
HAL Id: hal-02365624
https://hal.science/hal-02365624v1

Submitted on 15 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Axiomatization and Computability of a Variant of
Iteration-Free PDL with Fork

Philippe Balbiani, Joseph Boudou

To cite this version:
Philippe Balbiani, Joseph Boudou. Axiomatization and Computability of a Variant of Iteration-Free
PDL with Fork. 1st International Workshop Dynamic Logic. New Trends and Applications (DALI
2017), Sep 2017, Brasilia, Brazil. pp.17-34, �10.1007/978-3-319-73579-5_2�. �hal-02365624�

https://hal.science/hal-02365624v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22291

Official URL

DOI : https://doi.org/10.1007/978-3-319-73579-5_2

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Balbiani, Philippe and Boudou, Joseph
Axiomatization and Computability of a Variant of Iteration-Free PDL with
Fork. (2018) In: First International Workshop Dynamic Logic. New Trends
and Applications (DALI 2017), 23 September 2017 - 24 September 2017
(Brasilia, Brazil).

Axiomatization and Computability of a Variant

of Iteration-Free PDL with Fork

Philippe Balbiani(B) and Joseph Boudou

Institut de recherche en informatique de Toulouse,
CNRS — Université de Toulouse, 118 route de Narbonne,

31062 Toulouse Cedex 9, France
Philippe.Balbiani@irit.fr

Abstract. We devote this paper to the axiomatization and the com-
putability of PDL∆

0 —a variant of iteration-free PDL with fork.

Keywords: Iteration-free PDL · Fork · Axiomatization
Computability

1 Introduction

Propositional dynamic logic (PDL) is an applied non-classical logic designed
for reasoning about the behaviour of programs [10]. The definition of its syntax
is based on the idea of associating with each program α of some programming
language the modal operator [α], formulas of the form [α]φ being read “every
execution of the program α from the present state leads to a state bearing
the formula φ”. Completeness and decidability results for the standard version
of PDL in which programs are built up from program variables and tests by
means of the operations of composition, union and iteration are given in [15,16].
A number of interesting variants have been obtained by extending or restricting
the syntax or the semantics of PDL in different ways [7,9,14,18].

Some of these variants extend the ordinary semantics of PDL by considering
sets W of states structured by means of a function ⋆ from the set of all pairs of
states into the set of all states [5,11–13]: the state x is the result of applying the
function ⋆ to the states y, z iff the information concerning x can be separated in
a first part concerning y and a second part concerning z. The binary function ⋆
considered in [5,11] has its origin in the addition of an extra binary operation of
fork denoted ∇ in relation algebras: in [5, Sect. 2], whenever x and y are related
via R and z and t are related via S, states in x ⋆ z and states in y ⋆ t are related
via R∇S whereas in [11, Chap. 1], whenever x and y are related via R and x
and z are related via S, x and states in y ⋆ z are related via R∇S.

This addition of fork in relation algebras gives rise to a variant of PDL
which includes the program operation of fork denoted ∆. In this variant, for all
programs α and β, one can use the modal operator [α∆β], formulas of the form
[α∆β]φ being read “every execution in parallel of the programs α and β from the

_https://doi.org/10.1007/978-3-319-73579-5 2

present state leads to a state bearing the formula φ”. The binary operation of
fork ∇ considered in Benevides et al. [5, Sect. 2] gives rise to PRSPDL, a variant
of PDL with fork whose axiomatization is still open. We devote this paper to
the axiomatization and the computability of PDL∆

0 , a variant of iteration-free
PDL with fork whose semantics is based on the interpretation of the binary
operation of fork ∇ considered in Frias [11, Chap. 1].

The difficulty in axiomatizing or deciding PRSPDL or PDL∆
0 originates in

the fact that the program operations of fork considered above are not modally
definable in the ordinary language of PDL. We overcome this difficulty by means
of tools and techniques developed in [1,3,4]. Our results are based on the fol-
lowing: although fork is not modally definable, it becomes definable in a modal
language strengthened by the introduction of propositional quantifiers. Instead
of using axioms to define the program operation of fork in the language of PDL

enlarged with propositional quantifiers, we add an unorthodox rule of proof that
makes the canonical model standard for the program operation of fork and we
use large programs for the proof of the Truth Lemma.

We will first present the syntax (Sect. 2) and the semantics (Sect. 3) of PDL∆
0

and continue with results concerning the expressivity of PDL∆
0 (Sect. 4), the

axiomatization/completeness of PDL∆
0 (Sects. 5 and 6) and the decidability of

PDL∆
0 (Sect. 7). We assume the reader is at home with tools and techniques in

modal logic and dynamic logic. For more on this, see [6,15]. The proofs of our
results can be found in [2].

2 Syntax

This section presents the syntax of PDL∆
0 . As usual, we will follow the standard

rules for omission of the parentheses.

Definition 1 (Programs and formulas). The set PRG of all programs and

the set FRM of all formulas are inductively defined as follows:

– α, β ::= a | (α;β) | (α∆β) | φ?;
– φ, ψ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | [α]φ | (φ ◦ ψ) | (φ ⊲ ψ) | (φ ⊳ ψ);

where a ranges over a countably infinite set of program variables and p ranges

over a countably infinite set of propositional variables.

We will use α, β, . . . for programs and φ, ψ, . . . for formulas. The Boolean
constructs for formulas are defined as usual. A number of other constructs for
formulas can be defined in terms of the primitive ones as follows.

Definition 2 (Abbreviations). The modal constructs for formulas 〈·〉·, (·◦̄·),
(·⊲̄·) and (·⊳̄·) are defined as follows: 〈α〉φ ::= ¬[α]¬φ; (φ◦̄ψ) ::= ¬(¬φ ◦ ¬ψ);
(φ⊲̄ψ) ::= ¬(¬φ ⊲ ¬ψ); (φ⊳̄ψ) ::= ¬(¬φ ⊳ ¬ψ). Moreover, for all formulas φ, let

φ0 ::= ¬φ and φ1 ::= φ.

