,V,s]
1 ∧ . . . ∧ x

αn[ þψ,V,s]
n : s is a positive integer} and

Lemma 13. Let þψ be an n-tuple of formulas and V be a model. V, 0 |= ã[þψ, V ](þψ).

Proof. By definition of a[þψ, V ].

Moreover,

Lemma 14. Let þψ be an n-tuple of formulas and V be a model. a[þψ, V ] is the unique

n-setarrow a such that V, 0 |= ã(þψ).

Proof. By Lemmas 12 and 13.

The following result will be useful when we study the most general unifiers of unifiable

n-formulas. It can be proved by induction on ϕ(þx).

Lemma 15. Let þψ be an n-tuple of formulas. Let V, V ′ be models such that a[þψ, V ] =

a[ψþ, V ′]. Let ϕ(þx) be an n-formula. For all nonnegative integers s, s′, if α[ψþ, V, s] = 
α[ψþ, V ′, s′] then V, s |= ϕ(ψþ) iff V ′, s′ |= ϕ(ψþ).

Proof. Left to the reader.



6 Tips

Let Pn = An ×Sn. Elements of Pn are couples consisting of an n-arrow component and an

n-setarrow component. They will be called n-tips. They will be denoted p, q, etc. Remark

that Card(Pn) = 2n×(22n

−1). For all n-tips p = (α, a), we will write p̃(þx) the associated
n-formula

• p̃(þx) = α̃(þx) ∧ ã(þx).

The following result says that the n-formula associated to an n-tip is always satisfiable.

Lemma 16. Let p be an n-tip. There exists a model V such that V, 0 |= p̃(þx).

Proof. Left to the reader.

Remark that for all n-tips p = (α, a) and for all n-tuples þψ of formulas, p̃(þψ) = α̃(þψ)∧
ã(þψ). As a result,

Lemma 17. Let þψ be an n-tuple of formulas and V be a model. For all n-tips p, q, if

V, 0 |= p̃(þψ) and V, 0 |= q̃(þψ) then p = q.

Proof. By Lemmas 7 and 12.

For all n-tuples þψ of formulas and for all models V , let p[þψ, V ] be the n-tip

• p[þψ, V ] = (α[þψ, V, 0], a[þψ, V ]).

As a result, p̃[þψ, V ](þx) = x
α1[ þψ,V,0]
1 ∧ . . . ∧ x

αn[ þψ,V,0]
n ∧ ▽{x

α1[ þψ,V,s]
1 ∧ . . . ∧ x

αn[ þψ,V,s]
n : s

is a positive integer} and

Lemma 18. Let þψ be an n-tuple of formulas and V be a model. V, 0 |= p̃[þψ, V ](þψ).

Proof. By definition of p[þψ, V ].

Moreover,

þψ

Lemma 19. Let ψþ be an n-tuple of formulas and V be a model. p[ψþ, V ] is the unique n-tip 
p such that V, 0 |= p̃( ).

Proof. By Lemmas 17 and 18.



7 Acceptable agreements

In this section, we give definitions of acceptable agreements as a simplified version of

bounded morphisms. We shall say that a function f : N −→ N associating to each nonneg-

ative integer a nonnegative integer is acceptable iff for all positive integers s, f(s) is a posi-
tive integer and f−1(s) contains a positive integer. We shall say that a function f : N −→ N

associating to each nonnegative integer a nonnegative integer is an n-agreement between

models V and V ′ iff for all i ∈ {1, . . . , n} and for all nonnegative integers s, s ∈ V (xi) iff
f(s) ∈ V ′(xi).

Lemma 20. Let f be an acceptable n-agreement between models V and V ′. Let ϕ(þx) be

an n-formula. For all nonnegative integers s, V, s |= ϕ(þx) iff V ′, f(s) |= ϕ(þx).

Proof. By induction on ϕ(þx).

