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Abstract: 

Despite ongoing research in a number of species, the efficiency of embryo production by 

nuclear transfer remains low. Incomplete epigenetic reprogramming of the nucleus introduced 

in the recipient oocyte is one factor proposed to limit the success of this technique. 

Nonetheless, knowledge of reprogramming factors has increased -thanks to comparative 

studies on reprogramming of the paternal genome brought by sperm upon fertilization- and 

will be reviewed here. Another valuable model of reprogramming is the one obtained in the 

absence of sperm fertilization through artificial activation -the parthenote- and will also be 

introduced. Altogether the objective of this review is to have a better understanding on the 

mechanisms responsible for the resistance to reprogramming, not only because it could 

improve embryonic development but also as it could benefit therapeutic reprogramming 

research.  
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Introduction to Nuclear Reprogramming  

The cells of an adult mammal show a striking variation in structure and function, 

conferred by the differential expression of tightly regulated and specific gene networks. With 

few exceptions, individual cell types have been shown to retain the entire genetic content of 

the  totipotent embryo. Yet, specific gene expression patterns associated with differentiated 

cell states are highly stable and conserved after somatic cell division [1]. The process of 

restricting expression to lineage-appropriate subsets of genes is ongoing throughout 

development and is now understood to reflect an accumulation of “epigenetic” changes at 

specific gene loci [2,3]. The term epigenetics, coined by Conrad Waddington in the 1940s, is 

now used to refer to “the study of changes in gene function that are mitotically and/or 

meiotically heritable and that do not entail changes in DNA sequence” [4,5]. These changes 

include the large scale positioning of chromosomes and genes within the nucleus as well as 

local modifications to DNA and chromatin [6,7]. Epigenetic changes affect the accessibility 

of DNA to the transcription machinery, hence, gene expression [6,7]. Local modifications 

include histone post-translational modifications (PTMs such as methylation, acetylation, 

phosphorylation, etc.), DNA methylation as well as remodeling of the chromatin [4,8]. 

Moreover, all these local modifications may specifically recruit factors, as in recruitment of 

bromodomain proteins to acetylated histones and of Chromobox (CBX) family proteins to 

methylated histones [9]. 

Each differentiated cell type has a specific profile of epigenetic modifications at key loci, 

resulting in expression of only type-appropriate genes. Deviations from this profile in vivo are 

frequently associated with disease [10]. It is also increasingly recognized that deviations from 

normally observed epigenetic patterning can contribute to the altered cell behavior 

demonstrated by cancer cells [11]. On the other hand, alteration of these epigenetic 

modifications with the aim of conferring a more developmentally plastic cell state is referred 

as nuclear reprogramming, and is attempted experimentally via a number of different 

techniques [12,13]. The first amphibian and mammalian cloned animals were achieved by 

inserting a donor nucleus into an enucleated recipient oocyte [14]. In this approach (cloning 

by nuclear transfer or NT), the oocyte has to reprogram the injected nucleus, trying to mimic 

reprogramming of maternal and paternal DNA during natural fertilization (Figure 1) [15]. 

Mammalian nuclei have also been reprogrammed by transfer to the germinal vesicle of 

Xenopus oocytes [13,16] or by the fusion of donor cells with an “embryonic dominant” cell 

type [12]. These techniques employ the natural reprogramming abilities of oocytes, embryos 

and embryonic cells, without requiring knowledge of the precise factors required for 

reprogramming. However, as knowledge of reprogramming factors has increased, alternative 

techniques involving exposure of cells to specific combinations of transcription factors have 

grown in popularity. Nowadays, somatic cells can be virally transfected, at least in mouse, 

with no more than 4 key transcription factors (Oct4, Sox2, Klf4 and Myc) in order to induce 

pluripotency (Figure 1) [17]. The availability of induced pluripotent stem cells (iPS cells) 

from different species is also increasing rapidly [18] although the underlying molecular 

mechanisms remain to be investigated. Specific combinations of transcription factors have 

also been used to switch directly from one cell type to another, a process known as 

transdifferentiation [19]. 

