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Abstract. We formalise and study multi-agent timed models MAPTs (Multi-Agent with timed
Periodic Tasks), where each agent is associated to a regular timed schema upon which all possibles
actions of the agent rely. MAPTs allow for an accelerated semantics and a layered structure of
the state space, so that it is possible to explore the latter dynamically and use heuristics to greatly
reduce the computation time needed to address reachability problems.

We apply MAPTs to explore state spaces of autonomous vehicles and compare it with other
approaches in terms of expressivity, abstraction level and computation time.
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1. Introduction

In the context of modelling and validating communicating autonomous vehicles (CAVs), the
framework VERIFCAR [2] allows to study the behaviour and properties of systems composed
of concurrent agents interacting in real time (expressed through real variables called clocks) and
through shared variables. Each agent performs time restricted actions that impact the valuation
of shared variables. The system is highly non-deterministic due to overlaps of timed intervals in
which the actions of various agents can occur.

VERIFCAR is suitable for the exhaustive analysis of critical situations in terms of safety, efficiency
and robustness with a specific focus on the impact of latencies, communication delays and failures
on the behaviour of CAVs. It features a parametric model of CAVs allowing to automatically
adjust the size of the state space to suit the required level of abstraction. This model is based on
timed automata with an interleaving semantics [1], and is implemented with UPPAAL [14], a state
of the art tool for real time systems with an efficient state space reduction for model checking.
However, it is limited in terms of expressivity and deals only with discrete values, which is not
always convenient and may lead to imprecise computations.
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Various approaches [8, 6, 10, 12], relying on formal methods, address the modelling and analysis
of multi-agent systems in a context similar to ours. In particular, bounded model checking ap-
proaches [4, 3, 13] have been used for studying temporal logic properties. Standard and highly
optimised model checking tools, like UPPAAL [14, 7, 1], simplify a lot the process of studying
the behaviour of such systems, but have some drawbacks. For instance, in addition to clocks,
they usually only allow integer variables while rational ones would sometimes be more natural,
leading to artificial discretisations. Next, they only check Boolean expressions while it may be
essential to analyse numerical ones. Finally, the Boolean expressions are restricted to a subset of
the ones allowed by classical logical languages, in particular by excluding nested queries.

It turns out that state spaces in the applications studied with VERIFCAR are generally very large
but take the form of a semantic directed acyclic graph (DAG). Each agent also has syntactically
the form of a DAG between clock resets. Our goal is to exploit these peculiarities to build a
dedicated checking environment for reachability problems. Concretely, we want to explore the
graph dynamically (i.e., checking temporal logic properties directly as we explore states) to avoid
constructing the full state space, and therefore not to loose time and memory space storing and
comparing all previously reached states. The objective is to be able to tune the verification algo-
rithm with heuristics that will choose which path to explore in priority, which might significantly
speed up the computation time if the searched state exists. That implies that our algorithms
should explore the graph depth-first, since width-first algorithms cannot explore paths freely and
are restricted to fully explore all the states at some depth before exploring the next one.

For systems featuring a high level of concurrency between actions, such as the CAV systems,
most of the non-determinism results from possibly having several actions of different agents
available from a given state, that can occur in different orders and which often lead eventually
to the same state. This corresponds in the state space to what is sometimes called diamonds.
Width first exploration allows to compare states at a given depth and therefore remove duplicates,
which is an efficient way to detect such diamonds. On the other hand, depth-first exploring such
a state space with diamonds, leads to examine possibly several times the same states or paths,
which is not efficient. In this context, our aim is to detect and merge identical states coming
from diamonds while continuing to explore the state space mainly depth-firstly. This diamond
detection will consist in a width-first exploration in a certain layer of the state space, each layer
corresponding to some states at a given depth having common characteristics. It turns out that
such layers may be observed in the state space of CAV systems. This allows for a depth-first
exploration from layer to layer, while greatly reducing the chances of exploring several times the
same states. The class of models on which this kind of algorithm can be applied will be referred
to as Multi-Agent with timed Periodic Tasks (MAPTs).

To implement such algorithms we use ZINC [11], a compiler for high level Petri nets that gen-
erates a library of functions allowing to easily explore the state space. We use such functions to
dynamically explore the state space with algorithms designed for our needs. In particular, this
allows to apply heuristics leading to faster computation times, and results in a better expressivity
of temporal logic than UPPAAL, in particular by including nested queries. Another gain when
comparing to UPPAAL is that we are not limited to integer computations and can use real or ra-
tional variables, thus avoiding loss of information. To use ZINC, we have to emulate the real time
with discrete variables. We do so in a way that preserves the behaviour of the system: when using
the model with the same discrete variables as with UPPAAL, we obtain identical results.

In this paper, we start by a formal definition of G-MAPTs, a general class of MAPT-like models,
study its properties and provide a translation for high level Petri nets. Then, we introduce our
MAPT models, by slightly constraining G-MAPT ones, in order to avoid useless features and
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to allow a first kind of acceleration procedures. Then, we present the layered structure and the
algorithms taking advantage of it. Finally, we propose heuristics and use them in experiments that
highlight the benefits of our approach in terms of expressivity, abstraction level and computation
time.

2. Syntax and semantics of G-MAPTs

A G-MAPT is a model composed of several agents that may interact through a shared variable.
Each agent is associated with a clock and performs actions occurring in some given time intervals.
There is no competition between agents in the sense that no agent will ever have to wait for another
one’s action in order to perform its own actions. However, there may be non determinism when
several actions are available at the same time, as well as choices between actions and time passing.

A G-MAPT is a tuple (V, F,A, Init) where:

• V is a set of values;

• F is a (finite) set of variable transformations, i.e., calculable functions from V to V;

• A is a set of n agents such that ∀i ∈ [1, n], agent Ai
df
= (Li, Ci, Ti, Ei) with:

– Li is a set of localities denoted as a list Li
df
= (l1i , . . . , l

mi
i ) with mi > 0, such that

∀i 6= j, Li ∩ Lj = ∅;
– Ci is the unique clock of agent Ai, with values in N;
– Ti is a finite set of transitions, forming a directed acyclic graph between localities,

with a unique initial locality l1i and a unique final locality lmi
i , each transition being of

the form (l, f, I, l′) where l, l′ ∈ Li are the source and destination localities, f ∈ F is
a function and I df

= [a, b] is an interval with a, b ∈ N and a ≤ b.
– Ei ∈ N \ {0} is the reset period of agent Ai.

• Init is a triple ((l1, · · · , ln), (init1, · · · , initn), initV ) where ∀i ∈ [1, n], li ∈ Li, initi ∈ N
and initV ∈ V .

For each agent Ai and each locality l ∈ Li, we shall define by l• = {(l, f, I, l′) ∈ Ti} the set
of transitions originated from l, and by •l = {(l′, f, I, l) ∈ Ti} the set of transitions leading
to l. Note that, from the hypotheses, •l1i = ∅ and (lmi

i )
•

= ∅. Moreover, when i 6= j, since
Li ∩ Lj = ∅, Ti ∩ Tj = ∅ too, so that each transition belongs to a single agent, avoiding
confusions in the model.

A simple example of a G-MAPT M with two non-deterministic agents is represented in Ex 2.1.

In the semantics, for each agent Ai, we will emulate a transition from lmi
i to l1i that resets clock

Ci every Ei time units. As such, each agent in the network cycles over a fixed period. There can
be several possible cycles though, since a given locality may be the source of several transitions,
so that there may be several paths from l1i to lmi

i .

The behaviour of the system is defined as a transition system where Init is the initial state. A state
of a G-MAPT composed of n agents as described above is a tuple denoted by s = (~l,~c, v) where
~l = (l1, · · · , ln) with li ∈ Li is the current locality of agent Ai, ~c = (c1, · · · , cn) where ci ∈ N
is the value of clock Ci, and v ∈ V is the value of variable V . There are three possible kinds of
state changes: a firing of a transition, a clock reset and a time increase.
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• A transition (l, f, [a, b], l′) ∈ Ti can be fired if li = l and a ≤ ci ≤ b. Then, in the new
state, li ← l′ and v ← f(v).

• A clock Ci can be reset if li = lmi
i and ci = Ei. Then, ci ← 0 and li ← l1i .

• Time can increase if ∀i ∈ [1, n], either there exist at least one transition (l, f, [a, b], l′) ∈ Ti
with li = l and ci < b, or li = lmi

i and ci < Ei. A time increase means that ∀i ∈ [1, n],
ci ← ci + 1.

It may be observed that there is a single global element in such a system: variable V ; all the other
ones are local to an agent. It is unique but its values may have the form of a vector, and an agent
may modify several components of this vector through the functions of F used in its transitions,
thus emulating the presence of several global variables. The values of V are not restricted to the
integer domain, but there is only a countable set of values that may be reached: the ones that
may be obtained from initv by a recursive application of functions from F (the variable is not
modified by the resets nor the time increases). However this domain may be dense inside the
reals, for instance.

1 2

[1, 1]

f1

[2, 3]

f2

E1 = 5

3 4

[1, 1]

f3

[2, 3]

f4

E2 = 5

Figure 1. Visual representation of G-MAPT from Ex. 2.1. Dashed arcs represent resets.

Example 2.1. Let M = (V, F,A, Init) where:

• V = R× N;

• F = {f1, f2, f3, f4} with
f1(x, y)→ (2x, y + 1) f2(x, y)→ (x+ 1.3, y + 1)

f3(x, y)→ (x
2 , y) f4(x, y)→ (2x, y)

• A = {(L1, C1, T1, E1), (L2, C2, T2, E2)} with
L1 = {1, 2} T1 = {(1, f1, [1, 2], 2), (l, f2, [3, 3], 2)} E1 = 5

L2 = {3, 4} T2 = {(3, f3, [1, 2], 4), (3, f4, [3, 3], 4)} E2 = 5

• Init = ((1, 3), (0, 0), (0.5, 0)).