It is well worth noting that programs and formulas are finite strings of sym-
bols coming from a countable alphabet. It follows that there are countably many
programs and countably many formulas. The construct ·; · comes from the class
of algebras of binary relations [19]: the program α;β firstly executes α and sec-
ondly executes β. As for the construct ·∆·, it comes from the class of proper fork
algebras [11, Chap. 1]: the program α∆β performs a kind of parallel execution
of α and β. The construct [·]· comes from the language of PDL [10,15]: the for-
mula [α]φ says that “every execution of α from the present state leads to a state
bearing the information φ”. As for the constructs · ◦ ·, · ⊲ · and · ⊳ ·, they come
from the language of conjugated arrow logic [8,17]: the formula φ ◦ ψ says that
“the present state is a combination of states bearing the information φ and ψ”,
the formula φ ⊲ ψ says that “the present state can be combined to its left with a
state bearing the information φ giving us a state bearing the information ψ” and
the formula φ ⊳ ψ says that “the present state can be combined to its right with
a state bearing the information ψ giving us a state bearing the information φ”.

Example 1. The formula [a∆b](p ◦ q) says that “the parallel execution of a and
b from the present state always leads to a state resulting from the combination
of states bearing the information p and q”.

Obviously, programs are built up from program variables and tests by
means of the constructs ·; · and ·∆·. Let α(φ1?, . . . , φn?) be a program with
(φ1?, . . . , φn?) a sequence of some of its tests. The result of the replacement of
φ1?, . . . , φn? in their places with other tests ψ1?, . . . , ψn? is another program
which will be denoted α(ψ1?, . . . , ψn?). Now, we introduce the function f from
the set of all programs into itself defined as follows.

Definition 3 (Test insertion). Let f be the function from the set of all pro-

grams into itself inductively defined as follows:

– f(a) = a;

– f(α;β) = f(α);⊤?; f(β);
– f(α∆β) = (f(α);⊤?)∆(f(β);⊤?);
– f(φ?) = φ?.

Example 2. If α = a∆b, f(α) = (a;⊤?)∆(b;⊤?).

Now, we introduce parametrized actions and admissible forms.

Definition 4 (Parametrized actions and admissible forms). The set

PAR of all parametrized actions and the set ADM of all admissible forms are

inductively defined as follows:

– ᾰ, β̆ ::= (ᾰ;β) | (α; β̆) | (ᾰ∆β) | (α∆β̆) | ¬φ̆?;

– φ̆, ψ̆ ::= ♯ | [ᾰ]⊥ | (φ̆◦̄ψ) | (φ◦̄ψ̆) | (φ̆⊲̄ψ) | (φ⊲̄ψ̆) | (φ̆⊳̄ψ) | (φ⊳̄ψ̆);

where ♯ is a new propositional variable, α, β range over PRG and φ, ψ range

over FRM .

We will use ᾰ, β̆, . . . for parametrized actions and φ̆, ψ̆, . . . for admissible
forms. It is well worth noting that parametrized actions and admissible forms are
finite strings of symbols coming from a countable alphabet. It follows that there
are countably many parametrized actions and countably many admissible forms.
Remark that in each expression ˘exp (a parametrized action, or an admissible
form), ♯ has a unique occurrence. The result of the replacement of ♯ in its place
in ˘exp with a formula φ is an expression which will be denoted ˘exp(φ).

Example 3. For all programs α, α;¬[¬♯?]⊥? is a parametrized action whereas
for all formulas φ, φ◦̄[¬♯?]⊥ is an admissible form.

3 Semantics

Our task is now to present the semantics of PDL∆
0 .

Definition 5 (Frames). A frame is a 3-tuple F = (W,R, ⋆) where W is a

nonempty set of states, R is a function from the set of all program variables into

the set of all binary relations between states and ⋆ is a function from the set of

all pairs of states into the set of all sets of states.

We will use x, y, . . . for states. The set W of states in a frame F = (W,R, ⋆)
is to be regarded as the set of all possible states in a computation process,
the function R from the set of all program variables into the set of all binary
relations between states associates with each program variable a the binary
relation R(a) on W with xR(a)y meaning that “y can be reached from x by
performing program variable a” and the function ⋆ from the set of all pairs of
states into the set of all sets of states associates with each pair (x, y) of states
the subset x ⋆ y of W with z ∈ x ⋆ y meaning that “z is a combination of x

and y”.

Definition 6 (Valuations and models). A model on the frame F = (W,R, ⋆)
is a 4-tuple M = (W,R, ⋆, V) where V is a valuation on F , i.e. a function from

the set of all propositional variables into the set of all sets of states.

In the model M = (W,R, ⋆, V), the valuation V associates with each propo-
sitional variable p the subset V (p) of W with x ∈ V (p) meaning that “propo-
sitional variable p is true at state x in M”. We now define the property “state
y can be reached from state x by performing program α in M”—in symbols
xRM(α)y—and the property “formula φ is true at state x in M”—in symbols
x ∈ VM(φ).

Definition 7 (Accessibility via programs and truth of formulas). In mo-

del M = (W,R, ⋆, V), RM : α
→ RM(α) ⊆ W ×W and VM : φ
→ VM(φ) ⊆ W

are inductively defined as follows:

– xRM(a)y iff xR(a)y;
– xRM(α;β)y iff there exists z ∈ W such that xRM(α)z and zRM(β)y;

– xRM(α∆β)y iff there exists z, t ∈ W such that xRM(α)z, xRM(β)t and

y ∈ z ⋆ t;

– xRM(φ?)y iff x = y and y ∈ VM(φ);
– x ∈ VM(p) iff x ∈ V (p);
– x ∈ VM(⊥);
– x ∈ VM(¬φ) iff x ∈ VM(φ);
– x ∈ VM(φ ∨ ψ) iff x ∈ VM(φ), or x ∈ VM(ψ);
– x ∈ VM([α]φ) iff for all y ∈ W , if xRM(α)y, y ∈ VM(φ);
– x ∈ VM(φ ◦ ψ) iff there exists y, z ∈ W such that x ∈ y ⋆ z, y ∈ VM(φ) and

z ∈ VM(ψ);
– x ∈ VM(φ ⊲ ψ) iff there exists y, z ∈ W such that z ∈ y ⋆ x, y ∈ VM(φ) and

z ∈ VM(ψ);
– x ∈ VM(φ ⊳ ψ) iff there exists y, z ∈ W such that y ∈ x ⋆ z, y ∈ VM(φ) and

z ∈ VM(ψ).

