
HAL Id: hal-02365373
https://hal.science/hal-02365373

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

The first polynomial self-stabilizing 1-maximal matching
algorithm for general graphs

Johanne Cohen, Jonas Lefèvre, Khaled Maamra, George Manoussakis,
Laurence Pilard

To cite this version:
Johanne Cohen, Jonas Lefèvre, Khaled Maamra, George Manoussakis, Laurence Pilard. The first
polynomial self-stabilizing 1-maximal matching algorithm for general graphs. Theoretical Computer
Science, 2019, 782, pp.54-78. �10.1016/j.tcs.2019.02.031�. �hal-02365373�

https://hal.science/hal-02365373
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


The first polynomial self-stabilizing 1-maximal matching algorithm for
general graphs.

Johanne Cohena, Jonas Lefèvreb, Khaled Maâmrac, George Manoussakisa, Laurence Pilardc

aLRI-CNRS, Université Paris-Sud, Université Paris Saclay, France, {johanne.cohen, george.manoussakis}@lri.fr
b IRIF, Université Paris-Diderot – Paris 7 , France, {jonas.lefevre}@irif.fr

cLI-PaRAD, Université Versailles-St. Quentin, Université Paris Saclay, France, {khaled.maamra,
laurence.pilard}@uvsq.fr

Abstract

We present the first polynomial self-stabilizing algorithm for finding a 1-maximal matching in a general
graph. The previous best known algorithm has been presented by Manne et al. [20] and we show in this paper
it has a sub-exponential time complexity under the distributed adversarial daemon. Our new algorithm is
an adaptation of the Manne et al. algorithm and works under the same daemon, but with a complexity in
O(m×n2) moves, with n is the number of nodes and m is the number of edges. This is the first self-stabilizing
algorithm that solve this problem with a polynomial complexity. Moreover, our algorithm only needs one
more boolean variable than the previous one.

Keywords: Self-stabilization, 1-maximal matching, 2
3 -approximation.

1. Introduction

Matching problems have received a lot of attention in different areas. Dynamic load balancing and
job scheduling in parallel and distributed networks can be solved by algorithms using a matching set of
communication links [2, 9]. In the wireless network, the resource management can be modelized as matching
problem between resources and users (see [11] for a survey).

In graph theory, a matching M in a graph G is a subset of the edges of G without common nodes.
A matching is maximal if no proper superset of M is also a matching whereas a maximum matching is a
maximal matching with the highest cardinality among all possible maximal matchings. A matching M is
1-maximal if it satisfies the following property: ∀e ∈ M , no matching can be constructed by removing e
from M and adding two edges to M \ {e}. A 1-maximal matching is a 2

3 -approximation to the maximum
matching, and expected to get more matching pairs than a maximal matching, which only guarantees a
1
2 -approximation. In the following, n is the number of nodes and m is the number of edges in G.

Some (almost) linear time approximation algorithm for the maximum weighted matching problem have
been well studied [8, 21], nevertheless these algorithms are not distributed. They are based on a simple
greedy strategy using augmenting path. An augmenting path is a path, starting and ending in an unmatched
node, and where every other edge is either unmatched or matched; i.e. for each consecutive pair of edges,
exactly one of them must belong to the matching. Let us consider the example in Figure 2.(a). In this figure,
u and v are matched nodes and x, y are unmatched nodes. The path (x, u, v, y) is an augmenting path of
length 3 (written 3-augmenting path). It is well known [13] that given a graph G = (V,E) and a matching
M ⊆ E, if there is no augmenting path of length 2k − 1 or less, then M is a k

k+1−approximation of the
maximum matching. See [8] for the weighted version of this theorem. The greedy strategy in [8, 21] consists
in finding all augmenting paths of length ` or less and by switching matched and unmatched edges of these
paths in order to improve the maximum matching approximation.

In this paper, we present a self-stabilizing algorithm for finding a 1-maximal matching that uses the
greedy strategy presented above. Our algorithm stabilizes after O(m × n2) moves under the adversarial
distributed daemon.

Preprint submitted to Elsevier January 10, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0304397519301379
Manuscript_b85c6e750cf55847b0dc9a24f3f048b4

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304397519301379
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0304397519301379


For the maximum matching problem, self-stabilizing algorithms have been designed for particular topolo-
gies. In anonymous tree networks, a self-stabilizing algorithms converging in O(n4) moves under the sequen-
tial adversarial daemon is given by Karaata and Saleh [17]. Recently, Datta et al. [6] improve this result,
and give a silent self-stabilizing protocol that converges in O(n2) moves. For anonymous bipartite net-
works, a self-stabilizing algorithms converging in O(n2) rounds under the sequential daemon is given by
Chattopadhyay et al. [3].

In unweighted or weighted general graphs, self-stabilizing algorithms for computing maximal matching
have been designed in various models (anonymous network [1] or not [22], see [10] for a survey). For an
unweighted graph, Hsu and Huang [14] gave the first self-stabilizing algorithm and proved a bound of O(n3)
on the number of moves under a sequential adversarial daemon. Hedetniemi et al. [12] completed the
complexity analysis proving a O(m) move complexity. Manne et al. [19] gave a self-stabilizing algorithm
that converges in O(m) moves under a distributed adversarial daemon. Cohen et al. [4] extend this result
and propose a randomized self-stabilizing algorithm for computing a maximal matching in an anonymous
network. The complexity is O(n2) moves with high probability, under the adversarial distributed daemon.

Manne et al. [20] and Asada and Inoue [1] presented some self-stabilizing algorithms for finding a
1-maximal matching. Manne et al. gave an exponential upper bound on the stabilization time of their
algorithm (O(2n) moves under a distributed adversarial daemon). However, they didn’t show that this
upper bound is tight. In this paper, we prove this lower bound is sub-exponential by exhibiting an execution

of Ω(2
√
n/2) moves before stabilization. Asada and Inoue [1] gave a polynomial algorithm but under the

adversarial sequential daemon. Recently, Inoue et al. [15] gave a modified version of [1] that stabilizes after
O(m) moves under the distributed adversarial daemon for networks without cycle whose length is a multiple
of three.

In a weighted graph, Manne and Mjelde [18] presented the first self-stabilizing algorithm for computing
a weighted matching of a graph with an 1

2 -approximation of the optimal solution. They established that
their algorithm stabilizes after at most an exponential number of moves under any adversarial daemon (i.e.,
sequential or distributed). Turau and Hauck [22] gave a modified version of the previous algorithm that
stabilizes after O(nm) moves under any adversarial daemon.

Figure 1 compares features of the aforementioned algorithms and our result.
We are then interested in the following problem: how to efficiently build a 1-maximal matching in an

identified graph with a general topology, using an adversarial distributed daemon and in a self-stabilizing
way? In this paper, we present two algorithms solving this problem. The first one is the well-known algorithm
from Manne et al. [20] that was the only one until now that solved this problem. The second algorithm is our
contribution. We show that the Manne et al. algorithm reaches a sub-exponential complexity while we prove
that our algorithm is polynomial (in O(m×n2)). This paper is an extended version of the conference paper
[5], where we present our polynomial algorithm (but with a sketch of the proof only). In [5], we obtained a
O(n3) moves assuming an already built maximal matching. In this paper, under the same assumption, we
obtain a O(n2) moves. Thus, as we will develop this scheme in Sections 3 and 8, using a classical composition
[7] of the self-stabilizing maximal matching algorithm given by Manne et al. [19] and of our algorithm, we
obtain a O(m× n2) move complexity. This result has been improved after this article submission in [16].

In the rest of the document, we present the model (Section 2), then we give the strategy based on a
3-augmenting path deletion that is used to build a 1-maximal matching (Section 3). This strategy is used
by both algorithms presented next. In Section 4, we precisely describe the Manne et al. algorithm [20]
and present the proof of the existence of a sub-exponential execution in Section 5. Next, we give our poly-
nomial algorithm in Section 6, its correctness proof in Section 7 followed by its convergence proof in Section 8.

2. Model

The system consists of a set of processes where two adjacent processes can communicate with each other.
The communication relation is represented by an undirected graph G = (V,E) where |V | = n and |E| = m.
Each process corresponds to a node in V and two processes u and v are adjacent if and only if (u, v) ∈ E.
The set of neighbors of a process u is denoted by N(u) and is the set of all processes adjacent to u, and ∆
is the maximum degree of G. We assume all nodes in the system a have distance 3 unique identifier.

2



Matching Topology Identifiers Daemon
Complexity

Work
(moves)

Maximum
Tree Global

Adver. Sequential
O(n2) [17, 6]

Bipartite Anonymous O(n2) rounds [3]

Maximal Arbitrary
Global

Adver. Sequential O(m) [14, 12]
Adver. Distributed O(m) [19]

Anonymous
Adver. Sequential O(n2) [14]
Adver. Distributed O(n2) whp [4]

1-Maximal

Arbitrary without cycle
Anonymous

Adver. Sequential O(m) [1]
with multiple of 3 length Adver. Distributed O(m) [15]

Arbitrary Unique at distance 3 Adver. Distributed
Ω(2

√
n) [20]

O(m.n2) Here

Figure 1: Best results in maximum matching approximation. In bold, our contributions.

For the communication, we consider the shared memory model. In this model, each process maintains a
set of local variables that makes up the local state of the process. A process can read its local variables and
the local variables of its neighbors, but it can write only in its own local variables. A configuration C is the
local states of all processes in the system. Each process executes the same algorithm that consists of a set
of rules. Each rule is of the form of <name> :: if <guard> then <command>. The name is the name of
the rule. The guard is a predicate over the variables of both the process and its neighbors. The command is
a sequence of actions assigning new values to the local variables of the process.

A rule is activable in a configuration C if its guard in C is true. A process is eligible for the rule R in
a configuration C if its rule R is activable in C and we say the process is activable in C. An execution is
an alternate sequence of configurations and actions E = C0, A0, . . . , Ci, Ai, . . ., such that ∀i ∈ N∗, Ci+1 is
obtained by executing the command of at least one rule that is activable in Ci (a process that executes such
a rule makes a move). More precisely, Ai is the non empty set of activable rules in Ci that has been executed
to reach Ci+1 and such that each process has at most one of its rules in Ai. We use the notation Ci 7→ Ci+1

or Ci
Ai7−→ Ci+1 to denote this transition in E . Finally, let E ′ = C ′0, A

′
0, · · · , C ′k be a finite execution. We say

E ′ is a sub-execution of E if and only if ∃t ≥ 0 such that ∀j ∈ [0, · · · , k]:(C ′j = Cj+t ∧A′j = Aj+t).
If C and C ′ are two configurations in E , then we note C ≤ C ′ if and only if C appears before C ′ in E or

if C = C ′. Moreover, we write E\C to denote all configurations of E except configuration C.
An atomic operation is such that no change can take place during its run, we usually assume that an

atomic operation is instantaneous. In the shared memory model, a process u can read the local state of all
its neighbors and update its whole local state in one atomic step. Then, we assume here that a rule is an
atomic operation. An execution is maximal if it is infinite, or it is finite and no process is activable in the
last configuration. All algorithm executions considered here are assumed to be maximal.

A daemon is a predicate on the executions. We consider only the most powerful one: the adversarial
distributed daemon that allows all executions described in the previous paragraph. Observe that we do not
make any fairness assumption on the executions.

An algorithm is self-stabilizing for a given specification, if there exists a sub-set L of the set of all config-
urations such that: every execution starting from a configuration of L verifies the specification (correctness)
and starting from any configuration, every execution eventually reaches a configuration of L (convergence).
L is called the set of legitimate configurations. A configuration is stable if no process is activable in the
configuration. The algorithm presented here, is silent, meaning that once the algorithm has stabilized, no
process is activable. In other words, all executions of a silent algorithm are finite and end in a stable configu-
ration. Note the difference with a non silent self-stabilizing algorithm that has at least one infinite execution
with a suffix only containing legitimate configurations, but not stable ones.

3. Common strategy to build a 1-maximal matching

In this paper, we present two algorithms. The first one, denoted by ExpoMatch, is the Manne et al.
algorithm [20]. The second one, called PolyMatch, is the main contribution of this paper. These two

3



algorithms share different elements and this section is devoted to give these main common points.
Both algorithms operate on an undirected graph, where every node has a distance 3 unique identifier.

They also assume an adversarial distributed daemon and that there exists an already built maximal matching,
notedM. Based onM, the two algorithms build a 1-maximal matching. To perform that, nodes search and
delete any 3-augmenting paths they find in M. An augmenting path is a path in the graph, starting and
ending in an unmatched node, and where every other edge is either unmatched or matched.

Definition 1. Let G = (V,E) be a graph and M be a maximal matching of G. (x, u, v, y) is a 3-augmenting
path on (G,M) if: (i) (x, u, v, y) is a path in G (so all nodes are distincts); (ii) ∀a ∈ V : (x, a) 6∈M ∧(y, a) 6∈
M ; and (iii) (u, v) ∈M .

Let us consider the example in Figure 2.(a). In this figure, u and v are matched nodes and x, y are
unmatched nodes. The path (x, u, v, y) is a 3-augmenting path. Once an augmenting path is detected,
nodes rearrange the matching accordingly, i.e., transform this path with one matched edge into a path with
two matched edges (see Figure 2.(b)). This transformation leads to the deletion of the augmenting path
and increases by one the cardinality of the matching. Both algorithms will stabilize when there are no
augmenting paths of length three left. Thus the hypothesis of Karps’s theorem [13] eventually holds, giving
a 2

3−approximation of the maximum matching (and so a 1-maximal matching).

x u v y x u v y

(a) A 3-augmenting path (one matched edge). (b) The path after being exploited (two matched edges).

Figure 2: How to exploit a 3-augmenting path?

The underlying maximal matching. In the rest of the paper, M is the underlying maximal matching. This
underlying matching is locally expressed by variables mv for each node v. If (u, v) ∈ M then u and v are
matched nodes and we have: mu = v∧mv = u. If u is not incident to any edge inM, then u is a single node
and mu = null. For a set of nodes A, we define single(A) and matched(A) as the set of single and matched
nodes in A, accordingly to the underlying maximal matching M. Since we assume M to be stable, a node
membership in matched(V ) or single(V ) will not change throughout an execution, and each node u can use
the value of mu to determine which set it belongs to.