A visual representation of M is given in Fig. 1 while the initial fragment of its dynamics is
depicted on top left of Fig. 5. Note that only transition firings and time increases are represented
in Fig. 5 while the values v of variable V in the states (~l,~c, v) are always omitted. ♦

In a dynamic system, persistence is a property that states that, if two state changes are enabled at
some state, then none of these changes disables the other one and performing them in any order
leads to the same resulting state, forming a kind of diamond. In G-MAPT systems we have a
kind of persistence restricted to different agents.
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Proposition 2.2. In a G-MAPT, if i 6= j and s = (~l,~c, v) is any state, we have:

1. if s enables two transitions t1 = (l1, f1, I1, l
′
1) ∈ Ti and t2 = (l2, f2, I2, l

′
2) ∈ Tj , leading

respectively to states s1 and s2, then s1 enables t2 leading to a state s3 and s2 enables t1
leading to a state s4; moreover s3 = s4 iff f1◦f2(v) = f2◦f1(v), i.e., if f1 and f2 commute
on v;

2. if s enables a transition t = (l, f, I, l′) ∈ Ti and a reset of Aj , leading respectively to states
s1 and s2, then s1 enables the reset of Aj leading to a state s3 and s2 enables t leading to
the same state s3;

3. if s enables a reset of Ai and a reset of Aj , leading respectively to states s1 and s2, then s1
enables the reset of Aj leading to a state s3 and s2 enables the reset of Ai leading to the
same state s3.

Proof:

1. The property results from the fact that transitions do not modify clocks, and a transition of
some agent only modifies the locality of the latter, together with the common variable V ; in
s3 the variable becomes f2 ◦ f1(v), while in s4 the variable becomes f1 ◦ f2(v). Note that
if i = j, s1 does not enable transition t2 since, from the acyclicity hypothesis, the locality
of Ai is changed, hence is not the source of t2 (and symmetrically);

2. the property results from the fact that a transition does not modify any clock, and a reset of
Aj only modifies the locality and clock of the latter; the common variable V will have the
value f(v) after both the execution of the transition followed by the reset as well as after
the reset followed by the transition. Note that i may not be the same as j here since the
reset of Ai may only occur in locality lmi

i , while no transition may occur there;

3. the property results from the fact that a reset of an agent only modifies the locality and clock
of the latter. Note that, if i = j, since after a first reset the locality becomes l1i , so that a
second one may only occur if l1i = lmi

i , i.e., Ai has a single locality, no transition and does
not act on the common variable, hence may be dropped.

ut

2.1. Constraints

We define in this subsection two types of constraints, which are motivated by the properties of
our target application domain and which will be used to obtain interesting properties.

A G-MAPT is called strongly live if it satisfies the following constraint:

Constraint 1.

1. If the initial locality of some agent Ai is the terminal one (li = lmi
i ), then the initial value

of clock Ci satisfies initi ≤ Ei;

2. otherwise (when li 6= lmi
i ), we have initi ≤ max{b | (li, f, [a, b], l′) ∈ li

•});
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3. moreover, for each agent Ai, if l ∈ Li \ {l1i , l
mi
i }, then

max{b | (l′, f, [a, b], l) ∈ •l} ≤ min{b′ | (l, f ′, [a′, b′], l′′) ∈ l•};

4. and we have max{b | (l′, f, [a, b], lmi
i ) ∈ •lmi

i } ≤ Ei.

The first two constraints ensure that, when the system is started, either in the terminal locality or
in a non terminal one of some agent, the time is not blocked and we shall have the possibility
to perform an action in some future. The next constraint ensures that whenever a non terminal
locality is entered, any (and not only some) transition originated from that locality will have the
possibility to occur in some future (the case when we enter an initial locality is irrelevant since
resets reinitialise the corresponding clock to 0). The last constraint captures similar features in
the case when we enter a terminal locality.

In other words, each transition or reset in l• is enabled when entering l or will be enabled in the
future (after possibly some time passings in order to reach the lower bound a).

Proposition 2.3. In a G-MAPT satisfying Constraints 1, after any evolution ω, each transition
and each reset (as well as time passings) may be fired in some future.

Proof:
We may first observe by induction on the length of ω that, if s = (~l,~c, v) is the state reached
after the evolution ω, for any agent Ai we have (li = lmi

i ) =⇒ ci ≤ Ei and (li 6= lmi
i ) =⇒

ci ≤ max{b | (li, f, [a, b], l
′) ∈ li

•}), i.e., the same G-MAPT with initial state s also satisfies
Constraint 1 (the last two ones do not rely on the initial state). The property is trivial for ω = ε.
If the property is satisfied for some ω, it remains so for any extension, from the definition of the
semantics of G-MAPT and the last two points of Constraint 1.

It also results from the same remark that any evolution ω satisfying the mentioned properties may
be extended (there is no deadlock). It remains to show that any extension may be performed in
some future.

For time passing, we may observe that, if time passing may never be performed, since the set of
localities for each agent has the form of a DAG, extending ω will finally perform a reset, and
since each Ei is strictly positive we shall finally perform all the resets and stop at some point,
which is forbidden. Hence we are sure time passings will be possible.

Since time passings may always be performed in the future, all resets will be performed eventu-
ally.

Finally, let t = (l′i, f, [a, b], l
′′
i ) ∈ Ti. From the same argument about time passings, it will be

possible to eventually perform reset ri, then follow a path going from l1i to l′i in the DAG of Ai,
performing each transition in turn when reaching the corresponding a, due to Constraint 1.3. ut

The next constraint is a syntactic manner of ensuring the acyclicity of the G-MAPT’s dynamics
(i.e., its state space):

Constraint 2.
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1. V df
= W ×X and there exist an agent Ai such that in all paths of transition from l1i to lmi

i ,
there exists a transition t df

= (l, f, [a, b], l′) such that for all (w, x) ∈ V , f(w, x) = (w′, x′)
with x < x′;

2. and there is no f ∈ F such that for some (w, x) ∈ V , we have f(w, x) = (w′, x′) with
x > x′.

The first constraint ensures that at least one agent increments the X part of variable V at least
once between two of its resets. The second one ensures that no function can decrease the X part
of variable V .

In other words, the X part of v increases in each cycle of agent Ai, which results in an absence
of cycles in the whole state space of the G-MAPT.

Proposition 2.4. A G-MAPT satisfying Constraint 2 is acyclic.

Proof:
If there is a cycle, it means that there exists a path from the initial state with at least two different
states in the path s1 = (~l,~c, v) and s2 = (~l′, ~c′, v′), which are actually identical. Since the
localities of each agent form a static DAG determined by its transitions and each Ei is strictly
positive, having ~l = ~l′ and ~c = ~c′ may only happen if all agents have done at least one reset
between s1 and s2. Indeed, if there is no reset, since ~c = ~c′ we may only have transitions in the
cycle, but this is incompatible to have DAGs in each agent. Moreover, since between two resets
of an agent time strictly increases, ~c = ~c′ may only occur if all agents have performed one or
more resets. Thus, it is enough to observe that variable V cannot decrease from Constraint 2.2,
and a transition t like in Constraint 2.1 should occur, guaranteeing that v 6= v′. ut

Definition 2.5. A MAPT is a G-MAPT satisfying Constraints 1 and 2.

A MAPT may be non-deterministic but it is strongly live and has a DAG state space. For instance,
the G-MAPT M from Ex. 2.1 satisfies both constraints (acyclicity is satisfied due to y being
incremented in all cycles of A1) and so is actually a MAPT.

3. Translation into high level Petri nets

A high level Petri net [5] can be viewed as an abbreviation of a low-level one [9] where tokens are
elements of some set of values that can be checked and updated when transitions are fired. Here,
we express a G-MAPT as a high level Petri net to be implemented with ZINC.

Formally, a high level Petri net is a tuple (S, T, λ,M0) where:

• S is a finite set of places;

• T is a finite set of transitions;

• λ is a labelling function on places, transitions and arcs such that

– for each place s ∈ S, λ(s) is a set of values defining the type of s,
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– for each transition t ∈ T , λ(t) is a Boolean expression with variables and constants
defining the guard of t and

– for each arc (x, y) ∈ (S × T ) ∪ (T × S), λ(x, y) is the annotation of the arc from x
to y, driving the production or consumption of tokens.

• M0 is an initial marking associating tokens to places, according to their types.

The semantics of a high level Petri net is captured by a transition system containing as states
all the markings, which are reachable from the initial marking M0. A marking M ′ is directly
reachable from a marking M if there is a transition t enabled at M , whose firing leads to M ′; it
is reachable from M if there is a sequence of such firings leading to it. A transition t is enabled
at some marking M if the tokens in all the input places of t allow to satisfy the flow expressed by
the annotations of input arcs and the guard of t, through a valuation of the variables involved in
the latter. The firing of t consumes the concerned tokens in input places of t and produces tokens
on output places of t, according to the annotations of the output arcs and the same valuation.

1s1

2s2

(0, 0) s3t

x > 0
x

y

(w, z)

(w + x, z + y)

Figure 2. A high level Petri net.

Fig. 2 shows an example of a high level Petri net where place types are N for s1 and s2, and N×N
for s3. Transition t is enabled at the initial marking since there exists a valuation of variables in the
annotations of arcs and in the guard of t, with values from tokens, x 7→ 1, y 7→ 2, w 7→ 0, z 7→ 0,
that satisfies the guard. The firing of t consumes the tokens in all three places and produces a new
token (1, 2) in place s3.

Definition 3.1. Given a G-MAPT Q = (V, F,A, Init) with |A| = n, its translation to a high
level Petri net N = translate(P ) = (S, T, λ,M0) is defined as follows:

• S = {sA, sC , sV } with λ(sA)
df
= L1 × · · · × Ln where Li is the set of localities of agent

Ai (its jth element will be denoted lji ), λ(sC)
df
= Nn and λ(sV )

df
= V; For any token x of

the type λ(sA) or λ(sC), we denote by x[i] the ith element of the list.

• T df
= Ttrans ∪ Treset ∪ {ttime} where
– Ttrans is the smallest set of transitions such that, for each agent Ai = (Li, Ci, Ti, Ei)

in A and for each transition (l, f, [a, b], l′) ∈ Ti, there is a transition t ∈ Ttrans such
that λ(sA, t)

df
= x, λ(sC , t)

df
= y, λ(sV , t)

df
= z, λ(t, sA)

df
= x′ where x′[i] ← l′ and

∀j 6= i, x′[j] ← x[j], λ(t, sC)
df
= y, λ(t, sV )

df
= f(z) and λ(t)

df
= (x[i] = l) ∧ (a ≤

y[i] ≤ b). This is equivalent to the set of transitions of the G-MAPT.
– Treset is the smallest set of transitions such that, for each agent Ai = (Li, Ci, Ti, Ei)

in A, there is a transition t ∈ Treset such as λ(sA, t)
df
= x, λ(sC , t)

df
= y, λ(t, sA)

df
= x′

where x′[i] ← l1i and ∀j 6= i, x′[j] ← x[j], λ(t, sC)
df
= y′ where y′[i] ← 0 and

∀j 6= i, y′[j] ← y[j], and λ(t)
df
= (x[i] = lmi

i ) ∧ (y[i] = Ei) where mi
df
= |Li|. This

is equivalent to the set of clock resets of the G-MAPT.
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– λ(sA, ttime)
df
= x, λ(sC , ttime)

df
= y, λ(ttime, sA)

df
= x, λ(ttime, sC)

df
= y′, where

∀i ∈ [1, n], y′[i] ← y[i] + 1, and λ(ttime)
df
= G1 ∧ · · · ∧ Gn where Gi acts as the

”upper bound guard” for all the transitions in agent Ai, i.e., Gi
df
= (g1 ∨ · · · ∨ gmi

)

with mi = |Li| and ∀j ∈ [1,mi − 1], gj
df
= (x[i] = lji ) ∧ (y[i] < B), where B =

max{b|(lji , f, [a, b], l′) ∈ l ji
•
} is the highest upper bound of the intervals from all

outgoing transitions of lji and gmi

df
= (x[i] = lmi

i ) ∧ (y[i] < Ei). This is equivalent to
a time increase.