We shall say that a function f : N −→ N associating to each nonnegative integer a

nonnegative integer is an ω-agreement between models V and V ′ iff for all variables x and

for all nonnegative integers s, s ∈ V (x) iff f(s) ∈ V ′(x).

Lemma 21. Let f be an acceptable ω-agreement between models V and V ′. Let ϕ be a

formula. For all nonnegative integers s, V, s |= ϕ iff V ′, f(s) |= ϕ.

Proof. By induction on ϕ.

8 Types

Let Tn = 2An×Sn . Elements of Tn are sets of n-tips. They will be called n-types. They will
n

n

−
be denoted T , U , etc. Remark that Card(Tn) = 22 ×(22 1). We shall say that an n-type 
T is complete for an n-setarrow a iff for all n-arrows α, (α, a) ∈ T . We shall say that an 
n-type T is empty for an n-setarrow a iff for all n-arrows α, if α ∈ a then (α, a) Ó∈ T . We 
shall say that an n-type T is full for an n-setarrow a iff for all n-arrows α, if α ∈ a then 
(α, a) ∈ T . We shall say that an n-type T is saturated iff for all n-arrows α, β and for all 
n-setarrows a, if (α, a) ∈ T and β ∈ a then (β, a) ∈ T . The following result will be of 
crucial importance in the remaining sections of our paper.

Proposition 22. Let T be a saturated n-type. For all n-setarrows a, exactly one of the 
following conditions holds: (i) T is complete for a; (ii) T is not complete for a and T is 
empty for a; (iii) T is not complete for a and T is full for a.

Proof. Left to the reader.



We shall say that an n-type T is closed iff for all n-setarrows a, there exists an n-arrow

γ such that if T is not complete for a then either T is empty for a and (γ, {γ}) ∈ T , or T is

full for a and (γ, a) ∈ T . We shall say that an n-type is perfect iff it is saturated and closed.

9 From tuples of formulas to perfect types

Let þψ be an n-tuple of formulas. Let T [þψ] be the n-type

• T [þψ] = {p[þψ, V ] : V is a model}.

The aim of this section is to demonstrate that T [ψþ] is perfect.

Lemma 23. T [ψþ] is saturated.

Proof. Let β, γ be n-arrows and b be an n-setarrow such that (β, b) ∈ T [ψþ] and γ ∈ b. Let 
V be a model such that β = α[ψþ, V, 0] and b = a[ψþ, V ]. Recall that γ ∈ b. Let s be a 
positive integer such that γ = α[ψþ, V, s]. Let V ′ be the model such that for all variables x, 
if s Ó∈ V (x) then V ′(x) = V (x) \ {0} else V ′(x) = V (x) ∪ {0}. Let f be the acceptable 
function such that f(0) = s and for all positive integers t, f(t) = t. The reader may easily 
verify that f is an ω-agreement between V ′ and V . Since γ = α[ψþ, V, s] and f(0) = s, 
therefore by Lemma 21, γ = α[ψþ, V ′, 0]. Moreover, since b = a[ψþ, V ], therefore by 
Lemma 21, b = a[ψþ, V ′]. Hence, (γ, b) ∈ T [ψþ]. Since β, γ are arbitrary n-arrows and b is 
an arbitrary n-setarrow such that (β, b) ∈ T [ψþ] and γ ∈ b, therefore T [ψþ] is saturated.

Lemma 24. There exists an n-arrow γ such that (γ, {γ}) ∈ T [ψþ].

Proof. Let V be a uniform model. The reader may easily verify that a[ψþ, V ] = {α[ψþ, V, 0]}. 
Hence, (α[ψþ, V, 0], {α[ψþ, V, 0]}) ∈ T [ψþ].

Lemma 25. T [ψþ] is closed.