Note that M can be built with any silent self-stabilizing maximal matching algorithm that works for
general graph and with an adversarial distributed daemon. We can then use, for instance, the self-stabilizing
maximal matching algorithm from [19] that stabilizes in O(m) moves. Observe that this algorithm is silent,
meaning that the maximal matching remains constant once the algorithm has stabilized.

2-phases algorithms. Both algorithms ExpoMatch and PolyMatch are based on two phases for each
edge (u, v) in M: (1) detecting augmenting paths and (2) exploiting the detected augmenting paths. Node
u keeps track of four variables. The pointer pu is used to define the final matching. The variables αu, βu are
used to detect augmenting paths and contain single neighbors of u. Also, su is a boolean variable used for
the augmenting path exploitation. We will see in section 6 that algorithm PolyMatch uses a fifth variable
named endu. In the rest of the paper, we will callM+ the final 1-maximal matching built by any of the two
algorithms. M+ is defined as follows:

Definition 2. The built set of edges is:
M+ = {(u, v) ∈M : pu = pv = null} ∪ {(a, b) ∈ E \M : pa = b ∧ pb = a}

The first set in the union is pairs of nodes that do not perform any rematch. These pairs come fromM.
The second set in the union is pairs of nodes that were not matched together inM, but after a 3-augmenting
path detection and exploitation, they matched together.

Augmenting path detection. First, every pair of matched nodes u, v (v=mu and u=mv) tries to find single
neighbors they can rematch with. These single neighbors have to be available, in particular, they should
not be married in a final way with another matched node. We will see in the next sections, that the

4



meaning of being available is not the same in PolyMatch and ExpoMatch. We say that a single node
x is a candidate for a matched node u if x is an available single neighbor of u. Note that u and v need to
have a sufficient number of candidates to detect a 3-augmenting path: each node should have at least one
candidate and the sum of the number of candidates for u and v should be at least 2. In both algorithms, the
BestRematch predicate is used to compute candidates of a matched node u, writing in αu and βu. Then, the
condition below is used in both algorithms – in the AskFirst predicate – to ensure the number of candidates
is sufficiently high to detect if u belongs to a 3-augmenting path.

αu 6= null ∧ αmu
6= null ∧ 2 ≤ Unique({αu, βu, αmu

, βmu
}) ≤ 4

where Unique(A) returns the number of unique elements in the multi-set A.

Augmenting path exploitation. The exploitation is done in a sequential way. First, two nodes matched
together u and v agree on which one starts to build a rematch and which one ends. This local consensus is
done using AskFirst and AskSecond functions. Observe that these predicates are exactly the same in both
algorithms. These predicates use the local state of u and v to assign a role to these two nodes. If AskFirst(u)
is not null then u starts to rematch and v ends. Otherwise, AskSecond(u) is not null and then v starts to
rematch and u ends.

Observe that there are only three distinct possible values for the quadruplet (AskFirst(u), AskSecond(u),
AskFirst(v), AskSecond(v)) for any couple (u, v) ∈ M and whatever the α and β values are. These are:
(null, null, null, null) or (x, null, null, y) or (null, x, y, null), with x and y are two distincts single nodes.
The first case means that there is no 3-augmenting path that contains the couple (u, v). The two other
cases mean that (x, u, v, y) is a 3-augmenting path. The second case occurs when x < y, otherwise we
are in the third case. Node u is said to be First if AskFirst(u) 6= null. In the same way, u is Second if
AskSecond(u) 6= null. So, if a 3-augmenting path is detected though (u, v), the roles of u and v depend on
the identifiers of single nodes (candidates) in the augmenting path, i.e., u is First iff its single neighbor in
the augmenting path has a smaller identifier than the single neighbor of v in the augmenting path.

Graphical convention. We will follow the above conventions in all the figures: matched nodes are repre-
sented with thick circles and single nodes with thin circles. Node identifiers are indicated inside the circles.
Moreover, all edges that belong to the maximal matching M are represented with a thick line, whereas the
other edges are represented with a simple line. We illustrate the use of the p-values by an arrow, and the
absence of the arrow or symbol ’T’ mean that the p-value of the node equals to null. A prohibited value is
first drawn in grey, then scratched out in black. For instance, in Figure 8, node x1 is single, nodes u1 and
v1 are matched, the edge (u1, v1) ∈M and px3 6= v2.

4. Description of the algorithm ExpoMatch

We precisely describe here the algorithm ExpoMatch [20]. The algorithm itself is shown in Figure 3.

Augmenting path detection. In this algorithm, a single node x is a candidate for a matched node u if it is
not involved in another augmenting path exploitation, i.e., if px = null ∨ px = u.

Augmenting path exploitation. A 3-augmenting path is exploited in two phases. These two phases are
performed in a sequential way. Recall that node u is said to be First if AskFirst(u) 6= null and node u is
Second if AskSecond(u) 6= null. Let us consider two nodes u and v such that (u, v) ∈ M. Let us assume
that u and v detects an augmenting path.

1. The First node starts : Exactly one node among u and v attempts to rematch with one of its candidates.
This phase is complete when the first node, let say u, is such that su = True and this indicates to the
Second node (v) that the first phase is over.

2. The Second node continues: only when the first node succeeds will the second node attempt to rematch
with one of its candidates. (a) If this also succeeds, the exploitation is done and the augmenting path is
said to be fully exploited ; (b) Otherwise the rematch built by the First node is deleted and candidates
α and β are computed again, allowing then the detection of some new augmenting paths.

5



————– Rules for each node u in single(V)

SingleNode ::
if (pu = null ∧ Lowest({v ∈ N(u) | pv = u}) 6= null) ∨ pu /∈ matched(N(u)) ∪ {null}∨

(pu 6= null ∧ ppu 6= u)
then pu := Lowest({v ∈ N(u) | pv = u})

—————— Rules for each node u in matched(V)
Update ::

if (αu > βu) ∨ (αu, βu /∈ single(N(u)) ∪ {null}) ∨ (αu = βu ∧ αu 6= null) ∨ pu /∈ single(N(u)) ∪ {null} ∨
((αu, βu) 6= BestRematch(u)∧ (pu = null ∨ ppu /∈ {u, null}))

then (αu, βu) := BestRematch(u)
(pu, su) := (null, false)

MatchFirst :: MatchSecond :: ResetMatch ::
Let x = AskFirst(u) Let y = AskSecond(u) if AskFirst(u) = AskSecond(u) =null
if x 6=null ∧ (pu 6=x ∨ su 6= (ppu = u)) if y 6=null ∧ smu= true ∧ pu 6=y ∧ (pu, su) 6= (null, false)
then pu := x then pu := y then (pu, su) := (null, false)

su := (ppu = u)

————– Predicates and functions

BestRematch(u) ≡
a := Lowest ({v ∈ single(N(u)) ∧ (pv = null ∨ pv = u)})
b := Lowest ({v ∈ single(N(u)) \ {a} ∧ (pv = null ∨ pv = u)})
return (a, b)

AskFirst(u) ≡
if αu 6= null ∧ αmu 6= null ∧ 2 ≤ Unique({αu, βu, αmu , βmu}) ≤ 4

then if αu < αmu ∨ (αu = αmu ∧ βu = null) ∨ (αu = αmu ∧ βmu 6= null ∧ u < mu)
then return αu

return null

AskSecond(u) ≡ Unique(A) returns the number of unique elements in the
if AskFirst(mu) 6= null multi-set A.
then return Lowest({αu, βu} \ {αmu}) Lowest(A) returns the node in A with the lowest identifier.
else return null If A = ∅, then Lowest(A) returns null.

Figure 3: ExpoMatch algorithm

Rules description. There are four rules for matched nodes. The Update rule is the rule with the highest
priority. This rule allows a matched node to update its α and β variables, using the BestRematch predicate.
Then, predicates AskFirst and AskSecond are used to define the role the node will have in the 3-augmenting
path exploitation. If the node is First (resp. Second), then it will execute MatchFirst (resp. MatchSecond)
several times for this 3-augmenting path exploitation. The ResetMatch rule is performed to reset bad
initialization and also to reset an augmenting path exploitation that did not terminate. For instance, this
case happens when the single candidate of the Second node rematch with some other node in the middle of
the exploitation path process.

Let us consider (u, v) ∈ M and assume that u and v detects an augmenting path with u is First. The
MatchFirst rule is used by u to build its rematch. The rule is performed a first time by u to propose a
rematch to its candidate x (u sets pu to x). Then, if x accepts (px = u), u performs this rule a second time
to communicate to v that its rematch attempt is a succeed (u sets su to True). The MatchSecond rule is
used by the node v to build its rematch. This rule can only be performed if su = True. Then, the rule is
performed once by v to propose a rematch to its candidate y (v sets pv to y). Then, if y accepts (py = v),
the path is fully exploited and will not change during the rest of the execution.

There is only one rule for single nodes, called SingleNode. Recall that all neighbors of a single node are

6



matched, since M is a maximal matching. A single node should always point to its smallest neighbor that
points to it. This rule allows to point to such a neighbor but also to reset a bad p-value to null. Observe
that a single node x cannot perform this rule if ppx = x, which means that if x point to some neighbor that
points back to x, then x is locked.

5. The ExpoMatch algorithm is sub-exponential

In this section, we exhibit an execution of length 2N in a chosen graph having Θ(N2) nodes. To do
that, we define, under some conditions, how to translate a configuration into a binary integer. Then, we give
an execution where all configurations corresponding to integers from 0 to 2N − 1 appear. This gives us an
execution of length in Ω(2N ).

5.1. State of a matched edge

A bit in the binary integer of a given configuration correspond to a particular state of the nodes in a
3-augmenting path. More precisely, according to the p-values of these nodes, the associated bit of the path
will be 0, 1 or undef. Figure 5 represents an instance of the chosen graph for N = 4. Observe that any
matched node only has one single neighbor. This property will hold for any N . Thus, a 3-augmenting path
can be determined by its matched edge.

Definition 3 (State of a matched edge). Let e = (u, v) be an edge in the maximal matching M such that u
(resp. v) has one single neighbor x (resp. y). Assume y < x. Edge e is said to be:

• in state Off if px = null, pu = null, pv = null and py = null.
• in state AlmostOff if px /∈ {null, u}, pu = null, pv = null, and py = null.
• in state On if px = null, pu = x, pv = y and py = v.
• in state AlmostOn if px /∈ {null, u}, pu = x, pv = y and py = v.

Note that a matched edge can be in none of the states presented below. The states of an edge represents
the different steps of an augmenting path exploitation. Now, we exhibit an execution to switch an edge
(u, v) from state Off to state On in Lemma 1 and then, from state AlmostOn to state AlmostOff in
Lemma 2.

Lemma 1. Let e = (u, v) be an edge in the maximal matching M such that u (resp. v) has one single
neighbor x (resp. y). Assume y < x. Let C be a configuration where e is in state Off and v = min({w ∈
N(y) : pw = y} ∪ {v}). There exists a finite execution starting in C and ending in D such that:

(i) only nodes u, v and y make moves between C and D and (ii) edge e is in state On in D.

Proof. We describe a finite execution starting in C and ending in D that allows to switch edge (u, v) from
state Off to state On and where only nodes u, v and y make moves. Nodes u and v belong to a 3-augmenting
path in C since px = py = null by assumption. If αu 6= x, then node u executes an Update move and sets
(αu, βu) = (x, null). If αv 6= y, then node v executes an Update move and sets (αv, βv) = (y, null).

Now, the variables αu and αv are well defined. Since y < x, we haveAskFirst(v) = y andAskSecond(u) =
x. So node v executes a MatchFirst move and sets pv = y. Let C1 7→ C2 be the transition where v makes
this MatchFirst move. Observe that only u and v made some moves from C to C2. Moreover, u 6∈ N(y)
since u has only one single neighbor that is x. Thus v = min({w ∈ N(y) : pw = y} ∪ {v}) still holds in C2

and so, node y chooses node v to match with by executing a SingleNode move. Finally, node u is eligible to
execute a MatchSecond move and it then points to node x. The edge (u, v) is now in state On.

Now, we exhibit an execution to switch edge (u, v) from state AlmostOn to state AlmostOff.

Lemma 2. Let e = (u, v) be an edge in the maximal matching M such that u (resp. v) has one single
neighbor x (resp. y). Assume y < x. Let C be a configuration where: e is in state AlmostOn and
{w ∈ N(y) : pw = y} = {v}. There exists a finite execution starting in C and ending in D such that:

(i) only nodes u, v and y make moves between C and D and (ii) edge e is in state AlmostOff in D.

7



Proof. We describe a finite execution starting in C and ending inD that allows to switch edge (u, v) from state
AlmostOn to state AlmostOff and where only nodes u, v and y make moves. Since edge (u, v) is in state
AlmostOn, then px 6∈ {null, u} and so BestRematch(u) = (null, null). If (αu, βu) 6= (null, null) then node
u executes an Update move. Otherwise, AskFirst(u) = AskSecond(u) = null and, since pu 6= null, u executes
a ResetMatch move. In both cases, after the move, (pu, su) = (null, false) and (αu, βu) = (null, null).

αu = null implies AskFirst(v) = null, and AskFirst(u) = null implies AskSecond(v) = null. Moreover,
since pv 6= null, v executes a ResetMatch move and sets pv = null. Let C1 7→ C2 be the transition where
v makes this ResetMatch move. Since {w ∈ N(y) : pw = y} = {v} holds in the configuration C and since
only u and v made some moves from C to C2 then we have: {w ∈ N(y) : pw = y} = ∅ holds in C2. Thus
node y performs a SingleNode move and sets py = null. The edge (u, v) is now in state AlmostOff.