• (M0(sA),M0(sC),M0(sV )) = Init is the initial marking

The translation associates singletons as arc annotations for all arcs. As a consequence, during
the execution, starting from the initial marking which associates one token to each place, there
will always be exactly one token in each of the three places. Each reachable marking, where sA
contains ~l, sC contains ~c and sV contains v, encodes a state (~l,~c, v) of the considered G-MAPT.

Figure 3 sketches the Petri net translation of the G-MAPT from Ex. 2.1. At the initial marking,
t1, t2, t′1 and t′2 are not enabled because the token read from sC (i.e., the vector of clock values)
does not satisfies the guards, while r1 and r2 are not enabled because the token read from sA
(i.e., the vector of localities) does not satisfies the guards. On the other hand, the transition time
is enabled. Its firing reads1 tokens in places sV and sA, consumes (0, 0) and produces (1, 1) in
sC . At this new marking, time, t1 and t2 are enabled and the process continues exactly as in the
G-MAPT.

Proposition 3.2. A G-MAPT Q and its translated Petri net N = translate(Q) have equivalent
state spaces and semantics.

Proof:
Immediate from the definitions. ut

1means that consumes and produces the same tokens
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(1, 3) sA(0, 0)sC

(0.5, 0)

sV

time

((l1 = 1 ∧ c1 < 3) ∨ (l1 = 2 ∧ c1 < 5))

∧((l2 = 3 ∧ c2 < 3) ∨ (l2 = 4 ∧ c2 < 5))

r1

l1 = 2 ∧ c1 = 5

r2

l2 = 4 ∧ c2 = 5

t1

l1 = 1 ∧ 1 ≤ c1 ≤ 1

t2

l2 = 3 ∧ 1 ≤ c2 ≤ 1

t′1
l1 = 1 ∧ 2 ≤ c1 ≤ 3

t′2

l2 = 3 ∧ 2 ≤ c2 ≤ 3

(l1, l2)

(l1, l2)/(1, l2)

(l1, l2)/(l1, 3)

(l1, l2)/(2, l2)

(l1, l2)/(l1, 4)

(l1, l2)/(2, l2)

(l1, l2)/(l1, 4)

(c1, c2)/(c1 + 1, c2 + 2)

(c1, c2)

(c1, c2)

(c1, c2)

(c1, c2) (c1, c2)

(c1, c2)

(x, y)/(2x, y + 1)

(x, y)/(x2 , y)

(x, y)/(x+ 1.3, y + 1)

(x, y)/(2x, y)

Figure 3. Petri net translation of the G-MAPT from Ex. 2.1 with the initial marking. Arcs are bidirectional
and annotated by pairs w/z (or w instead of w/w) meaning that w is the label of the arc from place to transition
and z of the opposite one.

4. Acceleration

Let us assume we are interested by the causality relation between transitions rather than by the
exact dates of their firings. It is then often possible to reduce the size of the original state space.
To do so, we assume that the G-MAPT satisfies Constraint 1.

We may first consider action zones, defined as maximum time intervals in which the same tran-
sitions and resets are enabled from the current state (note however that, when a reset is enabled,
the zone has length 0, since before an Ei the corresponding reset is not enabled and we may not
go beyond Ei). Instead of increasing time by unitary steps, we can then progress in one step from
an action zone to another one, until we decide or must fire a transition or reset. This generally
corresponds to increasing time by more than one unit at once. Note that, when we jump to a zone,
we may choose any point in it since, by definition, all of them behave the same with respect to
enabled events; in the following, we have chosen to go to the end of the zone since this allows to
perform bigger time steps; this will also be precious when defining borders of layers.
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However, not all action zones reachable from a given state need to be explored: we may neglect
action zones which are dominated by other ones, i.e., for which the set of enabled transitions
and resets is included in another one. As an example, let us assume that the sets of enabled
transitions are successively (from the current state): {t1, t2} → {t1, t2, t3} → {t2, t3} →
{t3} → {t3, t4} → {t3, t4, t5} → {t4, t5} . . . (i.e., letting the time evolve, we first encounter
a3, then b1, b2, a4, a5, b3, ...). The maximal (non-dominated) action zones are indicated in
bold. We may thus first jump (in time) to the end of the zone allowing {t1, t2, t3}, then choose
if we want to fire t1 or t2 or t3, or jump to the end of the zone allowing {t3, t4, t5}, where we
can again decide to fire a transition or not (unless a firing is mandatory, i.e., there is no further
non-dominated action zone).

In order to pursue the analysis, let s = (~l,~c, v) be the current state and, for each agent Ai let

Bi
df
=

{
Ei − ci if li = lmi

i

max{b− ci | (li, f, [a, b], l′) ∈ li
•} otherwise

B
df
= min{Bi | i ∈ [1, n]}

From our hypotheses, each Bi, hence also B, is non-negative, and we may not let pass more than
B time units before choosing to fire a transition or a reset. In particular, if B = 0, increasing
time would prevent any transition in some locality to ever be enable again. To avoid such a local
deadlock, we must choose a transition or reset to fire.

When time evolves, if we reach an a or an E the set of enabled transitions and resets increases
(note that an E behaves both as an a and as a b), and if we overtake a b (we may not overtake an
E), this set shrinks. We must thus find the first b or E preceded by at least one a.

This may be done as follows: let

a
df
=


min(α) if α df

= {a− ci | ∃ (li, f, [a, b], l
′
i) ∈ Ti for some agent Ai

and ci < a ≤ B} ∪ {Ei − ci | li = lmi
i for some agent Ai

and ci < Ei ≤ B} 6= ∅
0 otherwise

δ
df
=


min(β) if β df

= {b− ci | ∃ (li, f
′, [a, b], l′) ∈ li

• for some agent Ai

with 0 < a ≤ b− ci ≤ B} ∪ {Ei − ci | li = lmi
i for some

agent Ai with Ei ≤ ci +B } 6= ∅
0 otherwise

It may be observed that a > 0⇐⇒ α 6= ∅ ⇐⇒ β 6= ∅ ⇐⇒ δ > 0.

If a = 0, that means that there is no way to increase the set of enabled transitions or resets in the
future; there is thus no interest to let time evolve (and indeed δ = 0) and we must choose now
a transition or a reset to be fired (time will possibly be allowed to increase in the new locality).
Otherwise, we may fire a transition or a reset or perform a time jump of δ, which is of at most
B time units. Note that when a transition or reset is fired, we need to recompute B; when a time
shift (or jump) is performed, δ > 0 and we need to adjust all the clocks and B: ∀i : ci ← ci + δ
and B ← B − δ.
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We may remark that the initial state as well as the states reached after a firing are not necessarily
in a maximal zone. This may be checked easily: the first b or E is preceded by one or more a’s
from this current state. We may then force a time jump δ as computed above to reach the end
of the first maximal zone before wondering if we shall perform a firing. However, this is not
absolutely necessary and we may decide to perform a firing or a time jump at this current state.

Finally, we may observe that, when we perform a firing in some agent Ai, we are positioned
before B, hence before Bi by definition. From Constraints 1.3 and 1.4 above, whatever the time
jumps performed in the previous state, the first maximal zone is the same, so that we do not miss
a possible firing from the new current state.

Figure 4. Example of time increase based on the action zone acceleration. Current time is indicated by grey
dots, while the maximal possible time increase for each variant is shown with its respective color (blue for t4,
red for t′4 and green for t′′4 ).

For a better understanding, let us consider the example of acceleration illustrated in Fig. 4, with
two agents A1 and A2. To simplify the presentation, we shall assume that the clocks C1 and C2

are aligned, so that the time intervals of the transitions can be represented in the same space. The
current state of the system can be described as follows: from the current locality of agent A1,
the outgoing transitions t1 and t2 can be fired respectively in the intervals [0, 3] and [1, 5], while
from the current locality of agent A2, the outgoing transitions t3 and t4 (in blue in the figure)
can be fired respectively in [0, 6] and [2, 4]. For any transition ti, its lower and upper bounds
will be referred to as ai and bi. Let us assume that the current time is currently at instant 1. In
such a case, the current action zone is [a2, a4[ and it enables t1, t2 and t3. The next action zone
[a4, b1] enables all four transitions (and is thus maximal). So, from the current action zone we
may fire one of t1, t2 or t3 or let the time pass. The (accelerated) time increase should lead then
to action zone [a4, b1], for instance at b1. That way, we would include all the possible sequences
of transitions, including the firing of t4 followed by t1.

Now let us consider a variant of the example, in which t4 is replaced by t′4 (in red in the figure),
with a time interval of [4, 6]. In that scenario, the current action zone is [a2, b1] and it enables t1,
t2 and t3. The next zone is ]b1, a4′[, which enables t2 and t3 only: since the enabled transitions
are included in the current action zone, this zone is not interesting from a causality point of
view. Finally, the zone [a′4, b2] enables t2, t3 and t4, which is interesting because a new transition
becomes enabled and the next time increase should lead to the end of this zone. It is important
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to note that all the sequences involving t1 are preserved, as the time increase is only one of the
possibles evolution of the system, the firing of t1, t2 and t3 also being possible.

Finally, let us consider a second variant, in which t4 is replaced by t′′4 (in green in the figure), with
a time interval of [6, 8]. In that scenario, the current action zone is still [a2, b1], which enables t1,
t2 and t3. The next action zone ]b1, b2] enables t2 and t3 only. As before, the enabled transitions
are included in the current action zone, which means that going to this zone is irrelevant. However,
it is not possible to go further ahead since we reachedB (it corresponds to the time before reaching
b2). We must thus chose a transition to fire in the current zone. Transition t′′4 is presently non-
enabled; it may become enabled in the future however, after (at least) t1 or t2 is fired.

