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1 Optimal consumption in the discrete time

We consider the optimal consumption problem on the interval

[0, N ], where N < ∞ is the horizon, i.e. we consider a consumer

who chooses the amount of its consumption ck ≥ 0 at the time

moment 0 ≤ k ≤ N . Describe the dynamics of his wealth. Let

x0 = x > 0 be the initial wealth. So, at the time k = 0 we obtain

the constraint on the consumption:

0 ≤ c0 ≤ x .

Then he places the rest x− c0 in a risk-free asset with the interest

rate r ≥ 0. So, the next day his wealth is equal to

x1 = R(x− c0) and R = 1 + r .

At the time k = 1 the consumer can consume 0 ≤ c1 ≤ x1 and its

capital at the time k = 2 is given by the following equation

x2 = R(x1 − c1) .

Similarly, when k ≥ 1 the capital xk is written as

xk = R(xk−1 − ck−1) , x0 = x , (1.1)
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where the consumption vector c = (c0, . . . , cN−1)′ holds the follow-

ing constraints

0 ≤ ck ≤ xk , 0 ≤ k ≤ N − 1 . (1.2)

Recall that the prime ′ means transpose.

Let U : R+ → R be a utility function and h : R+ → R be

a heritage function. It is assumed that the functions U and h are

increasing and continuous. In this case the objective function is

J0(x, c0, . . . , cN−1) =
N−1∑
k=0

U(ck) + h(xN ) . (1.3)

The problem is to find a sequence c∗ = (c∗0, . . . , c
∗
N−1)′ that maxi-

mizes the objective function (1.3) under the constraints (1.1) – (1.2),

i.e. to solve the following extremal problem

J∗0 (x) = max
(c0,...,cN−1)′∈C0(x)

J0(x, c0, . . . , cN−1) , (1.4)

where C0(x) ⊂ RN is the set of the vectors c = (c0, . . . , cN−1)′ which

satisfy the conditions (1.1) – (1.2).

To resolve this problem we will use the Bellman dynamic pro-

gramming method [1]. Now we describe this approach. First define
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the objective functions on intervals [n,N ] for 0 ≤ n ≤ N − 1. We

have

Jn(x, cn, . . . , cN−1) =

N−1∑
k=n

U(ck) + h(xN ) . (1.5)

Here the consumptions cn, . . . , cN−1 satisfy the following conditions

0 ≤ ck ≤ xk , n ≤ k ≤ N − 1 , (1.6)

where xn = x and for k > n we get

xk = R(xk−1 − ck−1) . (1.7)

Denote by Cn(x) the set in RN−n of the vectors (cn, . . . , cN−1)′ which

hold the constraints (1.6) – (1.7). For 0 ≤ n ≤ N − 1 we set

J∗n(x) = max
(cn,...,cN−1)′∈Cn(x)

Jn(x, cn, . . . , cN−1) . (1.8)

For n = N put

J∗N (x) = h(x) . (1.9)

To resolve the problems (1.8) we use the following deterministic

dynamic programming principle.

Theorem 1.1. (Deterministic dynamic programming principle)

The functions (J∗n(x))0≤n≤N−1 satisfy the following Bellman equa-
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tions:

J∗n(x) = max
0≤c≤x

(
U(c) + J∗n+1(φ(x, c))

)
, (1.10)

where φ(x, c) = R(x− c).

Proof. First, note that all the sets Cn(x) are bounded in RN−n.

Therefore all the functions (J∗n(x))0≤n≤N−1 are fined, i.e. the prob-

lem (1.8) has a solution for any 0 ≤ n ≤ N − 1. Moreover, by the

definition, we obtain that

J∗n(x) = max
(cn,...,cN−1)′∈Cn(x)

N−1∑
k=n

U(ck) + h(xN )

= max
0≤cn≤x

(
max

(cn+1,...,cN−1)′∈Q(x,cn)

(
U(cn) +

N−1∑
k=n+1

U(ck) + h(xN )

))

= max
0≤c≤x

(
U(c) + max

(cn+1,...,cN−1)′∈Q(x,c)
Jn+1(φ(x, c), cn+1, . . . , cN−1)

)
,

where Q(x, c) = Cn+1(φ(x, c)) ⊂ RN−n−1. This directly implies the

equation (1.10).

To find the optimal objective functions (J∗(n, x))0≤n≤N−1 we

use the back recursion. It means that we start from n = N − 1. We

have

J∗N−1(x) = max
0≤c≤x

(U(c) + h(φ(x, c))) . (1.11)

We denote by sN−1(x) the solution of this problem. Similarly, by
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the recurrence we obtain the solution sn(x) of the problem (1.10)

for 0 ≤ n ≤ N − 1. Therefore, finally we obtain s0(x), where

x > 0 is initial wealth. This means that c∗0 = s0(x). Then, to find

the consumption for every n ≥ 1 we have to calculate the optimal

wealths (x∗n)1≤n≤N . We start with n = 1. We obtain

x∗1 = R(x− c∗0) .

This implies that c∗1 = s1(x∗1). This consumption gives us the wealth

n = 2, i.e.

x∗2 = R(x∗1 − c
∗
1)

and c∗2 = s2(x∗2) etc. So, by the recurrence

x∗n = R(x∗n−1 − c
∗
n−1) and c∗n = sn(x∗n) .