5.2. The graph GN and how to interpret a configuration into a binary integer

In the following, we describe an execution corresponding to count from 0 to 2N − 1, where N is an arbi-
trary integer. This execution occurs in a graph denoted by GN with Θ(N2) nodes. GN is composed by N
sub-graphs, each of them representing a bit. The whole graph then represents an integer, coded from these
N bits. GN has 2 kind of nodes: the nodes represented by circles (• -nodes) and those represented by squares
(� -nodes). The • -nodes are used to store bit values and hence an integer. The � -nodes are used to imple-
ment the “+1” operation as we count from 0 to 2N−1. We now formally describe the graph GN = (VN , EN ):

VN = V •N ∪ V �
N where V •N =

⋃
0≤i<N{b(i, k)|k = 1, 2, 3, 4}

V �
N =

⋃
0≤j<i<N{r1(i, j), r2(i, j)}

EN = E•N ∪ E�
N where E•N =

⋃
0≤i<N{(b(i, k), b(i, k + 1))|k = 1, 2, 3}

E�
N =

⋃
0≤j<i<N{(b(i, 1), r1(i, j)) , (r1(i, j), r2(i, j)) , (r2(i, j), b(j, 4))}

Figure 4 gives a partial view of the graph GN corresponding to the ith bit-block.

b(i, 1)b(i, 2)b(i, 3)b(i, 4)

r2(i+ 1, i)

r2(i+ 2, i)

r2(N − 1, i)

b(i− 1, 4) b(i− 2, 4) b(0, 4)

r1(i, i− 1)

r1(i, i− 2)

r1(i, 0)

r2(i, i− 1)

r2(i, i− 2)

r2(i, 0)

Bit i

Figure 4: A partial view of graph GN

Our exponential execution used the following underlying maximal matching M:
M = {(b(i, 2), b(i, 3))|0 ≤ i < N} ∪ {(r1(i, j), r2(i, j))|0 ≤ j < i < N}

This maximal matching is encoded with the m-variables then we have:
∀i, j with 0 ≤ j < i < N : mb(i,2) = b(i, 3),mb(i,3) = b(i, 2),mr1(i,j) = r2(i, j) and mr2(i,j) = r1(i, j)

The matching M is a 1
2 -approximation of the maximum matching and the algorithm ExpoMatch

updates this approximation building M+, a 2
3 -approximation of the maximum matching. M+ is encoded

with the p-variable and we also use this variable to encode the binary integer associated to a configuration.

Example. As an illustration, graph G4 is shown in Figure 5. In this example, the bold edges are those be-
longing to the maximal matchingM and arrows represent the local variable p of the algorithm ExpoMatch.
A node having no outgoing arrow has its p-variable equal to null.

As we said, the •-nodes are used to encode the N bits. Each bit i is encoded with the local state of the
4 following nodes: b(i, 1), b(i, 2), b(i, 3), b(i, 4). These nodes are then named b(i, k), for “the kth node of the
bit i”. For instance, node 10 is the fourth node of the bit 0, thus node 10 is called b(0, 4). In the following,

8



710111213141516171819202122 89121316172021

28

27

26

25

24

236

5

4

2

13

Bit 0 = 0Bit 1 =1Bit 2 =0Bit 3 =0

Figure 5: Graph G4 encoding 0010

we will refer to these four nodes as the ith bit-block. The binary value associated to a bit-block is computed
accordingly to the p-value of each node in the bit-block. The following definition gives this association:

Definition 4 (Bit-block encoding). In graph GN , nodes {b(i, 1), b(i, 2), b(i, 3), b(i, 4)} are the ith bit-block,
for some 0 ≤ i < N . This bit-block encodes the value 1 ( resp. 0) if the edge (b(i, 2), b(i, 3)) is in state On
( resp. Off) and if ∀j with 0 ≤ j < i, pr1(i,j) = pr2(i,j) = null.

Note that the value encoded by a bit-block is not always defined. But when all bit-blocks encode a bit
in a given configuration, then we can associate a positive integer ω to this configuration.

Definition 5 (ω-configuration). Let ω be an integer s.t. 0 ≤ ω < 2N , a configuration C is said to be an
ω-configuration if for any integer 0 ≤ i < N , the ith bit of ω is the value encoded by the ith bit-block in C.

Observe that all the p-values of the �-nodes have to be null in any ω-configuration. In Figure 5, all
p-values of �-nodes are null. Moreover, the edges (9, 8), (17, 16) and (21, 20) are in state Off while the edge
(13, 12) is in state On. Thus, G4 encodes the binary integer 0010 and so Figure 5 shows a 2-configuration.

5.3. Identifiers in GN

In order to exhibit our execution counting from 0 to 2N − 1, we need to be able to switch edges between
On and Off. This can be done executing the guarded rules of ExpoMatch. Since this algorithm uses
identifiers, we need some properties on identifiers of nodes in GN . The Ident function gives the identifier
associated to a node in VN . Recall that we assume each node has a unique identifier. These identifiers must
satisfy the three following properties:

Property 1 (Identifiers order in GN ). Let b(i, k), b(i′, k′), b(i, 2) and b(i, 3) be nodes in V •N , and r1(i, j) and
r2(i, j) be nodes in V �

N . We have:

1. Ident(b(i, k)) > Ident(b(i′, k′)) if (i > i′) ∨ (i = i′ ∧ k > k′)

2. Ident(b(i, 2)) < Ident(r1(i, j))

3. Ident(b(i, 3)) > Ident(r2(j, i))

We now show that in graph GN , there exists an Ident function that satisfies Property 1. Indeed, the property

holds for the following naming: Let c = |V •N | and s =
|V �

N |
2 . There are c nodes of kind b, s nodes of kind r1

and s nodes of kind r2 as well. Nodes of kind r2 are named from 1 to s. Nodes of kind b are named from
s + 1 to s + c such that: ∀i, 0 ≤ i < N, ∀k ∈ {1, 2, 3, 4} : Ident(b(i, k)) = s + 4i + k. And finally, nodes
of kind r1 are named from s+c+1 to s+c+s. Figure 5 shows graph G4 with such a naming (c=16 and s=6).

5.4. Counting from 0 to 2N − 1

We build an execution containing all ω-configurations with 0 ≤ ω < 2N − 1. To to this, we build an
execution from an ω-configuration to the (ω + 1)-configuration using a ’+1’ operation. Thus we need to be
able to switch bit from 0 to 1 and from 1 to 0. The main scheme is the following: let us consider a binary
integer x. The ’+1’ operation consists in finding the rightmost 0 in x. Then all 1 at the right of this 0 have
to switch to 0 and this 0 has to switch to 1 (if x = x′011 . . . 1 then x+ 1 = x′100 . . . 0). Then if 0 is the ith

bit of x, the ith bit-block has to switch from 0 to 1 during the ’+1’operation. And each jth bit-block, with
0 ≤ j < i, has to switch from 1 to 0.

9



The switch of a bit-block from 0 to 1 only needs the •-nodes to perform moves (see Lemma 1). However,
this is not the case when we want to switch a bit-block from 1 to 0. Indeed, we use some other nodes to help
to perform the switch: the �-nodes.

Theorem 1. Let ω be an integer such that 0 ≤ ω < 2N − 1. There exists a finite execution to transform an
ω-configuration into an (ω + 1)-configuration.

Proof. Let C be an ω-configuration. Let ρ be the integer such that the ρ−1 first bits of ω equal to 1 and the
value of its ρth bit to 0. This implies that the ρth bit of ω + 1 is the first bit equal to 1. We distinguish two
cases: ρ = 0 and ρ > 0. (i) In the case where ρ = 0, edge (b(0, 2), b(0, 3)) is in state Off by definition. Since
the 0th bit of integer ω + 1 is equal to 1, (b(0, 2), b(0, 3)) must be in state On in the (ω + 1)-configuration.
By Property 1, we have Ident(b(0, 1)) < Ident(b(0, 4)). Moreover nodes b(0, 3) and b(0, 2) only have one
single neighbor, so the hypotheses of Lemma 1 are satisfied. Thus, from Lemma 1, there exists an execution
to switch edge (b(0, 2), b(0, 3)) from state Off to state On and in this execution, only nodes b(0, 1), b(0, 2)
and b(0, 3) make moves. At the end, the 0th bit has changed from 0 to 1 and the other did not change.
We then have an (ω + 1)-configuration. (ii) In the case where ρ > 0, for every integer i from 0 to ρ − 1,
edge (b(i, 2), b(i, 3)) is in state On and edge (b(ρ, 2), b(ρ, 3)) is in state Off. We can execute the following
sequence of moves to obtain the (ω + 1)-configuration:

1. We first consider the 3-augmenting path (b(ρ, 1), r1(ρ, j), r2(ρ, j), b(j, 4)) for any integer j, 0 ≤ j < ρ.
We prove that the matched edge of this path is in state Off and that it satisfies the assumptions of
Lemma 1. Then, we switch this edge from state Off to state On applying Lemma 1 (where the path
(x, u, v, y) in this lemma corresponds to the path (b(ρ, 1), r1(ρ, j), r2(ρ, j), b(j, 4))).
Note that ∀j, 0 ≤ j < ρ, node r1(ρ, j) (resp. r2(ρ, j)) is adjacent to one single node b(ρ, 1) (resp.
b(j, 4)). As for any j, 0 ≤ j < ρ, the jth bit-block encodes the value 1 in C, then pb(j,4) = null in C.

In the same way, as the ρth bit-block encodes the value 0 in C, then pb(ρ,1) = null in C. As C is an
ω-configuration, then pr1(ρ,j) = null and pr2(ρ,j) = null. Thus the edge (r1(ρ, j), r2(ρ, j)) is in state
Off in C.
Moreover, Ident(b(j, 4)) < Ident(b(ρ, 1)) by Property 1. Finally, in C, we have {w ∈ N(b(j, 4)) : pw =
b(j, 4)} = {b(j, 3)} since all neighbors of b(j, 4) but b(j, 3) are �-nodes, and so they have their p-value
equal to null in C. We have Ident(r2(ρ, j)) < Ident(b(j, 3)) by Property 1, then r2(ρ, j) = min({w ∈
N(b(j, 4)) : pw = b(j, 4)}∪{r2(ρ, j)}) and the hypotheses of Lemma 1 are satisfied. Thus from Lemma
1, we can exhibit an execution to switch edges (r1(ρ, j), r2(ρ, j)) from state Off to state On and where
only nodes r1(ρ, j), r2(ρ, j) and b(j, 4) make moves.

2. Now, for each integer j, 0 ≤ j < ρ, edge (b(j, 2), b(j, 3)) is in state AlmostOn. Ident(b(j, 1)) <
Ident(b(j, 4)) and {w ∈ N(b(j, 1)) : pw = b(j, 1)} = {b(j, 2)} so hypothesis of Lemma 2 hold. Thus
from Lemma 2, an execution to switch edge (b(j, 2), b(j, 3)) from state AlmostOn to state AlmostOff
is performed.

3. Edge (b(ρ, 2), b(ρ, 3)) is still in state Off. Using the same argument of step (1), from Lemma 1, we
can exhibit an execution to switch edges (b(ρ, 2), b(ρ, 3)) from state Off to state On.

4. Now, for each integer j, 0 ≤ j < ρ, edge (r1(ρ, j), r2(ρ, j)) is now in state AlmostOn. From Lemma 2,
there exists an execution to switch edge (r1(ρ, j), r2(ρ, j)) from state AlmostOn to state AlmostOff.

At the end of this execution, we obtain a configuration where the ρ− 1 first bits of ω are equal to 0 and
the ρth bit is 1. Moreover, observe that all �-nodes are in state AlmostOff or Off, thus they all have
their p-value sets to null. We are then in an (ω + 1)-configuration.

Corollary 1. Let n be the number of nodes. In the worst case, Algorithm ExpoMatch stabilizes after

Ω(2
√
n/2)moves under the central daemon.

Proof. We can build an execution that contains all the ω-configurations for every value ω, 0 ≤ ω < 2N .
By applying Theorem 1, this execution can be split into 2N parts corresponding to the execution from ω-
configuration to (ω + 1)-configuration, for 0 ≤ ω < 2N . Thus, this execution contains 2N configurations.
Since graph GN has 4N + N(N + 1) vertices, then n ≤ 2N2 for n ≥ 5, and then

√
n ≤ N

√
2. Thus

2
√
n/2 ≤ 2N and the corollary holds.

10



6. Our algorithm PolyMatch

The algorithm presented in this paper is called PolyMatch, and is based on the algorithm presented by
Manne et al. [20], called ExpoMatch. As in ExpoMatch, PolyMatch assumes there exists an underlying
maximal matching, called M. PolyMatch algorithm is presented in Figure 6. Predicates AskFirst and
AskSecond are not given since they are the same as in ExpoMatch algorithm (see Fig. 3).

6.1. Variables description

Our algorithm has the same set of local variables as in ExpoMatch plus one additional boolean variable,
called end. As in ExpoMatch, for a matched node u, the pointer pu refers to a neighbor of u that u is
trying to (re)match with, and pointers αu and βu refer to two candidates for a possible rematching with
u. And again, su is a boolean variable that indicates if u has performed a successful rematching with
its candidate. Finally, the new variable endu is a boolean variable that indicates if both u and mu have
performed a successful rematching or not. For a single node x, only one pointer px and one boolean variable
endx are needed. px has the same purpose as the p-variable of a matched node. The end-variable of a single
node allows the matched nodes to know whether it is available or not. A single node x is available for a
matched node u if it is not involved in another augmenting path that is fully exploited, i.e., if it is possible
for x to eventually rematch with u, and thus if px = u ∨ endx =False (see BestRematch predicate).

6.2. Augmenting paths exploitation

A 3-augmenting path is exploited in three phases. These phases are performed in a sequential way. Let
us consider two nodes u and v such that (u, v) ∈M. Let us assume that u and v detects a 3-augmenting path.

1. The First node starts (same as in ExpoMatch): The First node, let say u, tries to rematch with its
candidate. This phase is complete when su = True and this indicate to the Second node, let say v,
that the first phase is over.

2. The Second node continues: only when the first node succeeds will the second node attempt to rematch
with one of its candidates. This phase is complete when endv = True and this indicate to the v’s
neighbors that the second phase is over.

3. All nodes in the path set their end variable to True: the end value of v is propagated in the path. The
goal of this phase is to write True in the end variables of the two single nodes in the path in order
to make them unavailable for other married nodes. Indeed, the end variable is used to compute the
candidates of a matched node.

The scenario for an augmenting path exploitation when everything goes well is given in the following.
Node u starts trying to rematch with x performing a MatchFirst move and pu := x. If x accepts the propo-
sition, performing an UpdateP move and px := u, then u will inform v of this first phase success, once again
by performing a MatchFirst move and su :=True. Observe that at this point, x cannot change its p-value
since ppx = x. Finally, node v tries to rematch with y, performing a MatchSecond move and pv := y. If y
accepts the proposition, performing an UpdateP move and py := v, then v will inform u of this final success,
by performing a MatchSecond move again and endv :=True. This complete the second phase. From then,
all nodes in this 3-augmenting path will set there end-variable to True: u by performing a last MatchFirst
move, and x and y by performing an UpdateEnd move. From this point, non of these nodes x, u, v, or y will
ever be eligible for any move again. Moreover, once single nodes have their end-variables set to True, they
are not available anymore for any other matched nodes.

