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The core of this article is the modal correspondence theory in the class of all Euclidean frames. It shows that with respect to the class of all Euclidean frames, every modal formula is first-order definable and the problem of deciding the modal definability of sentences is undecidable.

Introduction

An important and classical topic in modal logic is the correspondence between modal syntax and semantics and first-order syntax and semantics. Its study began in the 1970s with the works of van Benthem [START_REF] Van Benthem | A note on modal formulas and relational properties[END_REF][START_REF] Van Benthem | Correspondence theory[END_REF], Goldblatt and Thomason [START_REF] Goldblatt | Axiomatic classes in propositional modal logic[END_REF] and Sahlqvist [START_REF] Sahlqvist | Completeness and correspondence in the first and second order semantics for modal logic[END_REF]. A number of questions since then have been explored, in particular, with respect to a fixed class of frames, the decidability of the first-order definability of modal formulas and the decidability of the modal definability of sentences.

Over the class of all frames, the two problems (first-order definability of modal formulas and modal definability of sentences) have been proved to be undecidable by Chagrov and Chagrova [START_REF] Chagrov | Algorithmic problems concerning first-order definability of modal formulas on the class of all finite frames[END_REF][START_REF] Chagrov | The truth about algorithmic problems in correspondence theory[END_REF][START_REF] Chagrov | Demise of the algorithmic agenda in the correspondence theory?[END_REF] and Chagrova [START_REF] Chagrova | On the Problem of Definability of Propositional Formulas of Intuitionistic Logic by Formulas of Classical First-Order Logic[END_REF][START_REF] Chagrova | An undecidable problem in correspondence theory[END_REF]. See also [START_REF] Balbiani | Undecidable problems for modal definability[END_REF] for a number of other undecidability results. Over the class of all S5-frames (based on equivalence relations) and over the class of all KD45-frames (based on serial, transitive and Euclidean relations), the two problems are decidable, as proved by Balbiani and Tinchev [START_REF] Balbiani | Decidability and complexity of definability over the class of all partitions[END_REF][START_REF] Balbiani | Definability over the class of all partitions[END_REF] and Georgiev [START_REF] Georgiev | Computability of definability in the class of all KD45 frames[END_REF][START_REF] Georgiev | Definability in the class of all KD45-frames -computability and complexity[END_REF].

In this article, we answer the following question left open in [START_REF] Georgiev | Definability in the class of all KD45-frames -computability and complexity[END_REF]: is there a natural class of frames for which one of the two problems is undecidable but not the other? We have discovered such a class, namely the class of all K5-frames (based on Euclidean relations). It turns out that over this class of frames, every modal formula is first-order definable and the problem of deciding the modal definability of sentences is undecidable. Section 2 introduces different classes of frames and studies their relationships. In Section 3, the modal language we will work with is presented. Section 4 presents the first-order language we will work with. In Section 5, the definitions of abstract types of frames and concrete types of frames are given. Section 6 contains the proof that every modal formula is first-order definable with respect to the class of all Euclidean frames. In Section 7, the proof that the problem of deciding the modal definability of sentences with respect to the class of all Euclidean frames is undecidable is presented. doi:10.1093/logcom/exx033

Euclidean frames

A frame is a couple F =(W,R) where W is a non-empty set of 'states' and R is a binary relation of 'accessibility' on W. Let F =(W,R) be a frame. For all frames F ′ =(W ′ ,R ′ ), we say F ′ is a subframe of F iff W ′ ⊆W and R ′ =R∩(W ′ ×W ′ ). For all s∈W, let R(s)={t ∈W : sRt} and R -1 (s)= {t ∈W : tRs}. Let dom(R)={s∈W :R(s) =∅} and ran(R)={s∈W :R -1 (s) =∅}. For all A⊆W, let |A| be the cardinality of A. Moreover, let R(A)={t ∈W : sRt for some s∈A} and R -1 (A)={t ∈W : tRs for some s∈A}. For all s∈W, let R ⋆ (s)= {R n (s): n∈N} where R 0 (s)={s} and for all n≥1, R n (s)= R(R n-1 (s)). For all s∈W, we say s is a root of F iff R ⋆ (s)=W. We say F is universal iff R=W ×W. We say F is reflexive iff for all s∈W, sRs. We say F is symmetric iff for all s,t ∈W, if sRt then tRs. We say F is connected iff for all s,t,u∈W, if sRt and sRu then either tRu, or uRt. We say F is Euclidean iff for all s,t,u∈W, if sRt and sRu then tRu.

Lemma 1 If F is Euclidean then F is connected. Moreover, for all s∈W, R(s)⊆R(R(s)) and R ⋆ (s)={s}∪ R(R(s)).
We say F is simple iff either R=∅, or dom(R)=W and ran(R)×ran(R)⊆R. In the latter case, obviously, dom(R)\ran(R) and ran(R) constitute a partition of W and we also say that F is strongly simple.

Lemma 2

If F is simple then F is Euclidean.

We say F is non-universal iff R =W ×W. We say F is non-reflexive iff there exists s∈W such that not sRs. We say F is a flower iff F is non-universal and strongly simple.

Lemma 3

If F is a flower then F is non-reflexive.

We say F is 3-connected iff for all s,t ∈W, there exists u,v∈W such that sRu, tRv and uRv.

Lemma 4

If F is Euclidean then F is a flower iff F is non-reflexive and 3-connected.