The goals of this experimental nuclear reprogramming are twofold. Firstly, to elucidate the 

roles of different epigenetic marks (and associated protein complexes) in nuclear 

reorganization at fertilization and during development and, secondly, with the aim of 

developing applications that benefit to human health. Such applications include the 

reprogramming of readily accessible cell types such as dermal fibroblasts to produce cell lines 

(induced Pluripotent Stem cells or iPS cells) to be used for drug screening or study of disease 
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pathways [20,21]. These iPS cell lines could be used to select the most effective treatment for 

the individual patient, or for the production of cells and organs for autologous transplants 

without the ethical or immunological problems associated with allogeneic transplantation 

[20,21]. 

As a research tool, nuclear reprogramming continues to yield insights into the mechanisms 

and complexes involved in differential control of gene expression [13]. Despite this, and 

successful cloning experiments in a wide range of species, the efficiency of all techniques, as 

measured by proportion of nuclei leading to developmentally plastic cells or healthy adult 

animals, remains very low. Considering the possible therapeutic benefits of successful nuclear 

reprogramming, there is a great deal of interest in understanding the mechanisms responsible 

for this resistance to reprogramming. 

 

Reprogramming at Fertilization  

In mammalian species, the formation of the embryo begins with the fusion of two highly 

specialized haploid cells (sperm and oocyte) which gives place to a genetically new diploid 

organism: the zygote (or 1-cell stage embryo) with two haploid "pro"-nuclei, the paternal and 

the maternal one (Figure 1). The “early mammalian” or “pre-implantation” embryo 

development compresses the time from fertilization until the implantation of the embryo in 

the mother’s uterus. During this period of development, epigenetic reprogramming of the 

genome inherited from the gametes is crucial [22,23]. Indeed, during the formation of 

gametes, both oocyte and sperm cells are subjected to epigenetic changes that permit the 

expression of specific genes required for germ cell development. As gamete maturation is 

near to completion, a reorganization of the genome occurs. Paternal genome becomes highly 

methylated and compact as histones are replaced by protamines [24,25]. On the other hand, 

the oocyte undergoes a chromatin restructuring from a non-surrounded nucleolus (open 

chromatin with few defined chromatin surrounding the nucleolus and transcriptionally active) 

to a surrounded nucleolus conformation (highly condensed chromatin with clear presence of 

chromatin around the nucleolus and transcriptionally silent) (Figure 2) [26,27] .  
 

From fertilization, both the incoming paternal DNA complement and that of the oocyte itself 

are reprogrammed in a number of steps, resetting chromatin to the embryonic form capable of 

undergoing further changes required during development [28,29]. The defined epigenetic 

status of the previous gametes’ genome must now turn into a whole new epigenome proper of 

an early embryo with totipotent capacity [23,30,31]. To do so, the paternal and maternal 

genome undergo global demethylation and, although many studies have led to contrasted 

results regarding the dynamics and the extend of this demethylation [32], it appears that the 

demethylation process continues after the first cell cycle in the pre-implantation embryo up to 

the blastocyst stage in many mammals [33–37]. At this point, the first cell lineage 

determination takes place (the formation of the inner cell mass -ICM- and of the 

trophectoderm -TE) and new methylation patterns emerge together with cell differentiation 

and specialization until the whole organism is formed [35,38,39].  

In addition to this DNA demethylation occurring after fertilization, it has been shown in 

mouse that many of the histones replacing the protamines on the paternal genome are already 

acetylated like lysines 8 and 12 of histone H4 [40]. Moreover, for a correct development, the 

paternal pronuclei has to be hyperacetylated with the further acetylation of lysines 5 and 16 of 

H4 and lysines 9, 14, 18 and 27 of histone H3 [31,41,42]. On the other hand, some histone 