It follows that

Proposition 1. Let M = (W,R, ⋆, V) be a model. For all x ∈ W , we have:

x ∈ VM(〈α〉φ) iff there exists y ∈ W such that xRM(α)y and y ∈ VM(φ);
x ∈ VM(φ◦̄ψ) iff for all y, z ∈ W , if x ∈ y ⋆ z, y ∈ VM(φ), or z ∈ VM(ψ);
x ∈ VM(φ⊲̄ψ) iff for all y, z ∈ W , if z ∈ y ⋆ x, y ∈ VM(φ), or z ∈ VM(ψ);
x ∈ VM(φ⊳̄ψ) iff for all y, z ∈ W , if y ∈ x ⋆ z, y ∈ VM(φ), or z ∈ VM(ψ).

Example 4. Let M = (W,R, ⋆, V) be the model defined by:

– W = {x, y, z, t};
– R(a) = {(x, y)}, R(b) = {(x, z)}, otherwise R is the empty function;
– y ⋆ z = {t}, otherwise ⋆ is the empty function;
– V (p) = {y}, V (q) = {z}, otherwise V is the empty function.

Obviously, xRM(a∆b)t and t ∈ VM(p ◦ q). Hence, x ∈ VM(〈a∆b〉(p ◦ q)).

We now define the property “state z can be reached from state x by perform-
ing parametrized action ᾰ via state y in M”—in symbols xRM(ᾰ, y)z—and the

property “admissible form φ̆ is true at state x via state y in M”—in symbols
x ∈ VM(φ̆, y).

Definition 8 (Accessibility via parametrized actions and truth of
admissible forms). In model M = (W,R, ⋆, V), RM : (ᾰ, y)
→ RM(ᾰ, y) ⊆

W × W and VM : (φ̆, y)
→ VM(φ̆, y) ⊆ W are inductively defined as follows:

– xRM(ᾰ;β, y)z iff there exists t ∈ W such that xRM(ᾰ, y)t and tRM(β)z;

– xRM(α; β̆, y)z iff there exists t ∈ W such that xRM(α)t and tRM(β̆, y)z;
– xRM(ᾰ∆β, y)z iff there exists t, u ∈ W such that xRM(ᾰ, y)t, xRM(β)u and

z ∈ t ⋆ u;

– xRM(α∆β̆, y)z iff there exists t, u ∈ W such that xRM(α)t, xRM(β̆, y)u and

z ∈ t ⋆ u;

– xRM(¬φ̆?, y)z iff x = z and z ∈ VM(φ̆, y);

– x ∈ VM(♯, y) iff x = y;

– x ∈ VM([ᾰ]⊥, y) iff there exists z ∈ W such that xRM(ᾰ, y)z;

– x ∈ VM(φ̆◦̄ψ, y) iff there exists z, t ∈ W such that x ∈ z ⋆ t, z ∈ VM(φ̆, y) and

t ∈ VM(ψ);

– x ∈ VM(φ◦̄ψ̆, y) iff there exists z, t ∈ W such that x ∈ z ⋆ t, z ∈ VM(φ) and

t ∈ VM(ψ̆, y);

– x ∈ VM(φ̆⊲̄ψ, y) iff there exists z, t ∈ W such that t ∈ z ⋆ x, z ∈ VM(φ̆, y) and

t ∈ VM(ψ);

– x ∈ VM(φ⊲̄ψ̆, y) iff there exists z, t ∈ W such that t ∈ z ⋆ x, z ∈ VM(φ) and

t ∈ VM(ψ̆, y);

– x ∈ VM(φ̆⊳̄ψ, y) iff there exists z, t ∈ W such that z ∈ x ⋆ t, z ∈ VM(φ̆, y) and

t ∈ VM(ψ);

– x ∈ VM(φ⊳̄ψ̆, y) iff there exists z, t ∈ W such that z ∈ x ⋆ t, z ∈ VM(φ) and

t ∈ VM(ψ̆, y);

It follows that

Proposition 2. Let M = (W,R, ⋆, V) be a model. Let ᾰ be a parametrized

action. For all x, z ∈ W , the following conditions are equivalent: xRM(ᾰ(φ))z;

there exists y ∈ W such that xRM(ᾰ, y)z and y ∈ VM(φ). Let φ̆ be an admissible

form. For all x ∈ W , the following conditions are equivalent: x ∈ VM(φ̆(ψ)); for

all y ∈ W , if x ∈ VM(φ̆, y), y ∈ VM(ψ).

The concept of validity is defined in the usual way as follows.

Definition 9 (Validity). We shall say that a formula φ is valid in a model M,

in symbols M |= φ, iff VM(φ) = W . A formula φ is said to be valid in a frame

F , in symbols F |= φ, iff for all models M on F , M |= φ. We shall say that a

formula φ is valid in a class C of frames, in symbols C |= φ, iff for all frames F
in C, F |= φ.

For technical reasons, we now consider three particular classes of frames.

Definition 10 (Separated, deterministic or serial frames). A frame F =
(W,R, ⋆) is said to be separated iff for all x, y, z, t, u ∈ W , if u ∈ x⋆y and u ∈ z⋆t,

x = z and y = t. We shall say that a frame F = (W,R, ⋆) is deterministic iff

for all x, y, z, t ∈ W , if z ∈ x ⋆ y and t ∈ x ⋆ y, z = t. A frame F = (W,R, ⋆) is

said to be serial iff for all x, y ∈ W , there exists z ∈ W such that z ∈ x ⋆ y.

In separated frames, there is at most one way to decompose a given state; in
deterministic frames, there is at most one way to combine two given states; in
serial frames, it is always possible to combine two given states. Frias [11, Chap. 1]
only considers separated, deterministic and serial frames. Here are some valid
formulas and admissible rules of proof.