In the context of Petri net the acceleration may be defined syntactically (by modifying the guard
of transition ttime and the annotations of arcs from transition ttime to place sC) and corresponds
to replacing the following items in Definition 3.1:

• λ(ttime, sC) = y′, where ∀i ∈ [1, n], y′[i]← y[i] + δ;

• λ(ttime)
df
= δ > 0.

The computation of δ is possible thanks to the current localities of agents present in tokens in
place sA and the values of clocks present as tokens in place sC .

Note finally an interesting feature of the accelerated semantics: if we change the granularity of the
time and multiply all the timing constant by some factor, the size of the state space of the original
semantics is inflated accordingly. On the contrary, the size (and structure) of the accelerated
semantics remains the same.

4.1. Abstracted dynamics

In order to capture the causality feature of such models, mixing time passings and transition/reset
executions, and to drop the purely timed aspects, we shall consider the graph whose nodes are the
projections of evolutions from the initial state on the set of transitions and resets. Said differently,
if we have a word on the alphabet composed of +δ (time passing, with δ = 1 in the original, non-
accelerated, semantics), ti,j’s (transitions of agent Ai) and ri’s (reset of agent Ai) representing
a possible evolution of the system up to some point, by dropping all the +δ’s we shall get its
projection, and a node of the abstracted (from timing aspects) graph. The (labelled) arcs between
those nodes will be defined by the following rule: if α and αt (or αr) are two nodes, there is an
arc labelled t (or r) between them. This will define a (usually infinite) labelled tree, abstracted
unfolding of the semantics (either original or accelerated) of the considered system.

The initial node (corresponding to the empty evolution) will be labelled by the projection (~l; v)

of the initial state (~l,~c; v). This will automatically (recursively) determine the label of the other
nodes: if (~l; v) is the label of some node and there is an arc labelled t = (li, f, [a, b], l

′
i) from it to

another one, the latter will be labelled (~l′; f(v)), where ~l′ is ~l with li replaced by l′i; and if the arc
is labelled ri, the label of the destination node will be (~l′; v), where ~l′ is ~l with li replaced by l1i .

As an illustration consider the MAPT of Ex. 2.1, where we neglect the values of the variable to
simplify a bit the presentation. The initial fragment of the original and accelerated dynamics as
well as the corresponding abstracted dynamics are represented in Fig. 5, assuming initially the
clocks are both equal to 0, A1 is in state 1 and A2 is in state 3.
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+1

(1, 4; 1, 1)

(1; 4; 2, 2)

(1, 4; 3, 3)

+1

+1

(2, 4; 1, 1)

(2, 4; 2, 2)

(2, 4; 3, 3)

+1

+1

+1

t1

t1

t′1

t2

t2

t′2

t1

t1

t′1

t2
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(2, 4)(2, 4)(2, 4) (2, 4) (2, 4)(2, 4)

t′1
t1 t2

t′2

t′2t2t′2 t1 t′1t′1

Figure 5. The initial fragments (without variable values) of the various dynamics for the MAPT from Ex 2.1.
Top left: the original dynamics. Top right: the accelerated one. Bottom: the abstracted dynamics.
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Proposition 4.1. The original and accelerated semantics of a MAPT lead to the same abstracted
dynamics.

Proof:
We only have to show that the set of (untimed) projections of evolutions in the original semantics
is the same as the ones in the accelerated one.

First, we may observe that each evolution in the accelerated semantics is also an evolution in
the original one: a time passing of δ time units to reach a maximal action zone is the same as δ
time passings of 1 time unit; indeed, by definition, δ ≤ B and at the end in both cases we have
B − δ = B − δ · 1 ≥ 0.

It thus remains to show that, if word(ω) is the projection of some evolution ω of the original
semantics, it is also the projection of some evolution ω′ of the accelerated one. We shall proceed
by induction on the length of ω and show more exactly that for each ω there is an accelerated
evolution ω′ such that word(ω′) = word(ω) and the set of enabled transitions/resets after ω is
included in the one after ω′.

The property is trivially satisfied initially, when ω = ω′ = ε, but also if the initial enabled
set is not maximal and we choose the accelerated strategy going to (any point realising) the first
maximal enabled set through some shift δ. Indeed, we know by definition that some shift δ always
lead to the first maximal enabled set and nowhere else. Then, in this last case, by definition δ ≤ B
and the set of enabled transitions/resets increases.

We already observed that, if word(ω) = word(ω′), the locality and the variable are the same after
ω and ω′. Let ∆(ω) be the time elapsed during the evolution described by ω. We may observe
that the clocks are determined by word(ω) and ∆(ω), independently on when the time passings
exactly occurred: for any agent Ai, ci = initi +∆(ω)−Ei ·#ri(ω), where #ri(ω) is the number
of resets of Ai in word(ω). We also have that we may not let more than mini{Ei} time passings
to occur in a row, since then we should have a reset occurring before.

We shall now assume that ω̃ extends ω by one event, that ω and ω′ form an adequate pair, and
that it is then possible to build an adequate accelerated evolution ω̃′.

If ω̃ = ω(+1), i.e., if ω̃ is obtained from ω by adding a time passing (of 1 time unit), the projection
of ω̃ is the same as the one of ω, hence of ω′ by the induction hypothesis. If the enabled set after ω̃
is still included in the one after ω′, the latter still satisfies the induction hypothesis. If the enabled
set after ω̃ is no longer included in the one after ω′, that means we reached one or more a’s which
were not reached yet by ω′, so that we may deduce that ∆(ω′) < ∆(ω̃). But then, going to (any
point in) the next maximal action zone (with the aid of some aggregated time passing δ) in the
accelerated semantics, we shall reach those a’s (without trespassing B since otherwise this would
also occur for ω̃, forcing to first perform a transition or reset after ω) and recover the induction
hypothesis.

If ω̃ = ωri, for some agent Ai, we must have that initi + ∆(ω̃) = initi + ∆(ω) = k · Ei for
some factor k, with ri belonging to the set of transitions/resets enabled after ω. But an action
zone enabling a reset is an interval including exactly one time unit, and is maximal. Hence after
ω′ we have the same action zone and initi + ∆(ω′) = k ·Ei (the same factor for ω′ as for ω̃ since
the time passings between resets are limited). We may thus also perform ri after ω′, the state after
ω′ri is the same as after ω̃, and the situation is the same as initially.

If ω̃ = ωt, for some transition t of some agent Ai, by the induction hypothesis t may also occur
after ω′ and word(ω̃) = word(ω′t). Any t′ enabled after ω in any Aj for j 6= i remains enabled
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after ω̃ as well as after ω′t, by the induction hypothesis. For agent Ai, from the third item of
Constraint 1, no transition at the new location has already reached its enabling end point in the
original (after ω̃) and in the accelerated (after ω′t) semantics. If ∆(ω̃) ≤ ∆(ω′t) = ∆(ω′), the
clock Ci of Ai is not greater after ω̃ than after ω′t) (see the formula above yielding ci) so that
all the enabled transitions of Ai after ω̃ are also enabled after ω̃′t, and the induction hypothesis
remains valid. On the contrary, if ∆(ω̃) > ∆(ω′t), it may happen that some t̃ inAi is enabled after
ω̃ but not after ω′t; however, from ω′t it is then possible to let time pass during ∆(ω̃)−∆(ω′t),
which leads to the same state as after ω̃; it is then also possible to consider a maximal action
zone after ω′t which encompasses all the transitions enabled after ω̃, to reach it in the accelerated
semantics, and the induction hypothesis remains valid.

ut

5. Layers and strong and weak variables

When model checking a system, one usually has the choice between a depth-first and a width-
first exploration of the state space. For reachability properties (where one searches if some state
satisfying a specific property may be reached), depth-first (directed and limited by the query)
is usually considered more effective. However, the majority of the non-determinism in systems
featuring a high level of concurrency (such as MAPTs, and in particular CAV systems) leads to
diamonds. Indeed, if transitions on different agents are available at a state then they may occur
in several possible orders, all of them converging most of the time to the same state (see the
paragraph on persistence above). In order to avoid exploring again and again the same states,
a depth-first exploration needs to store all the states already visited up to now, which is usually
impossible to do in case of large systems. For example, if states s1 and s2 share a common
successor s3, the algorithm will compute successors of s1, then remove s1 from memory and
continue with its successors, until reaching s3 and exploring all paths from s3, forgetting each
time the nodes already visited. That way, when the algorithm has explored all paths from s1 and
start exploring from s2, there is no memory of s3 having been explored already, and thus all paths
starting from it will be explored again.

On the contrary, using width-first algorithms would guarantee avoiding that issue, because dupli-
cate states obtained at a given depth can be removed. However, this would also imply exploring
all reachable states at a given depth and forbid using heuristics to direct and limit the exploration.

An idea is then to try to combine both approaches.

5.1. Layered state space

The state space of a MAPT shows an interesting characteristics: apart from having no cycles
(see Prop. 2.4: the state space in our case is always a DAG), its structure can often be divided in
layers such that all states on the border of a layer share the same vectors of localities and clocks
(and thus, the same set of enabled transitions) and are situated at the same time distance from the
initial state. The only difference concerns the value of the variable, due to the non-determinism
and the concurrency inherent to this kind of models. Non-determinism means that an agent has
the choice between several transitions at some location; concurrency means that at least two
agents may perform transitions at some point. In the first case, several paths may be followed
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by the agent to reach some point, leading to different values of the variable; in the second case,
transitions of the two agents may be commuted, leading again to different values of the variable.

This is schematised by Fig. 6, where one can see how the state space is divided in sub-spaces
(each of them being a DAG with a unique initial state) such that each final state of a sub-space is
the initial state of another one. The sub-spaces may intersect.

More formally, in a DAG, we have a natural partial order: s1 < s2 if there is a non-empty path
from s1 to s2; s1 and s2 are incomparable if there is no non-empty path between them.

A cut is a maximal subset of incomparable states. A cut partitions the partially ordered space into
three subsets: the states before the cut, the cut itself, and the states after the cut.

In the following, we shall denote by ω a (possibly empty) evolution leading from some state s to
some state s′, i.e., the sequence of transitions, resets and time passings labelling some path going
from s to s′ in the state space of the considered model. As usual, we shall also denote by ∆(ω)
the sum of the time passings along ω, also called the time distance from s to s′ (along ω).

Definition 5.1. In a MAPT (whose state space is a DAG), a cut is said coherent if all its states
have the same locality and clock vectors, and any two evolutions ω1, ω2 linking the initial state
to states of the cut have the same time length: ∆(ω1) = ∆(ω2). Coherent cuts may be used to
define borders between layers.