PTMs like trimethylation of lysine 20 on histone H4 (H4K20me3) and trimethylation of 

lysine 9 on histone H3 (H3K9me3, Figure 2), are inherited exclusively from the maternal 

pronucleus, creating an asymmetry between the two parental genomes in the embryo (it would 
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not be possible to include in this work all known histone PTMs, their fluctuation and their 

roles; for a complete review of known histone PTMs see [30]). These asymmetries persist for 

varying lengths of time in the developing embryo. Per example, lysine 4 methylation on 

histone H3 is evenly distributed throughout DNA by the 2-cell stage [42], while H3K9me3 

remains asymmetrically distributed until the 4-cell stage [30]. Other modifications are found 

to differ from the ICM and TE cells, like H4/H2AS1P which is much frequent in the 

nucleosomes of TE than ICM cells [43], or the general methylation of H3K27 which is found 

only in the ICM, whereas in the TE it is only present in the inactivated X chromosome [44].  

The function of this asymmetry just after fertilization has not yet been fully understood, 

although it is thought to be required for a proper development. Indeed, embryos are 

transcriptionally silent until the end of the one cell stage, when a small number of embryonic 

genes are transcribed from the paternal genome [45,46]. This asymmetrical minor activation 

is followed by the major embryonic genome activation (EGA) later on, associated with a 

much more frequent rate of production of transcripts and the number of genes transcribed 

[46,47]. The reprogramming of histone modifications has been proposed to be significant for 

triggering transcription and EGA, correlating the accumulation of transcriptionally permissive 

marks on the paternal genome and minor activation, and between more widespread 

reprogramming and EGA [48–50]. Among the differences observed in pre-implantation 

embryo between mammalian species, the timing of embryo genome activation is a major one. 

In mouse embryos, EGA occurs at two-cell stage, while in bovine and rabbit embryos it 

occurs at the eight-cell stage [51,52].  Remarkably though, it is believed that this the fourth-

fifth cell cycle in the bovine embryos is critical for chromatin remodeling and embryos that 

are unable to modify their chromatin structure for gene activation arrest at this stage. For 

example, distribution of H3K27me3 has been studied semi-quantitatively in bovine embryos, 

where levels were found to decrease from oocytes to their minimum at 8 cell stage, 

corresponding with EGA [53,54]. The decline in H3K27me3 is independent of cell division, 

indicating an active removal mechanism, where histone demethylase KDM6B has been 

implicated as the enzyme catalyzing the removal [55]. Similarly, it appears that sheep oocytes 

and embryos have a specific Dnmt1 transcript involved in DNA methylation maintenance 

whose levels decrease when the embryonic genome becomes active at the 8/16-cell stage. 

Interestingly, reducing Dnmt1(12b) by RNA interference prevents embryo compaction at the 

morula stage, showing the importance of DNA methylation for embryonic preimplantation 

development [56].  

Therefore, it seems that although the dynamics of some epigenetic marks are not conserved 

between all mammalian species, they are always closely related with the formation of an 

“open” chromatin state allowing gene expression regulation during preimplantation 

development 

 

Reprogramming after cloning by Nuclear Transfer 

Cloned embryos are the result of the enucleation of an oocyte and transfer of the diploid 

nucleus from another cell (Figure 1). After such nuclear transfer (NT) procedure, donor cell 

nuclei often get an incomplete reprogramming which is it thought to lead to abnormal 

development in clones [15]. In particular, the donor chromatin needs to undergo epigenetic 

changes and modifications in order to get an embryonic-like chromatin structure as seen in 

sheep, mouse, bovine and rabbit NT embryos [57–60]. The timing and manner to achieve this 

conformation will depend on the type of cell used as donor for NT. Embryonic stem (ES) cells 

proliferate fast and appear to have a more open chromatin conformation than cumulus cells, 

which may have a more compacted genomic structure. This property seems to make the 

chromatin of embryonic stem cells more accessible to the cytoplasm of the recipient oocyte 
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and to efficient reprogramming [61]. Similarly, we  observed that nuclear transfer of murine 

iPS cells results in higher rates of blastocysts and live-born cloned mice than embryonic 

fibroblasts (46% blastocysts and 1.3% liveborn for iPS  cells versus 3.5% and 0% for 

fibroblasts, respectively) [62]. Altogether, it seems that chromatin of the donor cells often 

remains too compact.  