Proposition 3 (Validity). The following formulas are valid in the class of all

frames:

(A1) [α](φ → ψ) → ([α]φ → [α]ψ);
(A2) 〈α;β〉φ ↔ 〈α〉〈β〉φ;

(A3) 〈α∆β〉φ → 〈α〉((φ ∧ ψ) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (φ ∧ ¬ψ));
(A4) 〈φ?〉ψ ↔ φ ∧ ψ;

(A5) (φ → ψ)◦̄χ → (φ◦̄χ → ψ◦̄χ);
(A6) φ◦̄(ψ → χ) → (φ◦̄ψ → φ◦̄χ);
(A7) (φ → ψ)⊲̄χ → (φ⊲̄χ → ψ⊲̄χ);
(A8) φ⊲̄(ψ → χ) → (φ⊲̄ψ → φ⊲̄χ);
(A9) (φ → ψ)⊳̄χ → (φ⊳̄χ → ψ⊳̄χ);
(A10) φ⊳̄(ψ → χ) → (φ⊳̄ψ → φ⊳̄χ);
(A11) φ ◦ ¬(φ ⊲ ¬ψ) → ψ;

(A12) φ ⊲ ¬(φ ◦ ¬ψ) → ψ;

(A13) ¬(¬φ ⊳ ψ) ◦ ψ → φ;

(A14) ¬(¬φ ◦ ψ) ⊳ ψ → φ;

(A15) [(α;φ?)∆(β;ψ?)](φ ◦ ψ);
(A16) 〈α(φ?)〉ψ → 〈α((φ ∧ χ)?)〉ψ ∨ 〈α((φ ∧ ¬χ)?)〉ψ;

(A17) 〈f(α)〉φ ↔ 〈α〉φ.

Proposition 4 (Validity). The following formula is valid in the class of all

separated frames:

(A18) p ◦ q → (p◦̄⊥) ∧ (⊥◦̄q).

Proposition 5 (Admissibility). The following rules of proof preserve validity

in the class of all frames:

(MP) from φ and φ → ψ, infer ψ;

(N) from φ, infer [α]φ; from φ, infer φ◦̄ψ; from φ, infer ψ◦̄φ.

(A1) is the distribution axiom of PDL, (A2) is the composition axiom, (A4)
is the test axiom, (A5)–(A10) are the distribution axioms of conjugated arrow
logic and (A11)–(A14) are the tense axioms of conjugated arrow logic whereas
(A3) and (A15)–(A18) are axioms concerning specific properties of the program
operation of fork or the constructs ·◦·, ·⊲· and ·⊳·. (MP) is the modus ponens rule
of proof and (N) is the necessitation rule of proof. They are probably familiar
to the reader. As for the following rule of proof, it concerns specific properties
of the program operation of fork and the constructs · ⊲ · and · ⊳ ·.

Proposition 6 (Admissibility). The following rule of proof preserves validity

in the class of all separated frames:

(FOR) from {φ̆(〈α〉((ψ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (ψ ∧ ¬p))) : p is a propositional

variable}, infer φ̆(〈α∆β〉ψ).

There is an important point we should make: (FOR) is an infinitary rule of
proof, i.e. it has an infinite set of formulas as preconditions. In some ways, it is
similar to the rule for intersection from [3,4].

4 Expressivity

This section studies the expressivity of PDL∆
0 .

Definition 11 (Modal definability). Let C be a class of frames. We shall say

that C is modally definable by the formula φ iff for all frames F , F is in C iff

F |= φ.

The following propositions show elementary classes of frames that are
modally definable.

Proposition 7. The elementary classes of frames defined by the first-order sen-

tences in the hereunder table are modally definable by the associated formulas.

1. ∀x ∃y y ∈ x ⋆ x 〈⊤?∆⊤?〉⊤

2. ∀x ∀y ∀z (y ∈ x ⋆ x ∧ z ∈ x ⋆ x → y = z) 〈⊤?∆⊤?〉p → [⊤?∆⊤?]p

3. ∀x ∀y (y ∈ x ⋆ x → x ∈ x ⋆ y) p → [⊤?∆⊤?](p ⊲ p)

4. ∀x ∀y (y ∈ x ⋆ x → x ∈ y ⋆ x) p → [⊤?∆⊤?](p ⊳ p)

5. ∀x ∀y ∀z (z ∈ x ⋆ y ↔ z ∈ y ⋆ x) p ◦ q ↔ q ◦ p

6. ∀x ∃y ∃z x ∈ y ⋆ z ⊤ ◦ ⊤

7. ∀x ∃y ∃z y ∈ z ⋆ x ⊤ ⊲ ⊤

8. ∀x ∃y ∃z z ∈ x ⋆ y ⊤ ⊳ ⊤

9. ∀x ∀y ∀z ∀t (t ∈ (x ⋆ y) ⋆ z ↔ t ∈ x ⋆ (y ⋆ z)) (p ◦ q) ◦ r ↔ p ◦ (q ◦ r)

10. ∀x ∀y ∀z x �∈ y ⋆ z ⊥◦̄⊥

Proposition 8. The class of all separated frames is modally definable by the

formula p ◦ q → (p◦̄⊥) ∧ (⊥◦̄q).

The following proposition shows an elementary class of frames that is not
modally definable.

Proposition 9. The class of all deterministic frames is not modally definable.

As for the class of all serial frames, its modal definability is still open. In other
respect, the formula 〈φ?〉ψ ↔ φ ∧ ψ, being valid in the class of all frames, seems
to indicate that for all formulas, there exists an equivalent test-free formula. It
is interesting to observe that this assertion is false.

Proposition 10. For all test-free formulas φ, 〈⊤?∆⊤?〉⊤ ↔ φ is not valid in

the class of all separated deterministic frames.

The following proposition illustrates the fact that the program operation of
fork cannot be defined from the fork-free fragment of the language.

Proposition 11. Let a be a program variable. For all fork-free formulas φ,

〈a∆a〉⊤ ↔ φ is not valid in the class of all separated deterministic frames.

The following proposition illustrates the fact that, in the presence of propo-
sitional quantifiers, the program operation of fork becomes definable from the
fork-free fragment of the language in the class of all separated frames.

Proposition 12. Let M = (W,R, ⋆, V) be a separated model and x ∈ W . For

all admissible forms φ̆, for all programs α, β, for all formulas ψ and for all

propositional variables p, if p does not occur in φ̆, α, β, ψ, the following conditions

are equivalent: (1) x ∈ VM(φ̆(〈α∆β〉ψ)); (2) for all V ′ : q
→ V ′(q) ⊆ W , if

V ′ ∼p V , x ∈ V(W,R,⋆,V ′)(φ̆(〈α〉((ψ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (ψ ∧ ¬p)))).