Proof. By Lemma 23, T [ψþ] is saturated. Hence, by Proposition 22, for all n-setarrows a, 
exactly one of the following conditions holds: (i) T [ψþ] is complete for a; (ii) T [ψþ] is not 
complete for a and T [ψþ] is empty for a; (iii) T [ψþ] is not complete for a and T [ψþ] is full 
for a. By Lemma 24, let γ be an n-arrow such that (γ, {γ}) ∈ T [ψþ]. For all n-setarrows 
a, let γT,a be an arbitrary n-arrow if condition (i) holds, the n-arrow γ if condition (ii) 
holds and an arbitrary n-arrow in a if condition (iii) holds. The reader may easily verify 
that for all n-setarrows a, if T [ψþ] is not complete for a then either T [ψþ] is empty for a and 
(γT,a, {γT,a}) ∈ T [ψþ], or T [ψþ] is full for a and (γT,a, a) ∈ T [ψþ].

From all this, it follows that

Proposition 26. T [ψþ] is perfect.

Proof. By Lemmas 23 and 25.



10 From perfect types to tuples of formulas

Let T be a perfect n-type. Hence, T is saturated and closed. Thus, by Proposition 22, for

all n-setarrows a, exactly one of the following conditions holds: (i) T is complete for a;

(ii) T is not complete for a and T is empty for a; (iii) T is not complete for a and T is full

for a. Since T is closed, therefore for all n-setarrows a, let γT,a be an n-arrow such that if

T is not complete for a then either T is empty for a and (γT,a, {γT,a}) ∈ T , or T is full for

a and (γT,a, a) ∈ T . For all n-tips p = (α, a), let δT,p be the n-arrow such that if p Ó∈ T

then δT,p = γT,a else δT,p = α. Let þψ[T ](þx) be the n-tuple of n-formulas such that for all

i ∈ {1, . . . , n},

• ψi[T ](þx) =
∨

{p̃(þx) ∧ δ
T,p
i : p is an n-tip}.

The aim of this section is to demonstrate that T = T [þψ[T ](þx)].

Lemma 27. Let p be an n-tip. If p ∈ T then |= p̃(þx) → p̃(þψ[T ](þx)).

Proof. Suppose p ∈ T . Let β be the n-arrow component of p and b be the n-setarrow

component of p. Let V be a model such that V, 0 |= p̃(þx). Let i ∈ {1, . . . , n}. Since V, 0 |=
p̃(þx), therefore by Lemma 17, V, 0 |= ψi[T ](þx) ↔ δ

T,p
i . Since p ∈ T , therefore δ

T,p
i = βi.

Since V, 0 |= ψi[T ](þx) ↔ δ
T,p
i , therefore V, 0 |= ψi[T ](þx) ↔ βi. Since V, 0 |= p̃(þx),

therefore V, 0 |= β̃(þx). Since V, 0 |= ψi[T ](þx) ↔ βi, therefore V, 0 |= ψi[T ](þx) ↔ xi. Let

s be a positive integer. Since V, 0 |= p̃(þx), therefore V, s |= b̃(þx). Recall that s is a positive

integer. Let α be an n-arrow such that α ∈ b and V, s |= α̃(þx). Let q be the n-tip with

n-arrow component α and n-setarrow component b. Since V, s |= b̃(þx) and V, s |= α̃(þx),
therefore V, s |= q̃(þx). Hence, by Lemma 17, V, s |= ψi[T ](þx) ↔ δ

T,q
i . Since T is

saturated, p ∈ T and α ∈ b, therefore q ∈ T . Thus, δ
T,q
i = αi. Since V, s |= ψi[T ](þx) ↔

δ

þψ
þψ

þψ
þψ þψ

i
T,q

, therefore V, s |= ψi[T ](þx) ↔ αi. Since V, s |= α̃(þx), therefore V, s |= ψi[T ](þx) ↔
xi. Since s is an arbitrary positive integer, therefore V, 0 |= ✷(ψi[T ](þx) ↔ xi). Since 
V, 0 |= ψi[T ](þx) ↔ xi, therefore V, 0 |= (ψi[T ](þx) ↔ xi) ∧ ✷(ψi[T ](þx) ↔ xi). Since
i is arbitrary in {1, . . . , n}, therefore V, 0 |= (ψ1[T ](þx) ↔ x1) ∧ . . . ∧ (ψn[T ](þx) ↔

xn) ∧ ✷((ψ1[T ](þx) ↔ x1) ∧ . . . ∧ (ψn[T ](þx) ↔ xn)). Since V, 0 |= p̃(þx), therefore
V, 0 |= p̃( [T ](þx)). Since V is an arbitrary model such that V, 0 |= p̃(þx), therefore |= 
p̃(þx) → p̃( [T ](þx)).