Let s∈W. The connected component of F determined by s is the frame

F s =(W s ,R s ) such that • W s is the least subset of W such that -s ∈ W s , -for all t ∈ W s , R(t) ⊆ W s , -for all t ∈ W s , R -1 (t) ⊆ W s , • R s is the restriction of R to W s .

Lemma 5

If F is Euclidean then for all s ∈ W , the connected component of F determined by s is simple.

We say F is a singleton iff |W | = 1 and R = ∅. Obviously, if F is a singleton then the unique state in W is a root of F. Moreover, concerning subframes, F has exactly one subframe: F itself.

Lemma 6

If F is a singleton then F is simple.

We say F is universal iff R = W ×W . Obviously, if F is universal then every state in W is a root of F. Moreover, as for the subframes of F, they are universal too.

Lemma 7

If F is universal then F is strongly simple.

We say F is a cul-de-sac iff there exists s ∈ dom(R)\ran(R) such that (W \{s})×(W \{s}) ⊆ R. Obviously, if F is a cul-de-sac then s is the unique root of F and |dom(R)\ran(R)| = 1. Moreover, about the subframes of F containing s and intersecting R(s), they are cul-de-sac too and s is their root.

Lemma 8

If F is a cul-de-sac then F is non-universal and strongly simple.

We say F is clusterizable iff either F is a singleton, or F is universal, or F is a cul-de-sac.

Lemma 9

If F is clusterizable then F is simple.

Let s ∈ W . The generated subframe of F determined by s is the frame

F s = (W s ,R s ) such that • W s is the least subset of W such that -s ∈ W s , -for all t ∈ W s , R(t) ⊆ W s , • R s is the restriction of R to W s .

Lemma 10

If F is Euclidean then for all s ∈ W , the generated subframe of F determined by s is clusterizable.

Let C rs be the class of all reflexive symmetric frames, C Euc be the class of all Euclidean frames and C flo be the class of all flowers.

Modal language and satisfaction

It is now time to meet the modal language we will work with.

Modal language.

Let us consider a countable set VAR of propositional variables (with typical members denoted p, q, ...). The set MOF of all modal formulas (with typical members denoted ϕ, ψ, ...) is inductively defined as follows:

• ϕ ::= p | ⊥ | ¬ϕ | (ϕ ∨ψ) | ✷ϕ.
We define the other Boolean constructs as usual. The modal formula ✸ϕ is obtained as the wellknown abbreviation: ✸ϕ ::= ¬✷¬ϕ. We adopt the standard rules for omission of the parentheses. We write ϕ(p 1 ,...,p n ) to denote a modal formula whose propositional variables form a subset of {p 1 ,...,p n }. Let sf be the function assigning to each modal formula ϕ the set sf (ϕ) of all its subformulas. It is defined as usual by induction on ϕ. For all modal formulas ϕ, the number of ϕ's subformulas is denoted as |sf (ϕ)|.

Satisfaction.

A model based on a frame F =(W,R) is a triple M=(W,R,V) where V is a function assigning to each propositional variable p, a subset V(p) of W. Given a model M=(W,R,V), the satisfiability of a modal formula ϕ at s∈W, in symbols M,s|=ϕ, is inductively defined as follows:

• M,s |= p iff s ∈ V (p), • M,s |= ⊥, • M,s |= ¬ϕ iff M,s |= ϕ, • M,s |= ϕ ∨ψ iff either M,s |= ϕ, or M,s |= ψ, • M,s |= ✷ϕ iff for all t ∈ W , if sRt then M,t |= ϕ.
Obviously, M,s |= ✸ϕ iff there exists t ∈ W such that sRt and M,t |= ϕ. We say a modal formula ϕ is true in a model M, in symbols M |= ϕ, iff ϕ is satisfied at all states in M. We say modal formula ϕ is valid in a frame F, in symbols F |= ϕ, iff ϕ is true in all models based on F. We say a frame F is weaker than a frame F ′ , in symbols F F ′ , iff for all modal formulas ϕ, if F |= ϕ then F ′ |= ϕ. We say a modal formula ϕ is valid in a class C of frames, in symbols C |= ϕ, iff ϕ is valid in all frames in C. Bounded morphic images. Let F = (W ,R), F ′ = (W ′ ,R ′ ) be frames. We say a function f assigning to each state s in F a state f (s) in F ′ is a bounded morphism from F to F ′ iff the following conditions are satisfied:

• for all states s, t in F, if sRt then f (s)R ′ f (t),
• for all states s in F and for all states t ′ in F ′ , if f (s)R ′ t ′ then there exists a state t in F such that sRt and

f (t) = t ′ .
We say F ′ is a bounded morphic image of F iff there exists a surjective bounded morphism from F to F ′ . For all states s in F and for all states s ′ in F ′ , we say (F ′ ,s ′ ) is a bounded morphic image of (F,s) iff there exists a surjective bounded morphism f from F to F ′ , such that f (s) = s ′ . See [START_REF] Blackburn | Modal Logic[END_REF]Chapter 2] for more about bounded morphic images.

