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Abstract 

There have been numerous environmental geochemistry studies using chemical, 

geological, ecological and toxicological methods but each of these fields requires more 

subject specialist rigour than has generally been applied so far. Field-specific terminology has 

been misused and the resulting interpretations rendered inaccurate. In this paper, we propose a 

series of suggestions, based on our experience as teachers, researchers, reviewers and editorial 

board members, to help authors to avoid pitfalls. Many scientific inaccuracies continue to be 

unchecked and are repeatedly republished by the scientific community. These 

recommendations should help our colleagues and editorial board members, as well as 

reviewers, to avoid the many inaccuracies and misconceptions currently in circulation and 

establish a trend towards greater rigour in scientific writing. 

Keywords: speciation, fractionation, modelling, ecotoxicology, risk assessment, ecology 
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1. Introduction 

In recent times, there has been a notable public loss of trust in scientists, especially in 

the field of climate change (Trevors and Saier, 2011; Briggs et al., 2011). But why has such a 

shift in public attitudes towards science taken place, in a time when scientists are expected, 

more than ever, to conduct their research responsibly and with full rigour? 

There are many examples of significant misconduct, such as (among others) the 

citation of non-contributing authors (Fong and Wilhite, 2017; McNutt et al., 2018; Petersen et 

al., 2019; Smith et al., 2019; Wilhite et al., 2019; Sweedler, 2019; Chawla, 2019) and the 

absence of citation that is due (Garfield, 1980; Trevors and Saier, 2008). The general public 

has become increasingly aware of what constitutes good scientific practice and the 

performance of scientists is under its scrutiny (Koch, 2016; Goldman et al., 2017; Record, 

2017). To resolve this and meet the exacting standards we set ourselves, environmental 

studies must be irreproachable (Zoller, 2000; Antoniadis et al., 2019; Voulvoulis and 

Burgman, 2019). Multidisciplinary groups of researchers, that may have different ways of 

communicating their science, must work together to ensure good practice and well 

communicated, meaningful results. 

Environmental geochemistry is inherently an interdisciplinary academic field. It 

attempts to explain how life affects, and is affected by, the disturbed biogeochemical cycles of 

major and trace elements within the Earth critical zone (Amundson et al., 2007; Brantley et 

al., 2007; Chorover et al., 2007; Field et al., 2015). It studies environmental problems, and 

how these might be solved (Botkin and Keller, 2014). Environmental geochemistry involves 

chemistry, physics, climatology, ecology, geology, microbiology, soil science, and toxicology 

(Ali and Khan, 2017; Filella, 2014; Lichtfouse et al., 2012; Stumm et al., 1983). It can also 
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include sociology and economics (Figure 1). It has the power to excite great public strength of 

feeling (Sedlak, 2016), and is, therefore, subject to heated political debate that sometimes 

ignores scientific information (Carroll et al., 2017).  

 

Figure 1 Treemap of the 25 most prevalent field research areas (out of 91) of articles 

published in 2018 in Environmental Science and Pollution Research (source Web of Science, 

data accessed on 03/06/2019). 

 

The integration of perspectives from researchers, policy makers, and industrial 

representatives is essential for successful characterisation and remediation of hazardous 

anthropogenic contaminations (Sawyer, 1979). Effective interdisciplinary collaboration 

requires respect for, and a rational balance of, scientific and engineering expertise (Balmford, 
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2013). However, several multidisciplinary/interdisciplinary studies (among them papers 

published in Environmental Science and Pollution Research) used chemical, geological, 

ecological or toxicological methods (Figure 2), but not as rigorously as specialist researchers 

would in each of the separate fields. Indeed, the field-specific terminology is often loosely 

adopted and imprecise, which leads to equally imprecise interpretation of the results 

(Casadevall and Fang, 2016; Hofseth, 2018). Scientists need to use technical language. 

Without it, environmental geochemistry would not exist as a discipline. It is the responsibility 

of scientists to select the correct tone and technical content, and to make sure that jargon 

(unnecessary and extraneous use of technical terms) is not used when communicating with 

others. 