Lemma 28. T ⊆ T [ψþ[T ](þx)].
Proof. Let p be an n-tip such that p ∈ T . By Lemma 16, let V be a model such that
V, 0 |= p̃(þx). Since p ∈ T , therefore by Lemma 27, |= p̃(þx) → p̃( [T ](þx)). Since 
V, 0 |= p̃(þx), therefore V, 0 |= p̃( [T ](þx)). Hence, by Lemma 19, p = p[ [T ](þx), V ]. 
Thus, p ∈ T [ψþ[T ](þx)]. Since p is an arbitrary n-tip such that p ∈ T , therefore T ⊆
T [ψþ[T ](þx)].



Lemma 29. Let p be an n-tip with n-setarrow component b. If p Ó∈ T then |= p̃(þx) →

γ̃T,b(þψ[T ](þx)).

Proof. Suppose p Ó∈ T . Let V be a model such that V, 0 |= p̃(þx). Let i ∈ {1, . . . , n}. Since
V, 0 |= p̃(þx), therefore by Lemma 17, V, 0 |= ψi[T ](þx) ↔ δ

T,p
i . Since p Ó∈ T , therefore

δ
T,p
i = γ

T,b
i . Since V, 0 |= ψi[T ](þx) ↔ δ

T,p
i , therefore V, 0 |= ψi[T ](þx) ↔ γ

T,b
i . Since i

is arbitrary in {1, . . . , n}, therefore V, 0 |= γ̃T,b(þψ[T ](þx)). Since V is an arbitrary model

such that V, 0 |= p̃(þx), therefore |= p̃(þx) → γ̃T,b(þψ[T ](þx)).

Lemma 30. Let b be an n-setarrow. If T is empty for b then |= b̃(þx) → {̃γT,b}(þψ[T ](þx)).

Proof. Suppose T is empty for b. Let V be a model such that V, 0 |= b̃(þx). Let i ∈
{1, . . . , n}. Let s be a positive integer. Since V, 0 |= b̃(þx), therefore V, s |= b̃(þx). Recall
that s is a positive integer. Let α be an n-arrow such that α ∈ b and V, s |= α̃(þx). Let p

be the n-tip with n-arrow component α and n-setarrow component b. Since V, s |= b̃(þx)
and V, s |= α̃(þx), therefore V, s |= p̃(þx). Hence, by Lemma 17, V, s |= ψi[T ](þx) ↔

δ
T,p
i . Since T is empty for b and α ∈ b, therefore p Ó∈ T . Thus, δ

T,p
i = γ

T,b
i . Since

V, s |= ψi[T ](þx) ↔ δ
T,p
i , therefore V, s |= ψi[T ](þx) ↔ γ

T,b
i . Since s is an arbitrary

positive integer, therefore V, 0 |= ✷(ψi[T ](þx) ↔ γ
T,b
i ). Since i is arbitrary in {1, . . . , n},

therefore V, 0 |= ✷((ψ1[T ](þx) ↔ γ
T,b
1 )∧ . . . ∧ (ψn[T ](þx) ↔ γT,b

n )). Consequently, V, 0 |=

{̃γT,b}(þψ[T ](þx)). Since V is an arbitrary model such that V, 0 |= b̃(þx), therefore |= b̃(þx) →

{̃γT,b}(þψ[T ](þx)).

Lemma 31. Let b be an n-setarrow. If T is full for b then |= b̃(þx) → b̃(þψ[T ](þx)).