First-order language and satisfaction

It is now time to meet the first-order language we will work with. First-order language. Let us consider a countable set of individual variables (with typical members denoted x, y, ...). A list x 1 ,...,x m of individual variables will sometimes be written as x. We leave it to the context to determine the length of such a list. The set FOF of all first-order formulas (denoted A, B, ...) is inductively defined as follows:

• A ::= R ✷ (x,y) | x = y | ¬A | (A∨B) | ∀x A.
We define the other Boolean constructs as usual. The first-order formula ∃x A is obtained as the wellknown abbreviation: ∃x A ::= ¬∀x ¬A. We adopt the standard rules for omission of the parentheses. For all first-order formulas A, let fiv(A) be the set of all free individual variables occurring in A. When x is a list of pairwise distinct individual variables, we write A(x) to denote a first-order formula A whose free individual variables belongs to x. A first-order formula A is called a sentence if fiv(A) = ∅.

Let τ : FOF -→ FOF be the function inductively defined as follows:

• τ (R ✷ (x,y)) is ∃z (R ✷ (x,z)∧R ✷ (y,z)), • τ (x = y) is x = y, • τ (⊥) is ⊥, • τ (¬A) is ¬τ (A), • τ (A∨B) is τ (A)∨τ (B), • τ (∀x A) is ∀x (R ✷ (x,x)∨τ (A)).
The reader may easily verify that for all first-order formulas A, fiv(τ (A)) = fiv(A). Satisfaction. Given a frame F = (W ,R), the satisfiability of a first-order formula A(x) in F with respect to a list s of states in F, in symbols

F |= A(x) [s]
, is inductively defined as follows:

• F |= R ✷ (x i ,x j ) [s] iff s i Rs j , • F |= x i = x j [s] iff s i = s j , • F |= ¬A [s] iff F |= A [s], • F |= A∨B [s] iff either F |= A [s], or F |= B [s], • F |= ∀x A(x,x) [s] iff for all states s in F, F |= A(x,x) [s,s]. Obviously, F |= ∃x A(x,x) [s] iff there exists a state s in F such that F |= A(x,x) [s,s]. We say a first-order formula A(x) is valid in a frame F, in symbols F |= A(x), iff A(x) is satisfied in F with respect to all lists s of states in F. We say a first-order formula A is valid in a class C of frames, in symbols C |= A, iff A is valid in all frames in C.
Relativized reducts and stable classes of frames. Let F, F ′ be the frames. We say F ′ is a relativized reduct of F iff there exists a first-order formula A(x,x) and there exists a list s of states in F such that F ′ is the restriction of F to the set of all states s in F such that

F |= A(x,x) [s,s].
In that case, F ′ is called the relativized reduct of F with respect to A(x,x) and s. See [START_REF] Hodges | Model Theory[END_REF]Chapter 5] for more about relativized reducts. Let C be a class of frames. We say C is stable iff there exists a first-order formula A(x,x) and there exists a sentence B such that (a) for all frames F in C, for all lists s of states in F and for all frames F ′ , if F ′ is the relativized reduct of F with respect to A(x,x) and s then F ′ is in C, (b) for all frames F 0 in C, there exists frames F, F ′ in C and there exists a list s of states in F such that F 0 is the relativized reduct of F with respect to A(x,x) and s, F |= B, F ′ |= B and F F ′ .

See [START_REF] Balbiani | Undecidable problems for modal definability[END_REF] for more about stable classes of frames.

Types

An abstract type is a triple (ǫ,σ,µ) ∈ {0,1}×N 2 such that either ǫ = 1, σ = 0 and µ = 0, or ǫ = 0, σ ≥ 1 and µ = σ , or ǫ = 1, σ ≥ 1 and µ ≥ σ . Let ω be the set of all abstract types. For all positive integers n, let n be the set of all abstract types (ǫ,σ,µ) such that ǫ +µ ≤ n.

Lemma 11

For all positive integers n, n is finite.

Let F = (W ,R) be a finite clusterizable frame. Hence, either F is a singleton, or F is universal, or F is a cul-de-sac. Let s be a root of F. The concrete type of F is the triple (ǫ,σ,µ) ∈ {0,1}×N 2 where

• if sRs then ǫ = 0 else ǫ = 1, • σ = |R(s)|, • µ = |R(R(s))|,
A clusterizable frame has several roots only if it is universal. As a result, the concrete type of F as defined above does not depend on the choice of F's root when this choice is possible. Remark that if F is a singleton then note sRs, |R(s

)| = 0, |R(R(s))| = 0 and F is of type (1,0,0), if F is universal then sRs, |R(s)|≥1, |R(R(s))|=|R(s)| and F is of type (0,|W|,|W|) and if F is a cul-de-sac then note sRs, |R(s)|≥1, |R(R(s))|≥|R(s)| and F is of type (1,|R(s)|,|W|-1).

Lemma 12

Let F =(W,R) be a finite clusterizable frame. If the concrete type of F is the triple (ǫ,σ,µ)∈ {0,1}×N 2 then ǫ +µ=|W|.

Lemma 13

For all (ǫ,σ,µ)∈{0,1}×N 2 , if (ǫ,σ,µ) is the concrete type of some finite clusterizable frame then (ǫ,σ,µ) is an abstract type.

For all abstract types (ǫ,σ,µ), R (ǫ,σ,µ) ) be the frame where W (ǫ,σ,µ) = {0,...,σ -1} and R (ǫ,σ,µ) = {0,...,σ -1}×{0,...,σ -1}, R (ǫ,σ,µ) ) be the frame where W (ǫ,σ,µ) = {0,1,...,σ,σ +1,...,µ} and R (ǫ,σ,µ) = ({0}×{1,...,σ })∪({1,...,σ,σ +1,...,µ}× {1,...,σ,σ +1,...,µ}).