 

Figure 2 Word cloud of keywords used in Environmental Science and Pollution Research in 

2018 (source from Scopus, data accessed on 03/06/2019). 
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Many articles (see below) have been written, but a global guideline, dedicated 

simultaneously to teachers, researchers, reviewers and editorial board members working in 

environmental geochemistry, is missing. Therefore, we present the following critical views, 

based on our own experience, with a special emphasis on our main research field, i.e. 

environmental soil and water geochemistry. 

 

2. Material and analytical methods 

The robustness of research methods in environmental geochemistry studies is of major 

concern. Specific terminology is often not accurate, which raises questions about the 

methodology and instils doubt about the interpretation of results, as exemplified below.  

Naming chemical compounds, whether organic or inorganic, is essential to success in 

chemistry. Some basic rules, established by the International Union of Pure and Applied 

Chemistry (IUPAC), should be followed when naming chemical compounds (Favre and 

Powell, 2014; Connely et al., 2005). The term ‘heavy metals’ should be avoided, as recently 

emphasised by Pourret and Bollinger (2018) and by Pourret (2018) and references therein 

(Figure 3). This should be replaced by ‘trace elements/metals’ or by ‘potentially toxic 

elements/metals’. Although of wide use, the terms ‘normality’ or ‘molarity’, and their 

symbols N and M, should preferably be avoided (NIST, 2004). Researchers should consider 

amount-of-substance concentration of the considered chemical element or species (more 

commonly called concentration), and its symbol c with SI unit mol/m
3
 (or a related acceptable 

unit) or molality of solute (symbol m and SI unit mol/kg). 
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Figure 3 Ca  oo   llu   a   g  h  m  u       m “h a y m  al” (a  wo k f om D  Ju     

Larrouzée). 

 

Chemical fractionation is a concept often confused with speciation of elements, and 

mostly with speciation analysis and chemical species (see subsection 4). Indeed, chemical 

speciation must be distinguished from chemical fractionation, and a guideline may be found 

in Templeton et al. (2000). Chemical species may be categorised according to isotopic 

composition of the considered element, its oxidation and electronic states and its complex and 
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molecular structure. Such description of the kind of chemical species has been recently 

discussed by Lespes et al. (2016). 

When a paper is concerned with various steps within adsorption studies, we strongly 

suggest that authors refer to the recent critical review on this subject, written by Tran et al. 

(2017). Although w   o ’  ag    w  h all  h    comm    , one can find here most of the issues 

we have encountered in several published papers.  

The following points concerning adsorption data treatment should be considered:  

(i) Thermodynamic calculations: Please remember that in thermodynamic 

equations you can only take the logarithm of the equilibrium constant as a 

dimensionless parameter.  

(ii) Kinetics and/or isotherm models: Non-linear regression is more appropriate for 

obtaining parameters of kinetic models and isotherm models than linear 

regression (Limousin et al., 2007).  

(iii) In the special case of metal studies, we would like to draw attention to another 

point: the pH changes will often lead to (partial) precipitation of insoluble 

metal (hydr)oxides, carbonates or phosphates, and this is also to be expected 

during separation of adsorbed metals by filtration or centrifugation (e.g. up to 

93% of (hydr)oxide form was filtered out even at low metal concentration ; 

Haas et al., 2019).  

 Quality assurance and quality control (QA/QC) procedures for analytical data are 

often poorly described in many papers. Authors should, of course, add information about the 

number of replicated experiments (including preparation of the material, when this is the case) 

and analysis, and the corresponding standard deviation. Then, all numerical data (text and 
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tables) should only display the correct number of significant digits (rounded value). However, 

the standard deviation (value ± standard deviation), and, in all figures, the experimental data 

points, should contain their respective error bars. Moreover, there are several authoritative and 

detailed documents on various aspects of reference materials (RM), together with some 

internationally recognised definitions. Reference materials are an important tool for realising 

measurement quality and are used for method validation, calibration, uncertainty estimation, 

internal QC and external QA (i.e. proficiency testing) purposes (e.g. Quevauviller et al., 

1997). Measurement validity can be assured when using:  

(i) validated methods and appropriate equipment; 

(ii) qualified and competent staff; 

(iii) comparability with measurements made in other laboratories (traceability and 

measurement uncertainty); 

(iv) independent evidence of performance (proficiency testing); 

(v) well defined QC and QA procedures (third party accreditation is preferable).  