Finally, the solution of (1.4) is given by the vector

c∗ = (c∗0, c
∗
1, . . . , c

∗
N−1)′ .

Let us consider now the following example.

Example. Let U(x) = h(x) = xγ and 0 < γ < 1. We start

to resolve the Bellman equations (1.10) with n = N − 1, i.e. the
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equation (1.11). In this case

J∗N−1(x) = max
0≤c≤x

(cγ + (x− c)γRγ) .

For 0 < γ < 1 the solution is

sN−1(x) = αN−1x , αN−1 =
1

1 +Rq
and q =

γ

1− γ
.

This means that

J∗N−1(x) = βN−1 x
γ and βN−1 = αγN−1 + (1− αN−1)γRγ .

(1.12)

We will resolve the Bellman equations (1.10) by induction. We

assume that for some 1 ≤ n ≤ N − 1 the solution has the following

form:

sn(x) = αnx and J∗n(x) = βn x
γ (1.13)

for some positive constants αn and βn. To show that these formulas

are true for all 0 ≤ n ≤ N − 1 it suffices to verify this for n − 1.

Using (1.13) in (1.10) one obtains that

J∗n−1(x) = max
0≤c≤x

(cγ + J∗ (n,R(x− c)))

= max
0≤c≤x

(cγ + βn (x− c)γRγ) .
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We find that sn−1(x) = αn−1x and

J∗n−1(x) = sn−1(x)γ + βnR
γ
(
x− sn−1(x)

)γ
= βn−1x

γ ,

where

αn−1 =
1

1 +Rq β1+q
n

and βn−1 = αγn−1 + βnR
γ(1− αn−1)γ .

(1.14)

This implies that (1.13) is true for all 0 ≤ n ≤ N−1. So, to find the

optimal consumptions it remains to calculate the wealth (x∗n)0≤n≤N .

We start by n = 0. Our initial wealth is x > 0. Therefore,

c∗0 = s0(x) = α0x .

Then, for n = 1 we get that

x∗1 = R(x− c∗0) = R(1− α0)x and c∗1 = s1(x∗1) = α1x
∗
1 .

By the same way for any n ≥ 1

x∗n = R(xn−1−c∗n−1) = R(1−αn−1)x∗n−1 and c∗n = sn(x∗n) = αnx
∗
n .
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This implies that for 1 ≤ n ≤ N

x∗n = xRn
n∏
j=1

(1− αj−1) and c∗n = xαnR
n

n∏
j=1

(1− αj−1) .

Using here the recurrence equations (1.14) with the values βN−1

given in (1.12) we can calculate all the coefficients (αj)0≤j≤N−2.

Exercises

1. Let the utility function U(x) = lnx and the heritage function

h(x) = lnx.

(a) Find optimal consumption for N = 1, N = 2 and any

N ≥ 3.

(b) For which the interest rates r ≥ 0 optimal terminal

wealth will be greater than initial wealth x for the cases

N = 1, N = 2 and any N ≥ 3?

2. Let U(x) = h(x) = 1 − e−x. Find optimal consumptions for

N = 1. Find optimal consumptions for N = 2 and any N ≥ 3

in the case r = 0.

3. Find the optimal consumptions for the following cases:

(a) U(x) = x and h(x) = 0; N = 1, N = 2 and N = 3.
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(b) U(x) = 0 and h(x) = 1− e−x; N = 1, N = 2 and N = 3.

2 Optimal consumption and investment in dis-

crete time models

Let (Ω,P) be a finite probability space with Ω = {ω1, . . . , ωk}.

In this space we consider a (B,S) - financial market with two assets

on the time interval [0, N ]:

 (B) Bn = (1 + r)Bn−1 ,

(S) Sn = (1 + ρn)Sn−1 , 1 ≤ n ≤ N ,
(2.1)

where B0 > 0 and S0 > 0 are initial values. Assume that inter-

est rates of the risk asset (ρn)1≤n≤N is sequence of the indepen-

dent identically distributed ( i.i.d.) random variables with values

{a1, . . . , am}, where a1 < . . . < am and P(ρn = ai) = pi > 0. To

avoid trivial strategies we will assume that

−1 < a1 < r < am . (2.2)

We consider an investor with an initial capital x0 = x > 0. On

the date n = 0 we can consume a quantity 0 ≤ c0 ≤ x. Moreover,
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it distributes the remaining x− c0 between the assets (B) and (S)

as follows. The part θ0(x − c) is placed in the asset (S) and (1 −

θ0)(x−c) in (B). This means that on the date n = 1 (the next day)

the wealth x1 is equal to

x1 = R(1− θ0)(x0 − c0) + (1 + ρ1) θ0(x0 − c0) = τ1(θ0) (x0 − c0) ,

where τ1(θ) = R+ θ(ρ1 − r) and R = 1 + r.

Let now xn the wealth on the date n. We denote by 0 ≤ cn ≤ xn
the consumption on the date n and by θn the part of the wealth

invested in risk asset (S) on the same date. Similarly, we obtain

xn+1 = τn+1(θn) (xn − cn) , (2.3)

where τn(θ) = R+ θ(ρn − r) and R = 1 + r.