• if ǫ = 1, σ = 0 and µ = 0 then let F (ǫ,σ,µ) = (W (ǫ,σ,µ) ,R (ǫ,σ,µ) ) be the frame where W (ǫ,σ,µ) = {0} and R (ǫ,σ,µ) = ∅, • if ǫ = 0, σ ≥ 1 and µ = σ then let F (ǫ,σ,µ) = (W (ǫ,σ,µ) ,
• if ǫ = 1, σ ≥ 1 and µ ≥ σ then let F (ǫ,σ,µ) = (W (ǫ,σ,µ) ,
Remark that for all abstract types (ǫ,σ,µ), 0 is a root of F (ǫ,σ,µ) .

Lemma 14

For all abstract types (ǫ,σ,µ), F (ǫ,σ,µ) is a finite clusterizable frame of type (ǫ,σ,µ).

For all abstract types (ǫ,σ,µ),

• if ǫ = 1, σ = 0 and µ = 0 then let A (ǫ,σ,µ) (x) be the first-order formula ∀y ¬R ✷ (x,y),

• if ǫ = 0, σ ≥ 1 and µ = σ then let A (ǫ,σ,µ) (x) be the conjunction of the first-order formulas

R ✷ (x,x), ∃y 1 ... ∃y σ ( 1≤i≤σ R ✷ (x,y i )∧ 1≤i<j≤σ y i = y j ),
• if ǫ = 1, σ ≥ 1 and µ ≥ σ then let A (ǫ,σ,µ) (x) be the conjunction of the first-order formulas

¬R ✷ (x,x), ∃y 1 ... ∃y σ ( 1≤i≤σ R ✷ (x,y i )∧ 1≤i<j≤σ y i = y j ), ∃y (R ✷ (x,y)∧∃z σ +1 ... ∃z µ ( σ +1≤i≤µ ¬R ✷ (x,z i )∧R ✷ (y,z i )∧ ∧ σ +1≤i<j≤µ z i = z j )).
Remark that for all abstract types (ǫ,σ,µ), x is the only free individual variable occurring in A (ǫ,σ,µ) (x).

Lemma 15

For all abstract types (ǫ,σ,µ),

F (ǫ,σ,µ) |= A (ǫ,σ,µ) (x) [0].
Let ϕ be a modal formula. Let (ϕ) = {(ǫ,σ,µ) ∈ ω : F (ǫ,σ,µ) |= ϕ and ǫ +µ ≤ |sf (ϕ)|}. Obviously, (ϕ) ⊆ |sf (ϕ)| . Hence, by Lemma 11, (ϕ) is finite. Let A(ϕ) be the first-order formula ∀x {¬A (ǫ,σ,µ) (x) : (ǫ,σ,µ) ∈ (ϕ)}. Remark that A(ϕ) is a sentence.

First-order definability

Let C be a class of frames. We say a modal formula ϕ is first-order definable with respect to C iff there exists a sentence A such that for all frames F in C, F |= ϕ iff F |= A. In that case, we say that A is a first-order definition of ϕ with respect to C. The goal of this section is to prove that every modal formula is first-order definable with respect to C Euc .

Lemma 16

Let F = (W ,R) be an Euclidean frame and s be a state in F. Let F s = (W s ,R s ) be the generated subframe of F determined by s. Let (ǫ,σ,µ) be an abstract type. If

F |= A (ǫ,σ,µ) (x) [s] then (F (ǫ,σ,µ) ,0) is a bounded morphic image of (F s ,s). Proof. Suppose F |= A (ǫ,σ,µ) (x) [s].
We have to consider the following cases.

Case 'ǫ = 1, σ = 0 and σ = 0'. Hence, F (ǫ,σ,µ) is a singleton. Moreover, A (ǫ,σ,µ) (x) is the first-order formula ∀y ¬R ✷ (x,y). Since F is Euclidean and F |= A (ǫ,σ,µ) (x) [s], therefore F s is a singleton. Since F (ǫ,σ,µ) is a singleton, therefore (F (ǫ,σ,µ) ,0) is a bounded morphic image of (F s ,s).

Case 'ǫ = 0, σ ≥ 1 and µ = σ '. Hence, F (ǫ,σ,µ) is universal and contains exactly σ states. Moreover, A (ǫ,σ,µ) (x) is the conjunction of the first-order formulas R ✷ (x,x) and ∃y 1 ... ∃y σ ( {R ✷ (x,y i ) :

1 ≤ i ≤ σ }∧ {y i = y j : 1 ≤ i < j ≤ σ }). Since F is Euclidean and F |= A (ǫ,σ,µ) (x) [s],
therefore F s is universal and contains at least σ states. Since F (ǫ,σ,µ) is universal and contains exactly σ states, therefore (F (ǫ,σ,µ) ,0) is a bounded morphic image of (F s ,s).