Let s be any state in a MAPT; the states reachable from s form a DAG subspace, in which we
may also define coherent cuts: a coherent cone with apex s is the set of states up to a coherent cut
in this subspace (including s and the cut).

Proposition 5.2.

• Coherent cuts do not cross, in the following sense. Let C1 and C2 be two coherent cuts in a
MAPT, s1, s′1 ∈ C1, s2, s′2 ∈ C2. If there is an evolution ω from s1 to s2 and ω′ from s′2 to
s′1, then C1 = C2 and ω = ε = ω′. In particular, no two distinct coherent cuts may have a
common state.

• The time distance between coherent cuts is constant, in the following sense. Let C1 and C2
two different coherent cuts in a MAPT, s1, s′1 ∈ C1, s2, s′2 ∈ C2, with an evolution ω from
s1 to s2 and ω′ from s′1 to s′2, then ∆(ω) = ∆(ω′).

• If s1 ∈ C1 and there is a coherent cone with time height ∆ (for any evolution ω from s1 to
the base of the cone, ∆(ω) = ∆), then there is a coherent cut C3 separated from C1 by a
time distance ∆.

Proof:

• In the first case, if there is a path ω̃ from s0 to s1 and a path ω̃′ from s0 to s′2, we must
have ∆(ω̃) + ∆(ω) = ∆(ω̃ω) = ∆(ω̃′) and ∆(ω̃′) + ∆(ω′) = ∆(ω̃′ω′) = ∆(ω̃), hence
∆(ω) = −∆(ω′), which is only possible if ∆(ω) = 0 = ∆(ω′).
Also, since s2 and s′2 have the same localities and clocks, there is an evolution ω′ from s′2
to some state s′′1 with the same localities and clocks as s1, hence an evolution ωω′ of time
length 0 from s1 to s′′1 , which reproduces the same localities and clocks. Since the localities
of each agent Ai form a DAG and Ei > 0, this is only possible if ω = ε = ω′.
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In particular, if ω = ε, i.e., s1 = s2, we also have that s′1 = s′2 and C1 = C2, and similarly
if ω′ = ε.

• In the next case, if s0 is the initial state and there is a path ω̃ from s0 to s1 and a path ω̃′

from s0 to s′1, we must have ∆(ω̃)+∆(ω) = ∆(ω̃ω) = ∆(ω̃′ω′) = ∆(ω̃′)+∆(ω′), hence
the property.

• The last property results from the observation that, if s′1 ∈ C1, since s1 and s2 have the
same localities and clocks, any evolution from s1 to the base of the cone is also present
from s′1 and leads to a state with the same localities and clocks as the states on the base of
the cone (but the variables may differ). And conversely, if a path leads from s′1 to a state of
C3, it has time length ∆ and there is the same path from s1 to some state on the base of the
cone.

ut

For instance, if agent Ai in a MAPT starts at l1i with a null clock, after Ei time units and before
(Ei + 1) time units, it shall necessarily pass through its reset (it is possible that it performs other
transitions before and/or after this reset without modifying its clock, but it is sure the agent will
go through this reset before performing a new time passing). Hence, if each agent starts from its
initial locality with a null clock, after lcm{E1, . . . , En} (i.e., the least common multiple of the
various reset periods; in the following, we shall denote this value by lcm(E)) time units, it is sure
we shall be able to revisit the initial state, but possibly with various values of the variable, yielding
the border of a layer. From this border the same sequences of transitions/resets/time-passings as
initially will occur periodically (with a period of lcm(E)), leading to new borders, with the initial
localities and the null clocks.

The situation will be similar if ∀Ai : initi = init mod Ei for some value init < lcm(E). Indeed,
for each agent Ai and each k, after Ei − initi + k · Ei time passing we shall visit l1i with a null
clock, hence visit new borders after (k + 1) · lcm(E)− init time passings.

For other initial values of the clocks, it is not sure we shall be able to structure the state space in
layers, but in either case, it may also happen there are other kinds of layers and borders.

Let us consider for instance the system illustrated on top of Fig. 7, where each agent starts with
a null clock in its initial locality. Agent A1 is deterministic since there is a single transition
originated from l11 as well as from l21, and agent A2 is not since two transitions may occur while
being in l22. If we forget the value of the variable, the graph for A1 is periodic with a period of
E1 = 10 and the graph forA2 is periodic with a period ofE2 = 15. The whole system is therefore
periodic with a period of lcm(E) = lcm{E1, E2} = 30. The sequence of intervals depicted in
the bottom of the figure for A1, represents the intervals where transitions have to take place, with
their time distance from the initial state (here these intervals are disjoint, but they could overlap
as well). Note that if an initial clock initi were to be strictly positive, the sequence of intervals
for agent i would be shifted to the left by initi time units. For A2, the intervals exhibited on the
figure have a different interpretation, that will be explained below.

A border may not occur at a time t measured from the beginning of the system if, for some
deterministic agent Ai (the case for non-deterministic agents will be handled below), there is an
interval [a, b], shifted by some multiple of Ei, such that

a+ k · Ei − initi < t < b+ k · Ei − initi (1)
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Figure 6. General shape of a layered state space with a zoom on the initial part. Identical states are merged
together. All states on the border of a layer share the same vectors of localities and clocks but have different
values of v. Each sub-space surrounded by dashed lines is a DAG having a unique initial state and one or more
final states as shown in blue for the sub-space corresponding to the initial part.

Indeed, in that case, at time t, Ai may either be at the source or at the destination of the cor-
responding transition, without being able to impeach that, hence without being certain of the
locality.

Hence, a deterministic agent may allow a border to occur at a time t if one of the following cases
occurs:

• If t is strictly between the various shifted intervals of Ai, we know immediately that when
we reach this time we are at some specific location in Ai. For instance at time t = 19 in
Fig. 7, we are sure A1 is in location l31.

• If t is situated at the right of some (shifted) interval, the agent can be either in the source or
in the destination localities. The first situation does not exist in every paths, as it is possible
to leave the source before t, while the second situation exists in all paths. Therefore, the
second situation is suitable for a coherent cut. This case happens in Fig. 7, for instance
when the system reaches time t = 5, A1 may be either in l11 or in l21.

• If t is situated at the left of some (shifted) interval, the agent can be either in the source
or in the destination localities. This is symmetric to the previous case, and here it is the
first situation that exists in all paths and is suitable for a coherent cut. This case happens in
Fig. 7, for instance when the system reaches time t = 6, A1 may be either in l21 or in l31.

• If t is situated on an interval of length 0 (such as a reset, or transition with an interval
where a = b). This corresponds to a union of the two previous cases, where two localities
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l11 l21 l31 E1 = 10A1

[1, 5] [6, 8]

l12 l22

l32

l42 E2 = 15A2

[0, 4]

[6, 7] [9,
9]

[7, 11]

Figure 7. Top: Example of a MAPT composed of agents A1 and A2 with clocks C1 and C2 initialized to 0.
Bottom: Time intervals where a transition or set of transitions may be performed. Red dotted lines indicate time
units where a coherent cut may exist.

are possible. Here, both are suitable for a coherent cut. This case happens in Fig. 7, for
instance when the system reaches time t = 20, A1 may be either in l31 or in l11.

• If t is both at the right of some shifted interval and at the left of another one (meaning that
they intersect on t), this comes back to a combination of the previous cases. As such, a
suitable situation for a coherent cut is to consider the system after performing the transition
corresponding to the left interval and before performing the transition corresponding to the
right interval. A particular occurrence of this case is shown in Fig. 7 at time 15, whereA2 is
at the right of an interval of length 0 corresponding to its reset and at the left of the interval
of the transition from l12. In this situation, A2 may either be in l42, l12 or l22. The fact that one
of the interval is of length 0, is included in the general case.

For a non-deterministic agent, like A2 in Fig. 7, the analysis is similar but slightly more complex;
indeed, even between intervals it may be in several possible localities2. For instance, at time
t = 7, A2 may either be in l32 after having performed a transition at time 6, or in l22, and we may
not force the system to wait for A2 going in l32 since it has the possibility to choose the other
transition. The idea is then to consider the localities of the considered non-deterministic agent
Ai which by themselves are singleton cuts in the DAG of its localities, i.e., the localities which
are visited in every complete iteration (from l1i to lmi ). For A2 in Fig. 7, those localities are l12, l22
and l42. They form a sequence in Li: let Pi be this list and denote by succ(l) the successor of l
in Pi. Thus, between two localities l and succ(l) in Pi, either there is a unique transition enabled
in some interval [a, b] (as in the deterministic case above) or there are at least two different paths
with possibly several transitions enabled at some moment in the interval [ã, b̃], where ã is the
smallest lower bound of all the outgoing transitions from l and b̃ is the greatest upper bound of all

2of course not at the same time: for different histories.
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the incoming transitions to succ(l). One may think about [ã, b̃] as the enabling interval of some
virtual transition from l to succ(l). Then, exactly the same argument as above may be used to
check if a state space of a MAPT admits layers, and this amounts to a proof of:

Proposition 5.3. A MAPT admits a layered state space with borders at t+ ` · lcm(E) with ` ∈ N
if, for each agent Ai, for each l ∈ Pi \ {lmi }, and for ã df

= min{a | (l, f, [a, b], l′) ∈ l•},
b̃

df
= max{b | (l′, f, [a, b], succ(l)) ∈ •succ(l)}, no k ∈ N satisfies: ã + k · Ei − initi < t <

b̃+ k · Ei − initi, where initi is the initial value of clock Ci. �

A border detected that way will then be defined by the couple ((l1, · · · , ln), (c1, · · · , cn)) where,
for agent Ai, ci = (t + initi) mod Ei (or Ei instead of 0 if we reach the position of a reset
but decide not to perform the latter) and li is the locality periodically reached in all possibles
paths at clock value ci. Locality li is determined by the clock if we are not at the border of an
interval, otherwise we have to know if the corresponding transition or reset has to be performed.
In particular, when reaching intervals of length 0, we have a choice between several localities
(before or after performing the corresponding transition or reset).