More precisely, in the presence of propositional quantifiers, the formulas
〈α∆β〉φ and ∀p(〈α〉((φ∧p)⊳⊤)∨〈β〉(⊤⊲(φ∧¬p))) are logically equivalent in the
class of all separated frames. The implication 〈α∆β〉φ → ∀p(〈α〉((φ ∧ p) ⊳ ⊤) ∨
〈β〉(⊤⊲(φ∧¬p))) can be expressed without propositional quantifiers by formulas:
〈α∆β〉φ → 〈α〉((φ∧ψ)⊳⊤)∨〈β〉(⊤⊲(φ∧¬ψ))). See axiom (A3) in Proposition 3.
As for the implication ∀p(〈α〉((φ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (φ ∧ ¬p))) → 〈α∆β〉φ, it
can be expressed by a rule of proof. The simplest form of such a rule of proof is:
from {〈α〉((φ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (φ ∧ ¬p)) : p is a propositional variable}, infer
〈α∆β〉φ. See Proposition 6.

5 Axiom System

We now define PDL∆
0 .

Definition 12 (PDL∆
0). Let PDL∆

0 be the least set of formulas that contains

all instances of propositional tautologies, that contains the formulas (A1)–(A18)
considered in Propositions 3 and 4 and that is closed under the rules of proof

(MP), (N) and (FOR) considered in Propositions 5 and 6.

It is easy to establish the soundness for PDL∆
0 :

Proposition 13 (Soundness for PDL∆
0). Let φ be a formula. If φ ∈ PDL∆

0 ,

φ is valid in the class of all separated frames.

The completeness for PDL∆
0 is more difficult to establish and we defer prov-

ing it till next section. In the meantime, it is well worth noting that for all
separated models M = (W,R, ⋆, V) and for all x ∈ W , {φ : x ∈ VM(φ)} is a
set of formulas that contains PDL∆

0 and that is closed under the rule of proof
(MP). Now, we introduce theories.

Definition 13 (Theories). A set S of formulas is said to be a theory iff PDL∆
0

⊆ S and S is closed under the rules of proof (MP) and (FOR).

We will use S, T, . . . for theories. Obviously, the least theory is PDL∆
0 and

the greatest theory is the set of all formulas. Not surprisingly, we have

Lemma 1. Let S be a theory. The following conditions are equivalent: S is equal

to the set of all formulas; there exists a formula φ such that φ ∈ S and ¬φ ∈ S;

⊥ ∈ S.

Referring to Lemma 1, we define what it means for a theory to be consistent.

Definition 14 (Consistency of theories). We shall say that a theory S is

consistent iff for all formulas φ, φ ∈ S, or ¬φ ∈ S.

By Lemma 1, there is only one inconsistent theory: the set of all formulas.
Now, we define what it means for a theory to be maximal.

Definition 15 (Maximality of theories). A theory S is said to be maximal

iff for all formulas φ, φ ∈ S, or ¬φ ∈ S.

We will use the following lemma without explicit reference:

Lemma 2. Let S be a maximal consistent theory. We have: ⊥ ∈ S; for all

formulas φ, ¬φ ∈ S iff φ ∈ S; for all formulas φ, ψ, φ ∨ ψ ∈ S iff φ ∈ S, or

ψ ∈ S.

To know more about theories, we need yet another definition.

Definition 16 (Operations on theories). If α is a program, φ is a formula

and S is a theory, let [α]S = {φ : [α]φ ∈ S} and S + φ = {ψ : φ → ψ ∈ S}.

In the next lemmas, we summarize some properties of theories.

Lemma 3. Let S be a theory. For all programs α and for all formulas φ, we

have: (1) [φ?]S = S + φ; (2) [α]S is a theory; (3) S + φ is a theory; (4) φ, S + φ

is the least theory containing S and φ; (5) S + φ is consistent iff ¬φ ∈ S.

Lemma 4. Let S be a theory. If S is consistent, for all formulas φ, S + φ is

consistent, or there exists a formula ψ such that the following conditions are

satisfied: S + ψ is consistent; ψ → ¬φ ∈ PDL∆
0 ; if φ is in the form χ̆(〈α∆β〉θ)

of a conclusion of the rule of proof (FOR), there exists a propositional variable

p such that ψ → ¬χ̆(〈α〉((θ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (θ ∧ ¬p))) ∈ PDL∆
0 .

Now, we are ready for the Lindenbaum Lemma.

Lemma 5 (Lindenbaum Lemma). Let S be a theory. If S is consistent, there

exists a maximal consistent theory containing S.

To define the canonical frame of PDL∆
0 in next section, we need yet another

definition.

Definition 17 (Composition of theories). If S and T are theory, let S ◦T =
{φ ◦ ψ : φ ∈ S and ψ ∈ T}.

To end this section, we present useful results.

Lemma 6. Let φ, ψ be formulas and ⊗ ∈ {◦, ⊲, ⊲}. For all maximal consistent

theories S, if φ ⊗ ψ ∈ S, for all formulas χ, we have: (1) (φ ∧ χ) ⊗ ψ ∈ S,

or there exists a formula θ such that the following conditions are satisfied: (φ ∧
θ) ⊗ ψ ∈ S; θ → ¬χ ∈ PDL∆

0 ; if χ is in the form τ̆(〈α∆β〉µ) of a conclusion

of the rule of proof (FOR), there exists a propositional variable p such that

θ → ¬τ̆(〈α〉((µ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (µ ∧ ¬p))) ∈ PDL∆
0 ; (2) φ ⊗ (ψ ∧ χ) ∈

S, or there exists a formula θ such that the following conditions are satisfied:

φ⊗(ψ∧θ) ∈ S; θ → ¬χ ∈ PDL∆
0 ; if χ is in the form τ̆(〈α∆β〉µ) of a conclusion

of the rule of proof (FOR), there exists a propositional variable p such that

θ → ¬τ̆(〈α〉((µ ∧ p) ⊳ ⊤) ∨ 〈β〉(⊤ ⊲ (µ ∧ ¬p))) ∈ PDL∆
0 .

Lemma 7. Let φ, ψ be formulas. For all maximal consistent theories S, we have:

(1) if φ◦ψ ∈ S, there exists maximal consistent theories T,U such that T ◦U ⊆ S,

φ ∈ T and ψ ∈ U ; (2) if φ⊲ψ ∈ S, there exists maximal consistent theories T,U

such that T ◦ S ⊆ U , φ ∈ T and ψ ∈ U ; (3) if φ ⊳ ψ ∈ S, there exists maximal

consistent theories T,U such that S ◦ U ⊆ T , φ ∈ T and ψ ∈ U .

6 Completeness

Now, for the canonical frame of PDL∆
0 .