Different types of RM are necessary for different functions. For instance, a certified 

RM is mandatory for method validation, whereas a working level RM is more appropriate for 

QC. More detailed guidance on the QA of chemical measurements, including cover of RM, 

calibration, QC and validation, is provided by the joint CITAC/Eurachem Guide (Barwick, 

2016). Other advice is provided on using proper terminology in analytical geochemistry in 

papers by Sverdrup (1996), Potts (2012) and Wiedenbeck (2017).  

 We strongly recommend the provision of raw data in tabular form (as an appendix 

or on a repository). Indeed, an Open Data movement has recently taken off around the 

co c p  of ‘FAIR’ – where data is Findable, Accessible, Interoperable and Reusable 

(Wilkinson et al. 2016; 2018). These data can be used by those wishing to use modelling, and 

above all, it allows for greater transparency of the data used in the research (Piwowar, 2011). 

https://www.zotero.org/google-docs/?pgkhg3


10 

 

Environmental quality benchmarks, such as water quality guidelines, include 

indications for evaluating the possible damage from chemicals, physical and/or biological 

stressors: they are useful but not perfect tools (Chapman, 2018) as well as not always being 

adapted to the context of the studied case. 

3. Sample description 

When a specific study location is involved, authors should provide a readable map 

with precise coordinates in the correct format, as well as information on the geology of the 

area (type of rocks, and/or soil types). When providing this, it is essential to consider the 

recommendations of the International Union of Geological Sciences Subcommission on the 

Systematics of Igneous Rocks (Le Maitre et al., 2002) and the B     h G olog cal Su   y’  

rock classification of sediments and sedimentary and metamorphic rocks (Hallsworth and 

Knox, 1999; Robertson, 1999). Also, the difference between natural and anthropogenic trace 

metals contents in soils needs to be properly reported in scientific publications for assessing 

soil contamination (Baize and Sterckeman, 2001; Desaules, 2012; Dung et al., 2013; 

Matschullat et al., 2000; Zhao et al. 2007). 

Nearly forty years ago, Kretz (1983) proposed a systematised list of abbreviations for 

rock-forming minerals and mineral components. Its logical simplicity has led to wide 

recognition among authors and editors who were eager to accept an approved set of mineral 

symbols to save space in text, tables, and figures (e.g. Gth for goethite). This list was updated 

by Whitney and Evans (2010). If a native element occurs in nature, mineral abbreviations 

should not coincide with atomic symbols (e.g. Asp and not As for arsenopyrite, Cal and not 

Ca for calcite). 
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Effective communication in the geosciences requires consistent use of stratigraphic 

nomenclature, especially divisions of geologic time. We recommend the use of the latest 

version of the International Chronostratigraphic Chart (Cohen et al., 2013) with the correct 

use of epoch, period, era, or eon, instead of a local name. Some further semantics can be 

found about the Anthropocene in Zalasiewicz et al. (2010; 2011). From a pedological point of 

view, a ‘soil’ is a complete ecosystem including living species; therefore, we strongly suggest 

using ‘soil sample’ and referring to the World Reference Base for Soil Resources (IUSS 

Working Group WRB, 2014). Some variations may exist between scientific communities, 

especially regarding weathering and regolith. Indeed, regolith science evolved from older 

disciplines, mainly geology and soil science, so ‘you g  ’  c   c   rely on the terms from 

these disciplines, not always understanding them in detail or using them accurately (Eggleton, 

2001). 