We need to introduce now an information structure, i.e. we

need to describe all possible random variables which can be used

for financial strategies (vn)0≤n≤N , where vn = (cn, θn). To this end

we set F0 = {∅,Ω} and Fn = σ{ρ1, . . . , ρn} for 1 ≤ n ≤ N . The

sequence (Fn)0≤n≤N is called filtration. Assume that the random

variables vn are measured with respect to Fn for any 0 ≤ n ≤

N − 1. In this case we say that the sequence of random variables
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(vn)0≤n≤N−1 is adapted. Moreover, the variables (xn)1≤n≤N should

be positive. It means that for any 0 ≤ k ≤ N − 1

θk ∈ Θ and 0 ≤ ck ≤ xk , (2.4)

where

Θ = {θ ∈ R : inf
k≥1

τk(θ) ≥ 0 a.s.}

The variables (xk)1≤k≤N are defined by (2.3) with x0 = x. We

denote by V0(x) the set of all adapted sequences v = (vn)0≤n≤N−1

which satisfy the constraints (2.4). Generally, we denote by Vn(x)

the set of all adapted sequences (vk)n≤k≤N−1 which satisfy the con-

straints (2.4) for n ≤ k ≤ N − 1 with xn = x. We define now the

cost function on the time interval [n,N ] as

Jn(vn, . . . , vN−1) =
N−1∑
k=n

U(ck) + h(xN ) . (2.5)

Our goal is to find a financial strategy v∗ = (v∗k)0≤k≤N−1 in V0(x)

which maximizes the conditional expectation of the function

J0(x, v0, . . . , vN−1),
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i.e.

J∗0 (x) = max
(v0,...,vN−1)′∈V0(x)

E
(
J0(v0, . . . , vN−1)|x0 = x

)
. (2.6)

For this problem we will use the Bellman stochastic dynamical pro-

gramming principle. According to this principle we need to find

optimal strategies on the intervals [n,N ] for 0 ≤ n ≤ N − 1, i.e.

J∗n(x) = max
(vn,...,vN−1)′∈Vn(x)

E
(
Jn(vn, . . . , vN−1)|xn = x

)
. (2.7)

Theorem 2.1. (The stochastic dynamic programming principle)

The optimal cost functions (J∗n(x))0≤n≤N−1 satisfy the following

Bellman equations :
J∗n(x) = max0≤c≤x , θ∈Θ (U(c) + Jn+1(x, c, θ)) ,

J∗N (x) = h(x) ,

(2.8)

where

Jn+1(x, c, θ) = E
(
J∗n+1(xn+1)|xn = x, vn = (c, θ)

)
.

Example. Let us resolve the Bellman equations (2.8) for U(x) =
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h(x) = xγ with 0 < γ < 1. First, note that

Jn+1(c, θ) = EJ∗n+1(τ1(θ)(x− c)) ,

where τ1(θ) = R + θ(ρ1 − r). Thus, in this case the equation (2.8)

has the following form

J∗n(x) = max
0≤c≤x

max
θ∈Θn

(U(c) + E J∗n+1(τ1(θ)(x− c)) .

Moreover, it is easy to see that

Θ = [θmin , θmax] , (2.9)

where

θmin = − R

am − r
and θmax =

R

r − a1

.

Therefore, we obtain that for 0 ≤ n ≤ N − 1

J∗n(x) = max
0≤c≤x

max
θmin≤θ≤θmax

(
U(c) + E J∗n+1(τ1(θ)(x− c))

)
(2.10)

and J∗N (x) = h(x) = xγ .
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We start to study these equations from n = N − 1. We have

J∗N−1(x) = max
0≤c≤x

max
θmin≤θ≤θmax

(cγ + (x− c)γ L(θ))

= max
0≤c≤x

(cγ + (x− c)γ ν) . (2.11)

where

ν = max
θmin≤θ≤θmax

L(θ) and L(θ) = E (τ1(θ))γ .

To study this problem one needs to solve the following equation

f(θ) = E
ρ1 − r

(R+ θ(ρ1 − r))
1−γ =

m∑
j=1

aj − r(
R+ θ(aj − r)

)1−γ pj = 0 .

(2.12)

One can check directly, that the solution of the problem (2.11) is

given by (sN−1(x) , κN−1(x)) with

sN−1(x) =
1

1 + µ
x and κN−1(x) = κ∗ ,

where µ = νq, q = 1/(1 − γ) and κ∗ is the unique root of the

equation (2.12) on the interval (θmin, θmax). We set

sN−1(x) = αN−1x , where αN−1 =
1

1 + µ
. (2.13)
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Then, we obtain that

J∗N−1(x) = βN−1 x
γ , βN−1 = αγN−1 + ν(1− αN−1)γ . (2.14)

Now, by induction we assume that for 0 ≤ n ≤ N − 1

sn(x) = αnx , κn(x) = κ∗ and J∗n(x) = βn x
γ . (2.15)

Using these conditions in (2.10), we find

J∗n−1(x) = max
0≤c≤x

max
θmin≤θ≤θmax

(cγ + βn(x− c)γ L(θ)) .