Searching for t more efficiently Proposition 5.3 allows to search for the coherent cuts
whose sets of localities and clocks reproduce every lcm(E) time units3. Hence, it is not nec-
essary to consider times t beyond lcm(E); note however that it may happen that a coherent cut
occurs at time lcm(E), but not at time 0, if the corresponding localities occur ”before” the initial
ones at time lcm(E). Also, this proposition seems to imply we should consider all the shifted
version of each interval [ã, b̃], i.e., all integer values for k. This is not true: for each [ã, b̃] we only
have to consider the greatest k respecting the left constraint ã+k ·Ei− initi < t, i.e., the greatest
ka such that ka < t+initi−ã

Ei
, which is given by the formula ka = d t+initi−ã

Ei
− 1e. We then have

to check if t < b̃+ ka ·Ei − initi (in which case the considered t does not define a coherent cut).

If we also want to avoid the extremities of the intervals [ã, b̃], we get that no k should lead to
the constraint ã + k · Ei − initi ≤ t ≤ b̃ + k · Ei − initi. This leads to the simpler formula
ka = b t+initi−ã

Ei
c, and to the check t ≤ b̃ + ka · Ei − initi. Also, in this case the clock vector is

enough to describe the coherent cut without any ambiguity.

Combination with the accelerated semantics If we consider only the locality and clock
vectors and we neglect the value of variable V in the states, a coherent cut becomes a mandatory
crossing point in the original dynamics of the system. This will also be true in the accelerated
semantics, but in order to preserve the periodic occurrences of these points we need to avoid
letting time jumps go anywhere in the next maximal action zone: we need a deterministic rule,
like the one we mentioned before, prescribing to go to the end of the zone. We shall adopt this
rule in the following.

Since in the accelerated semantics, time passings jump to (the end of) the next maximal action
zone, intervals do not play the same role as in the original semantics and we may not rely on
Property 5.3 to find the coherent cuts. In particular, coherent cuts in the accelerated semantics

3There may also be non-periodic coherent cuts at the beginning of the state space, if some agents do not start at their initial
locality with a null clock. Indeed, for those agents, it may happen that other localities are certainly visited before the first
reset, which introduce other intervals [ã, b̃] before that time. However, we shall not use those extra coherent cuts in our
exploration and model checking tool.



22 J. Arcile, R. Devillers, H. Klaudel / Dynamic exploration of MAS with timed periodic tasks

((1, 1); (0, 0))

((1, 2); (5, 5)) ((2, 2); (4, 4))

((2, 2); (5, 5))

((2, 2); (6, 6))

((3, 2); (6, 6)) ((2, 3); (6, 6)) ((2,2); (7,7))

+1

+1

+1

+3

+2

Figure 8. A fragment of the original and accelerated dynamics with omitted values of V for Example 7.
Vectors of localities (li1, l

j
2) are denoted by (i, j). The thick arcs correspond to the steps present in the accelerated

dynamics while thin ones correspond to the steps present in the original one. Time passing arcs are labelled by
the corresponding delay; transition arcs are unlabelled (the corresponding transition may be read in the change
of localities). Coherent cuts in original dynamics are underlined and those in the accelerated one are bold.

are usually not ones in the original one. This is due to the fact that, as time steps may be bigger
than one unit in the accelerated dynamics, it may happen that a time passing overpasses the clock
vector corresponding to some coherent cut (~l,~c) present in the original dynamics.

However, we may relate coherent cuts in the accelerated semantics to the ones in the original one,
which may be characterised by Property 5.3: as we shall see in Proposition 5.4, a state (~l,~c + δ)

reached after going over an original coherent cut (~l,~c) is in fact a coherent cut of the accelerated
dynamics. This is illustrated in Figure 8.

One may observe that in both dynamics, all paths go to either ((1, 2); (5, 5)) or ((2, 2); (4, 4)).
In the original dynamics, the coherent cut at ((2, 2); (5, 5)) is reached, and after a time passing
the coherent cut at ((2, 2); (6, 6)) is reached. From ((2, 2); (6, 6)), three actions are possible
(two transitions and one time passing). In the accelerated dynamics, it is still possible from
((1, 2); (5, 5)) to reach ((2, 2); (5, 5)), but not from ((2, 2); (4, 4)) as the acceleration directly
leads to ((2, 2); (7, 7)). From ((2, 2); (5, 5)) in the accelerated semantics, the acceleration also
leads to ((2, 2); (7, 7)), since this state corresponds to the end of the first maximal action zone.
As such, in the accelerated semantics, ((2, 2); (6, 6)) is not a coherent cut anymore since it is
not reachable, but also ((2, 2); (5, 5)) is no longer a coherent cut since there exist paths that go
over it. This illustrates that, in the accelerated dynamics, the locality vector corresponding to an
original cut may be entered with different clock values, but from those states (here ((2, 2); (4, 4))
and ((2, 2); (5, 5))) the acceleration will always lead to the same vectors of localities and clocks
(here ((2, 2); (7, 7))), which is a coherent cut in the accelerated semantics.

It remains to show that this is not an accident but a general rule.

Proposition 5.4. For each (periodic, with the period lcm(E)) coherent cut characterised by the
vectors (~l,~c) at time t (measured from the beginning of the system) in the original semantics,
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there is a coherent cut in the accelerated semantics for the same vector of localities ~l and clock
vector ~c+ δ at time t+ δ, for some δ ∈ N.

Proof:

Since, in the accelerated semantics as in the original one, the localities are determined by the se-
quence of transitions and resets that have been performed, from Proposition 4.1 we know that the
visited localities are the same in both semantics. Moreover, each reachable state in the accelerated
dynamics is also reachable in the original one and for each existing path between two states in
the accelerated dynamics there is also at least one path in the original one. As a coherent cut is a
mandatory crossing point (when we neglect the values of the variable) in the original dynamics of
the system, the only way to avoid it in the accelerated dynamics is to have a new arc from a state
before the cut leading to a state after the cut (for instance, in Figure 8, the original cut (2, 2)(5, 5)
is reachable in the accelerated semantics, but it may also be skipped by the arc from (2, 2)(4, 4)
to (2, 2)(7, 7), hence it is not a cut in the accelerated semantics; the original cut (2, 2)(6, 6) is
not even reachable in the accelerated semantics, due to the arc from (2, 2)(5, 5) to (2, 2)(7, 7)).
All transitions and resets present in the accelerated dynamics are also present in the original one,
therefore only a time passing (jumping to the end of the next maximal action zone) may provide
such a possibility. Hence, if we may prove that whenever a time passing in the accelerated dy-
namics goes from a state s before a cut in the original dynamics to a state s′ after that cut, the
state s′ belongs to a coherent cut in the accelerated dynamics, we are done.

If an agent Ai has a single location l1i , i.e., mi = 1, its resets do not change the location (only
its clock goes from Ei to 0), hence we shall neglect it in the following definition of t− and t+,
considering its resets are spurious. Let t− = max{t′ | t′ = (k · Ei − initi) ≤ t, k > 0, i ∈
{1, . . . , n},mi > 1} be the time of the last (non-spurious) reset not after t, and t+ = min{t′ |
t′ = (k · Ei − initi) ≥ t, k > 0, i ∈ {1, . . . , n},mi > 1} be the time of the first (non-spurious)
reset not before t.

If the original coherent cut (~l,~c) occurs before the first non-spurious reset then, with the usual
convention max(∅) = 0 in N, t− = 0. If a reset is available or was just performed at t, then
t− = t = t+.

Since we assumed that the transition graph of each agent is acyclic, if an agent leaves a locality,
the same locality cannot be reached again before the next reset of this agent. As a consequence, in
the interval [t−, t+], a vector of localities ~l once exited (i.e., performing a transition from a state
with ~l) cannot be reached again. Therefore in both semantics, it is not possible to enter ~l strictly
after t in the interval [t−, t+], nor to leave~l strictly before t in the interval [t−, t+], since~l must be
reached at time t in each original path (by definition of a coherent cut in the original semantics;
note that other vectors of localities may also be reached at t, before or after ~l).

Hence, in the accelerated semantics, ~l will always be entered at some t′ ≤ t and may only be
leaved at some t′′ ≥ t. There may be several values for t′, depending on the path followed
to reach this locality (for instance, in Figure 8, there are two ways to enter (2, 2): (2, 2)(4, 4)
and (2, 2)(5, 5)). On the contrary, there is single value t′′, corresponding to the end of the first
maximal action zone starting at or after t, and there is one since otherwise that would mean there
is no way to reach t and get out of ~l. This yields the unique way to get out of the locality vector ~l,
hence a coherent cut of the accelerated semantics, adding δ = t′′ − t to each clock since we did
not performed a reset meanwhile. For instance, in the example of Figure 8, if t = 5 there are two
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possible paths, either t′ = 4 and d = 3, or t′ = 5 and d = 2, leading in both cases to the coherent
cut (2, 2)(7, 7) of the accelerated semantics. Notice a curious feature: in the accelerated semantics
for the same example, we reach the coherent cut ((2, 2); (5, 5)) of the original semantics, but it is
no longer a coherent cut since there exists now a path that does not reach it, because of the added
arc labelled +3.

From the choice of the jump points in the accelerated semantics, δ will be the same for each
re-occurrence of the considered coherent cut, at t+ k · lcm(E).

ut

Exploring layered state space The function next border(state), depicted in Algorithm 1
takes a state state = (~l,~c, v) and computes, through a width first exploration, the set of successors
up to the next border. It applies to both original and accelerated semantics and requires to define
a non empty set of periodic cuts Cuts (in the form (~l,~c), i.e., without the variable, obtained from
an application of Prop. 5.3) that are coherent in the original dynamics.

To do so we introduce the function next state(s), which returns the set of all successors of state
s (depending on the chosen semantics), and the function is cut(pre s, s), which is true if the state
s, successor of state pre s is part of a cut defined by Cuts . Formally, is cut(pre s, s) depends
on the chosen semantics. In the original semantics, is cut(pre s, s) is true if s = (~l,~c, v) and
(~l,~c) ∈ Cuts . In the accelerated semantics, is cut(pre s, s) is true if one of the following occurs:

• s = (~l,~c, v), (~l,~c) ∈ Cuts and at least one transition or reset allows to leave s, which means
that the coherent cut is the same in both semantics;

• pre s = (~l,~c, v), s = (~l, ~c+, v), (~l,~c) ∈ Cuts and s is the only successor of pre s with
~c < ~c+, which means that the original cut has also been reached in accelerated semantics
but is no longer a coherent cut;

• pre s = (~l, ~c−, v), s = (~l, ~c+, v) and (~l,~c) ∈ Cuts with ~c− < ~c ≤ ~c+, which means that
the accelerated time increase went over the original cut.

The algorithm is described in python : list.add(e) adds element e in the queue list (only if
e /∈ list) , while list.pop() removes the first element (it is a first in/first out behaviour), border
and exploring are initially empty and the loop condition is true as long as exploring is nonempty.