 

4. Ecological behaviour 

Unlike organic molecules, whose natural attenuation is a well-known process 

(Alexander, 2000), metallic elements, not undergoing microbial or chemical degradation, are 

persistent in the ecosystems of which they are often natural components. Several soil 

constituents, such as clays, Fe-, Al-, or Mn-(hydr)oxides, and organic matter, can bind or 

adsorb metals (Bradl, 2004). Therefore, the accumulation of metals in soils can generate 

ecological risks for plants and other organisms growing in them, and in turn, for human health 

through the food chain (Nagajyoti et al., 2010). It is, therefore, important to be able to analyse 

and understand the chemical behaviour and mobility of inorganic contaminants in polluted 

soils and how they lead to contamination of water bodies. It is also of interest to evaluate the 

feasibility of various remediation processes, for example with selective leaching reagents 
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and/or with the use of metal-hyperaccumulating plants (Bhargava et al., 2012; Ali et al., 2013; 

Gaur et al., 2014; Ferraro et al., 2016; Lange et al., 2017). More information on 

hyperaccumulating plants may be found in Reeves et al. (2018), van der Ent et al. (2013) and 

Krämer (2010), although pla   ’ status is presently somewhat unclear due to issues with 

contamination by soil particles (Faucon et al., 2007). 

Among the important constituents of natural geochemical systems, organic matter 

(also known as humic substances), whether dissolved or not, is not a unique and pure 

chemical species (Aiken et al., 1985; Lehmann and Kleber, 2015; Myneni, 2019), but a 

mixture of molecules with various structures and molar mass, depending on their origin 

(animal and/or vegetal decomposition) (Piccolo, 2002; Sutton and Sposito, 2005). These 

organic compounds can react with light, chemicals or microbial species, and mainly bind 

metallic species (Lipczynska-Kochany, 2018).  

For the evaluation of ecological risks, the determination of the total metal amount is 

not highly relevant, though it is necessary to determine metal speciation, which has been 

recognised for many years as the parameter against which to assess metal bioavailability in 

soils (Smolders et al., 2003; Crans, 2017). Definitions of bioavailability and bioaccessibility 

can be found in Semple et al. (2004), even if they are complicated to delineate. It gives 

information about the potential for the release and migration of contaminants and toxicity 

processes (Rüdel et al., 2015). Therefore, when performing risk assessment studies, it is 

necessary to determine both the bioavailability and the fractionation of metals in the different 

soil chemical phases (Nolan et al., 2003). 

To further understand metal behavior (including mobility), many studies used 

selective and/or sequential extraction. Among the huge literature on that subject, the seminal 
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paper by Tessier et al. (1979) or the BCR method (Ure et al., 1993) are often cited. However, 

such methods are very specific, and authors really need to justify the choice of their method 

(Ure, 1996; Figueiras et al., 2002; van der Ent et al., 2019). Indeed, if we consider the case of 

EDTA as extractant, the estimation of metal availability using the EDTA extraction methods 

are identified to be more appropriate for high metal concentrations (Peters, 1999), which is 

not applicable for every environmental sample. For instance, only a small range of single 

chemical extractants (e.g., EDTA, CaCl2) have been used to relate plant cobalt (Co) uptake 

with an operationally defined available concentration of extracted Co (Collins and Kinsela, 

2011). Moreover, acetic acid-EDTA extractable fraction is an enhanced predictor of Co 

bioavailability in contaminated soils (Faucon et al., 2009). EDTA is often considered to 

extract primarily organically-bound trace elements from soil and not only elements non-

specifically adsorbed on the exchange complex (Albanese, 2008; Rupa and Shukla, 1999). 

Eventually, extraction should be compared with modelling (e.g. Cui and Weng, 2015; Pourret 

et al., 2015) or with other techniques such as DGT (diffusive gradients in thin-films 

technique) to be validated (e.g. Bravin et al., 2010).  