Proof. Suppose T is full for b. Let V be a model such that V, 0 |= b̃(þx). Let i ∈ {1, . . . , n}.
Let s be a positive integer. Since V, 0 |= b̃(þx), therefore V, s |= b̃(þx). Recall that s is

a positive integer. Let α be an n-arrow such that α ∈ b and V, s |= α̃(þx). Let p be the

n-tip with n-arrow component α and n-setarrow component b. Since V, s |= b̃(þx) and
V, s |= α̃(þx), therefore V, s |= p̃(þx). Hence, by Lemma 17, V, s |= ψi[T ](þx) ↔ δ

T,p
i . Since

T is full for b and α ∈ b, therefore p ∈ T . Thus, δ
T,p
i = αi. Since V, s |= ψi[T ](þx) ↔ δ

T,p
i ,

þψ
þψ

therefore V, s |= ψi[T ](þx) ↔ αi. Since V, s |= α̃(þx), therefore V, s |= ψi[T ](þx) ↔ xi. 
Since s is an arbitrary positive integer, therefore V, 0 |= ✷(ψi[T ](þx) ↔ xi). Since i is
arbitrary in {1, . . . , n}, therefore V, 0 |= ✷((ψ1[T ](þx) ↔ x1) ∧ . . . ∧ (ψn[T ](þx) ↔ xn)).
Since V, 0 |= b̃(þx), therefore V, 0 |= b̃( [T ](þx)). Since V is an arbitrary model such that 
V, 0 |= b̃(þx), therefore |= b̃(þx) → b̃( [T ](þx)).

Lemma 32. T [ψþ[T ](þx)] ⊆ T .



Proof. Let p be an n-tip such that p ∈ T [þψ[T ](þx)]. Let V be a model such that p =
p[þψ[T ](þx), V ]. Hence, by Lemma 18, V, 0 |= p̃(þψ[T ](þx)). Let q = p[þx, V ]. Thus, by

Lemma 18, V, 0 |= q̃(þx). Case “q ∈ T ”: Hence, by Lemma 27, |= q̃(þx) → q̃(þψ[T ](þx)).
Since V, 0 |= q̃(þx), therefore V, 0 |= q̃(þψ[T ](þx)). Since V, 0 |= p̃(þψ[T ](þx)), therefore by
Lemma 17, p = q. Since q ∈ T , therefore p ∈ T . Case “q Ó∈ T ”: Let a be the n-setarrow

component of q. Since q Ó∈ T , therefore by Lemma 29, |= q̃(þx) → γ̃T,a(þψ[T ](þx)). Since

V, 0 |= q̃(þx), therefore V, 0 |= γ̃T,a(þψ[T ](þx)). Since V, 0 |= p̃(þψ[T ](þx)), therefore by

Lemma 7, γT,a is the n-arrow component of p. Since q Ó∈ T , therefore T is not complete

for a. Since T is saturated, therefore by Proposition 22, either T is empty for a, or T is

full for a. In the former case, (γT,a, {γT,a}) ∈ T . Moreover, by Lemma 30, |= ã(þx) →

{̃γT,a}(þψ[T ](þx)). Since V, 0 |= q̃(þx), therefore V, 0 |= {̃γT,a}(þψ[T ](þx)). Since V, 0 |=
p̃(þψ[T ](þx)), therefore by Lemma 12, {γT,a} is the n-setarrow component of p. Since γT,a

is the n-arrow component of p and (γT,a, {γT,a}) ∈ T , therefore p ∈ T . In the latter case,

(γT,a, a) ∈ T . Moreover, by Lemma 31, |= ã(þx) → ã(þψ[T ](þx)). Since V, 0 |= q̃(þx),
therefore V, 0 |= ã(þψ[T ](þx)). Since V, 0 |= p̃(þψ[T ](þx)), therefore by Lemma 12, a is the

n-setarrow component of p. Since γT,a is the n-arrow component of p and (γT,a, a) ∈
T , therefore p ∈ T . Since p is an arbitrary n-tip such that p ∈ T [þψ[T ](þx)], therefore
T [þψ[T ](þx)] ⊆ T .