This can be used iteratively in a depth-first exploration to jump from a state to one of its successors
belonging to the next border. During this exploration, an additional function may be used to check
if a state satisfies some condition. Such a use of layers allows to reduce the number of explored
paths by detecting diamonds caused by the order of transitions of concurrent agents.

5.2. Exploration using strong and weak variables

The approach presented in the previous section does not deal with diamonds spreading on a time
distance longer than the one between two adjacent borders. For example, it may still happen
that two different states s1 and s2 belonging to the same border have a common successor s in
the future, as illustrated in Fig. 6. To cope with this issue, it is more interesting to perform the
width-first exploration that computes successors at the next border for the set {s1, s2} instead
than taking them separately. In general, it is not obvious to know or guess which states should be
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Algorithm 1 next border(state)
border[] {Set of states to be returned}
exploring[] {Queue of states to explore}
exploring.add(state)
while exploring do
pre s← exploring.pop()
successors← next state(pre s)
for all s ∈ successors do

if is cut(pre s, s) then
border.add(s) {States of the cut are added to border}

else
exploring.add(s) {Other states are added to exploring}

end if
end for

end while
return border

kept together in the computation of the next border. Indeed, one should be able to determine when
sets of states should be split in sub-sets and when they should be kept together. To perform such
a clustering, it may be interesting to exploit the properties of target applications, such as CAVS.

A possible solution is to assume V df
= Vw × Vs, where Vw (weak) is a less important part of V

and Vs (strong) a more important one, such that states differing in the valuation of Vs are unlikely
to have a common successor, while this is not the case for Vw. Symmetrically, states with the
same valuation of Vs are more likely to have a common successor. This may give us a criterion
to cluster states and jump from a set of states to the set of their successors at the next border.
The choice of Vs and Vw is of course system-dependent and should be defined by an expert, or
with the help of a simulation tool. As an example, elements that can be assigned a new value
independently of their previous one might be considered as weak, while elements whose value
changes depend on their present value (for instance the position of a moving object) might be
considered as strong.

Function clustered next border(state set) is then a variant of next border(), taking a set of
states and producing a set of clusters, i.e., sets of states having identical values of variables in Vs.
It is used in a similar way as next border() to explore in a depth-first manner the layered state
space, the only difference being that it jumps from a cluster belonging to some border to a cluster
belonging to the next one, based on the choice of Vs.

Note that if Vs = ∅, such an exploration is equivalent to a classical width-first one, since states at
a border are always kept is the same sub-set. With such an algorithm, for a bounded layered state
space of a MAPT, one can perform an ”on-the-fly” depth-first exploration since there is no need
to memorize explored states. This may be used to efficiently search for specific reachable states,
and may be sped up by the use of heuristics that choose which sets of states to explore first.
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6. Dynamic exploration of a MAPT

This section is dedicated to exploration algorithms of finite prefixes of MAPTs: states that do not
have successors in the considered prefix will be called final. The algorithms are denoted with the
CTL temporal logic syntax. Since this temporal logic is meant to explore infinite paths, we shall
consider that each final state has a self loop.

Our algorithms have two main characteristics: they operate ”on-the-fly”, which means that they do
not store the entire visited state space (but only a cut of it), and they can be tuned with heuristics
defining a priority on paths to be explored, that might significantly speed up the computation
time if the searched states exist. To do so we rely on the algorithm clustered next border()
mentioned in Section 5. Since they do not store all the states that have been explored, we chose
not to return traces of execution, unlike what is usually proposed by standard temporal logic
model checking tools.

We formalise in the following algorithms for the basic CTL properties EFp and EGp, respec-
tively meaning a reachable state satisfies p and there exists a path where p is always true. Any
property for which we have an algorithm may be negated, so that we can also express AFp and
AGp, respectively equivalent to ¬(EG¬p) and ¬(EF¬p).

The algorithm for EFp consists, starting from a stack containing the initial state, in taking the
first element s of the stack, returning it if p is true on s, and otherwise adding the result of function
clustered next border(s) to the stack. The algorithm continues recursively until reaching p or
there is no more states to explore in the considered finite prefix. Additionally, we return true if p is
satisfied by a state between two borders, i.e., during an application of clustered next border().

The algorithm for EGp works in a similar way, but the state s is returned if p is true on s and if s
is final, and clustered next border(s) is added to the stack only if p is true on s. Additionally,
states where p is not true are dropped when explored in clustered next border(). That way,
only states where p is true are explored.

We may also define algorithms for nested CTL queries built with binary logical operators. We
shall for example consider two of them: EF (p ∧ EFq), meaning that a reachable state satisfies
p and from that state a reachable state satisfies q, and EF (p ∧ EGq), meaning that a reachable
state satisfies p and from that state there exist a path where q is always true. One may notice that
the ”leads to” operator ( −−> ) used in the state of the art tool UPPAAL follows the equivalence :
p −−> q <=> AG(¬p∨AFq) <=> ¬EF (p∧EG¬q). This operator is therefore expressible
in our framework. Although only these two queries are given here, any kind of nested CTL query
can be implemented.

Those nested queries are implemented using a marking function (i.e., a Boolean indicator). EF (p∧
EFq) is implemented as follows. Whenever p is true on a state, the state is marked. Whenever
a state is marked, all its successors are marked. Starting from a stack containing the initial state,
the first element s of the stack is returned if q is true on s and s is marked. Otherwise, the re-
sult of clustered next border(s) is added to the stack. The same marking process is performed
between two borders, i.e., in clustered next border(). We continue recursively until a state val-
idates the property or there is no more state to explore. As for EF (p ∧ EGq), states are marked
whenever both p and q are true or the state is a successor of a marked state and q is true. If a
marked final state is reached, it validates the property and is returned. Again, the same marking
process is performed in clustered next border().
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7. Experiments

In this section we illustrate the performances of our exploration algorithms. To do so, we use
MAPTs representing systems of autonomous communicating vehicles, for which both Con-
straints 1 and 2 are satisfied. The first constraint allows to use the acceleration, which heavily
reduces the size of the state space as well as the number of diamonds. The second constraint
ensures that the state space is a DAG. As a consequence of the latter, the state space is infinite,
because of the X part of V . In the following case studies, the longitudinal positions of the vehi-
cles on the road will play the role of this part. The road we observe is technically infinite, but as
we are interested only in the analysis of a portion of it, we can bound the exploration to a fixed
value of X . The system thus converges towards a bound that, once reached, is considered as a
final state.

In the following, we first compare the exploration time obtained with or without acceleration.
Then, we discuss the advantages and drawbacks of using various types of layer-based explo-
rations. In the third part of this section, we provide some heuristics, and experiment them in order
to (hopefully) observe the gain that can be achieved with them. Finally, we compare this method
with the framework VERIFCAR [2], which uses UPPAAL, and we provide a verification method
for the analysis of such systems that is more efficient than the one proposed in [2].

Three models used in [2], featuring various state space sizes, have been implemented as MAPTs.
Those models represent systems of autonomous vehicles circulating on a portion of highway
where each vehicle communicates with the other ones to make decisions about its behaviour.
These experiments have been performed by implementing the models with the free high level
Petri net tool ZINC, using its library to implement our exploration algorithms.

7.1. Efficiency of the accelerated dynamics.

A width first exploration of the state space on each of the three models have been performed using
both the original and the accelerated semantics. Table 1 provide for each model the number of
states in its state space along with their full exploration times (FET) in both semantics and in
UPPAAL. As expected, the accelerated semantics reduced exploration time, therefore, it has been
used in all the subsequent experiments.

Model 1 Model 2 Model 3

FET original semantics (s) 14.5 144 574

FET accelerated semantics (s) 10.8 52.1 420

FET UPPAAL (s) 5 36 379

Size of the state space 7751 52732 285944

Table 1.

It is interesting to mention that the main improvement of the accelerated semantics, compared to
the original one, is to explore only one state of each (maximal) action zone. As such, the more
a system features transitions with wide non-deterministic time intervals, the greater is the time
gain provided by the accelerated semantics. Here, the non-deterministic time intervals present
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in Model 1 and Model 3 are quite short, such that the number of paths that are ignored in the
accelerated dynamics is not very important. On the other hand, Model 2 features a transition with
a wider non-deterministic time interval, explaining why the difference between the two semantics
is more pronounced for this model. We can thus expect the accelerated semantics to be even more
useful when using models similar to the one depicted in Figure 7.

7.2. Efficiency of the layer-based exploration.

Here, we compare, for several exploration algorithms, the full exploration time and the reachabil-
ity time of the first occurrence of a final state. They are explored in width first, depth first without
layers and depth first with layers (with and without the use of strong/weak variables). The size of
the list Cuts was 1 for the models 1 and 3, and 5 for the second one. Table 2 shows the results.

Exploration algorithm Full exploration time (s) First occurrence of a final state (s)
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Width first 10.8 52.1 420 10.7 52 419.9

Depth first without layers ∞ ∞ ∞ 3.3 4.6 3.9

Depth first layered (Vw = ∅) 11 ∞ ∞ 4.5 6.6 4.1

Depth first layered (small Vw) 11 250 2015 4.5 7.4 6

Depth first layered (large Vw) 11 71 667 4.5 14.4 7.2

Table 2. Comparison of full exploration time and time to reach the first occurrence of a final state state for
exploration algorithms in width first, depth first with and without layers and with or without the use of weak
variables. ∞ means that the exploration was stopped after 50 hours of computation without a result.

One can see that the width first algorithm has the best full exploration time in any case, but
the time before reaching any final state is close to the full exploration one, which makes it the
worst technique in this case. On the other hand, the standard depth first algorithm is the fastest
for reaching a final state, but it does not fully explore the state space even after 50 hours of
computation.

Results for Model 1 show that as long as the layer based approach is used, the full exploration
time is very close to that of the width first algorithm. This indicates that there is almost no
diamonds covering several layers, meaning that different states belonging to the border of a layer
almost never share a common successor. Because of that, the use of weak variables has no effect.
Although this case is rather simple, it clearly highlights the advantage of layer-based exploration:
with almost no increase in full exploration time, it is able to reach a final state much faster.

Model 2 and Model 3 have much more complex state spaces and, in these cases, the layer-based
algorithm that does not rely on weak variables to aggregate states is not able to explore the full
state space even after 50 hours of computation. On the contrary, using even a small number but
well chosen weak variables (6 out of 39), it is possible to fully explore the state space. In both
cases, exploration is about five times longer than the exploration time of width first algorithm.
When using a large number of weak variables (30 out of 39), the exploration is much shorter
(about 1.5 times the time of width first algorithm). One can note however that the larger Vw, the
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longer it takes to reach a final state. Indeed, as states are aggregated layer by layer, a too large Vw
would result in an exploration similar to a width first one, where all states are kept together and
final states are only reached at the end of the computation. With the weak variables chosen, the
time to reach a final state remains however reasonable.