6.3. Rules description

There are four rules for matched nodes. As in ExpoMatch, the Update rule allows a matched node to
update its α and β variables, using the BestRematch predicate. Then, predicates AskFirst and AskSecond
are used to define the role the node will have in the 3-augmenting path exploitation. If the node is First (resp.
Second), then it will execute MatchFirst (resp. MatchSecond) for this 3-augmenting path exploitation. The
ResetMatch rule is performed to reset bad initialization and also to reset an augmenting path exploitation
that did not terminate.

The MatchFirst rule is used by the node when it is First. Let u be this node. The rule is performed
three times in a usual path exploitation:

11



————– Rules for each node u in single(V)

ResetEnd :: UpdateEnd ::
if pu = null ∧ endu = True if (pu ∈ matched(N(u)) ∧ (ppu = u) ∧ (endu 6= endpu)
then endu := False then endu := endpu

UpdateP ::
if (pu = null ∧ {w ∈ matched(N(u)) | pw = u} 6= ∅) ∨ (pu /∈ (matched(N(u)) ∪ {null})) ∨ (pu 6= null ∧ ppu 6= u)
then pu := Lowest{w ∈ matched(N(u)) | pw = u}

endu := False

————– Predicates and functions

BestRematch(u) ≡ ( a := Lowest{x ∈ single(N(u)) ∧ (px = u ∨ endx = False)}
b := Lowest{x ∈ single(N(u)) \ {a} ∧ (px = u ∨ endx = False)}
return (a, b) )

—————— Rules for each node u in matched(V)
Update ::

if (αu > βu) ∨ (αu, βu /∈ (single(N(u)) ∪ {null})) ∨ (αu = βu ∧ αu 6= null) ∨ pu /∈ (single(N(u)) ∪ {null}) ∨
((αu, βu) 6= BestRematch(u)∧ (pu = null ∨ (ppu 6= u ∧ endpu = True)))

then (αu, βu) := BestRematch(u)
(pu, su, endu) := (null, False, False)

MatchFirst ::
if (AskFirst(u) 6= null) ∧

[ pu 6= AskFirst(u) ∨
su 6= (pu = AskFirst(u) ∧ ppu = u ∧ pmu ∈ {AskSecond(mu), null}) ∨
endu 6= (pu = AskFirst(u) ∧ ppu = u ∧ su ∧ pmu = AskSecond(mu) ∧ endmu) ]

then endu := (pu = AskFirst(u) ∧ ppu = u ∧ su ∧ pmu = AskSecond(mu) ∧ endmu)
su := (pu = AskFirst(u) ∧ ppu = u ∧ (pmu ∈ {AskSecond(mu), null})
pu := AskFirst(u)

MatchSecond ::
if (AskSecond(u) 6= null) ∧ (smu = True) ∧

[ pu 6= AskSecond(u) ∨ endu 6= (pu = AskSecond(u) ∧ ppu = u ∧ pmu = AskFirst(mu)) ∨ su 6= endu ]
then endu := (pu = AskSecond(u) ∧ ppu = u ∧ pmu = AskFirst(mu))

su := endu
pu := AskSecond(u)

ResetMatch ::
if [(AskFirst(u) = AskSecond(u) = null) ∧ ((pu, su, endu) 6= (null, False, False))] ∨

[AskSecond(u) 6= null ∧ pu 6= null ∧ smu = False]
then (pu, su, endu) := (null, False, False)

Figure 6: PolyMatch algorithm

1. The first time, u seduces its candidate setting (endu, su, pu) to (False, False, AskF irst(u)).

2. Then this rule is performed a second time after the u’s candidate has accepted the u’s proposition, i.e.,
when AskFirst(u) has set its p-variable to u. So the second MatchFirst execution sets (endu, su, pu)
to (False, True,AskF irst(u)). Now, variable su is equal to True, allowing node mu that is Second to
seduce its own candidate.

3. Finally, the MatchFirst rule is performed a third time when mu completed his own rematch, i.e., when
endmu

= True. Observe that when there is no bad information due to some bad initializations, then
endmu

= True means pmu
= AskSecond(mu) ∧ ppmu

= mu (see the third line of the MatchSecond
rule). So this third MatchFirst execution sets (endu, su, pu) to (True, True,AskF irst(u)), meaning
that the 3-augmenting path has been fully exploited.

In the MatchFirst rule, observe that we make the assignment operation of su before the one of pu, because
the su value must be computed accordingly to the value of pu before activating u. Indeed, when u executes

12



MatchFirst for the first time, it allows to set pu from ⊥ to AskFirst(u) while su remains False. Then when u
executes MatchFirst for the second time, su is set from False to True while pu remains equal to AskFirst(u).
For the same argument, we make the endu assignment before the su assignment. Thus, the ”normal” values
sequence for (pu, su, endu) is: ((⊥, False, False), (AskFirst(u), False, False), (AskFirst(u), T rue, False),
(AskFirst(u), T rue, True)).

The MatchSecond rule is used by the node when it is Second. This rule is performed only twice in a
usual path exploitation. For the first execution, u has to wait for mu to set its smu to True. Then u can
perform MatchSecond and update its p-variable to AskSecond(u). When the u’s candidate has accepted
his proposition, u can perform MatchSecond for the second time, setting su and endu to True. As in the
MatchFirst rule, we set the end and s assignments before the p assignment.

There are three rules for single nodes. The ResetEnd rule is used to reset bad initializations. In the
UpdateP rule, the node updates its p-value according to the propositions done by neighboring matched
nodes. If there is no proposition, the node sets its p-value to null. Otherwise, p is set to the minimum
identifier among all proposals. Afterward, the p-value can only change when the proposition is canceled.
When a single node u has accepted a proposition, its end value should be equal to the end value of pu. The
UpdateEnd rule is used for this purpose.

6.4. Execution examples

We give two different executions of algorithm PolyMatch under the adversarial distributed daemon.
The first execution points out the main differences between our algorithm PolyMatch and algorithm
ExpoMatch. In the second execution, we focus on the end variable role for the exploited path process.

Main difference between PolyMatch and ExpoMatch algorithms. When two neighboring augmenting-
paths are exploited in parallel, then at most one among the two will eventually become a fully exploited
augmented-path. In Manne et al. algorithm, a destruction of a partially exploited augmenting-path can
be done while no fully exploited augmenting-path has been built instead. Moreover, for one fully exploited
augmented-path, we can exhibit some executions where we destroy a sub-exponential number of exploited
augmented-paths (see Section 5). In our algorithm, this is not possible since we do not destroy any partially
exploited augmented-path while there is still hope to exploit it. This difference is implemented in the
algorithm through the BestRematch(u) predicate. The condition px = null in Manne et al. algorithm has
been replaced by the condition endx =False in our algorithm, meaning that node x must belong to a fully
exploited augmented-path in order to disappear from the candidates of u.

How to handle the end-variable?

Second, we consider the following execution in order to illustrate the role of local end-variable. Figure
7(a) shows the initial state of the execution. The underlying maximal matching contains one edge (2, 3).
Then nodes 2, 3 are matched nodes, and nodes 1, 7, and 8 are single nodes. At the beginning, there are two
3-augmenting paths: (1, 2, 3, 7) and (8, 2, 3, 7).

The initial configuration (Figure 7(a)). In the initial configuration, we assume that all α-values and β-
values are defined as follows: (α2, β2) = (8, null), and (α3, β3) = (7, null). We also assume all s-values are
well defined (i.e., equal to False) whereas all end-values are False but end1 that is True. At this moment,
node 2 considers that since end1 =True, node 1 already belongs to a fully exploited 3-augmenting path:
BestRematch(2) = (8, null).

The 3-augmenting path is (7, 3, 2, 8). Node 2 considers that node 1 is not available because end1 =True.
Since 2 ≤ Unique({α2, β2, α3, β3}) ≤ 4, nodes 2 and 3 detect a 3-augmenting path and start to exploit it.
Since node 3 is First (AskFirst(3) = 7 and AskFirst(2) = null), node 3 may execute a MatchFirst move.
Let us assume it does.

The 3-augmenting path exploitation starts (Figure 7(b)). Node 3 executes here a MatchFirst move and points
to node 7. Since node 3 is pointing to node 7, node 7 is the only activable node among all nodes except node
1. Node 7 points to node 3 by executing a UpdateP move.

13



732

1

8

end1 = True

(a) Initial configuration.

732

1

8

end1 = True

(b) 3 executes MatchFirst, then 7 exe-
cutes UpdateP and chooses 3.

732

1

8

(c) 1 executes ResetEnd, then 2 executes
Update and becomes First. Finally, 3 ex-
ecutes ResetMatch.

732

1

8

(d) 2 executes MatchFirst, then 1 exe-
cutes UpdateP and accepts the proposi-
tion of 2. Finally, 2 executes MatchFirst
(s2:=True).

732

1

8

(e) In parallel 7 and 3 execute UpdateP
and MatchSecond respectively.

732

1

8

(f) 7 executes UpdateP, then 3 executes
MatchSecond, then the True value of
end3 is propagated in the path (1, 2, 3, 7).

Figure 7: An execution of Algorithm PolyMatch (Only the True value of the end-variables are given)

Let us focus on node 1. Its end-value is not well defined since end1 =True while node 1 does not belong
to a fully exploited augmenting path. Thus, node 1 is eligible for ResetEnd rule. Let us assume it makes
this move. After this move, we have end1 =False. This implies that BestRematch(2) = (1, 8) and thus
(α2, β2) = (8, null) 6= BestRematch(2). So, only node 2 is activable, and is eligible for Update rule. Thus,
after this mode, node 2 is First. This implies that node 3 is Second, and it is eligible for ResetMatch because
AskSecond(3) 6= null ∧ p3 6= null ∧ s2 =False. Let us assume it does it.

A second 3-augmenting path exploitation starts (Figure 7(d)). Let us consider node 2. It is First and it
can execute a MatchFirst rule. After this activation, it sets p2 = 1 and s2 = end2 =False. Now, node 1
accepts the node 2 proposition by executing a UpdateP move. After this activation, node 1 points to node 2
(p1 = 2). Now, node 2 is eligible for executing a MatchFirst rule. It sets p2 = 1 and s2 = True. This implies
that node 3 becomes eligible for MatchSecond.

In the configuration shown in Figure 7(e), node 3 can propose to node 7 with a MatchSecond. Note that
node 7 is also eligible for UpdateP since p3 6= 7. Let us assume these two nodes do the move in parallel.
Figure 7(e) shows the configuration obtained after theses moves: p3 = 7, p7 = null. Note that after these
activations, we have s3 = False since, before these activations, the p-values of nodes 3 and 7 are not as follow:
p3 = 7 and p7 = 3. This kind of transitions, where a matched node proposition is performed in parallel
with a single node abandonment, is the reason why we make the s-assignment, then the p-assignment in the
MatchFirst rule. This trick allows to obtain after a MatchFirst rule: su = True implies ppu = u. Finally,
observe at this step that node 3 still waits for an answer of node 7.

The path (1, 2, 3, 7) becomes fully exploited (Figure 7(f)). Now, node 7 can choose 3 by executing UpdateP.
Assume that it does. Since end3 6= (p3 = 7 ∧ p3 = AskSecond(3) ∧ p2 = AskFirst(2)), node 3 is eligible
for a MatchSecond rule to set end3 to True and then to make the other nodes aware that the path is fully
exploited. Assume node 3 executes a MatchSecond move. This will cause node 7 (resp. 2) to execute an
UpdateEnd move (resp. a MatchFirst move) and sets end7 =True (resp. end2 =True). Now, it is the turn
to node 1 to execute an UpdateEnd move. As the end-value of nodes 1, 2, 3, and 7 are equal to True, the
3-augmenting path is fully exploited. The system has reached a stable configuration (see Figure 7(f)). Thus,
the size of the matching is increasing by one and there is no 3-augmenting path left.

7. Correctness Proof

A natural way to prove the correction of PolyMatch algorithm could have been to follow the approach
below. We consider a stable configuration C in PolyMatch and we prove C is also stable in the Manne et
al. algorithm. As we use the exact same variables but the end-variable and because the matching is only
defined on the common variables, the correctness follows from Manne et al. paper. Moreover, we can easily

14



show that if C is stable in PolyMatch, then no rule from the Manne et al. algorithm but the Update rule
can be performed in C. Unfortunately, it is not straightforward to prove that the Update rule from Manne
et al. algorithm cannot be executed in C. Indeed, our Update rule is more difficult to execute than the one
of Manne et al. in the sense that some possible Update in Manne et al. are not possible in our algorithm.
By the way, this is why our algorithm has a better time complexity since the number of partially exploited
augmented path destruction in our algorithm is smaller than in the Manne et al. algorithm. In particular,
we have to prove that in a stable configuration, for any matched node, if pu 6= null, then endpu = True. To
prove that, we need Lemmas 3, 4, 5, 6 and a part of the proof from Theorem 2. Observe that from these
results, the correctness is straightforward without using the Manne et al. proof.

We first introduce some notations. A matched node u is said to be First if AskFirt(u) 6= null. In
the same way, u is Second if AskSecond(u) 6= null. Let Ask : V → V ∪ {null} be a function where
Ask(u) = AskFirst(u) if AskFirst(u) 6= null, otherwise Ask(u) = AskSecond(u). We will say a node
makes a match rule if it performs a MatchFirst or MatchSecond rule.

Recall that the set of edges built by our algorithm PolyMatch is M+ = {(u, v) ∈ M : pu = pv =
null} ∪ {(a, b) ∈ E \M : pa = b ∧ pb = a}. For the correctness part of the proof, we prove that in a stable
configuration,M+ is a 2/3-approximation of a maximum matching on graph G. To do that we demonstrate
there is no 3-augmenting path on (G,M+). In particular we prove that for any edge (u, v) ∈ M, we
have either pu = pv = null, or u and v have two distincts single neighbors they are rematched with, i.e.,
∃x ∈ single(N(u)),∃y ∈ single(N(v)) with x 6= y such that (px = u) ∧ (pu = x) ∧ (py = v) ∧ (pv = y). In
order to prove that, we show every other case for (u, v) is impossible. Finally, we prove that if pu = pv = null
then (u, v) does not belong to a 3-augmenting-path on (G,M+).

Lemma 3. In any stable configuration, we have the following properties:

• ∀u ∈ matched(V ) : pu = Ask(u);
• ∀x ∈ single(V ) : if px = u with u 6= null, then u ∈ matched(N(x)) ∧ pu = x ∧ endu = endx.