Trimethylation of lysine nine of histone H3 (H3K9me3) has been proposed to limit the 

success of nuclear reprogramming. H3K9me3 is indeed associated with the repression of 

transcription [63] and its localization has been shown to be strongly correlated with 

constitutive heterochromatin, where it recruits heterochromatin protein 1 (HP1β also called 

CBX1) [64]. H3K9me3 distribution has also been revealed to significantly expand during the 

differentiation of human embryonic stem cells into fibroblasts, a process which involves 

spreading of heterochromatin [65]. Consistent with these observations, H3K9me3 has been 

shown to persist after bovine and mouse nuclear transfer experiments (Figure 2) [58,66,67] 

and H3K9me3 levels in lymphocytes have been correlated with decreased potential for 

nuclear reprogramming [68].  

A number of approaches have targeted H3K9me3 to improve nuclear reprogramming. In cell fusion 

experiments by Antony et al. [69], the transient induction of histone lysine demethylase KDM4D (also 

known as JMJD2B) in ES cells increased the proportion of cell reprogramming by 30% despite the 

rapid restoration of H3K9me3 levels thereafter. Similarly, the transient expression of KDM4D caused 

a twofold increase in the efficiency of reprogramming somatic cells into iPSCs [70]. Recently, it was 

shown that removal of H3K9me3 by overexpression of KDM4D can restore transcriptional 

reprogramming in mouse cloned embryos [71]. Such transient overexpression of KDM4D in cloned 

embryos has also been proven to efficiently improve reprogramming both in mouse and human 

cloning experiments, giving much higher rates of blastocysts [71,72]. Histone acetylation is also 

very important for appropriate development in pre-implantation embryos. Studies regarding 

histone acetylation patterns in rabbit embryos [73] and bovine embryos [74], produced either 

by in-vitro fertilization or somatic cell nuclear transfer, have shown significant differences. In 

vitro fertilized embryos always presented higher histone acetylation compared with their 

counterpart cloned embryos, underlying once again the compactness of chromatin after NT.   

The use of histone deacetylase inhibitors (HDACi), as Scriptaid or trichostatin A (TSA), to 

increase of acetylated histones and helping the chromatin opening in cloned embryos has been 

reported. The first successful group obtaining full-term developed embryos after NT from 

somatic cells was the group led by Dr. Kishigami [75], although at almost the same time 

another study was reported demonstrating that TSA could improve clone development [76]. 

An increase of the blastocyst yield and improvement of embryo quality after TSA treatment 

has been obtained with various donor cells: fibroblasts, neural stem cells, spleen cells and 

cumulus cells [77]. It has also been demonstrated that this drug can help with gene expression 

regulation. For example, whereas cloned embryos showed a failure in the expression of Oct4 -

an important factor for pluripotency maintenance- TSA treatment favored Oct4 expression in 

the correct number of  cells at the blastocyst stage [78,79]. 

Thereafter, Scriptaid (SA) was reported to be a novel HDACi with less toxicity than TSA 

since it had a not lethal high efficiency even at high concentrations [80]. Moreover, SA 

treatment could support full-term development of inbred cloned embryos. In fact, it appears 

that inhibition of HDAC is an important factor of reprogramming [81]. Hence, the use of 

HDACi has resulted in significant improvements in cloning efficiency of many species 

including human [82].  

Moreover, HDACi also favors global chromatin reprogramming and thereby gene expression 

in several species such as mouse or pig, by acting not only on acetylation of histones but also 

on H3K9me3 [83] or even DNA methylation [84,85]. HDACi improve genome-wide gene 
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expression regulation bringing total gene expression profile of clones to resemble that of 

ferilized pups [86].We also demonstrated that addition of HDACi during the first cell cycle in 

cloned mouse embryos could improve nuclear remodeling of pericentromeric heterochromatin 

that reorganized around nucleolar precursors like in fertilized embryos [61].Remarkably, the 

use of HDACi was also correlated with increased number of ICM cells and correct further 

development to term [61].  