In the next experiments, the depth first algorithms always use layers and a fixed non-empty Vw.

7.3. Heuristics

Exploration algorithms based on layers allow the use of heuristics. These heuristics guide the
exploration, choosing among all the unexplored states the one that will most likely lead to a state
that satisfies the checked property. The heuristics we use consists in associating a weight to each
state. When a new state is discovered, it is placed in a list ordered by weight of states to explore.
The list of states to explore is sorted either by ascending or descending weight, depending on the
property to verify. The weight is a prediction of the distance between the current state and a state
satisfying the property. The next state to be explored is the last in the list, i.e., having the highest
(respectively lowest) weight.

Therefore, a property may be associated with a heuristics that takes a state as an input and returns
a weight as an output. Below is a list of heuristics that we used for experiment purposes together
with the property they are associated to:

1. distance vh1 vh2 : returns the longitudinal position of vehicle vh1 minus that of vehicle
vh2. It may be used with property EF arrival vh1 before vh2 and weights sorted in
ascending order, where arrival vh1 before vh2 is true in a state if vehicle vh1 reaches the
end of the road portion before vehicle vh2 does. The idea behind is to check in priority
states where vh1 is the most ahead of vh2.

2. estimated travel time vh: returns the time traveled since the initial state plus the esti-
mated time to reach the end of the road portion, assuming the current speed is maintained. It
may be used with weights sorted in ascending order and propertyEF travel time vh sup n,
where travel time vh ≥ n is true in a state if vh has reached the end of the road portion
within n time units. The idea is to check in priority states where vh is predicted to reach
the end of the road with the shortest time.

3. time to overtake vh1 vh2 : is the time before both vehicles arrive at the same longitudinal
position if they keep their current speed. It may be used with weights sorted in descending
order and property EF ttc vh1 vh2 ≤ n, where ttc vh1 vh2 is the value of the time to
collision indicator between vh1 and vh2 (i.e., the delay before there is a collision between
the two vehicles if they keep their current speed), and n is a time to collision value. The
idea is to check in priority states where one of the vehicles is getting closer to the other one
with the higher speed.

These heuristics have been used on Model 3, with results given in Table 3. The scenario in Model
3 considers three vehicles positioned as depicted in Fig. 9 on a two lane road portion that is 500
m long, with one additional junction lane. Initially, vehicle A is on the right lane at position 0 m
with a speed of 30 m/s, vehicle B is on the left lane at position 30 m with a speed of 15 m/s and
vehicle C is on the junction lane at position 40 m with a speed of 20 m/s. They all aim at being
on the right lane at the end of the road portion.

The first two queries can only be true in a final state (the deepest layer). As such, the reachability
time with the width first algorithm is close to the full exploration time with the same algorithm.
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Figure 9. Initial positions and possible trajectories of autonomous vehicles for the scenario in Model 3.

Exploration algorithm EF arrival B before A EF travel time A ≥ 15.9 EF ttc A C ≤ 1.14 EF ttc A B ≤ 0

Width first 416 427 292 95

Depth first without heuristics 234—357 167—340 247—547 277—483

Depth first with heuristics 131 149 103 13

Table 3. Comparison of reachability time for exploration algorithms in width first and depth first with and
without heuristics. As depth first without heuristics is non deterministic, the two values correspond to the
fastest and the slowest runs obtained for each query (five runs where performed each time).

In general, the width first reachablity time depends on the depth of the first state that satisfies the
property. One can observe that for the fourth query, the state is actually reached at a lower depth,
which is reflected by the reachability time.

As the depth first algorithm without heuristics randomly chooses which paths to explore first, the
reachability time varies. The number of states in the whole state space that satisfies the property
thus impacts the mean reachability time with this algorithm, i.e., when there is more possibility
to verify the property, the average time needed is shorter. As we do not want to rely on luck, this
is not satisfying.

On the other hand, depth first algorithm with heuristics explores states in a given order (depending
on their weights) and therefore the reachablity time is always the same. The heuristics we used
could of course be modified and improved, but they are enough to show a significant decrease of
the reachability time. Even for the fourth query, where the width first is faster than the depth first
algorithm, the heuristics allows to quickly identify the state that satisfies the property.

7.4. Comparison with VERIFCAR

We will now compare the reachability time obtained with UPPAAL with the ones obtained with
the depth first exploration algorithms with heuristics, on Model 3. We observed that UPPAAL
first constructs the state space in about 106 s, then is able to answer almost instantly if a searched
state exists. It can therefore answer several queries after constructing the state space, unlike
our heuristics-based dynamic exploration algorithms, which have to explore the state space from
scratch for each query. Yet, most of the states we aimed for can be reached easily, and the
computation took only about 4 seconds. Queries depicted in Table 3 are those where states were
harder to reach. Compared to the ones we obtained in [2], these results indicate that, when a
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reachability property is verified, our algorithms have the same kind of execution time than the
ones observed with UPPAAL. On the other hand, if the reachability property is not true, they are
slower than UPPAAL, which depending on the kind of query takes between 34 and 370 seconds,
which equals the full exploration time with this tool for Model 3. As mentioned previously, the
full state space exploration time with depth first algorithms on this Model, is in our case, of 667
seconds. This is not a surprise since UPPAAL is a mature tool using many efficient abstractions.

However, UPPAAL is restricted in terms of expressivity, at least in two ways interesting for us.
First, it is not possible to directly check bounds of a given numerical indicator, and such bounds
should be obtained by dichotomy, requiring several runs for each indicator, such as proposed in
the methodology of [2]. Second, it is limited to a subset of CTL (accepting mainly non nested
queries). Our algorithms do not have such restrictions.

Indeed it is possible to do a full exploration of the state space while keeping, for each state, the
lower and higher values reached on the paths leading to the state, for a given set of indicators.
That way, all the information needed to analyse the behaviour of the system, can be obtained after
only one full exploration. This is performed as a standard width-first exploration (storing states
in a file) with the difference that each state is associated to a set of pairs (min,max), being the
(temporary) bounds of the considered indicators. Each time a state is explored, the value for each
indicator is computed, and it overwrites min if it is smaller, and max if it is greater. That way,
each state s contains, for each indicator, the smallest and highest values that exist on the paths
from the initial state to s. As several paths can lead to s, we will consider that s reached from
path P1 and s reached from path P2 are equivalent only if the set of their indicators are also
equivalent. Therefore, some diamonds might be detected (i.e., two identical states coming from
different paths) but not merged together in order to keep information about their respective paths.
That way it is possible to have several versions of the same state, but with different indicator
values. If one is interested in the reachability of states (for instance, if an indicator is equal to
some value), this can easily be done in the same way, by adding Boolean variables to the set
of indicators. At the end of the exploration, we get this way the set of all final states, together
with all the information that has been carried on their respective paths. It therefore contains all
the information needed to analyse finely the system. For the case of Model 3, getting the arrival
order together with the bounds for travel time and worst time-to-collision takes 708 seconds. In
comparison, the time needed by UPPAAL to obtain the same information with the dichotomy
procedure is 3553 seconds.

Also, the DAG shape of the state space allows us to implement any kind of CTL queries. For the
experiments, we used a query of the kind EF (p ∧ EGq), which is the negation of the ”leads to”
operator p −−> ¬q (the only nested operator available in UPPAAL, in addition to deadlock tests)
and two of the kind EF (p ∧ EFq), which cannot be expressed in UPPAAL.

In [2], arrival C before A −−> arrival B before A) was used and reached a state invalid-
ing the property in 110 seconds. Its negation can be expressed here asEF (arrival C before A∧
EG¬arrival B before A) and our algorithm finds the state validating the property in about 10
seconds. The properties EF (ttc A B ≤ 1 ∧ EFarrival A before C and EF (ttc A B ≤
1 ∧ EFarrival A before B), that cannot be checked in UPPAAL, can be expressed here. The
first one expresses the possibility for vehicle A to arrive ahead of vehicle C after a dangerous
situation has occurred, involving a time to collision of less than 1 second. The second is similar
for vehicle A and B in the same conditions. The first query is false and needs to explore the
whole state space to give an answer (in 680 seconds), while the second one is true and finds a
state satisfying the property in about 10 seconds.
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Finally, it is worth mentioning that discretisation is needed for UPPAAL, and therefore approxi-
mations may be mandatory in some cases, leading to a loss in precision and realism. In addition
to a better expressivity, the model checking process presented in this paper also ensures that no
approximation is needed, hence a higher level of realism is achieved.

8. Conclusion

We introduced G-MAPTs, multi-agent timed models where each agent is associated to a regular
timed schema upon which all possibles actions of the agent rely. The formalism allows to eas-
ily model systems featuring a high level of concurrency between actions, where actions are not
temporally deterministic, such as the CAVs. We have then formalised MAPTs (Multi-Agent with
timed Periodic Tasks), by soundly constraining G-MAPT ones. MAPTs allows for an acceler-
ated semantics which is an abstraction that greatly reduces the size of the state space by reducing
as much as possible the number of time passings in the system. We also presented how to extract
a layered structure out of a MAPT, that allows to detect diamonds while exploring the system
depth first. We provided a translation from G-MAPT to high level Petri nets, which allowed us
to implement a dedicated checking environment for this formalism with the (free) academic tool
ZINC. Algorithms implemented in such environments explore state spaces dynamically and can
be used together with heuristics that allow to reduce the computation time needed to reach some
states in the model. Finally, experiments highlighted the efficiency of our abstractions, and a com-
parison of model checking CAVs systems with the framework VERIFCAR has been performed.
Although our checking environment does not return traces of executions and is not better for full
exploration times than the state of art tool UPPAAL used in VERIFCAR, it has a better expressiv-
ity both on the model, since we can compute with non-integer numbers, and on the queries since
nested CTL ones can be checked. The heuristics performed well for reachability problems and
we also provided an exploration algorithm that allows to gather all information needed to analyse
the system in one run, which greatly decreased the time needed to gather the same amount of
information when using VERIFCAR. Although we developed this method with the case study of
autonomous vehicles in mind, this formalism and all the abstractions and algorithms presented in
this paper can be easily applied to any multi-agent real time systems where agents adopt a cyclic
behaviour, such as mobile robots completing cyclically tasks according to their own objectives,
flying drone squadrons, etc.
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