Proof. First, we will prove the first property. We consider the case where AskFirst(u) 6= null. We have
pu = AskFirst(u), otherwise node u can execute rule AskFirst. We can apply the same result for the case
where AskSecond(u) 6= null. Finally, we consider the case where AskFirst(u) = AskSecond(u) = null. If
pu 6= null, then node u can execute rule ResetMatch which yields the contradiction. Thus, pu = null.

Second, we consider a stable configuration C where px = u, with u 6= null. u ∈ matched(N(x)), otherwise
x is eligible for an UpdateP rule. Now there are two cases: pu = x and pu 6= x. If pu 6= x, this means that
ppx 6= x. Thus, x is eligible for rule UpdateP , and this yields to a contradiction with the fact that C is
stable. Finally, we have endu = endx, otherwise x is eligible for rule UpdateEnd.

Lemma 4. Let (u, v) be an edge in M. Let C be a configuration. If pu 6= null ∧ pv = null holds in C, then
C is not stable.

Proof. By contraction. We assume C is stable. From Lemma 3, we have pu = Ask(u) 6= null and pv =
Ask(v). So, by definition of predicates AskFirst and AskSecond, Ask(u) = x 6= null implies that Ask(v) 6=
null. This contradicts that fact that pv = Ask(v) = null.

Lemma 5. Let (x, u, v, y) be a 3-augmenting path on (G,M). Let C be a stable configuration. In C, if
px = u, pu = x, pv = y and py = u, then endx = endu = endv = endy = True.

Proof. From Lemma 3, pu = Ask(u) (resp. pv = Ask(v)) thus Ask(u) 6= null and Ask(v) 6= null. W.l.o.g,
we can assume that AskFirst(u) 6= null. We have su = True, otherwise u can execute MatchFirst
rule. Now, as su = True, we must have endv = True, otherwise v can execute MatchSecond rule. As
su = endv = True, we must have endu = True, otherwise u can execute MatchFirst rule. From Lemma 3,
we can deduce that endx = endu = endv = endy = True and this concludes the proof.

Lemma 6. Let (x1, u1, v1, x2) be a 3-augmenting path on (G,M). Let C be a configuration. If px1 =
u1 ∧ pu1 = x1 ∧ pv1 = x2 ∧ px2 6= v1 holds in C, then C is not stable.

15



Proof. By contraction. We assume C is stable. From Lemma 3, Ask(u1) = x1 and Ask(v1) = x2.
First we assume that AskSecond(u1) = x1 and AskFirst(v1) = x2. The local variable sv1 is False,

otherwise v1 would be eligible for executing the MatchFirst rule. Since AskSecond(u1) 6= null ∧ pu1
6=

null ∧ sv1 = False, this implies that u1 is eligible for the ResetMatch rule which is a contradiction.
Second, we assume that AskFirst(u1) = x1 and AskSecond(v1) = x2. We have su1

= True, otherwise
u1 can execute the MatchFirst rule. This implies that endv1 = False, otherwise v1 can execute the
MatchSecond rule. As endv1 = False, then endu1 = False, otherwise u1 can execute the MatchFirst
rule. From Lemma 3, endx1

= endu1
= endv1 = False. Since Ask(v1) = x2, we have x2 ∈ {αv1 , βv1}.

Let us assume endx2
= True. Then x2 6∈ BestRematch(v1) and then v1 is elligible for an Update. Thus

endx2
= False.

Therefore, C is a configuration such that u1 is First and v1 is Second with endx1 = endu1 = endv1 =
endx2 = False. Now we are going to show there exists another augmenting path (x2, u2, v2, x3) with
endx2

= endu2
= endv2 = endx3

= False and pu2
= x2, px2

= u2, pv2 = x3 and px3
6= v2 such that u2 is

First and v2 is Second (see Figure 8).

x1x1 u1u1 v1v1 x2x2 u2u2 v2v2 x3x3

Figure 8: A chain of 3-augmenting paths.

px2
6= null otherwise x2 is elligible for an UpdateP rule. Thus there exists a vertex u2 6= v1 such

that px2
= u2. From Lemma 3, u2 ∈ matched(N(x2)) and pu2

= x2. Therefore, there exists a node
v2 = mu2

. From Lemma 4, we can deduce that pv2 6= null and there exists a node x3 such that pv2 = x3.
x3 ∈ single(N(v2)) otherwise v2 is eligible for an Update rule. Finally, if px3 = v2, then Lemma 5 implies
that endx2 = enda2 = endb2 = endx3 = True. This yields the contradiction with the fact endx2 = False.
So, we have px3

6= v2.
We can then conclude that (x2, u2, v2, x3) is a 3-augmenting path such that px2

= u2 ∧ pu2
= x2 ∧ pv2 =

x3 ∧ px3
6= v2. This augmenting path has the exact same properties than the first considered augmenting

path (x1, u1, v1, x2) and in particular u1 is First.
Now we can continue the construction in the same way. Therefore, for C to be stable, it has to exist a

chain of 3-augmenting paths (x1, u1, v1, x2, u2, v2, x3, . . . , xi, ui, vi, xi+1, . . .) where ∀i ≥ 1 : (xi, ui, vi, xi+1)
is a 3-augmenting path with pxi

= ui ∧ pui
= xi ∧ pvi = xi+1 ∧ pxi+1

= vi+1 and ui is First. Thus,
x1 < x2 < . . . < xi < . . . since the ui will always be First. Since the graph is finite some xk must be equal
to some x` with ` 6= k which contradicts the fact that the identifier’ sequence is strictly increasing.

Lemma 7. Let (x, u, v, y) be a 3-augmenting path on (G,M). Let C be a configuration. If pu = x ∧ px 6=
u ∧ pv = y ∧ py 6= v holds in C, then C is not stable.

Proof. By contradiction, assume C is stable. From Lemma 3, Ask(u) = x. Assume to begin thatAskFirst(u) 6=
null. Because ppu 6= u we have su = False, otherwise u is eligible for MatchFirst. Since AskSecond(v) 6=
null and smv

= su = False then v can apply the ResetMatch rule which yields a contradiction. Therefore
assume that AskSecond(u) 6= null. The situation is symmetric (because now AskFirst(v) 6= null) and
therefore we get the same contradiction as before.

Lemma 8. Let (x, u, v, y) be a 3-augmenting path on (G,M). Let C be a configuration. If py = pu = pv =
py = null holds in C, then C is not stable.

Proof. By contradiction, assume C is stable. endx = False (resp. endy = False), otherwise x (resp. y)
is eligible for a ResetMatch. (αu, βu) = BestRematch(u) (resp. (αv, βv) = BestRematch(v)), otherwise
u (resp. v) is eligible for an Update. Thus, there is at least an available single node for u and v and so
Ask(u) 6= null and Ask(v) 6= null. Then, this contradicts the fact that Ask(u) = null (see Lemma 3).

Theorem 2. In a stable configuration we have, ∀(u, v) ∈M: (i) pu = pv = null or (ii) ∃x ∈ single(N(u)),
∃y ∈ single(N(v)) with x 6= y such that px = u ∧ pu = x ∧ py = v ∧ pv = y.

16



Proof. We will prove that all cases but these two are not possible in a stable configuration. First, Lemma
4 says the configuration cannot be stable if exactly one of pu or pv is not null. Second, assume that
pu 6= null ∧ pv 6= null. Let pu = x and pv = y. Observe that x ∈ single(N(u)) (resp. y ∈ single(N(v))),
otherwise u (resp. v) is eligible for Update. [Case x 6= y]: If px 6= u and py 6= v then Lemma 7 says the
configuration cannot be stable. If px = u and py 6= v then Lemma 6 says the configuration cannot be stable.
Thus, the only remaining possibility when pu 6= null and pv 6= null is: px = u and py = v. [Case x = y]:
Ask(u) 6= null (resp. Ask(v) 6= null), otherwise u (resp. v) is eligible for a ResetMatch. W.l.o.g. let us
assume that u is First. x = AskFirst(u) (resp. x = AskSecond(v)), otherwise u (resp. v) is eligible for
MatchFirst (resp. MatchSecond). Thus AskFirst(u) = AskSecond(v) which is impossible according to
these two predicates.

Lemma 9. Let x be a single node. In a stable configuration, if px = u, u 6= null then there exists a
3-augmenting path (x, u, v, y) on (G,M) such that px = u ∧ pu = x ∧ pv = y ∧ py = v.

Proof. By lemma 3, if px = u with u 6= null then u ∈ matched(N(x)) and pu = x. Since pu 6= null, by
Theorem 2 the result holds.

Corollary 2. In a stable configuration, there is no 3-augmenting path on (G,M+) left.

Proof. Let us assume in a stable configuration, there is a 3-augmenting path on (G,M+). By Theorem 2,
any remaining augmenting-path (x, u, v, y) contains an edge (u, v) ∈ M+ such that pu = pv = null. From
Lemma 8, px 6= null ∨ py 6= null. W.l.o.g let us assume px 6= null. By Lemma 9, (x, px) ∈ M+ and so
(x, u, v, y) is not an augmenting path. Contradiction.

8. Convergence Proof

This section is devoted to a sketch of the convergence proof. In the following, µ will denote the number
of matched nodes and σ the number of single nodes.

The first step consists in proving that the values of s and end represent the different phases of the path
exploitation. Recall that su = True means ppu = u. Moreover endu = True means that the path is fully
exploited. We can easily prove that after one activation of a matched node u, su = True implies ppu = u:

Lemma 11. Let u be a matched node. Consider an execution E starting after u executed some rule. Let C
be any configuration in E. In C, if su =True then ∃x ∈ single(N(u)) : pu = x ∧ px = u.

However, a bad initialization of endmu
to True can induce u to wrongly write True in endu. But this

can appear only once and thus, the second time u writes True in endu means that a 3-augmenting path
involving u has been fully exploited.

Theorem 3. In any execution, a matched node u can write endu :=True at most twice.

We now count the number of destruction of partially exploited augmenting paths. Recall that in Manne
et al. algorithm, for one fully exploited augmenting path, it is possible to destroy a sub-exponential number
of partially exploited ones.

In our algorithm, observe that for a path destruction, the set of single neighbors that are candidates for a
matched edge has to change and this change can only occur when a single node changes its end-value. Such
a change induces a path destruction if a matched node takes into account this modification by applying an
Update rule. So, we first count the number of times a single node can change its end-value (Lemma 21) and
then we deduce the number of times a matched node can execute Update (Corollary 5). Finally, we conclude
we destroy at most O(n2)(= O(∆(σ + µ))) partially exploited augmenting path.

The rest of the proof consists in counting the number of moves that can be performed between two
Update, allowing us to conclude the proof (Theorem 4).

In the following, we detailed point by point the idea behind each result cited above.

17



Since single nodes just follow orders from their neighboring matched nodes, we can count the number
of times single nodes can change the value of their end variable. There are σ possible modifications due to
bad initializations. A matched node u can write True twice in endu, so endu can be True during 3 distinct
sub-executions. As a single node x copies the end-value of the matched node it points to (px = u), then a
single node can change its end-value at most 3 times as well. And we obtain 6µ modifications.

Lemma 21. In any execution, the number of transitions where a single node changes the value of its end
variables (from True to False or from False to True) is at most σ + 6µ times.

We count the maximal number of Update rule that can be performed in any execution. To do that, we
observe that the first line of the Update guard can be True at most once in an execution (Lemma 12). Then
we prove for the second line of the guard to be True, a single node has to change its end value. Thus, for each
single node modification of the end−value, at most all matched neighbors of this single node can perform
an Update rule.

Corollary 5. Matched nodes can execute at most ∆(σ + 6µ) + µ times the Update rule.

Third, we consider two particular matched nodes u and v and an execution with no Update rule performed
by these two nodes. Then we count the maximal number of moves performed by these two nodes in this
execution. The idea is that in such an execution, the α and β values of u and v remain constant. Thus,
in these small executions, u and v detect at most one augmenting path and perform at most one rematch
attempt. We obtain that the maximal number of moves of u and v in these small executions is 12. By the
previous remark and Corollary 5, we obtain:

Theorem 4. In any execution, matched nodes can execute at most 12∆(σ + 6µ) + 18µ rules.

Finally, we count the maximal number of moves that single nodes can perform, counting rule by rule.
The ResetEnd is done at most once. The number of UpdateEnd is bounded by the number of times single
nodes can change their end-value, so it is at most σ + 6µ. Finally, UpdateP is counted as follows: between
two consecutive UpdateP executed by a single node x, a matched node has to make a move. The total
number of executed UpdateP is then at most 12∆(σ + 6µ) + 18µ+ 1.

Corollary 3. The algorithm PolyMatch converges in O(n2) moves under the adversarial distributed dae-
mon and in a general graph, provided that an underlying maximal matching has been initially built.

The Manne et al. algorithm [19] builds a self-stabilizing maximal matching under the adversarial dis-
tributed daemon in a general graph, in O(m) moves. This leads to a O(m.n2) moves complexity to build a
1-maximal matching with our algorithm without any assumption of an underlying maximal matching.

Now, the next section is devoted to the description of the technical proof.

8.1. A matched node can write True in its end-variable at most twice

The first three lemmas are technical lemmas.

Lemma 10. Let u be a matched node. Consider an execution E starting after u executed some rule. Let C
be any configuration in E. If endu = True in C then su = True as well.

Proof. Let C0 7→ C1 be the transition in E or in its prefix in which u executed a rule for the last time before
C. Observe first that this transition necessarily exists by definition of E and second that C may be equal
to C1. The executed rule is necessarily a match rule, otherwise endu could not be True in C1. If it is a
MatchSecond the lemma holds since in that case su is a copy of endu. Assume now it is a MatchFirst. For
endu to be True in C1, pu = AskFirst(u) ∧ ppu = u ∧ pmu

= AskSecond(mu) must hold in C0, according
to the action of MatchFirst. This implies that u writes True in su in transition C0 7→ C1.

Lemma 11. Let u be a matched node. Consider an execution E starting after u executed some rule. Let C
be any configuration in E. In C, if su = True then ∃x ∈ single(N(u)) : pu = x ∧ px = u.