Moreover, these studies are generally carried out on artificially contaminated soils 

(e.g. Zapusek and Lestan, 2009; Lange et al., 2016): both the nature and the amount of 

metallic element(s) can be simultaneously controlled. The effects of added metal elements are 

commonly studied just after the contamination. However, metallic element sorption in soils 

evolves during long periods of time ranging from days to decades (Ma et al., 2006). During 

this process, named ‘ageing’ or ‘aging’, the speciation, the bioavailability and the 

fractionation of metals, change. Consequently, the results, based on soil samples freshly 

spiked with metallic solutions, and assessing ecotoxic effects, may not be relevant 



14 

 

(Alexander, 2000; Renella et al., 2002; Davies et al., 2003). This represents a serious 

drawback for risk assessment studies related to older contaminated sites.  

When lawyers working for (inter)national regulating agencies define concentration 

limits for potentially toxic substances (Antoniadis et al., 2019), they are balancing between 

risks and profits for environmental protection, including human health, and the ‘best available 

technologies not entailing excessive cost’ (a.k.a. ‘BATNEEC’). Furthermore, as proposed by 

Chapman (2002), in order to avoid all these drawbacks, authors should compare 

bioaccumulation testing with toxicity testing. 

5. Ecological risk assessment 

For risk assessment studies, environmental toxicology is often considered, e.g. single-

species testing for screening purposes. However, ecotoxicology is more relevant than 

ecological toxicology in tests, test species and exposures (Bost and Sanchez, 2018; de Souza 

Machado et al., 2019; Hitchcock et al., 2018). It is, therefore, required for predicting real 

effects and for site-specific assessments, e.g. use of biomarkers (Forbes et al., 2006), or of 

microbial toxicology (Ghiglione et al., 2016). During the last thirty years, ecotoxicology and 

ecology have shown similar developmental trends; such as closer cooperation between those 

disciplines, which has benefited them both (Chapman, 2002; Bradbury et al., 2004; Rohr et 

al., 2016). Ecology can be integrated into toxicology: either distinctly, by providing 

information on pre-selected test species; or as part of test species choice; the latter being 

preferable. General guidelines for serious and chronic testing, and criteria for species choice, 

differ between environmental toxicology and ecotoxicology. An overall framework has been 

proposed by Chapman (2002), based on ecological risk assessment, for combining ecology 

and toxicology for decision-making. Moreover, the pros and cons of ecological risk 
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assessment based on data from different levels of biological organisation are reviewed by 

Rohr et al. (2016). 

The terms ‘dose-response’ or ‘dose-effect’ are often used to describe the causal links 

between biological effects and exposure. This use of the term ‘dose’ in aquatic toxicology 

comes from mammalian toxicology (Nikinmaa and Schlenk, 2010; Duffus, 2003; Chapman, 

2002). Indeed, when a compound is delivered to an animal, the term ‘dose’ designates the 

amount of this compound entering the animal. A lethal dose (often designated as LD50) is 

also used to describe the dose of a compound that kills 50% of the exposed population. 

Importantly, when animals are treated through inhalation, the term is modified to 

‘concentration’ that affects 50% of the population. This distinction is because when animals 

are exposed to air, the dose is not known, only the total concentration in the air is measured. A 

comparable situation occurs for aquatic organisms: whenever an organism is exposed to a 

compound in water, only the total concentration of this compound in water is known. Thus, 

the main difference between ‘dose’ and ‘concentration’ is that the ‘dose’ of a compound is 

rarely known in an aquatic organism even if the chemical compound is measured within the 

organism. This uncertainty is primarily due to whether the compound is bioavailable to a 

specific molecular target within the organism. Therefore, it is imperative to use the proper 

terminology ‘concentration-response’ or ‘concentration-dependent’ when dealing with aquatic 

organisms (Nikinmaa and Schlenk, 2010). 