From all this, it follows that

Proposition 33. T = T [þψ[T ](þx)].

Proof. By Lemmas 28 and 32.

11 About most general unifiers

Let ϕ(þx) be an n-formula. Let T be the n-type

• T = {p : |= p̃(þx) → ϕ(þx) ∧ ✷ϕ(þx)}.

Lemma 34. T is saturated.

Proof. Let α, β be n-arrows and a be an n-setarrow such that (α, a) ∈ T and β ∈ a. Hence,
|= α̃(þx)∧ã(þx) → ϕ(þx)∧✷ϕ(þx). Let V be a model such that V, 0 |= β̃(þx) and V, 0 |= ã(þx). 
By Lemma 10, let V ′ be a model such that V ′, 0 |= α̃(þx) and for all variables x and for all 
positive integers s, s ∈ V ′(x) iff s ∈ V (x). 

′ 
Since V, 0 |= ã(þx), 

′

therefore V ′, 0 |= ã(þx). 
Since |= α̃(þx)∧ ã(þx) → ϕ(þx)∧✷ϕ(þx) and V , 0 |= α̃(þx), therefore V , 0 |= ϕ(þx)∧✷ϕ(þx). 
Moreover, recall that β ∈ a. Let sβ be a positive integer such that V ′, sβ |= β̃(þx). Since 
V ′, 0 |= ϕ(þx) ∧ ✷ϕ(þx), therefore V ′, sβ |= ϕ(þx) ∧ ✷ϕ(þx). Let f : N −→ N be the



function associating to each nonnegative integer a nonnegative integer such that f(0) = sβ

and for all positive integers s, f(s) = s. The reader may easily verify that f is an acceptable

n-agreement between V and V ′. Since V ′, sβ |= ϕ(þx) ∧ ✷ϕ(þx) and f(0) = sβ , therefore

by Lemma 20, V, 0 |= ϕ(þx) ∧ ✷ϕ(þx). Since V is an arbitrary model such that V, 0 |= β̃(þx)
and V, 0 |= ã(þx), therefore |= β̃(þx) ∧ ã(þx) → ϕ(þx) ∧ ✷ϕ(þx). Thus, (β, a) ∈ T .

Lemma 35. Let þχ be an n-tuple of variable-free formulas. There exists an n-arrow γ such

that |= γ̃(þχ).

Proof. Left to the reader.

From now on, let us assume ϕ(þx) is unifiable.

The aim of this section is to demonstrate that ϕ(þx) is projective.

Lemma 36. There exists an n-arrow γ such that (γ, {γ}) ∈ T .

Proof. Since ϕ(þx) is unifiable, therefore by Proposition 2, let σ be a closed substitution 
such that |= σ(ϕ(þx)). Let þχ be the n-tuple of variable-free formulas such that for all 
i ∈ {1, . . . , n}, χi = σ(xi). Since |= σ(ϕ(þx)), therefore |= ϕ(þχ). Hence, |= ϕ(þχ)∧✷ϕ(þχ). 
Since þχ is an n-tuple of variable-free formulas, therefore by Lemma 35, let γ be an n-arrow
such that |= γ̃(þχ). Thus, |= γ̃(þχ) ∧ ✷γ̃(þχ). Let V be a model such that V, 0 |= γ̃(þx) and
V, 0 |= {γ̃}(þx). Since |= γ̃(þχ) ∧ ✷γ̃(þχ), therefore V, 0 |= γ̃(þχ) and V, 0 |= ✷γ̃(þχ). Let 
i ∈ {1, . . . , n}. Since V, 0 |= γ̃(þx) and V, 0 |= γ̃(þχ), therefore V, 0 |= χi ↔ xi. Let s
be a positive integer. Since V, 0 |= {γ̃}(þx) and V, 0 |= ✷γ̃(þχ), therefore V, s |= γ̃(þx) and
V, s |= γ̃(þχ). Hence, V, s |= χi ↔ xi. Since s is an arbitrary positive integer, therefore 
V, 0 |= ✷(χi ↔ xi). Since V, 0 |= χi ↔ xi, therefore V, 0 |= (χi ↔ xi) ∧ ✷(χi ↔ xi).
Since i is arbitrary in {1, . . . , n}, therefore V, 0 |= (χ1 ↔ x1)∧. . .∧(χn ↔ xn)∧✷((χ1 ↔ 
x1) ∧ . . . ∧ (χn ↔ xn)). Since |= ϕ(þχ) ∧ ✷ϕ(þχ), therefore V, 0 |= ϕ(þχ) ∧ ✷ϕ(þχ). 
Since V, 0 |= (χ1 ↔ x1) ∧ . . . ∧ (χn ↔ xn) ∧ ✷((χ1 ↔ x1) ∧ . . . ∧ (χn ↔ xn)),