Case 'ǫ = 1, σ ≥ 1 and µ ≥ σ '. Hence, F (ǫ,σ,µ) is a cul-de-sac, contains exactly σ states accessible from its root in 1 step and contains exactly µ-σ states not accessible from its root in 1 step and accessible from its root in 2 steps. Moreover, A (ǫ,σ,µ) (x) is the conjunction of the firstorder formulas ¬R ✷ (x,x), ∃y 1 ... ∃y σ ( {R ✷ (x,y i ) :

1 ≤ i ≤ σ }∧ {y i = y j : 1 ≤ i < j ≤ σ }) and ∃y (R ✷ (x,y)∧∃z σ +1 ... ∃z µ ( {¬R ✷ (x,z i )∧R ✷ (y,z i ) : σ +1 ≤ i ≤ µ}∧ {z i = z j : σ +1 ≤ i < j ≤ µ})). Since F is Euclidean and F |= A (ǫ,σ,µ) (x) [s],
therefore F s is a cul-de-sac, contains at least σ states accessible from its root in 1 step and contains at least µ-σ states not accessible from its root in 1 step and accessible from its root in 2 steps. Since F (ǫ,σ,µ) is a cul-de-sac, contains exactly σ states accessible from its root in 1 step and contains exactly µ-σ states not accessible from its root in 1 step and accessible from its root in 2 steps, therefore (F (ǫ,σ,µ) ,0) is a bounded morphic image of (F s ,s).

Lemma 17

Let F = (W ,R) be an Euclidean frame. Let ϕ be a modal formula. If F |= ϕ then there exists (ǫ,σ,µ) ∈ ω such that F (ǫ,σ,µ) |= ϕ, ǫ +µ ≤ |sf (ϕ)| and F |= ∃x A (ǫ,σ,µ) (x).

Proof. Suppose F |=ϕ. Let M=(W,R,V) be a model based on F and s be a state in M such that M,s |=ϕ. Let F s =(W s ,R s ) be the generated subframe of F determined by s. Since F is Euclidean, therefore by Lemma 10, F s is clusterizable. Let V s be the function assigning to each propositional variable p the subset V s (p)=V(p)∩W s of W s . Let M s =(W s ,R s ,V s ). Since M,s |=ϕ, therefore by the Generated Submodel Lemma [6, Proposition 2.6 (iii)], M s ,s |=ϕ. Since F s is clusterizable, therefore we have to consider the following cases.

Case 'F s is a singleton'. Let F ′ =(W ′ ,R ′ ) where W ′ ={s} and R ′ =∅. Remark that F ′ is a singleton. Let V ′ be V s . Let M ′ =(W ′ ,R ′ ,V ′ ). Since M s ,s |=ϕ, therefore M ′ ,s |=ϕ. Hence, F ′ |=ϕ. Moreover, obviously, |W ′ |≤|sf (ϕ)|.
Case 'F s is universal'. Let ✷ψ 1 ,...,✷ψ k be an enumeration of the set of all ϕ's subformulas of the form ✷ψ such that M s ,s |=✷ψ. Obviously, k <|sf (ϕ)|. For all positive integers i, if i ≤k then let

t i ∈R s (s) be such that M s ,t i |=ψ i . Let F ′ =(W ′ ,R ′ ) where W ′ ={s}∪{t 1 ,...,t k } and R ′ =R s ∩(W ′ × W ′ ). Remark that F ′ is universal. Let V ′ be the restriction of V s to W ′ . Let M ′ =(W ′ ,R ′ ,V ′ ).
The reader may easily prove by induction on θ ∈sf (ϕ) that for all u∈W ′ , M s ,u|=θ iff M ′ ,u|=θ. Since M s ,s |=ϕ, therefore M ′ ,s |=ϕ. Hence, F ′ |=ϕ. Moreover, obviously, |W ′ |≤|sf (ϕ)|. Case 'F s is a cul-de-sac'. Let t ∈R s (s). Let ✷ψ 1 ,...,✷ψ k be an enumeration of the set of all ϕ's subformulas of the form ✷ψ such that M s ,s |=✷ψ and ✷χ 1 ,...,✷χ l be an enumeration of the set of all ϕ's subformulas of the form ✷χ such that M s ,s|=✷χ and M s ,t |=✷χ. Obviously, k +l <|sf (ϕ)|. We consider the cases 'k =0'and k ≥1. In the former case, let F ′ =(W ′ ,R ′ ) where W ′ ={s} and R ′ =∅. Remark that F ′ is a singleton. In the latter case, for all positive integers i, if i ≤k then let u i ∈R s (s) be such that M s ,u i |=ψ i and for all positive integers j, if j ≤l then let v j ∈R s (t)\R s (s) be such that M s ,v j |=χ j . Let

F ′ =(W ′ ,R ′ ) where W ′ ={s}∪{u 1 ,...,u k }∪{v 1 ,...,v l } and R ′ =R s ∩(W ′ ×W ′ ).
Remark that F ′ is a cul-de-sac. In both cases, let V ′ be the restriction of V s to W ′ . Let M ′ =(W ′ ,R ′ ,V ′ ). The reader may easily prove by induction on θ ∈sf (ϕ) that for all w∈W ′ , M s ,w|=θ iff M ′ ,w|=θ. Since M s ,s |=ϕ, therefore M ′ ,s |=ϕ. Hence, F ′ |=ϕ. Moreover, obviously, |W ′ |≤|sf (ϕ)|.