In the same way as for the case n = N − 1 we get

sn−1(x) = αn−1x , κn−1(x) = κ∗ and J∗n−1(x) = βn−1 x
γ ,

(2.16)

where

αn−1 =
(
1 + βγ1n µ

)−1 and βn−1 = αγn + βnν(1− αn)γ . (2.17)

Through these equations we obtain the solutions of the Bellman

equations (2.10) for all 0 ≤ n ≤ N − 1.

Now we have to calculate the optimal strategies (v∗0, . . . , v
∗
N−1),

where vj = (c∗j , θ
∗
j ). Note that according to (2.16) for all 0 ≤ n ≤
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N − 1 we have θ∗n = κ∗. Then, taking into account that x0 = x, we

obtain c∗0 = s(0, x) = α0x. So, for n = 1 we get

x∗1 = τ1(κ∗)(x− c∗0) = τ1(κ∗)(1−α0)x and c∗1 = s(1, x∗1) = α1x
∗
1 .

Similarly, for n > 1: x∗n = τn(κ∗)(1−αn−1)x∗n−1 and c
∗
n = s(n, x∗n) =

αnx
∗
n . This implies that

x∗n = x
n∏
k=1

τk(κ
∗)(1− αk−1) and c∗n = αnx

n∏
k=1

τk(κ
∗)(1− αk−1) .

Using now the recurrence equalities (2.17) we can calculate the op-

timal consumption for any n ≥ 1.

Exercises

1. Find the optimal strategies for U(x) = h(x) = lnx, N = 1,

N = 2 and for any N ≥ 3.

2. Find the optimal strategy for N = 1, U(x) = xγ and h(x) = x

with 0 < γ < 1.

3. Find the optimal strategy for N = 1, U(x) = x and h(x) = xγ

with 0 < γ < 1.
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3 Optimal consumption in continuous time

In this chapter we will consider a financial market in continuous

time consisting of a riskless asset

Ḃ(t) = rB(t) B0 = 1 , 0 ≤ t ≤ T . (3.1)

Here r is an interest rate. Assume that this function is continu-

ous. Next, let (ct)0≤t≤T be a positive consumption rate on the time

interval [0, T ]. We assume that this is a nonnegative measurable

integrable function, i.e.

∫ T

0
ct dt < ∞ . (3.2)

The integral
∫ t

0
csds represents the amount consumed on the inter-

val [0, t].

Let Xt be a wealth at the moment t. To obtain an equation for

the wealth we divide the interval [0, t] by the sequence (tk)0≤k≤n

defined as

tk =
kt

n
.
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So, for k ≥ 1 by analogy with the discrete time case is obtained

Xtk
=
(

1 + rtk−1
∆ + dk

)(
Xtk−1

−
∫ tk

tk−1

ct dt

)
, (3.3)

where

∆ = tk − tk−1 =
t

n
and dk = r

∫ tk

tk−1

(
Bt −Btk−1

)
dt .

It is clear that

lim
n→∞

1

∆
max

1≤k≤n
|dk| = 0 .

One can rewrite the equation (3.3) as

Xtk
−Xtk−1

= rtk−1
Xtk−1

∆−
∫ tk

tk−1

ct dt + hk∆

with

hk =
dk
∆

(
Xtk−1

−
∫ tk

tk−1

ct dt

)
− rtk−1

∫ tk

tk−1

ct dt .

It is easy to deduce that

lim
n→∞

1

∆
max

1≤k≤n
|hk| = 0 .
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So, for any n ≥ 1,

Xt = x+
n∑
k=1

rtk−1
Xtk−1

∆−
∫ t

0
cu du +

n∑
k=1

hk .

Then, passing to the limit when n → ∞, we obtain that for any

t > 0

Xt = x+

∫ t

0
ruXu du−

∫ t

0
cu du ,

where x > 0 is an initial endowment. This means that

Ẋt = rXt − ct , X0 = x . (3.4)

Now we define the cost function as

J(x, c) :=

∫ T

0
U(ct)dt+ h(XT ) . (3.5)

Our goal is to resolve the following optimization problem

J∗(x) = max
c

J(x, c) , (3.6)

where c = (ct)0≤t≤T . For this problem we will use the Bellman

dynamic programming method. To this end we set

J(t, x, c) :=

∫ T

t

U(cv)dv + h(XT )

22



and

J∗(t, x) = max
c

J(t, x, c) = J(t, x, c∗) .

Then we introduce the Hamiltonien function as

H(t, x, z) := sup
ϑ≥0

H0(t, x, z, ϑ) (3.7)

with

H0(t, x, z, ϑ) := z (rx− ϑ) + U(ϑ) .

To find the solution for the problem (3.6), one needs to study the

following Hamilton-Jacobi-Bellman equation


zt(t, x) + H(t, x, zx(t, x)) = 0 , t ∈ [0, T ] ,

z(T, x) = h(x) , x > 0 .

(3.8)

Here zt is the partial derivative of z with respect to t. We use the

same notation for all partial derivatives.

We assume that

C1) There exists a solution z(t, x) for the equation (3.8).