Research on somatic cell nuclear transfer embryos has been very useful in portraying that 

these epigenetic modifications not only have the ability to alter the expression of genes, but 

also strongly demonstrate how their misregulation can disturb preimplantation embryonic 

development. Developmental inefficiency of cloned embryos and aberrant chromatin state 

seem to be tightly linked. The use of HDACi and of histone demethylases transient expression 

can however promote the formation of an "open" chromatin structure after NT, improving the 

reorganization of early embryo nucleus and thereby reprogramming.  

 

Reprogramming in Parthenotes 

Research in early mammalian development is carried out mostly on fertilized embryos. 

However, there is another way to study embryo development. Parthenogenetic activation is 

another valuable model to produce embryos in absence of sperm fertilization through the 

artificial activation of a metaphase II oocyte (Figure 1) [87]. In some species (like various 

fishes, ants, snakes or amphibians) parthenogenesis is a common method of asexual 

reproduction in which an unfertilized oocyte is able to develop into a whole new individual. 

Nonetheless, in mammals, parthenogenesis does not occur naturally, and if it does, it is only a 

consequence of erroneous oocyte maturation and embryos never develop to term [87]. In 

mouse, developmental arrest of parthenotes occurs before day 10 of gestation, but this time 

varies among species [88]. 

In normal conditions, ovulated oocytes advance from metaphase I to metaphase II and they 

remain arrested at this stage until they are fertilized by sperm. For the first cell division to 

occur, a series of events triggered by the entrance of a spermatozoon, known as oocyte 

activation, must take place. Broadly, the main trigger factor is the phospholipase-Ç (PLCzeta) 

brought by the sperm into the oocyte’s cytosol [89]. A number of signaling pathways are then 

activated, which result in a calcium release inside the oocyte. This calcium increase is 

translated in the activation of Ca
2+

/calmodulin-dependent protein kinase II (CaMKII) which in 

turn, will inactivate the “cycle blocking” proteins maturation promoting factor (MPF) and 

cytostatic factor (CSF). The inhibition of these last two, releases the oocyte from its arrest and 

activation can be confirmed by the exocytosis of cortical granules, resumption of meiosis, 

extrusion of the second polar body and the formation of pronuclei. Without sperm, it is 

necessary to artificially induce oocyte activation if parthenogenetic embryos are to be 

obtained in the laboratory. There are different protocols capable of overcoming the arrested 

state of a metaphase II oocyte which may include temperature alterations, electrical pulses 

and changes in osmolarity [87]. Contemporary protocols are mostly based on calcium 

mobilizing compounds (i.e. ethanol, strontium or calcium ionophore) to foster the initial 

calcium release in the cytoplasm: protein kinase inhibitors or protein synthesis inhibitors (i.e. 

cycloheximide or 6-dimethylaminopurine) to inactivate the MPF and/or the CSF, and finally, 

a microfilament inhibitor (i.e. cytochalasin B) to avoid the extrusion of the second polar body 

[90,91]. Indeed, avoiding the extrusion of the second polar body is necessary to maintain the 

diploidy in the future embryo (Figure 1) [92]. Thus, diploid parthenotes only possess maternal 

genetic information and will be homozygous. In particular, diploid parthenotes will not 

present the two sets of maternal and paternal imprinted genes, reason why, mammalian 
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parthenotes never develop completely unless genetically modified or by the production of 

chimeras with fertilized embryos [93–95].  

Therapeutically, since these embryos are not normally viable for full development, 

parthenotes are also being studied as a stem cell source as it would carry very few ethical 

issues [88]. Moreover, parthenotes are an effective tool to evaluate genetic effects on the 

process of maternal genomic imprinting [94,96]. They also offer a means to study the 

contribution of maternally derived factors, as well as the absence of paternal factors to early 

development. In NT experiments, oocyte activation is performed after nuclear transfer in 

order to induce the resumption of meiosis in the oocyte’s cytoplasm. Comparing cloned 

embryos and parthenotes can therefore, be particularly helpful when it comes to study the 

precise cytoplasmic factors required for reprogramming within the recipient oocyte. 