In all cases, let (ǫ,σ,µ) be the type of F ′ . The reader may easily verify that (F ′ ,s) and (F (ǫ,σ,µ) ,0) are isomorphic. Since F ′ |=ϕ, therefore F (ǫ,σ,µ) |=ϕ. Moreover, since |W ′ |≤|sf (ϕ)|, therefore by Lemma 12, ǫ +µ≤|sf (ϕ)|. In other respect, obviously, (F ′ ,s) can be isomorphically embedded into (F s ,s). Since (F ′ ,s) and (F (ǫ,σ,µ) ,0) are isomorphic, therefore (F (ǫ,σ,µ) ,0) can be isomorphically embedded into (F s ,s). By Lemma 15, F (ǫ,σ,µ) |=A (ǫ,σ,µ) (x) [0]. Since A (ǫ,σ,µ) (x) is an existential first-order formula and (F (ǫ,σ,µ) ,0) can be isomorphically embedded into (F s ,s), therefore

F s |= A (ǫ,σ,µ) (x) [s]. Hence, F |=A (ǫ,σ,µ) (x) [s]. Thus, F |=∃x A (ǫ,σ,µ) (x).

Lemma 18

Let F =(W,R) be an Euclidean frame. Let ϕ be a modal formula. The following conditions are equivalent:

• F |= ϕ, • F |= A(ϕ). Proof. Suppose F |= ϕ and F |= A(ϕ). Let s ∈ W be such that F |= {¬A (ǫ,σ,µ) (x) : (ǫ,σ,µ) ∈ (ϕ)} [s]. Let (ǫ,σ,µ) ∈ (ϕ) be such that F |= A (ǫ,σ,µ) (x) [s].
Hence, by definition of (ϕ), F (ǫ,σ,µ) |= ϕ. Moreover, by Lemma 16, F (ǫ,σ,µ) is a bounded morphic image of F s , the generated subframe of F determined by s. Since F |= ϕ, therefore by the Generated Subframe Lemma [6, Theorem 3.14 (ii)] and the Bounded Morphism Lemma [6, Theorem 3.14 (iii)], F (ǫ,σ,µ) |= ϕ: a contradiction. Suppose F |= A(ϕ) and F |= ϕ. By Lemma 17, let (ǫ,σ,µ) be an abstract type such that F (ǫ,σ,µ) |= ϕ, ǫ +µ ≤ |sf (ϕ)| and F |= ∃x A (ǫ,σ,µ) (x). Hence, by definition of (ϕ), (ǫ,σ,µ) ∈ (ϕ). Moreover, let s ∈ W be such that

F |= A (ǫ,σ,µ) (x) [s]. Since F |= A(ϕ) and (ǫ,σ,µ) ∈ (ϕ), therefore F |= ¬A (ǫ,σ,µ) (x) [s]: a contradiction.

Theorem 1

Every modal formula is first-order definable with respect to C Euc . Moreover, for all modal formulas ϕ, A(ϕ) is a first-order definition of ϕ with respect to C Euc .

Proof. By Lemma 18.

Modal definability

Let C be a class of frames. We say a sentence A is modally definable with respect to C iff there exists a modal formula ϕ such that for all frames F in C, F |= A iff F |= ϕ. In that case, we say that ϕ is a modal definition of A with respect to C. The goal of this section is to prove that the problem of deciding the modal definability of sentences with respect to C Euc is undecidable.

Lemma 19 C flo is stable. Proof. Let A(x 1 ,x) be the first-order formula ¬R ✷ (x 1 ,x 1 )∧∃y (x 1 = y∧¬R ✷ (y,y))∧x 1 = x. Let B be the sentence ∃z 1 ∃z 2 (z 1 = z 2 ∧¬R ✷ (z 1 ,z 1 )∧¬R ✷ (z 2 ,z 2 )∧∀y (R ✷ (z 1 ,y) ↔ R ✷ (z 2 ,y))).
Obviously, C flo and A(x 1 ,x) satisfy the first condition defining stable classes of frames (condition (a)). As for the second condition defining stable classes of frames (condition (b)), let F 0 = (W 0 ,R 0 ) be a frame in C flo and s 0 ∈ W 0 be such that not s 0 R 0 s 0 . Consider the frame F = (W ,R) in C flo defined as follows:

• W = W 0 ∪{s 1 }, • R is R 0 ∪({s 1 }×R 0 (s 0 )).
Obviously, F 0 is the relativized reduct of F with respect to A(x 1 ,x) and s 1 and F |= B. Let E be the set of all s ∈ W such that not sRs. Let ≃ be the equivalence relation on E such that s ≃ t iff R(s) = R(t). Let E ′ be a selector set for E/ ≃, i.e. E ′ possesses exactly one representative state from any equivalence class modulo ≃. Consider the frame F ′ = (W ′ ,R ′ ) in C flo defined as follows:

• W ′ = (W \E)∪E ′ , • R ′ is R∩(W ′ ×W ′ ). Obviously, F ′ |= B. Let f be the function assigning to each state s in F a state f (s) in F ′ , such that if s ∈ E then f (s) is the unique representative state of s in E ′ , else f (s) is the state s. Obviously, F ′ is a bounded morphic image of F. Hence, by the Bounded Morphism Lemma [6, Theorem 3.14 (iii)], F F ′ . Lemma 20 C Euc is stable.
Proof. Let A(x 1 ,x 2 ,x) be the first-order formula x 1 = x ∧x 2 = x. Let B be the sentence ∃z 1 ∃z 2 (z 1 = z 2 ∧¬∃y (R ✷ (y,z 1 )∨R ✷ (y,z 2 )∨R ✷ (z 1 ,y)∨R ✷ (z 2 ,y))). Obviously, C Euc and A(x 1 ,x 2 ,x) satisfy the first condition defining stable classes of frames (condition (a)). As for the second condition defining stable classes of frames (condition (b)), let F 0 = (W 0 ,R 0 ) be a frame in C Euc . Consider the frames F =(W,R), F ′ =(W ′ ,R ′ ) in C Euc defined as follows:

• W = W 0 ∪{s 1 ,s 2 }, • R is R 0 , • W ′ = dom(R 0 )∪ran(R 0 )∪{s ′ }, • R ′ is R 0 .
Obviously, F 0 is the relativized reduct of F with respect to A(x 1 ,x 2 ,x) and s 1 ,s 2 , F |= B, F ′ |= B and F ′ is a bounded morphic image of F. Hence, by the Bounded Morphism Lemma [6, Theorem 3.14 (iii)], F F ′ .

Lemma 21

Let F = (W ,R) be a reflexive and symmetric frame. Let F ′ = (W ′ ,R ′ ) be the frame where

• W ′ = W ∪{{s,t} : s,t ∈ W and sRt}, • R ′ = {(s,{t,u}) : s,t,u ∈ W , tRu and s ∈ {t,u}}∪{({s,t},{u,v}) : s,t,u,v ∈ W , sRt and uRv}.

F ′ is a flower. Moreover, for all first-order formulas A(x) and for all lists s of states in F, the following conditions are equivalent:

• F |= A(x) [s], • F ′ |= τ (A(x)) [s].
Proof. The proof of the first part of the lemma saying that F ′ is a flower is left to the reader. We prove the second part of the lemma by induction on A(x). We only consider the cases 'A(x) is of the form R ✷ (x,y)' and 'A(x) is of the form ∀z B(x,z)'. 

F ′ |= R ✷ (z,z)∨τ (B(x,z)) [s,w]. Consequently, F ′ |= τ (∀z B(x,z)) [s].

Lemma 22

Let F = (W ,R) be a flower. Let F ′ = (W ′ ,R ′ ) be the frame where • W ′ = {s ∈ W : not sRs}, • R ′ = {(s,t) : s,t ∈ W , not sRs, not tRt and there exists u ∈ W such that sRu and tRu}.

F ′ is reflexive and symmetric. Moreover, for all first-order formulas A(x) and for all lists s′ of states in F ′ , the following conditions are equivalent:

• F ′ |= A(x) [ s′ ], • F |= τ (A(x)) [ s′ ].
Proof. The proof of the first part of the lemma saying that F ′ is reflexive and symmetric is left to the reader. We prove the second part of the lemma by induction on A(x). We only consider the cases 'A(x) is of the form R ✷ (x,y)' and 'A(x) is of the form ∀z B(x,z)'.

Case 'A(x) is of the form R ✷ (x,y)'. Let s ′ ,t ′ be states in F ′ . Suppose F ′ |= R ✷ (x,y) [s ′ ,t ′ ]. Hence, s ′ R ′ t ′ . Let u ∈ W be such that s ′ Ru and t ′ Ru. Thus, F |= R ✷ (x,z)∧R ✷ (y,z) [s ′ ,t ′ ,u]. Consequently, F |= τ (R ✷ (x,y)) [s ′ ,t ′ ]. Reciprocally, suppose F |= τ (R ✷ (x,y)) [s ′ ,t ′ ]. Let w be a state in F such that F |= R ✷ (x,z)∧R ✷ (y,z) [s ′ ,t ′ ,w]. Hence, s ′ Rw and t ′ Rw. Thus, s ′ R ′ t ′ . Consequently, F ′ |= R ✷ (x,y) [s ′ ,t ′ ]. Case 'A(x) is of the form ∀z B(x,z)'. Let s′ be a list of states in F ′ . Suppose F |= τ (∀z B(x,z)) [ s′ ]. Let w be a state in F such that F |= R ✷ (z,z)∨τ (B(x,z)) [ s′ ,w]. Hence, F |= R ✷ (z,z) [ s′ ,w] and F |= τ (B(x,z)) [ s′ ,w]. Thus, not wRw. Consequently, w is a state in F ′ . Since F |= τ (B(x,z)) [ s′ ,w], therefore by induction hypothesis, F ′ |= B(x,z) [ s′ ,w]. Hence, F ′ |= ∀z B(x,z) [ s′ ]. Reciprocally, suppose F ′ |= ∀z B(x,z) [ s′ ]. Let w ′ be a state in F ′ such that F ′ |= B(x,z) [ s′ ,w ′ ]. Hence, not w ′ Rw ′ and by induction hypothesis, F |= τ (B(x,z)) [ s′ ,w ′ ]. Thus, F |= R ✷ (z,z)∨τ (B(x,z)) [ s′ ,w ′ ]. Consequently, F |= τ (∀z B(x,z)) [ s′ ].

Lemma 23

For all sentences A, the following conditions are equivalent:

• C rs |= A, • C flo |= τ (A).
Proof. By Lemmas 21 and 22.

Lemma 24

Let B flo be the conjunction of the following sentences: ∃x ¬R ✷ (x,x) and ∀x ∀y ∃z ∃t (R ✷ (x,z)∧ R ✷ (y,t)∧R ✷ (z,t)). For all sentences A, the following conditions are equivalent:

• C flo |= A, • C Euc |= B flo → A.
Proof. It suffices to remark that by Lemmas 2 and 3, every flower is Euclidean and by Lemma 4, an Euclidean frame is a flower iff it validates B flo .