C2) There exists a measurable function ϑ̌ : [0, T ] × (0,∞) → R+
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such that

H(t, x, zx(t, x)) = H0(t, x, zx(t, x), ϑ̌(t, x))

for all 0 ≤ t ≤ T and x > 0.

C3) There exists a solution of the following equation

dX∗t = (rx∗t − ϑ̌(t,X∗t )) dt , X∗0 = x . (3.9)

The solution of the problem (3.6) is given in the following theorem.

Theorem 3.1. Assume that the conditions C1)–C3) hold. Then

for all 0 ≤ t ≤ T and for all x > 0

z(t, x) = J∗(t, x) = J∗(t, x, c∗) ,

where the optimal consumption c∗ = (c∗t = ϑ(t,X∗t ))0≤t≤T is defined

in C3).

Proof. Let c = (ct)0≤t≤T be a nonnegative integrable function. We

have

z(T,XT )− z(t,Xt) =

∫ T

t

(
zt(v,Xv) + zx(v,Xv) Ẋv

)
dv .

24



Using the equation (3.4) and the conditions Xt = x and z(T, x) =

h(x), we obtain that

z(t, x) = J(t, x, c)−
∫ T

t

(zt(s,Xs) +H1(s,Xs, cs)) ds , (3.10)

where H1(s, x, ϑ) = H0(t, x, zx(t, x), ϑ). This means that z(t, x) ≥

J(t, x, c) for all c = (ct)0≤t≤T . Therefore, we get z(t, x) ≥ J∗(t, x).

Moreover, replacing c in (3.9) by c∗ we obtain z(t, x) = J(t, x, c∗).

Hence Theorem 3.1.

Exercises

1. Write the Hamiltoniens for the following cases:

(a) U(x) = xγ with 0 < γ < 1.

(b) U(x) = lnx.

(c) U(x) = 1− e−x.

2. Find the optimal consumptions for the following problems :

(a) U(x) = h(x) = xγ with 0 < γ < 1.

(b) U(x) = xγ with 0 < γ < 1 and h(x) = 0.

(c) U(x) = h(x) = lnx.

(d) U(x) = lnx and h(x) = 0.

(e) r = 0, U(x) = 1− e−x and h(x) = x/e.

25



4 Optimal consumption and investment in con-

tinuous time models

4.1 Financial market model

In this section we consider the financial Black-Scholes market

consisting of a risk-free asset and a risk asset on the time interval

[0, T ]. Their prices (B(t))0≤t≤T and (S(t))0≤t≤T for i = 1, . . . , d

satisfy the following equations


dB(t) = rB(t)dt , B(0) = 1 ;

dS(t) = S(t) (µdt+ σ dwt) , S(0) > 0 .

(4.1)

Here (wt)0≤t≤T is the Wiener process and the coefficients r, µ and

σ > 0 are fixed parameters. We recall, that r is the interest rate, µ is

the increasing coefficient and σ is volatility. Moreover, (Fwt )0≤t≤T

is the filtration generated by the Wiener process (wt)0≤t≤T , i.e.

Fwt = σ{wu , 0 ≤ u ≤ t}. Let now φt ∈ R and ϕt ∈ R be the

amounts placed at the time moment t in the riskless and the risk

assets respectively. In this case financial strategy is defined as the

random process (φt, ϕt)0≤t≤T with the values in R2 progressively
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measurable with respect to the filtration (Fwt )0≤t≤T . The process

Xt = φtB(t) + ϕt S(t) , 0 ≤ t ≤ T ,

is called wealth process (or the value of the portfolio) at the time

moment t.

Moreover let for any 0 ≤ t ≤ T the function ct be a consump-

tion rate on the time interval [0, t], i.e. it’s a non-negative process

adapted to the filtration (Fwt )0≤t≤T and almost sure integrable on

the interval [0, T ], i.e.

∫ T

0
ct dt < ∞ a.s.

The integral
∫ t

0
csds is the consumption process during the time

interval [0, t]. A financial strategy (φt, ϕt)0≤t≤T with consumption

(ct)0≤t≤T is called self-financing strategy if the wealth process sat-

isfies the following stochastic equation

Xt = x +

∫ t

0
φu dB(u) +

∫ t

0
ϕudS(u) −

∫ t

0
cu du , (4.2)

where x > 0 is the initial endowment. We will work with the relative
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quantities in relation to the wealth process, i.e. we set

πt :=
ϕtS(t)

Xt

and vt :=
ct
Xt

.

Taking this into account, we can rewrite the equation for Xt as

dXt = (r + σπtθ − vt)Xt dt+ σπtXtdwt , X0 = x , (4.3)

where θ = (µ− r)/σ.

Let us describe now the set of control processes ν = (νt)0≤t≤T

with νt = (πt, vt).

Definition 4.1. The control process ν = (νt)0≤t≤T = (πt, vt)0≤t≤T

with the values in R × R+ is called admissible if it is progressively

measurable with respect to the filtration (Fwt )0≤t≤T and such that

‖π‖2T =

∫ T

0

π2
t dt < ∞ ,

∫ T

0

vt dt < ∞ a.s. (4.4)

and the equation (4.3) has an unique strong positive solution on the

time interval [0, T ]. We denote by V the set of all admissible control

processes.