Chromatin reorganization has been compared between fertilized embryos, clones and 

parthenotes in few studies. Parthenotes seem to have less problems than their counterpart 

cloned embryos in adopting the proper heterochromatin conformation at very early stages, at 

least in mouse and rabbit embryos (Figure 2) [59,97]. On the other hand, some epigenetic 

modifications take place more rapidly in parthenotes. Acetylation of histone H4 after 

formation of the pronuclei has been observed earlier in bovine and mouse parthenotes, 

probably due to the absence of the paternal genome [41,98]. Remarkably, we observed in a 

preliminary study that supplementation of TSA during the first embryonic cycle as in NT 

experiments resulted in an even more open chromatin structure in term of histone acetylation 

and in extended survival of mouse parthenotes post-implantation (unpublished data). All these 

observations make parthenotes an interesting model to study reprogramming by the oocyte's 

cytoplasmic factors, in the absence of any sperm supply. 

 

Conclusion and Perspectives 

Epigenetics is the area of molecular science which has been dusted off the shelves and gained 

a newfound interest. To facilitate a better comprehension of the complex interrelationships 

between all the various components of the epigenome, and the way that each individual part 

operates. It has been essential to decipher key elements of the nuclear reprogramming in early 

embryos. However, understanding the connection between chromatin structure, gene 

expression, genome organization, creation of the nuclear architecture, and how all of these 

cellular processes come together during embryogenesis still needs further studies. What it also 

needs to be remembered is that epigenetic changes can arise from external agents such as 

environmental cues, dietary, stress and chemical contaminants to mention some examples, 

which in turn, cause a chain effect to the chromatin modifying agents and their respective 

genes or gene families affecting normal development and disease through their actions on the 

epigenome [10].  

This is particularly important from a clinical point of view. Indeed, the main goal in a fertility 

clinic is to raise embryos under the best culture conditions after gamete retrieving and in vitro 

fertilization to afterwards transfer the highest quality embryo to the mother’s uterus and 

achieve a successful pregnancy [99]. This is nowadays an effective and common process 

thanks to all the research and advancements in assisted reproductive technologies (ART) 

which have been based on the knowledge obtained from studies mainly using mouse embryos 

because of their easy access and manipulation. Therefore, studies in early mammalian 

embryos (like mouse or rabbit) and their reprogramming could possibly help to improve 

embryo culture conditions to promote development of better quality embryos with higher 

potential for further development, thus increasing the success rates of ART [30,35,51]. 

Elucidation of the roles of epigenetic marks in nuclear reprogramming would also benefit 

human health, especially the reprogramming of iPS cells. In particular, some recent 
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publications suggest that embryonic stem cells (ESCs) derived from cloned embryos may be 

closer to ESCs derived from in vitro derived embryos than iPS cells in terms of epigenome 

and transcriptome [82,100]. We hope better understanding of epigenetic remodeling 

mechanisms will shed some light on cell reprogramming and further application on stem cell 

therapies.  
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Figure 1: Strategies used to induce nuclear reprogramming include (from left to right): 

induction by overexpression of embryonic pluripotent transcription factors, nuclear transfer of 

somatic cell nuclei into enucleated recipient oocytes, fertilization through sperm penetration 

and parthenogenesis by artificial activation. 
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Figure 2: Examples of H3K9me3 immuno-staining (green) with DNA counterstaining (red) 

on nuclei from mouse oocytes in NSN (non-surrounded nucleolus) versus  SN (surrounded 

nucleolus) oocytes and in 1-cell stage embryos: either fertilized (zygotes), cloned (obtained by 

nuclear transfer - NT) or parthenotes. Clear compaction of chromatin and accumulation of 

H3K9me3 can be observed in SN oocytes. After fertilization, asymmetric distribution can 

then be observed between the maternal and paternal pronuclei (mPN and pPN respectively) 

with H3K9me3 accumulation around the nucleolus precursor; whereas cloned embryos 

present no asymmetry with much more aggregates of H3K9me3, especially at the nuclear 

periphery.  Bar= 10µm 

 

 