Definition 18 (Canonical frame). The canonical frame of PDL∆
0 is the 3-

tuple Fc = (Wc, Rc, ⋆c) where Wc is the set of all maximal consistent theories,

Rc is the function from the set of all program variables into the set of all binary

relations between maximal consistent theories defined by SRc(a)T iff [a]S ⊆ T

and ⋆c is the function from the set of all pairs of maximal consistent theories

into the set of all sets of maximal consistent theories defined by U ∈ S ⋆c T iff

S ◦ T ⊆ U .

We show first that

Lemma 8. Fc is separated.

Now, for the canonical valuation of PDL∆
0 and the canonical model of PDL∆

0 .

Definition 19 (Canonical valuation and canonical model). The canonical

model of PDL∆
0 is the 4-tuple Mc = (Wc, Rc, ⋆c, Vc) where Vc is the canonical

valuation of PDL∆
0 , i.e. the function from the set of all propositional variables

into the set of all sets of maximal consistent theories defined by S ∈ Vc(p) iff

p ∈ S.

For the proof of the Truth Lemma, we have to consider large programs.

Definition 20 (Large programs). The set of all large programs is inductively

defined as follows:

– A ::= a | (A;B) | (A∆B) | S̄?;

where for all consistent theories S, S̄ is a new symbol.

We will use A,B, . . . for large programs. Let us be clear that each large
program is a finite string of symbols coming from an uncountable alphabet. It
follows that there are uncountably many large programs. For convenience, we
omit the parentheses in accordance with the standard rules. It is essential that
large programs are built up from program variables and symbols for consistent
theories by means of the operations ; and ∆. Let A(S̄1?, . . . , S̄n?) be a large pro-
gram with (S̄1, . . . , S̄n) a sequence of some of its symbols for consistent theories.
The result of the replacement of S̄1, . . . , S̄n in their places with other symbols
T̄1, . . . , T̄n for consistent theories is another large program which will be denoted
A(T̄1?, . . . , T̄n?).

Definition 21 (Maximality of large programs). A large program A(S̄1?,
. . . , S̄n?) with (S̄1, . . . , S̄n) the sequence of all its symbols for consistent theories

will be defined to be maximal if the theories S1, . . . , Sn are maximal.

It appears that large programs, maximal, or not, can be associated with a
set of programs.

Definition 22 (Kernel function). The kernel function ker : A
→ ker(A) ⊆
PRG is inductively defined as follows:

– ker(a) = {a};
– ker(A;B) = {α;β : α ∈ ker(A) and β ∈ ker(B)};
– ker(A∆B) = {α∆β : α ∈ ker(A) and β ∈ ker(B)};
– ker(S̄) = {φ? : φ ∈ S}.

The following lemmas play an important role in the proof of the completeness
for PDL∆

0 .

Lemma 9. Let α(φ?) be a program. For all maximal consistent theories S, if

〈α(φ?)〉⊤ ∈ S, for all formulas ψ, we have: 〈α((φ ∧ ψ)?)〉⊤ ∈ S, or there exists

a formula χ such that the following conditions are satisfied: 〈α((φ∧χ)?)〉⊤ ∈ S;

χ → ¬ψ ∈ PDL∆
0 ; if ψ is in the form θ̆(〈β∆γ〉τ) of a conclusion of the rule of

proof (FOR), there exists a propositional variable p such that χ → ¬θ̆(〈β〉((τ ∧
p) ⊳ ⊤) ∨ 〈γ〉(⊤ ⊲ (τ ∧ ¬p))) ∈ PDL∆

0 .

Lemma 10 (Diamond Lemma). Let α be a program and φ be a formula. For

all maximal consistent theories S, if [α]φ ∈ S, there exists a maximal program

A and there exists a maximal consistent theory T such that f(α) ∈ ker(A), for

all programs β, if β ∈ ker(A), [β]S ⊆ T and φ ∈ T .

With this established, we are ready for the Truth Lemma.

Lemma 11 (Truth Lemma). Let α be a program. For all maximal consistent

theories S, T , the following conditions are equivalent: SRMc
(α)T ; there exists

a maximal program A such that f(α) ∈ ker(A) and for all programs β, if β ∈
ker(A), [β]S ⊆ T . Let φ be a formula. For all maximal consistent theories S, the

following conditions are equivalent: S ∈ VMc
(φ); φ ∈ S.

Now, we are ready for the completeness for PDL∆
0 .

Proposition 14 (Completeness for PDL∆
0). Let φ be a formula. If φ is valid

in the class of all separated frames, φ ∈ PDL∆
0 .

7 Decidability

In this section, we prove that the logic completely axiomatized in the previous
sections is decidable. We use the notation ∼φ which is defined by: ∼φ = if there
exists a formula ψ such that φ = ¬ψ then ψ else ¬φ. We use ν to denote an
expression which may be either a program or a formula and |ν| to denote the
number of occurrences of symbols in ν. The following size function provides a
more semantical measure on programs.

Definition 23 (Size of programs). Let size be the function from the set of all

programs to N inductively defined as follows:

– size(φ?) = 0;
– size(a) = 1;
– size(α;β) = size(α) + size(β);
– size(α∆β) = min (size(α), size(β)) + 1.

Obviously, if x RM(α) y and size(α) = 0 then x = y. Now we decompose
expressions into subexpressions, associating a depth to each subformula.

Definition 24 (Localized expression and decomposition). A localized

expression is a tuple d : ν where ν is an expression and d ∈ N is called the

depth. Given any localized expression d : ν, the decomposition Cl(d : ν) of d : ν is

the least set of localized expressions containing d : ν and closed by the application

of the rules from Fig. 1. We write Cl(φ) for Cl(0: φ).

d : φ

d : ∼φ

d : φ ∨ ψ

d : φ d : ψ

d : 〈α〉φ

d : α d + size(α) : φ

d : φ?

d : φ

d : α; β

d : α d + size(α) : β

d : α∆β

d : α d : β

d : φ ◦ ψ

d + 1: φ d + 1: ψ

d : φ ⊲ ψ

d + 1: φ d + 1: ψ

d : φ ⊳ ψ

d + 1: φ d + 1: ψ

Fig. 1. Rules for the decomposition of localized programs and formulas

Lemma 12. The cardinality of Cl(φ) is linear in |φ|.

Lemma 13. max {d | ∃ν, d : φ ∈ Cl(φ)} is linear in |φ|.