therefore V, 0 |= ϕ(þx) ∧ ✷ϕ(þx). Since V is an arbitrary model such that V, 0 |= γ̃(þx) and
V, 0 |= {γ̃}(þx), therefore |= γ̃(þx) ∧ {γ̃}(þx) → ϕ(þx) ∧ ✷ϕ(þx) Thus, (γ, {γ}) ∈ T .

Lemma 37. T is closed.

Proof. By Lemma 34, T is saturated. Hence, by Proposition 22, for all n-setarrows a, 
exactly one of the following conditions holds: (i) T is complete for a; (ii) T is not complete 
for a and T is empty for a; (iii) T is not complete for a and T is full for a. By Lemma 36, 
let γ be an n-arrow such that (γ, {γ}) ∈ T . For all n-setarrows a, let γT,a be an arbitrary
n-arrow if condition (i) holds, the n-arrow γ if condition (ii) holds and an arbitrary n-arrow 
in a if condition (iii) holds. The reader may easily verify that for all n-setarrows a, if T is



not complete for a then either T is empty for a and (γT,a, {γT,a}) ∈ T , or T is full for a

and (γT,a, a) ∈ T .

Lemma 38. T is perfect.

Proof. By Lemmas 34 and 37.

By Lemma 37, T is closed. Hence, for all n-setarrows a, let γT,a be an n-arrow such

that if T is not complete for a then either T is empty for a and (γT,a, {γT,a}) ∈ T , or T is

full for a and (γT,a, a) ∈ T . For all n-tips p = (α, a), let δT,p be the n-arrow such that if

p Ó∈ T then δT,p = γT,a else δT,p = α. Let þψ[T ](þx) be the n-tuple of n-formulas such that

for all i ∈ {1, . . . , n}, ψi[T ](þx) =
∨

{p̃(þx) ∧ δ
T,p
i : p is an n-tip}. Thus, by Proposition 33

and Lemma 38, T = T [þψ[T ](þx)].

Lemma 39. |= ϕ(þψ[T ](þx)).

Proof. Let V be a model. Since T = T [þψ[T ](þx)], therefore p[þψ[T ](þx), V ] ∈ T . Hence,

|= p̃[þψ[T ](þx), V ](þx) → ϕ(þx)∧✷ϕ(þx). Thus, |= p̃[þψ[T ](þx), V ](þψ[T ](þx)) → ϕ(þψ[T ](þx))∧
✷ϕ(þψ[T ](þx)). By Lemma 18 it holds V, 0 |= p̃[þψ[T ](þx), V ](þψ[T ](þx)). Since it holds

|= p̃[þψ[T ](þx), V ](þψ[T ](þx)) → ϕ(þψ[T ](þx))∧✷ϕ(þψ[T ](þx)), therefore V, 0 |= ϕ(þψ[T ](þx))∧
✷ϕ(þψ[T ](þx)). Consequently, V, 0 |= ϕ(þψ[T ](þx)). Since V is an arbitrary model, therefore

|= ϕ(þψ[T ](þx)).