18



Proof. Consider transition C0 7→ C1 in which u executed a rule for the last time before C. Observe that this
transition necessarily exists by definition of E . The executed rule is necessarily a match rule, otherwise su
could not be True in C1. Observe now that whichever match rule is applied, Ask(u) 6= null – let us assume
Ask(u) = x – and pu = x and px = u must hold in C0 for su to be True in C1. pu = x still holds in C1

and until C. Moreover, x must be in single(N(u)), otherwise u would have executed an Update instead of a
match rule in C0 7→ C1, since Update has the higest priority among all rules. Finally, in transition C0 7→ C1,
x cannot execute UpdateP nor ResetEnd since px ∈ matched(N(x)) ∧ ppx = x holds in C0. Thus in C1,
pu = x and px = u holds. Using the same argument, x cannot execute UpdateP nor ResetEnd between
configurations C1 and C. Thus pu = x ∧ px = u in C.

Lemma 12. Let u be a matched node and E be an execution containing a transition C0 7→ C1 where u makes
a move. From C1, the predicate in the first line of the guard of the Update rule will never hold.

Proof. Let C2 be any configuration in E such that C2 ≥ C1. Let C10 7→ C11 be the last transition before C2

in which u executes a move. Notice that by definition of E , this transition exists. Assume by contradiction
that one of the following predicates holds in C2.

1. (αu > βu) ∨ (αu, βu /∈ (single(N(u)) ∪ {null})) ∨ (αu = βu ∧ αu 6= null)
2. pu /∈ (single(N(u)) ∪ {null})
By definition between C11 and C2, u does not execute rules. To modify the variables αu, βu and pu, u

must execute a rule. Thus one of the two predicates also holds in C11.
We first show that if predicate (1) holds in C11 then we get a contradiction. If u executes an Update

rule in transition C10 7→ C11, then by definition of the BestRematch function, predicate (1) cannot hold
in C11 (observe that the only way for αu = βu is when αu = βu = null). Thus assume that u executes a
match or ResetMatch rule. Notice that these rules do not modify the value of the αu and βu variables.
This implies that if u executes one of these rules in C10 7→ C11, predicate (1) not only hold in C11 but also
in C10. Observe that this implies, in that case that u is eligible for Update in C10 7→ C11, which gives the
contradiction since Update is the rule with the highest priority among all rules.

Now assume predicate (2) holds in C11. In transition C10 7→ C11, u cannot execute Update nor
ResetMatch as this would imply that pu = null in C11. Assume that in C10 7→ C11 u executes a match rule.
Since in C11, pu /∈ (single(N(u))∪ {null}) this implies that in C10, Ask(u) /∈ (single(N(u))∪ {null}). This
implies that αu, βu /∈ (single(N(u)) ∪ {null}) in C10. Thus u is eligible for Update in transition C10 7→ C11

and this yields the contradiction since Update is the rule with the highest priority among all rules.
Since these two predicates cannot hold in C2, this concludes the proof.

Now, we focus on particular configurations for a matched edge (u, v) corresponding to the fact they have
completely exploited a 3-augmenting path.

Lemma 13. Let (u, v) be a matched edge, E be an execution and C be a configuration of E. If in C, we have:
1. pu ∈ single(N(u)) ∧ pu = AskFirst(u) ∧ ppu = u;
2. pv ∈ single(N(v)) ∧ pv = AskSecond(v) ∧ ppv = v;
3. su = endu = sv = endv = True;

then neither u nor v will ever be eligible for any rule from C.

Proof. Observe first that neither u nor v are eligible for any rule in C. Moreover, pu (resp. pv) is not eligible
for an UpdateP move since u (resp. v) does not make any move. Thus ppu and ppv will remain constant
since u and v do not make any move and so neither u nor v will ever be eligible for any rule from C.

The configuration C described in Lemma 13 is called a stopuv configuration. From such a configuration
neither u nor v will ever be eligible for any rule. In Lemmas 15 and 16, we consider executions where a
matched node u writes True in endu twice, and we focus on the transition C0 7→ C1 where u performs its
second writing. Lemma 15 shows that, if u is First in C0, then C1 is a stopumu configuration. Lemma 16
shows that, if u is Second in C0, then either C1 is a stopumu configuration or there exists a configuration C3

such that C3 > C1, u does not make any move from C1 to C3 and C3 is a stopumu
configuration. Lemma 14

and Corollary 4 are required to prove Lemmas 15 and 16.

19



Lemma 14. Let (u, v) be a matched edge. Let E be some execution in which v does not execute any rule. If
there exists a transition C0 7→ C1 in E where u writes True in endu, then u is not eligible for any rule from
C1.

Proof. To write True in endu in transition C0 7→ C1, u must have executed a match rule. According to this
rule, (pu = Ask(u) ∧ ppu = u) holds C0 with pu ∈ single(N(u)), otherwise u would have executed an Update
instead of a match rule. Now, in C0 7→ C1, pu cannot execute UpdateP then it cannot change its p-value
and v does not execute any move then it cannot change Ask(u). Thus, (pu = Ask(u) ∧ ppu = u) holds in
both C0 and C1.

Assume now by contradiction that u executes a rule after configuration C1. Let C2 7→ C3 be the next
transition in which it executes a rule. Recall that between configurations C1 and C2 both u and v do
not execute rules. Observe also that pu is not eligible for UpdateP between these configurations. Thus
(pu = Ask(u) ∧ ppu = u) holds from C0 to C2. Moreover the following points hold as well between C0 and
C2 since in C0 7→ C1 u executed a match rule and v does not apply rules in E :

• αu, αv, βu and βv do not change.
• The values of the variables of v do not change.
• Ask(u) and Ask(v) do not change.
• If u was First in C0 it is First in C2 and the same holds if it was Second.

Using these remarks, we start by proving that u is not eligible for ResetMatch in C2. If it is First in
C2, this holds since AskFirst(u) 6= null and AskSecond(u) = null. If it is Second then to be eligible for
ResetMatch, sv = False must hold in C2 since AskSecond(u) 6= null. Since u executed endu = True in
C0 7→ C1 and since u was Second in C0, then necessarily sv = True in C0 and thus in C2 (using remark 2
above). So u is not eligible for ResetMatch in C2.

We show now that u is not eligible for an Update in C2. The α and β variables of u and v remain constant
between C0 and C2. Thus if any of the three first disjunctions in the Update rule holds in C2 then it also
holds in C0 and in C0 7→ C1 u should have executed an Update since it has higher priority than the match
rules. Moreover since in C2 (pu = Ask(u) ∧ ppu = u) holds, the last two disjunctions of Update are False
and we can state u is not eligible for this rule.

We conclude the proof by showing that u is not eligible for a match rule in C2. If u was First in
C0 then it is First in C2. To write True in endu then (pu = AskFirst(u) ∧ ppu = u ∧ su ∧ pmu

=
AskSecond(mu) ∧ endmu

) must hold in C0. Since in C0 7→ C1 v does not execute rules, it also holds in C1.
The same remark between configurations C1 and C2 implies that this predicate holds in C2. Thus in C2,
all the three conditions of the MatchFirst guard are False and u not eligible for MatchFirst. A similar
remark if u is Second implies that u will not be eligible for MatchSecond in C2 if it was Second in C0.

Corollary 4. Let (u, v) be a matched edge. In any execution, if u writes True in endu twice, then v executes
a rule between these two writing.

Lemma 15. Let (u, v) be a matched edge and E be an execution where u writes True in its variable endu
at least twice. Let C0 7→ C1 be the transition where u writes True in endu for the second time in E. If u is
First in C0 then the following holds:

1. in configuration C0,
(a) sv = endv = True; (b) pu = AskFirst(u) ∧ ppu = u ∧ su = True ∧ pv = AskSecond(v);
(c) pu ∈ single(N(u)); (d) pv ∈ single(N(v)) ∧ ppv = v;

2. v does not execute any move in C0 7→ C1;
3. in configuration C1,

(a) su = endu = True; (b) pu ∈ single(N(u)) ∧ pv ∈ single(N(v));
(c) sv = endv = True; (d) pu = AskFirst(u) ∧ pv = AskSecond(v); (e) ppu = u ∧ ppv = v.

Proof. We prove Point 1a. Observe that for u to write True in endu, endv must be True in C0. By
Lemma 10 this implies that sv is True as well. Now Point 1b holds by definition of the MatchFirst rule.
As in C0, u already executed an action, then according to Lemma 12, Point 1c holds and will always
hold. By Corollary 4, u cannot write True consecutively if v does not execute moves. Thus at some point

20



before C0, v applied some rule. This implies that in configuration C0, since sv = True, by Lemma 11,
∃x ∈ single(N(v)) : pv = x ∧ px = v. Thus Point 1d holds.

We now show that v does not execute any move in C0 7→ C1 (Point 2). Recall that v already executed
an action before C0, so by Lemma 12, line 1 of the Update guard does not hold in C0. Moreover, by Point
1d, line 2 does not hold either. Thus, v is not eligible for Update in C0. We also have that su = True and
AskSecond(v) 6= null in C0, thus v is not eligible for ResetMatch. Observe now that by Points 1a, 1b and
1d, v is not eligible for MatchSecond in C0. Finally v cannot execute MatchFirst since AskFirst(v) = null.
Thus v does not execute any move in C0 7→ C1 and so Point 2 holds.

In C1, endu is True by hypothesis and according to Point 1b, u writes True in su in transition C0 7→ C1.
Thus Point 3a holds. Points 3b holds by Points 1c and 1d. Points 3c holds by Points 1a and 2. AskFirst(u)
and AskSecond(v) remain constant in C0 7→ C1 since neither u nor v executes an Update in this transition.
Moreover pv remains constant in C0 7→ C1 by Point 2 and pu remains constant also since it writes AskFirst(u)
in pu in this transition while pu = AskFirst(u) in C0. Thus Points 3d holds. Observe that nor pu neither
pv is eligible for an UpdateP in C0, thus Point 3e holds.

Now, we consider the case where u is Second.

Lemma 16. Let (u, v) be a matched edge and E be an execution where u writes True in its variable endu
at least twice. Let C0 7→ C1 be the transition where u writes True in endu for the second time in E. If u is
Second in C0 then the following holds:

1. in configuration C0,

(a) sv = True ∧ pv = AskFirst(v); (b) pv ∈ single(N(v)) ∧ ppv = v;

2. in transition C0 7→ C1, v is not eligible for Update nor ResetMatch;
3. in configuration C1,

(a) su = endu = True; (b) pv ∈ single(N(v)) ∧ pv = AskFirst(v) ∧ ppv = v;
(c) pu ∈ single(N(u)) ∧ pu = AskSecond(u) ∧ ppu = u; (d) sv = True;

4. u is not eligible for any move in C1;
5. If endv = False in C1 then the following holds:

(a) From C1, v executes a next move and this move is a MatchFirst;
(b) Let us assume this move (the first move of v from C1) is done in transition C2 7→ C3. In config-

uration C3, we have:

(i) su = endu = True; (ii) pv ∈ single(N(v)) ∧ pv = AskFirst(v) ∧ ppv = v;
(iii) pu ∈ single(N(u)) ∧ pu = AskSecond(u) ∧ ppu = u; (iv) sv = True;
(v) u does not execute moves between C1 and C3; (vi) endv = True;

Proof. We show Point 1a. For u to write True in transition C0 7→ C1, u executes a MatchSecond in this
transition. Thus sv = True must hold in C0 and pv = AskFirst(v) as well. By Corollary 4, u cannot write
True consecutively if v does not execute any move. Thus at some point before C0, v applied some rule.
Thus, and by Lemma 11, ∃x ∈ single(N(v)) : pv = x ∧ px = v in configuration C0, so Point 1b holds.

As AskFirst(v) 6= null in C0, v is not eligible for ResetMatch in C0. We prove now that v is not
eligible for Update. By Corollary 4 and Lemma 12, line 1 of the Update guard does not hold in C0. Finally,
according to Point 1b, the second line of the Update guard does not hold, which concludes Point 2.

We consider now Point 3a. In C1, su = endu = True holds because, executing a MatchSecond, u writes
True in endu and writes endu in su during transition C0 7→ C1.

We now show Point 3b. AskFirst(v) and AskSecond(u) remain constant in C0 7→ C1 since neither u nor
v execute an Update in this transition. Moreover, the only rule v can execute in C0 7→ C1 is a MatchFirst,
according to Point 2. Thus v does not change its p-value in C0 7→ C1 and so pv = AskFirst(v) in C1. Now,
in C0, v ∈ matched(N(pv))∧ppv = v thus pv cannot execute UpdateP in C0 7→ C1 and thus it cannot change
its p-value. So, ppv = v in C1.

Point 3c holds since after u executed a MatchSecond in C0 7→ C1, observe that necessarily pu =
AskSecond(u) in C1. Moreover, su = True in C1 so, according to Lemma 11, ∃y ∈ single(N(u)) : pu =
y ∧ py = u in C1.

21



pv = AskFirst(v) and ppv = v hold in C0, according to Points 1a and 1b. Moreover, pu = AskSecond(u)
holds in C0 since u writes True in endu while executing a MatchSecond in C0 7→ C1. Finally, by Point 2, v
can only execute MatchFirst in C0 7→ C1, thus variable sv remains True in transition C0 7→ C1 and Point
3d holds.

We now prove Point 4. If endv = True in C1, then according to Lemma 13, u is not eligible for any
rule in C1. Now, let us consider the case endv = False in C1. By Points 3c and 3d, u is not eligible for
ResetMatch. By Point 3c and Lemma 12, u is not eligible for Update. By Points 3a, 3b and 3c, u is not
eligible for MatchSecond. Finally, since u is Second in C1, u is not eligible for MatchFirst neither and
Point 4 holds.

Now since between C1 and C2, v does not execute any rule (by Point 5b), and since pu (resp. pv) is not
eligible for UpdateP while u (resp. v) does not move (because ppu = u (resp. ppv = v)), then Ask(u), Ask(v),
ppu and ppv remain constant while u does not make any move. And so, properties 3a, 3b, 3c and 3d hold for
any configuration between C1 and C2, thus u is not eligible for any rule between C1 and C2 and u will not
execute any move from C1 to C3. Moreover, the endv-value is the same from C1 to C2.

If endv = False in C2, then v is eligible for a MatchFirst and it will write True in its endv-variable
while all properties of Point 3 will still hold in C3. Thus Point 5 holds.

Theorem 3. In any execution, a matched node u can write endu := True at most twice.

Proof. Let (u, v) be a matched edge and E be an execution where u writes True in its variable endu at least
twice. Let C0 7→ C1 be the transition where u writes True in endu for the second time in E . If u is First
(resp. Second) in C0 then from Lemmas 13 and 15, (resp. 16), from C1, neither u nor v will ever be eligible
for any rule.