We now prove a strong finite model property for PDL∆
0 interpreted over the

class of all separated frames. The procedure Selection on the following page
creates a model Ms from a model Mo satisfying a formula φ0 at w0. It uses the
recursive procedure Link described in Procedure 2.

Input: A formula φ0, a model Mo = (Wo, Ro, ⋆o, Vo) and an initial state
w0 ∈ Wo such that w0 ∈ VMo

(φ0).
Result: A finite model Ms = (Ws, Rs, ⋆s, Vs).
Data: A subset K ⊆ Ws of marked nodes and an integer n ∈ N.

1 initialisation

2 n = 0 ;
3 Ws = {(0, 0, w0)} ;
4 Rs(a) = ∅ for all a ∈ Π0 ;
5 (O, 0, w0) ⋆s (O, 0, w0) = ∅ ;
6 K = ∅ ;

7 end

8 while K �= Ws do

9 choose an unmarked state (k, d, w) ∈ Ws \ K ;
10 while (k, d, w) /∈ K do

11 let Vs(p) = {(kx, dx, x) ∈ Ws | x ∈ Vo(p)} for all p ∈ Φ0 ;

12 if there exists d′ : 〈α〉φ ∈ Cl(φ0) such that size(α) > 0, d′ ≥ d,
w ∈ VMo

(〈α〉φ) and (k, d, w) /∈ VMs
(〈α〉φ) then

13 choose y s.t. w RMo
(α) y and y ∈ VMo

(φ);
14 let dy = d + size(α) ;
15 let n = n + 1 ;
16 add (n, dy, y) to Ws ;
17 call Link (Mo, Ms, n, (k, d, w), (n, dy, y), α) ;

18 else if there exists d′ : φ ◦ ψ ∈ Cl(φ0) such that d′ ≥ d, w ∈ VMo
(φ ◦ ψ)

and there is no (kx, dx, x), (ky, dy, y) ∈ Ws such that

(k, d, w) ∈ (kx, dx, x) ⋆s (ky, dy, y) then

19 choose x and y s.t. w ∈ x ⋆s y, x ∈ VMo
(φ) and y ∈ VMo

(ψ);
20 add (n + 1, d + 1, x) and (n + 2, d + 1, y) to Ws ;
21 add (k, d, w) to (n + 1, d + 1, x) ⋆s (n + 2, d + 1, y) ;
22 let n = n + 2 ;

23 else if there exists d′ : φ ⊲ ψ ∈ Cl(φ0) such that d′ ≥ d, w ∈ VMo
(φ ⊲ ψ)

and (k, d, w) /∈ VMs
(φ ⊲ ψ) then

24 choose x and y s.t. y ∈ x ⋆s w, x ∈ VMo
(φ) and y ∈ VMo

(ψ);
25 add (n + 1, d + 1, x) and (n + 2, d + 1, y) to Ws ;
26 add (n + 2, d + 1, y) to (n + 1, d + 1, x) ⋆s (k, d, w) ;
27 let n = n + 2 ;

28 else if there exists d′ : φ ⊳ ψ ∈ Cl(φ0) such that d′ ≥ d, w ∈ VMo
(φ ⊳ ψ)

and Ms, (d, w)⊳ /∈ Vφ(ψ) then

29 choose x and y s.t. x ∈ w ⋆s y, x ∈ VMo
(φ) and y ∈ VMo

(ψ);
30 add (n + 1, d + 1, x) and (n + 2, d + 1, y) to Ws ;
31 add (n + 1, d + 1, x) to (k, d, w) ⋆s (n + 2, d + 1, y) ;
32 let n = n + 2 ;

33 else

34 add (k, d, w) to K ;
35 end

36 end

37 end

Procedure 1. Selection

Input: Two models Mo = (Wo, Ro, ⋆o, Vo) and Ms = (Ws, Rs, ⋆s, Vs), an
integer n, two states (kx, dx, x), (ky, dy, y) ∈ Ws and a program α such
that x RMo

(α) y.
Result: Ms and n modified.

1 if α is of the form a ∈ Π0 then

2 add ((kx, dx, x), (ky, dy, y)) to Rs(a) ;

3 else if α is of the form (β; γ) then

4 if size(β) = 0 then

5 call Link (Mo, Ms, n, (kx, dx, x), (ky, dy, y), γ) ;
6 else if size(γ) = 0 then

7 call Link (Mo, Ms, n, (kx, dx, x), (ky, dy, y), β) ;
8 else

9 choose z s.t. x RMo
(β) z and z RMo

(γ) y;
10 let n = n + 1 ;
11 let dz = dx + size(α) ;
12 add (n, dz, z) to Ws ;
13 call Link (Mo, Ms, n, (kx, dx, x), (n, dz, z), β) ;
14 call Link (Mo, Ms, n, (n, dz, z), (ky, dy, y), γ) ;

15 end

16 else if α is of the form (β∆γ) then

17 if size(β) = 0 and size(γ) = 0 then

18 add (ky, dy, y) to (kx, dx, x) ⋆s (kx, dx, x) ;
19 else if size(β) = 0 then

20 choose z s.t. x RMo
(γ) z and y ∈ x ⋆o z;

21 let n = n + 1 ;
22 let dz = min (dy + 1, dx + size(γ)) ;
23 add (n, dz, z) to Ws ;
24 add (ky, dy, y) to (kx, dx, x) ⋆s (n, dz, z) ;
25 call Link (Mo, Ms, n, (kx, dx, x), (n, dz, z), γ) ;

26 else if size(γ) = 0 then

27 choose w s.t. x RMo
(β) w and y ∈ w ⋆o x;

28 let n = n + 1 ;
29 let dw = min (dy + 1, dx + size(β)) ;
30 add (n, dw, w) to Ws ;
31 add (ky, dy, y) to (n, dw, w) ⋆s (kx, dx, x) ;
32 ;
33 call Link (Mo, Ms, n, (kx, dx, x), (n, dw, w), β) ;

34 else

35 choose w and z s.t. x RMo
(β) w, x RMo

(γ) z and y ∈ w ⋆o z;
36 let n = n + 2 ;
37 let dw = min (dy + 1, dx + size(β), dx + size(γ) + 1) ;
38 let dz = min (dy + 1, dx + size(γ), dx + size(β) + 1) ;
39 add (n − 1, dw, w) and (n, dz, z) to Ws ;
40 add (ky, dy, y) to (n − 1, dw, w) ⋆s (n, dz, z) ;
41 call Link (Mo, Ms, n, (kx, dx, x), (n − 1, dw, w), β) ;
42 call Link (Mo, Ms, n, (kx, dx, x), (n, dz, z), γ) ;

43 end

44 end

Procedure 2. Link

Lemma 14. The procedure Selection terminates and the cardinality of Ws is

exponential in |φ0|.