Lemma 40. For all i ∈ {1, . . . , n}, |= ϕ(þx) ∧ ✷ϕ(þx) → (ψi[T ](þx) ↔ xi).

Proof. Let i ∈ {1, . . . , n}. Let V be a model such that V, 0 |= ϕ(þx) ∧ ✷ϕ(þx). Let q =
p[þx, V ]. By Lemma 18, V, 0 |= q̃(þx). Case “q ∈ T ”: Hence, by Lemma 17, V, 0 |=
ψi[T ](þx) ↔ δ

T,q
i . Let α be the n-arrow component of q. Since q ∈ T , therefore δ

T,q
i = αi.

Since V, 0 |= ψi[T ](þx) ↔ δ
T,q
i , therefore V, 0 |= ψi[T ](þx) ↔ αi. Since V, 0 |= q̃(þx),

therefore V, 0 |= αi ↔ xi Since V, 0 |= ψi[T ](þx) ↔ αi, therefore V, 0 |= ψi[T ](þx) ↔ xi.

Case “q Ó∈ T ”: Hence, Ó|= q̃(þx) → ϕ(þx)∧✷ϕ(þx). Let V ′ be a model such that V ′, 0 |= q̃(þx)
and V ′, 0 Ó|= ϕ(þx) ∧ ✷ϕ(þx). Since V, 0 |= q̃(þx), therefore by Lemma 15, V, 0 Ó|= ϕ(þx) ∧
✷ϕ(þx): a contradiction. Since V is an arbitrary model such that V, 0 |= ϕ(þx) ∧ ✷ϕ(þx),
therefore |= ϕ(þx) ∧ ✷ϕ(þx) → (ψi[T ](þx) ↔ xi).

From all this, it follows that

Proposition 41. ϕ(þx) is projective.

Proof. Let σ be the substitution such that for all positive integers i, if i ∈ {1, . . . , n} then 
σ(xi) = ψi[T ](þx) else σ(xi) = xi. By lemma 39, the reader may easily verify that σ 
is a unifier of ϕ(þx). Moreover, by Lemma 40, |= ϕ(þx) ∧ ✷ϕ(þx) → (σ(x) ↔ x) for all 
variables x.



As a corollary, we conclude that

Corollary 42. KD45 has unitary type for elementary unification, i.e. every unifiable for-

mula possesses a most general unifier.

Proof. By Propositions 5 and 41.

12 Conclusion

Much remains to be done. For example, one may consider the unifiability problem when the
language is extended by a countable set of parameters (with typical members denoted p, q,
etc). In this case, the unifiability problem is said to be non-elementary. It consists to deter-
mine, given a formula ϕ(p1, . . . , pm, x1, . . . , xn), whether there exists formulas ψ1, . . . , ψn

such that |= ϕ(p1, . . . , pm, ψ1, . . . , ψn). Another example, one may also consider the unifi-
ability problem, the elementary one or the non-elementary one, this time in modal logic K45
or in modal logic K5. More generally, the unifiability problem, the elementary one or the
non-elementary one, in modal logics extending K5 is of interest, knowing that these modal
logics are coNP-complete [17]. Other coNP-complete modal logics are all proper exten-
sions of S5×S5 [8, 9] and all finitely axiomatizable tense logics of linear time flows [20].
Thus, one may consider whether our method is applicable to the unifiability problem in
these modal logics. A similar question can be asked as well with respect to the linear tem-
poral logic considered by Babenyshev and Rybakov [5]. In other respect, what becomes of
the unifiability problem, the elementary one or the non-elementary one, when the language
is extended by the universal modality or the difference modality? Finally, considering the
tight relationships between unifiability of formulas and admissibility of inference rules as
explained in [1, 12, 15], one may ask whether all normal modal logics extending K5 are al-
most structurally complete, i.e. one may ask whether all admissible non-derivable inference
rules are passive in these logics.
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