To emphasize that a wealth process corresponds to a control process

ν we will write Xν . Now, for the initial wealth x > 0 and for a
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process of control (νt)t≥0 in V, we introduce the objective function

as

J(x, ν) := Ex

(∫ T

0
U(vtX

ν
t )dt+ h(Xν

T )

)
, (4.5)

where Ex is the conditional expectation for Xν
0 = x, U : R+ → R

and h : R+ → R are utility functions.

The goal of investment and consumption is to maximize the

objective function (4.5), i.e. one needs to find

max
ν∈V

J(x, ν) . (4.6)

To solve this problem, we will use the Bellman dynamic stochastic

programming method which is based on the verification theorems

tool for stochastic differential equations. A special version of such

theorem is given in the next section.

4.2 Verification theorem

In this section we prove the verification theorem from [4] which

will apply to the problem (4.6). We consider the problem of stochas-
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tic control for the scalar Itô process on the time interval [0, T ]


dXν

t = a(t,Xν
t , νt) dt +

(
b(t,Xν

t , νt)
)′

dwt ;

Xν
0 = x > 0 .

(4.7)

We assume that the control process ν = (νt)0≤t≤T takes its values

in the set K ⊆ Rd and that the coefficients

a : [0, T ] × R∗+ × K → R and b : [0, T ] × R∗+ × K → Rd

are nonrandom functions such that for any t ∈ [0, T ] the functions

a(t, ·, ·) and b(t, ·, ·) are continuous on R∗+×K and for any κ ∈ K the

equation (4.7) with ν ≡ κ has an unique positive strong solution on

the interval [0, T ]. We denote by R∗+ = R+ \ {0}. Moreover, let

U : [0, T ] × R∗+ × K → R and h : R∗+ → R

be the utility functions. It is assumed that U are h are continuous.

In this section we will modify the Definition 4.2 of admissibility

for the equation (4.7) as follows.

Definition 4.2. The control process ν = (νt)0≤t≤T is admissi-

ble if it is progressively measurable with respect to the filtration

(Fwt )0≤t≤T and the equation (4.7) has a unique strong positive so-
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lution (Xν
t )0≤t≤T such that

∫ T

0

(
|a(t,Xν

t , νt)| + |b(t,Xν
t , νt)|

2
)

dt < ∞ a.s. (4.8)

and

E

[∫ T

0

(U(t,Xν
t , νt))−dt+ (h(Xν

T ))−

]
< ∞ , (4.9)

where (a)− = −min(0, a).

We denote by V the set of all admissible control processes.

Now let’s define the objective functions, by setting

J(t, x, ν) := Et,x

[∫ T

t

U(s,Xν
s , νs) ds + h(Xν

T )

]
, 0 ≤ t ≤ T ,

(4.10)

where Et,x is the conditional expectation for Xν
t = x.

Our goal is to solve the following optimization problems

J∗(t, x) := sup
ν∈V

J(t, x, ν) , 0 ≤ t ≤ T . (4.11)

To this end, let’s introduce the Hamiltonian defined by

H(t, x, z1, z2) := sup
ϑ∈K

H0(t, x, z1, z2, ϑ) (4.12)
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and

H0(t, x, z1, z2, ϑ) := a(t, x, ϑ) z1 +
1

2
|b(t, x, ϑ)|2 z2 + U(t, x, ϑ) .

To find a solution to the problem (4.11), we must study the Hamilton-

Jacobi-Bellman (HJB) equation


zt(t, x) + H(t, x, zx(t, x), zxx(t, x)) = 0 , t ∈ [0, T ] ,

z(T, x) = h(x) , x > 0 .

(4.13)

Here zt denotes the partial derivative of z over t. We will use the

same notations for all partial derivatives. Assume that

H1) There exists a classical solution of the problem (4.13), i.e. there

exists [0, T ]× (0,∞)→ R function z which is continuously differen-

tiable over the variable t and two times continuously differentiable

over x and satisfies the equation (4.13).

H2) There exists a [0, T ] × (0,∞) → K mesurable function ϑ̌ such

that for any t ∈ [0, T ] and for any x > 0

H(t, x, zx(t, x), zxx(t, x)) = H0(t, x, zx(t, x), zxx(t, x), ϑ̌(t, x)) .
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H3) There is an unique strong positive solution for the following

stochastic differential equation

dX∗t = a∗(t,X∗t ) dt + b∗(t,X∗t ) dwt , X∗0 = x , (4.14)

where a∗(t, x) = a(t, x, ϑ̌(t, x)) and b∗(t, x) = b(t, x, ϑ̌(t, x)). More-

over, the optimal control process ν∗ = (ν∗t )0≤t≤T with ν∗t = ϑ̌(t,X∗t )

belongs to the set V and for any 0 ≤ t ≤ T and x > 0

Et,x sup
t≤s≤T

|z(s,X∗s )| < ∞ . (4.15)

Now we show that the process ν∗ solves the problems (4.11).