Lemma 15. Whenever Link is called, dy ≤ dx + size(α).

Lemma 16. For all (ky, dy, y), (kw, dw, w), (kz, dz, z) ∈ Ws, such that

(ky, dy, y) ∈ (kw, dw, w) ⋆s (kz, dz, z) then y ∈ w ⋆o z, |dy − dw| ≤ 1, |dy − dz| ≤ 1
and |dw − dz| ≤ 1.

Lemma 17. For all (kx, dx, x), (ky, dy, y) ∈ Ws and all α, if (kx, dx, x) RMs
(α)

(ky, dy, y), then dy ≤ dx + size(α).

Lemma 18. If Mo is separated, then Ms is separated too.

Lemma 19 (Truth lemma). If Mo is separated, then (0, 0, w0) ∈ VMs
(φ0).

Proposition 15. Any PDL∆
0 formula φ satisfiable in a separated model is sat-

isfiable in a separated finite model with a number of states bounded by an expo-

nential in |φ|.

Since the model-checking problem for PDL∆
0 is obviously polynomial in the

size of the model, therefore we have the following corollary:

Corollary 1. The satisfiability problem for PDL∆
0 in the class of separated

frames is decidable in non-deterministic exponential time.

8 Conclusion

In modal logic, standard proofs of completeness for a given logic are usually
based on the canonical frame construction consisting of the set of all maximal
consistent sets of the logic equipped with standard definitions for the canonical
accessibility relations. Since the program operation of fork considered in [11,
Chap. 1] is not modally definable in the ordinary language of PDL, this method
cannot work in our case. As a result, we have given an axiomatization of PDL∆

0 ,
our variant of iteration-free PDL with fork, using an unorthodox rule of proof
and we have proved its completeness using large programs. So, we have extended
the canonical frame construction introducing new tools and techniques connected
with an unorthodox rule of proof and large programs.

We anticipate a number of further investigations. First, there is the following
general question: is it possible to eliminate the rule of proof (FOR) and to
replace it with a finite set of additional axiom schemes? Second, more details on
decidability/complexity issues would be relevant. Third, there is the question of
the complete axiomatization of validity with respect to other classes of frames
like the class of frames considered in [11, Chap. 1], i.e. the class of all separated,
deterministic and serial frames. Fourth, is the validity problem with respect to
the class of all separated, deterministic and serial frames decidable? If it is, what
is its complexity? Fifth, it remains to see whether our approach can be extended
to the full language of PDL with fork, this time with iteration.

A novelty in the paper is the proof that fork is modally definable in a language
with propositional quantifiers and that the rule (FOR) in a sense simulates the
quantifier rule for universal quantification in the context of the definition of fork.
This is a new look on the nature of some context dependent rules of proof like
(FOR). In some ways, (FOR) is similar to the rule for intersection from [3,4].
See also [1] for ideas about its elimination from the axiomatization of PDL∆

0 we
have given. We expect that our variant of the canonical frame construction can
be applied to other logics, for instance PRSPDL, the variant of PDL with fork
given rise by the binary operation of fork ∇ considered in Benevides et al. [5,
Sect. 2] and whose axiomatization is still open.

Acknowledgement. Our research has been supported by the ANR project no. ANR-
11-BS02-011.

References

1. Balbiani, P.: Eliminating unorthodox derivation rules in an axiom system for
iteration-free PDL with intersection. Fundam. Inf. 56, 211–242 (2003)

2. Balbiani, P., Boudou, J.: About the axiomatization and the computability of a
variant of iteration-free PDL with fork. Institut de recherche en information de
Toulouse (2017)

3. Balbiani, P., Vakarelov, D.: Iteration-free PDL with intersection: a complete
axiomatization. Fundam. Inf. 45, 173–194 (2001)

4. Balbiani, P., Vakarelov, D.: PDL with intersection of programs: a complete axiom-
atization. J. Appl. Non-Classical Logics 13, 231–276 (2003)

5. Benevides, M., de Freitas, R., Viana, P.: Propositional dynamic logic with storing,
recovering and parallel composition. Electron. Notes Theor. Comput. Sci. 269,
95–107 (2011)

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

7. Danecki, R.: Nondeterministic propositional dynamic logic with intersection is
decidable. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 34–53. Springer,
Heidelberg (1985). https://doi.org/10.1007/3-540-16066-3 5

8. Dos̆en, K.: A brief survey of frames for the Lambek calculus. Zeitschrift für math-
ematische Logik und Grundlagen der Mathematik 38, 179–187 (1992)

9. del Cerro, L.F., Or�lowska, E.: DAL—a logic for data analysis. Theoret. Comput.
Sci. 36, 251–264 (1985)

10. Fisher, M., Ladner, R.: Propositional dynamic logic of regular programs. J. Com-
put. Syst. Sci. 18, 194–211 (1979)

11. Frias, M.: Fork Algebras in Algebra, Logic and Computer Science. World Scientific,
River Edge (2002)

12. Frias, M., Baum, G., Haeberer, A.: Fork algebras in algebra, logic and computer
science. Fund. Inf. 32, 1–25 (1997)

13. Frias, M., Veloso, P., Baum, G.: Fork algebras: past, present and future. J. Relat.
Methods Comput. Sci. 1, 181–216 (2004)

14. Gargov, G., Passy, S.: A note on Boolean modal logic. In: Petkov, P. (ed.) Mathe-
matical Logic, pp. 299–309. Plenum Press, New York (1990)

15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

16. Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL. Theoret.
Comput. Sci. 14, 113–118 (1981)

17. Mikulás, S.: Complete calculus for conjugated arrow logic. In: Marx, M., Pólos,
L., Masuch, M. (eds.) Arrow Logic and Multi-Modal Logic, pp. 125–139. CSLI,
Stanford (1996)

18. Mirkowska, G.: PAL—propositional algorithmic logic. Fund. Inf. 4, 675–760 (1981)
19. Tarski, A.: On the calculus of relations. J. Symb. Logic 6, 73–89 (1941)