As highlighted by Hooton (1987), a major difference exists between ‘toxin’ and 

‘toxicant’. This distinction is that: (i) a ‘toxin’ is a poisonous substance produced by a 

biological organism such as a microbe, animal or plant (Duffus, 2003); (ii) a ‘toxicant’ is a 

compound that is not naturally occurring and its entry into the environment is of human 

origin. Moreover, metals do not originate from biological sources, they are thus considered 

toxicants. The term ‘xenobiotic’ should be used when a doubt exists; it includes both toxin 
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and toxicant if the compound is not naturally occurring to the environment (Nikinmaa and 

Schlenk, 2010).  

 

6. Geochemical modelling  

As reviewed by Nordstrom (2012), modelling has become so prevalent that many 

researchers cannot imagine publishing results without using models. However, the use of 

computer codes to execute calculations has led to a distinction between code and model. This 

type of controversy regarding model validation has brought into question what we mean by a 

‘model’ and by ‘validation’ (Bair, 1994). The common significance of validation may be 

common in engineering practice and seems useful in legal practice. It is, however, divergent 

to scientific practice. It brings into question our understanding of science and how it can best 

be applied to environmental studies (Nordstrom, 2012). 

Moreover, most studies using models are based on laboratory experiments with very 

simplified systems, such as a metal nitrate salt in pure water. But real-world systems are, of 

course, more complicated. To add value to such work, the authors should firstly study the 

competition and influence of some other anions and cations, and then they should thoroughly 

test some real samples containing their target species. Moreover, in studies about metal 

species, detailed speciation modelling (ECOSAT, MINFIT, MINTEQ, PHREEQC, WHAM, 

…)    required in order to have a better insight into the behaviour of such systems. The above-

mentioned are chemical equilibrium models used to predict metal speciation and metal 

bioavailability in environmental systems. Special attention must be paid to the choice of 

equilibrium constants (Hummel et al., 2019). However, users should bear in mind that 

environmental systems are always dynamic and rarely at equilibrium, even if some reactions 
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are relatively fast (e.g. metal complexation to organic or inorganic ligands in water (Di Bonito 

et al., 2018)); in this case, the implementation of the so-call   ‘B o  c L ga   Mo  l (BLM)’ 

can be useful (Rüdel et al., 2015). When sediments are considered, a combination of several 

tests and criteria should also be assessed (Alves et al., 2018). 

We are often concerned with the nature of salt (commonly seen as a neutral 

electrolyte) selected for the required ionic strength to be set, or in case of artificial 

contamination. Yet, how should one select the appropriate anion? F om a ch m   ’  po    of 

view, nitrate salts are probably the best choice, because they are always readily soluble, and 

 h y  a  ly fo m compl x  , al hough  olubl  a   w  h low   ab l  y co   a    (Š ul ko á, 

1991). But of course, nitrate ion has nutritional properties for plants and some biological 

effects for soil micro-organisms (Jacoby et al., 2017). Sodium nitrate is thus a better choice 

for ionic strength setting, but calcium chloride is normally selected when dealing with soil 

solution representativeness (Komarek et al., 2007). In this case, Ca(II) can favour the 

formation precipitated compounds with carbonate or phosphate species, and that chloride ions 

can form (in)soluble complexes with many metal cations such as Cu(II) or Pb(II). 

 

7. Concluding remarks 

Of course, we understand that several points in this position paper are already 

frequently published in many respected environmental science journals. In an extensive 

compilation of the top-cited articles published in environmental science journals, Khan and 

Ho (2012) analysed the papers published in 181 journals during the 1899-2010 period with 

regard to institution and country of origin, but they were also discussed according to their life 

span. They have found that between 1971 and 2002, 88 top-cited articles in environmental 
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science were published, each with more than 500 total citations. Even though some of those 

often-cited articles are specifically on geochemistry, it should not mean that misunderstood 

scientific facts continue to be incorrectly repeated by researchers. 

This Trend Editorial was intended to be constructive, not polemic. We sincerely hope 

that it will allow our colleagues as authors to avoid making mistakes or replicating 

misconceptions in their submitted papers. Moreover, we believe our thoughts can also be 

useful to editorial board members and reviewers of many environmental geochemistry 

journals. 
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