Theorem 4.1. Assume that V 6= ∅ and the conditions H1) – H3)

hold. Moreover, assume that

z∗ = inf
0≤t≤T

inf
x>0

z(t, x) > −∞ . (4.16)

Then for any 0 ≤ t ≤ T and for any x > 0

z(t, x) = J∗(t, x) = J∗(t, x, ν∗) ,

where the strategy ν∗ is defined in the condition H3).
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Proof. Let now ν ∈ V and Xν be the wealth process with Xν
t = x

for a some fixed 0 ≤ t < T . Next, let us define the following stopping

times

τn = inf

{
s ≥ t :

∫ s

t

|b(u,Xν
u , νu)|2 z2

x(u,Xν
u) du ≥ n

}
∧ T .

Note that the condition (4.8) implies that τn → T as n → ∞

a.s. Taking into account that the function z(·, ·) and the process

(Xν
t )0≤t≤T are continuous, we get

lim
n→∞

z(τn, X
ν
τn

) = z(T,Xν
T ) = h(Xν

T ) a.s. (4.17)

Then, according to Ito’s formula, we have

z(t, x) =

∫ τn

t

U(s,Xν
s , νs) ds + z(τn, X

ν
τn

) (4.18)

−
∫ τn

t

(zt(s,X
ν
s ) + H1(s,Xν

s , νs)) ds− Mn ,

where Mn =
∫ τn
t

b(u,Xν
u , νu) zx(u,Xν

u) dwu and

H1(s, x, ϑ) = H0(t, x, zx(t, x), zxx(t, x), ϑ) .

The definition of the stopping time τn implies that Et,xMn = 0.
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Therefore, we obtain the following inequality

z(t, x) ≥ Et,x

∫ τn

t

Us ds + Et,x zn , (4.19)

where Us = U(s,Xν
s , νs) and zn = z(τn, X

ν
τn

). Consider the first

term in this inequality. We have

∫ τn

t

Us ds =

∫ τn

t

(Us)+
ds −

∫ τn

t

(Us)− ds ,

where (a)+ = max(a, 0). The condition (4.8) and the monotone

convergence theorem imply that

lim
n→∞

Et,x

∫ τn

t

Us ds = Et,x

∫ T

t

Us ds .

Moreover, by the condition (4.16), the sequence
(
(zn)−

)
n≥1

is bounded,

therefore, uniformly integrable. So, through Fatou’s lemma we ob-

tain that

lim inf
n→∞

Et,x zn ≥ Et,x lim
n→∞

z(τn, X
ν
τn

) = Et,x h(Xν
T ) .

Therefore, going to the limit as n → ∞ in (4.19) we get z(t, x) ≥

J∗(t, x). In the same way, replacing ν in (4.18) by ν∗ we obtain the
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following equality

z(t, x) = Et,x

∫ τn

t

U(s,X∗s , ν
∗
s ) ds + Et,x z(τn, X

∗
τn

) .

Then in view of the condition (4.15) and the dominated convergence

theorem we get

lim
n→∞

Et,x z(τn, X
∗
τn

) = Et,x lim
n→∞

z(τn, X
∗
τn

) = Et,x h(X∗T ) .

This means that

z(t, x) = lim
n→∞

Et,x

∫ τn

t

U(s,X∗s , ν
∗
s ) ds + lim

n→∞
Et,x z(τn, X

∗
τn

)

= Et,x

(∫ T

t

U(s,X∗s , ν
∗
s ) ds + h(X∗T )

)
= J(t, x, ν∗) .

So, using the inequality z(t, x) ≥ J∗(t, x) we obtain z(t, x) = J∗(t, x).

Hence Theorem 4.1.

In the next section we will see how to apply the verification

theorem to the problem (4.6).
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4.3 Optimal investment and consumption for the power

utility functions

In this section we consider the problem (4.6) in the case where

U(x) = xγ1 and h(x) = xγ2 with 0 < γ1, γ2 < 1. Let us first define

the following functions

A1(t) = γq11

∫ T

t

e
∫ s
t
β1(u)du ds and A2(t) = γq22 e

∫ T
t
β2(u)du ,

(4.20)

where qi = (1− γi)−1 and

βi(t) = (qi − 1)
(
r +

qi
2
|θ|2
)
.

Then for any 0 ≤ t ≤ T and x > 0, we define the function g(t, x) > 0

as

A1(t) g−q1(t, x) +A2(t) g−q2(t, x) = x . (4.21)

In addition, we set

p(t, x) = q1A1(t) g−q1(t, x) + q2A2(t) g−q2(t, x) .
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Now we define the functions which will be used to check the condi-

tion H2), i.e. we set

π̌(t, x) =
p(t, x)

σx
θ and v̌(t, x) = (γ1)q1

g−q1(t, x)

x
. (4.22)

The solution in this case is given in the following theorem.

Theorem 4.2. The optimal value of J(x, ν) is given by

max
ν∈V

J(x, ν) = J(x, ν∗) =
A1(0)

γ1

g1−q1(0, x) +
A2(0)

γ2

g1−q2(0, x) ,

where optimal control ν∗t = (π∗t , v
∗
t ) has the following form π∗t =

π̌(t,X∗t ) and v∗t = π̌(t,X∗t ). The optimal wealth process (X∗t )0≤t≤T

satisfies the following stochastic equation

dX∗t = a∗(t,X∗t )dt+ b∗(t,X∗t )dwt , (4.23)

where X∗0 = x, b∗(t, x) = p(t, x) θ and

a∗(t, x) = rx+ p(t, x) |θ|2 − γq11 g−q1(t, x) .