8.2. The number of times single nodes can change their end-variable

In the following, µ denote the number of matched nodes and σ the number of single nodes.

Lemma 17. Let x be a single node. If x writes True in endx in some transition C0 7→ C1 then, in C0,
∃u ∈ matched(N(x)) : px = u ∧ pu = x ∧ endx = False ∧ endu = True.

Proof. To write True in its end variable, a single node must apply UpdateEnd. Observe now that to apply
this rule, the conditions described in the Lemma must hold.

Lemma 18. Let u be a matched node. Consider an execution E starting after u executed some rule and in
which endu is always True, except for the last configuration D of E in which it may be False. Let E\D be
all configurations of E but configuration D. In E\D, the following holds:

(a) pu ∈ single(N(u)); (b) pu remains constant.

Proof. Since endu = True in E\D, the last rule executed before E is necessarily a Match rule. So, at the
beginning of E , pu ∈ single(N(u)), otherwise, u would not have executed a Match rule, but an Update
instead. We prove now that in E\D, pu remains constant. Assume by contradiction that there exists a
transition in which pu is modified. Let C0 7→ C1 be the first such transition. First, observe that in E\D, u
cannot execute ResetMatch nor Update since that would set endu to False. Thus u must execute a Match
rule in C0 7→ C1. Since the value of pu changes in this transition, this implies that Ask(u) 6= pu in C0. Thus,
whatever the Match rule, observe now that in C1, endu must be False, which gives a contradiction and
concludes the proof.

Definition 6. Let u be a matched node. We say that a transition C0 7→ C1 is of type ”a single copies True
from u” if there exists a single node x such that (px = u ∧ pu = x ∧ endx = False) in C0 and endx = True
in C1. Notice that by Lemma 17, endu = True in C0 and x ∈ single(N(u)).

If a transition C0 7→ C1 is of type ”a single node copies True from u” and if x is the single node with
(px = u ∧ pu = x ∧ endx = False) in C0 and endx = True in C1, then we will say x copies True from u.

Lemma 19. Let u be a matched node and E be an execution. In E, there are at most three transitions of
type ”a single copies True from u”.

22



Proof. Let E be an execution. We consider some sub-executions of E .
Let Einit be a sub-execution of E that starts in the initial configuration of E and that ends just after the

first move of u. Let C0 7→ C1 be the last transition of Einit. Observe that u does not execute any move until
configuration C0 and executes its first move in transition C0 7→ C1. We will write Einit \ C1 to denote all
configurations of Einit but the configuration C1. We prove that there is at most one transition of type ”a
single copies True from u” in Einit.

There are two possible cases regarding endu in all configuration of Einit \C1: either endu is always True
or endu is always False. If endu = False then by Definition 6, no single node can copy True from u in Einit,
not even in transition C0 7→ C1, since no single node is eligible for such a copy in C0. If endu = True, once
again, there are two cases: either (i) (pu = null∨ pu /∈ single(N(u))) in all configuration of Einit \C1, or (ii)
(pu ∈ single(N(u))) in Einit \ C1. In case (i) then by Definition 6 no single node can copy True from u in
Einit, not even in C0 7→ C1. In case (ii), observe that pu remains constant in all configurations of Einit \ C1,
thus at most one single node can copy True from u in Einit.

Let Etrue be a sub-execution of E starting after u executed some rule and such that: for all configurations
in Etrue but the last one, endu = True. There is no constraint on the value of endu in the last configuration
of Etrue. According to Lemma 18, pu ∈ single(N(u)) and pu remains constant in all configurations of Etrue
but the last one. This implies that at most one single can copy True from u in Etrue.

Let Efalse be an execution starting after u executed some rule and such that: for all configurations in
Efalse but the last one, endu = False. There is no constraint on the value of endu in the last configuration
of Efalse. By Definition 6, no single node will be able to copy True from u in Efalse.

To conclude, by Corollary 3, u can write True in its end variable at most twice. Thus, for all executions
E , E contains exactly one sub-execution of type Einit, and at most two sub-executions of type Etrue and the
remaining sub-executions are of type Efalse. This implies that in total, we have at most three transitions of
type ”a single copies True from u” in E .

Lemma 20. In any execution, the number of transitions where a single node writes True in its end variable
is at most 3µ.

Proof. Let E be an execution and x be a single node. If x writes True in endx in some transition of E , then
x necessarily executes an UpdateEnd rule and by Definition 6, this means x copies True from some matched
node in this transition. Now the lemma holds by Lemma 19.

Lemma 21. In any execution, the number of transitions where a single node changes the value of its end
variables (from True to False or from False to True) is at most σ + 6µ times.

Proof. A single node can write True in its end variable at most 3µ times, by Corollary 20. Each of this
writing allows one writing from True to False, which leads to 6µ possible modifications of the end variables.
Now, let us consider a single node x. If endx = False initially, then no more change is possible, however if
endx = True initially, then one more modification from True to False is possible. Each single node can do
at most one modification due to this initialization and thus the Lemma holds.

8.3. How many Update in an execution?

Definition 7. Let u be a matched node and C be a configuration. We define Cand(u,C) = {x ∈ single(N(u)) :
(px = u ∨ endx = False)} which is the set of vertices considered by the function BestRematch(u) in con-
figuration C.

Lemma 22. Let u be a matched node. If there exists a transition C0 7→ C1 such that the value of
BestRematch(u) is not the same in C0 and in C1, then there exists a single node x such that
x ∈ Cand(u,C0)\Cand(u,C1) or x ∈ Cand(u,C1)\Cand(u,C0). Moreover, in transition C0 7→ C1, x flips
the value of its end variable.

Proof. We prove the first point by contradiction. Since BestRematch(u) is a deterministic function over
Cand(u,C) for some configuration C, so if Cand(u,C0) = Cand(u,C1) then the value of BestRematch(u) is
the same in C0 and C1 which yields the contradiction.

23



For the second point, we first consider the case x ∈ Cand(u,C1) and x /∈ Cand(u,C0). Necessarily
endx = True ∧ px 6= u in C0 and endx = False ∨ px = u in C1. If px = u in C1 then in transition C0 7→ C1,
x has executed an UpdateP and the second point holds. Assume now that px 6= u in C1. Necessarily
endx = False in C1 and the Lemma holds.

We consider the second case in which x /∈ Cand(u,C1) and x ∈ Cand(u,C0). Necessarily in C1, px 6= u
and endx = True. Thus if endx = False in C0 the lemma holds. Assume by contradiction that endx = True
in C0. This implies px = u in C0. But since in C1 px 6= u then x executed UpdateP in C0 7→ C1 which
implies endx = False in C1, a contradiction. This completes the proof.

Corollary 5. Matched nodes can execute at most ∆(σ + 6µ) + µ times the Update rule.

Proof. Let u be a matched node. Initially each matched node can be eligible for an Update. Thus, let
us consider a sub-execution E staring after u has executed a move and in which BestRematch(u) remains
constant. By Lemma 12, the first line of the Update rule is always false for u in E . So u can execute the
Update rule at most once in E . So, for u to become eligible again for an Update after E , BestRematch(u)
must change and so, by Lemma 22, at least one single node must change the value of its end variable. Each
change of the end value of a single node can generate at most ∆ matched nodes to be eligible for an Update.
By Lemma 21, the number of transitions where a single node changes the value of its end variables is at
most σ+ 6µ times. Thus at most ∆(σ+ 6µ) Update generated by a change of the end value of a single node
and the Lemma holds.

8.4. A bound on the total number of moves in any execution

Definition 8. Let (u, v) be a matched edge. In the following, we call F , a finite execution where neither u
nor v execute the Update rule. Let DE be the first configuration of F and D′E be the last one.

Observe that in the execution F , all variables α and β of nodes u and v remain constant and thus,
predicates AskFirst and AskSecond for these two nodes remain constant too.

Lemma 23. If Ask(u) = Ask(v) = null in F , then u and v can both execute at most one ResetMatch.

Proof. In the execution F , by definition, u and v do not execute the Update rule. Moreover, these two nodes
are not eligible for Match rules since Ask(u) = Ask(v) = null. Thus they are only eligible for ResetMatch.
Observe now it is not possible to execute tis rule twice in a row, which completes the proof.

Lemma 24. Assume that in F , u is First and v is Second. If su is False in all configurations of F but the
last one, then v can execute at most one rule in F .

Proof. Since su=False in all configurations of F but the last one, node v which is Second can only be eligible
for ResetMatch. If v executes ResetMatch, it is not eligible for a rule anymore and the Lemma holds.

Lemma 25. Assume that in F , u is First and v is Second. If su is False throughout F , then u can execute
at most one rule in F .

Proof. Node u can only be eligible for MatchFirst. Assume u executes MatchFirst for the first time in
some transition C0 7→ C1, then in C1, necessarily, pu = AskFirst(u), su = False (by hypothesis) and
endu = False by Lemma 10. Let F1 be the execution starting in C1 and finishing in D′E . Since in F1,
there is no Update of nodes u and v, observe that pu = AskFirst(u) remains True in this execution.
Assume by contradiction that u executes another MatchFirst in F1. Consider the first transition C2 7→ C3

after C1 when it executes this rule. Notice that between C1 and C2 it does not execute rules. Thus in C2,
pu = AskFirst(u), su = False and endu = False hold. Now if u executes MatchFirst in C2 it is necessarily
to modify the value of su or endu. By definition, it cannot change the value of su. Moreover it cannot modify
the value of endu as this would imply by Lemma 10 that su = True in C3. This completes the proof.

24



Lemma 26. Let (u, v) be a matched edge. Assume that in F , u is First, v is Second and that u writes
True in su in some transition of F . Let C0 7→ C1 be the transition in F in which u writes True in su for
the first time. Let F1 be the execution starting in C1 and finishing in D′E . In F1, u can apply at most 3
rules and v at most 2.

Proof. We first prove that in F1, su remains True. Observe that u cannot execute Update neitherResetMatch
since it is First. So u can only execute MatchFirst in F1. For u to write False in su, there must exist a
configuration in F1 such that pu 6= AskFirst(u) ∨ ppu 6= u ∨ pv 6∈ {AskSecond(v), null}. Let us prove that
none of these cases are possible.

Since u executed MatchFirst in transition C0 7→ C1 writting True in su then, by definition of this
rule, pu = AskFirst(u) ∧ ppu = u ∧ pv ∈ {AskSecond(v), null} holds in C0. As there is no Update of u
and v in F , then AskFirst(u) and AskSecond(v) remain constant throughout F (and F1). So each time u
executes a MatchFirst, it writes the same value AskFirst(u) in its p-variable. Thus pu = AskFirst(u) holds
throughout F1. Moreover, each time v executes a rule, it writes either null or the same value AskSecond(v)
in its p-variable. Thus pv ∈ {AskSecond(v), null} holds throughout F1. Now by Lemma 11, in C1 we
have, ∃x ∈ single(N(u)) : pu = x ∧ px = u, since su = True . This stays True in F1 as pu remains
constant and x will then not be eligible for UpdateP in F1. Thus ppu = u holds throughout F1. Thus, pu =
AskFirst(u)∧ ppu = u∧ pv ∈ {AskSecond(v), null} holds throughout F1 and so su = True throughout F1.

This implies that in F1, v is only eligible for MatchSecond. The first time it executes this rule in some
transition B0 7→ B1, with B1 ≥ C1, then in B1, pv = AskSecond(v), sv = endv and this will hold between
B1 and D′E . If endv = True in B1 then this will stay True between B1 and D′E . Indeed, pv is not eligible
for UpdateP and we already showed that pu = AskFirst(u) holds in F1. In that case, between B1 and D′E ,
v will not be eligible for any rule and so v will have executed at most one rule in F1. In the other case, that
is endv(= sv) = False in B1, since pv = AskSecond(v) holds between B1 and D′E , necessarily, the next time
v executes a MatchSecond rule, it is to write True in endv. After that observe that v is not eligible for any
rule. Thus, v can execute at most 2 rules in F1.

To conclude the proof it remains to count the number of moves of u in F1. Recall that we proved
su is always True in F1. Thus whenever u executes a MatchFirst, it is to modify the value of its end
variable. Observe that this value depends in fact of the value of endv and of pv since we proved pu =
AskFirst(u) ∧ ppu = u ∧ su ∧ pv ∈ {AskSecond(v), null} holds throughout F1. Since we proved that in F1,
v can execute at most two rules, this implies that these variables can have at most three different values in
F1. Thus u can execute at most 3 rules in F1.

Lemma 27. Assume that in F , u is First and v is Second. If su is True throughout F and if u does not
execute any move in F , then v can execute at most two rules in F .

Proof. By Definition 8, v cannot execute Update in F . Since we suppose that in F , su = True then v is
not eligible for ResetMatch. Thus in F , v can only execute MatchSecond. After it executed this rule for
the first time, pv = AskSecond(v) and sv = endv will always hold, since v is only eligible for MatchSecond.
Thus the second time it executes this rule, it is necessarily to modify its endv and sv variables. Observe that
after that, since u does not execute rules, v is not eligible for any rule.

Lemma 28. In F , u and v can globally execute at most 12 rules.

Proof. If Ask(u) = Ask(v) = null, the Lemma holds by Lemma 23. Assume now that u is First and v
Second. We consider two executions in F .

Let C0 7→ C1 be the first transition in F in which u executes a rule. Let F0 be the execution starting in
DE and finishing in C0. There are two cases. If su = False in F0 then v is only eligible for ResetMatch in
this execution. Observe that after it executes this rule for the first time in F0, it is not eligible for any rule
after that in F0. If su = True in F0 then by Lemma 27, v can execute at most two rules in this execution.
In transition C0 7→ C1, u and v can execute one rule each.

Let F1 be the execution starting in C1 and finishing in D′E . Whatever rule u executes in transition
C0 7→ C1 observe that u either writes True or False in su. If u writes True in su in transition C0 7→ C1,
then by Lemma 26, u and v can execute at most five rules in total in F1.

25



Consider the other case in which u writes False in C1. Let C2 7→ C3 be the first transition in F1 in which
u writes True in su. Call F10 the execution between C1 and C3 and F11 the execution between C3 and D′E .
By definition, su stays False in F10\C3. Thus in F10\C3, u can execute at most one rule, by Lemma 25.
Now in F10, u can execute at most two rules. By Lemma 24, v can execute at most one rule in F10. In total,
u and v can execute at most three rules in F10. In F11, u and v can execute at most five rules by Lemma
26. Thus in F1, u and v can apply at most eight rules.