Lemma 25

The problem of deciding the validity of sentences in C flo is undecidable.

Proof. By Lemma 23 and a result of Rogers [START_REF] Rogers | Certain logical reduction and decision problems[END_REF] saying that deciding the validity of sentences in C rs is undecidable, the problem of deciding the validity of sentences in C flo is undecidable.

Lemma 26

The problem of deciding the validity of sentences in C Euc is undecidable.

Proof. By Lemmas 24 and 25, the problem of deciding the validity of sentences in C Euc is undecidable.

Theorem 2

The problem of deciding the modal definability of sentences with respect to C flo is undecidable.

Proof. By Lemma 19, C flo is stable. Hence, by Theorem 1 in [START_REF] Balbiani | Undecidable problems for modal definability[END_REF], the problem of deciding the validity of sentences in C flo is reducible to the problem of deciding the modal definability of sentences with respect to C flo . Since by Lemma 25, the problem of deciding the validity of sentences in C flo is undecidable, therefore the problem of deciding the modal definability of sentences with respect to C flo is undecidable.

Theorem 3

The problem of deciding the modal definability of sentences with respect to C Euc is undecidable.

Proof. By Lemma 20, C Euc is stable. Hence, by Theorem 1 in [START_REF] Balbiani | Undecidable problems for modal definability[END_REF], the problem of deciding the validity of sentences in C Euc is reducible to the problem of deciding the modal definability of sentences with respect to C Euc . Since by Lemma 26, the problem of deciding the validity of sentences in C Euc is undecidable, therefore the problem of deciding the modal definability of sentences with respect to C Euc is undecidable.

Conclusion and open problems

We have proved that over the class of all Euclidean frames, every modal formula is first-order definable and the problem of deciding the modal definability of sentences is undecidable. Much remains to be done.

By enriching the ordinary modal language with the universal modality [START_REF] Goranko | Using the universal modality: gains and questions[END_REF] or the difference modality [START_REF] Rijke | The modal logic of inequality[END_REF], one generally increases its expressivity. Hence, in the class of all K5-frames studied in this article, it would be interesting to see how things change when the language is enriched with these modal constructs.

The computability of first-order definability and modal definability in the class of all S5-frames and in the class of all KD45-frames have been considered in [START_REF] Balbiani | Decidability and complexity of definability over the class of all partitions[END_REF][START_REF] Balbiani | Definability over the class of all partitions[END_REF][START_REF] Georgiev | Computability of definability in the class of all KD45 frames[END_REF][START_REF] Georgiev | Definability in the class of all KD45-frames -computability and complexity[END_REF]. Thus, we would like to determine the computability of first-order definability and modal definability in the class of all K45-frames (based on transitive and Euclidean relations).

For what concerns the computability of satisfiability in different classes of Euclidean frames, Halpern and Rêgo [START_REF] Halpern | Characterizing the NP-PSPACE gap in the satisfiability problem for modal logic[END_REF] have suggested to explore a somewhat larger class of frames: the class of all connected frames. Consequently, it seems interesting to determine the computability of first-order definability and modal definability in the class of all connected frames.

  Case 'A(x) is of the form R ✷ (x,y)'. Let s,t be states in F. Suppose F |= R ✷ (x,y)[s,t]. Hence, sRt. Thus, {s,t} is a state in F ′ such that sR ′ {s,t} and tR ′ {s,t}. Consequently,F ′ |= R ✷ (x,z)∧R ✷ (y,z) [s,t,{s,t}]. Hence, F ′ |= τ (R ✷ (x,y)) [s,t]. Reciprocally, suppose F ′ |= τ (R ✷ (x,y)) [s,t]. Let w ′ be a state in F ′ such that F ′ |= R ✷ (x,z)∧R ✷ (y,z) [s,t,w ′ ].Thus, sR ′ w ′ and tR ′ w ′ . Let u,v ∈ W be such that uRv and w ′ = {u,v}. Since sR ′ w ′ and tR ′ w ′ , therefore s ∈ {u,v} and t ∈ {u,v}. Consequently, either s = u, or s = v and either t = u, or t = v. Since F is reflexive and symmetric and uRv, therefore sRt. Hence,F |= R ✷ (x,y) [s,t]. Case 'A(x) is of the form ∀z B(x,z)'. Let s be a list of states in F. Suppose F ′ |= τ (∀z B(x,z)) [s]. Let w ′ be a state in F ′ such that F ′ |= R ✷ (z,z)∨τ (B(x,z)) [s,w ′ ]. Hence, F ′ |= R ✷ (z,z) [s,w ′ ] and F ′ |= τ (B(x,z)) [s,w ′ ]. Thus, not w ′ R ′ w ′ . Consequently, w ′ is a state in F. Since F ′ |= τ (B(x,z)) [s,w ′ ], therefore by induction hypothesis, F |= B(x,z) [s,w ′ ]. Hence, F |= ∀z B(x,z) [s]. Reciprocally, suppose F |= ∀z B(x,z) [s]. Let w be a state in F such that F |= B(x,z) [s,w]. Hence, not wR ′ w and by induction hypothesis, F ′ |= τ (B(x,z)) [s,w]. Thus,
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