Proof. To prove this theorem we will use the theorem 4.1 for the

stochastic differential equation (4.3). First we fixe ϑ = (y, v) with

y ∈ R and v ∈ [0,∞). For such ϑ the coefficients in the model (4.7)
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are defined as

a(t, x, ϑ) = x ( r + σyθ − v) and b(t, x, ϑ) = σx y .

In addition, the utility functions are defined as

U(t, x, ϑ) = vγ1 xγ1 and h(x) = xγ2 .

To check the conditions H1) – H3) calculate the Hamiltonian (4.12)

in our case. We have

H(t, x, z1, z2) = sup
ϑ∈Rd×[0,∞)

H0(t, x, z1, z2, ϑ) ,

where

H0(t, x, z1, z2, ϑ) = (r + σyθ)x z1 +
1

2
x2σ2y2 z2 + vγ1 xγ1 − xv z1 .

Therefore for z2 ≤ 0 we obtain

H(t, x, z1, z2) = H0(t, x, z1, z2, ϑ0) = rx z1 +
z2

1θ
2

2|z2|
+

1

q1

(
z1

γ1

) γ1
γ1−1

,

where ϑ0 = ϑ0(t, x, z1, z2) = (y0(t, x, z1, z2), v0(t, x, z1, z2)) = (y0, v0)
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and

y0 =
z1

σx|z2|
θ and v0 =

(
γ1

z1

)q1
x−1 . (4.24)

Now we have to solve the problem (4.13) which has for our case the

following form
zt(t, x) + rx zx(t, x) +

z2
x(t, x) θ2

2|zxx(t, x)|
+

1

q1

(
zx(t, x)

γ1

) γ1
γ1−1

= 0 ,

z(T, x) = xγ2 .

We check directly that the solution for this problem (see [4]) for

0 ≤ t < T and x > 0 is

z(t, x) =
A1(t)

γ1

g1−q1(t, x) +
A2(t)

γ2

g1−q2(t, x) , (4.25)

which fulfills the condition (4.16) for z∗ = 0. Therefore, we have

H(t, x, zx(t, x), zxx(t, x)) = H0(t, x, zx(t, x), zxx(t, x), ϑ̌(t, x)) ,

where the function ϑ̌(t, x) = (π̌(t, x), v̌(t, x)) is defined in (4.22). In

[4] it is shown that the conditions H1) – H3) hold for this case. So,

Theorem 4.1 implies Theorem 4.2.

Now we consider the problem (4.6) for U(x) = h(x) = xγ with
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0 < γ < 1. We set

g̃γ(t) = exp

(
γr +

γθ2

2(1− γ)
t

)
.

Corollary 4.1. Let U(x) = h(x) = xγ and 0 < γ < 1. Then the

optimal value of J(x, ν) in (4.6) is

J∗(x) = max
ν∈V

J(x, ν) = J(x, ν∗) = xγ
(
‖g̃γ‖

q
q,T + g̃qγ(T )

)1/q
,

where the optimal control process ν∗t = (π∗t , v
∗
t ) for 0 ≤ t ≤ T has

the following form

π∗t =
θ

σ(1− γ)
and v∗t =

g̃qγ(t)

g̃qγ(T ) +
∫ T
t
g̃qγ(s) ds

. (4.26)

The optimal wealth process (X∗t )0≤t≤T satisfies the following stochas-

tic differential equation

dX∗t =

(
r − v∗t +

θ2

1− γ

)
X∗t dt+

θ

1− γ
X∗t dwt (4.27)

and X∗0 = x.

Remark 4.1. It should be noted that the strategy (4.26) – (4.27) is

the well known Merton strategy obtained in [6].
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Exercises

1. Write the Hamilton function for the following cases:

(b) U(x) = lnx.

(c) U(x) = 1− e−x.

2. Find the optimal consumptions for the following problems:

(b) U(x) = xγ with 0 < γ < 1 and h(x) = 0.

(c) U(x) = h(x) = lnx.

(d) U(x) = lnx and h(x) = 0.
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Conclusion

In this manual we considered the main optimization portfolio

problems for the financial markets modeled by the stochastic differ-

ential and stochastic different equations. We considered the optimal

consumption, the optimal investment and consumption problems in

discrete time studied in [2], then we considered the same problems

in continuous time using the approach developed in [3]. For all

these problems we used the stochastic calculus developed in [5, 7].

For all these problems we used the dynamical programming method

proposed by Bellman for the optimization problem for the utilities

functions of the integral forms [1]. For the Bellman principle in con-

tinuous time we studied the verification theorem method developed

in [3, 4, 8, 9].

43



References

[1] Bellman R. Dynamic programming. – Princeton: Princeton

Landmarks in Mathematics. Princeton University Press, 2010.

[2] Demange G., Rochet J-C. Méthodes Mathématiques de la fi-
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