Theorem 4. In any execution, matched nodes can execute at most 12∆(σ + 6µ) + 18µ rules.

Proof. Let k be the number of edges in the underlying maximal matching, k = µ
2 . For i ∈ [1, .., k], let

{(ui, vi) = ai} be the set of matched edges. By Update(ai) we denote an Update rule executed by node
ui or vi. By Lemma 28, between two Update(ai) rules, nodes ui and vi can execute at most 12 rules. By
Corollary 5, there are at most ∆(σ + 6µ) + µ executed Update rules. Thus in total, nodes can execute at

most
k∑
i=1

12× (#Update(ai) + 1) = 12
k∑
i=1

#Update(ai) + 12
k∑
i=1

1 ≤ 12(∆(σ + 6µ) + µ) + 12k rules

Lemma 29. In any execution, single nodes can execute at most σ times the ResetEnd rule.

Proof. We prove that a single node x can execute the ResetEnd rule at most once. Assume by contradiction
that it executes this rule twice. Let C0 7→ C1 be the transition when it executes it the second time. In
C0, endx = True, by definition of the rule. Since x already executed a ResetEnd rule, it must have some
point wrote True in endx. This is only possible through an execution of UpdateEnd. Thus consider the last
transition D0 7→ D1 in which it executed this rule. Observe that D1 ≤ C0. Since between D1 and C0, endx
remains True, observe that x does not execute any rule between these two configurations. Now since in D1,
px 6= null and this holds in C0 then x is not eligible for ResetEnd in C0, which gives the contradiction. This
implies that single nodes can execute at most σ times the ResetEnd rule.

Lemma 30. In any execution, single nodes can execute at most σ + 6µ times the UpdateEnd rule.

Proof. By Lemma 21, single nodes can change the value of their end variable at most σ + 6µ times. Thus
they can apply UpdateEnd at most σ+ 6µ times, since in every application of this rule, the value of the end
variable must change.

Lemma 31. In any execution, single nodes can execute O(∆(σ + µ)) times the UpdateP rule.

Proof. Let x be a single node. Let C0 7→ C1 be a transition in which x executes an UpdateP rule and let
C2 7→ C3 be the next transition after C1 in which x executes an UpdateP rule. We prove that for x to
execute the UpdateP rule in C2 7→ C3, a matched node had to execute a move between C0 and C2.

In C1 there are two cases: either px = null or px 6= null. Assume to begin that px = null. This implies
that in C0 the set {w ∈ N(x)|pw = x} is empty. In C2, px = null, since between C1 and C2, x can only
apply UpdateEnd or ResetEnd. Thus if it applies UpdateP in C2, necessarily {w ∈ N(x)|pw = x} 6= ∅. This
implies that a matched node must have executed a Match rule between C1 and C2 and the lemma holds
in that case. Consider now the case in which px = u with u 6= null in C1. By definition of the UpdateP
rule, we also have u ∈ matched(N(x)) ∧ pu = x holds in C0. In C2 we still have that px = u since between
C1 and C2, x can only execute UpdateEnd or ResetEnd. Thus if x executes UpdateP in C2, necessarily
ppx 6= x. This implies that pu 6= x and so u executed a rule between C0 and C2. Now, the lemma holds by
Theorem 4.

Corollary 6. In any execution, nodes can execute at most O(n2) moves.

Proof. According to Lemmas 29, 30 and 31, single nodes can execute at most O(n2) moves. Moreover,
according to Theorem 4, matched nodes can execute at most O(n2) moves.

26



9. Composition

Recall that the algorithm PolyMatch assumes an underlying maximal matching. Let MaxMatch be
a silent self-stabilizing maximal matching algorithm having a complexity of z = O(f(n,m)) moves under
the distributed daemon. In this section, we prove the fair composition of MaxMatch and PolyMatch
has a complexity in O(zn2) moves under the distributed daemon. The MaxMatch algorithm could be for
instance the Manne et al. algorithm [19] that has a complexity in O(m) moves that would lead to a final
complexity of the composition in O(n2.m) moves.

An execution of such a composition is an alternated concatenation of two kinds of finite sub executions.
The first kind only contains actions from PolyMatch and the second one contains any action. Les us call
the first kind of executions, the PolyMatch-sub-executions. We do not know any upper bound on the
number of moves of a PolyMatch-sub-executions in the case where MaxMatch has not stabilized yet.
Indeed, Corollary 6 only says that such a sub-execution contains O(n2) moves when MaxMatch is already
stabilized.

Let G be the input graph and e be an execution on G of the composition between MaxMatch and
PolyMatch. We consider two transitions of e containing a move from MaxMatch and such that there
is no more move from it between them. Let us call E the execution between these two transitions and
let C0 be the first configuration of E (E is a PolyMatch-sub-execution). In C0, if MaxMatch is in
a stable configuration, then the underlying matching is maximal in E , and every node u is either single
(i.e., mu =⊥) or matched (i.e., ∃v ∈ N(u) such that mu = v ∧ mv = u). However, MaxMatch is not
necessarily in a stable configuration in C0. Therefore, in that case, a node can also be falsy-matched in E ,
i.e., ∃v ∈ N(u) such that mu = v∧mv 6= u. Observe that a node x cannot decide if a neighbor u is matched
or falsy-matched since it can only check if mu 6=⊥ but cannot read the variable mmu . Thus, all falsy-matched
nodes are considered as matched by their neighbors. Finally, observe that only single and matched nodes
are activable for PolyMatch moves in E (by definition of the guarded rules of the algorithms). Therefore,
by definition of E , no falsy-matched nodes perform move in E .

In the following, informally we build a new graph G′ from G and a new configuration C ′0 from C0

such that the values of the MaxMatch variables in C ′0 makes this configuration stable for MaxMatch.
Then, we define H as the set of all possible executions of the composition of algorithms PolyMatch and
MaxMatch starting from C ′0 in graph G′. Finally, we show that E is an execution that can be ”projected
into” an execution in H. Since C ′0 is stable for MaxMatch, all executions in H contain O(n2) moves by
Corollary 6, and so this projection result would prove that E contains O(n2) moves.

We now define G′ and C ′0. First assume that F ⊆ V is the set of all falsy-matched nodes of G in C0. G′

is a copy of G in which, for every node x ∈ F , we create a new node x′ and an edge (x, x′) in G′. Finally,
we delete from the edge set of G all the edges between two single nodes. We define C ′0 as follow:

• the local states of single and matched nodes are the same as in C0;
• for each node x in F :

– the local states of x is the same as in C0 for the PolyMatch algorithm but is such that mx = x′

where x′ is the new node associated to x;
– the local state of x′ is initialized with all boolean variables at false and all other variables at ⊥

but mx′ that is set to x for MaxMatch.

Observe that there is no falsy-matched node anymore in G′ and C ′0 is a stable configuration for MaxMatch.
Figure 9 shows an example of a construction from G/C0 to G′/C ′0. Also observe that any execution of H
has two properties: (i) it does not contain any action of MaxMatch since C ′0 is a stable configuration for
MaxMatch ; and (ii) it contains at most O(n2) moves from PolyMatch, according to Corollary 6.

Let us assume E = C0 a0 C1 a1 . . . Ck ak Ck+1 . . . We now prove there exists an execution E ′ ∈ H with
E ′ = C ′0 a

′
0 C
′
1 a
′
1 . . . C

′
k a
′
k C
′
k+1 . . . and such that ∀i ≥ 0, a′i = ai. To do that, we start by proving any move

π ∈ a0, with C0
a07−→ C1 can be performed from C ′0.

First note that π is performed by a single or a matched node, let say u. Observe that u belongs to
both graphs G and G′. By definition of C ′0, u has the exact same local state in C0 and in C ′0. Between
G/C0 and G′/C ′0, the neighborhood of u can be different on two points only. The first point appears when

27



p

q

s

r

u

t v

p

q

s

r

u

t v

t’

v’

matched node

single node

falsy-matched node

Only the m variable from

MaxMatch are drawn.

Figure 9: The transformation from G/C0 (on the left) to G′/C′
0 (on the right)

u has a falsy-matched neighbor on G, let say x. Indeed, x becomes a matched node in G′. However, this
modification does not change the local view of u at distance 1, since as we previously stated, u does not make
any distinction between a falsy-matched neighbor and a matched one. Thus as long as x do not perform any
move, the local change in node x do not have any impact on the actions performed by u. Recall that x does
not make any move in E since it is falsy-matched.

The second point appears when u is single and it has a single neighbor x in G. In this case, the edge (u, x)
disappears in G′ leading to a modification of the local view of u at distance 1. However, this suppression
has no impact on the actions performed by u since u consider all its single neighbors as nodes that are not
in its neighborhood. Indeed, all references to neighbors of a single node in PolyMatch rules are combined
with the matched predicate.

Finally, we can conclude that if u can perform π ∈ a0 from C0, it can also perform it from C ′0. Thus from

the transition C0
a07−→ C1 in G, we can exhibit a configuration C ′1 such that the transition C ′0

a07−→ C ′1 exists
in G′. Observe that the relation between C1 and C ′1 is the same as the one between C0 and C ′0. Indeed,
falsy-matched nodes in C0 as well as nodes in F ′ do not change their local state neither in C0 7→ C1 nor
in C ′0 7→ C ′1. Moreover, single and matched nodes changed their local state in the same way in C0 7→ C1

and in C ′0 7→ C ′1, since they performed the exact same action(s). Thus, this leads to the following result :

∀i ≥ 0, from the transition Ci
ai7−→ Ci+1 in G, we can exhibit a configuration C ′i+1 such that the transition

C ′i
a07−→ C ′i+1 exists in G′. Finally, from E , we can build E ′ as defined above and so E contains at most O(N2)

moves, with N is the number of nodes in G′. Note that we added at most n nodes in G′, so E contains at
most O(n2) moves.

A last observation is about the possibility for G′ to be an unconnected graph, according to the suppression
of all single-to-single edges in G. However, the result still hold with this possibility, since PolyMatch will
stabilize in each connected component in O(

∑
iN

2
i ), where Ni is the size of the ith connected component in

G′. And obviously,
∑
iN

2
i ≤ N2 when

∑
iNi ≤ N , for any large value of N .

References

[1] Y. Asada and M. Inoue. An efficient silent self-stabilizing algorithm for 1-maximal matching in anony-
mous networks. In WALCOM: Algorithms and Computation, pages 187–198. Springer, 2015.

[2] P. Berenbrink, T. Friedetzky, and R. A. Martin. On the stability of dynamic diffusion load balancing.
Algorithmica, 50(3):329–350, 2008.

[3] Subhendu Chattopadhyay, Lisa Higham, and Karen Seyffarth. Dynamic and self-stabilizing distributed
matching. In Symposium on Principles of distributed computing, pages 290–297. ACM, 2002.

[4] J. Cohen, J. Lefevre, K. Maâmra, L. Pilard, and D. Sohier. A self-stabilizing algorithm for maximal
matching in anonymous networks. Parallel Processing Letters, 26(04):1650016, 2016.

[5] J. Cohen, K. Maâmra, G. Manoussakis, and L. Pilard. Polynomial self-stabilizing maximum matching
algorithm with approximation ratio 2/3. In OPODIS, 2016.

28



[6] Ajoy K Datta, Lawrence L Larmore, and Toshimitsu Masuzawa. Maximum matching for anonymous
trees with constant space per process. In International Proceedings in Informatics, volume 46, 2016.

[7] S. Dolev. Self-Stabilization. MIT Press, 2000.

[8] D. E. Drake and S. Hougardy. A simple approximation algorithm for the weighted matching problem.
Inf. Process. Lett., 85(4):211–213, 2003.

[9] B. Ghosh and S. Muthukrishnan. Dynamic load balancing by random matchings. J. Comput. Syst. Sci.,
53(3):357–370, 1996.

[10] N. Guellati and H. Kheddouci. A survey on self-stabilizing algorithms for independence, domination,
coloring, and matching in graphs. J. Parallel Distrib. Comput., 70(4):406–415, 2010.

[11] Zhu Han, Yunan Gu, and Walid Saad. Matching theory for wireless networks. Springer, 2017.

[12] S. T. Hedetniemi, D. Pokrass Jacobs, and P. K. Srimani. Maximal matching stabilizes in time o(m).
Inf. Process. Lett., 80(5):221–223, 2001.

[13] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM
Journal on Computing, 2(4):225–231, 1973.

[14] S.-C. Hsu and S.-T. Huang. A self-stabilizing algorithm for maximal matching. Inf. Process. Lett.,
43(2):77–81, 1992.

[15] Michiko Inoue, Fukuhito Ooshita, and Sébastien Tixeuil. An efficient silent self-stabilizing 1-maximal
matching algorithm under distributed daemon without global identifiers. In International Symposium
on Stabilization, Safety, and Security of Distributed Systems, pages 195–212. Springer, 2016.

[16] Michiko Inoue, Fukuhito Ooshita, and Sébastien Tixeuil. An efficient silent self-stabilizing 1-maximal
matching algorithm under distributed daemon for arbitrary networks. In 19th Int. SymposiumStabiliza-
tion, Safety, and Security of Distributed Systems (SSS), LNCS, pages 93–108. Springer, 2017.

[17] Mehmet Hakan Karaata and Kassem Afif Saleh. Distributed self-stabilizing algorithm for finding max-
imum matching. Comput Syst Sci Eng, 15(3):175–180, 2000.

[18] F. Manne and M. Mjelde. A self-stabilizing weighted matching algorithm. In 9th Int. Symposium
Stabilization, Safety, and Security of Distributed Systems (SSS), LNCS, pages 383–393. Springer, 2007.

[19] F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A new self-stabilizing maximal matching algorithm.
Theoretical Computer Science (TCS), 410(14):1336–1345, 2009.

[20] F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A self-stabilizing 2/3-approximation algorithm for the
maximum matching problem. Theoretical Computer Science (TCS), 412(40):5515–5526, 2011.

[21] R. Preis. Linear time 1/2-approximation algorithm for maximum weighted matching in general graphs.
In STACS, LNCS, pages 259–269. Springer, 1999.

[22] V. Turau and B. Hauck. A new analysis of a self-stabilizing maximum weight matching algorithm with
approximation ratio 2. Theoretical Computer Science (TCS), 412(40):5527–5540, 2011.

29




