
HAL Id: hal-02365156
https://hal.science/hal-02365156

Submitted on 15 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic tool for stochastic modeling
Evgeny A Pchelintsev, Serguei Pergamenchtchikov

To cite this version:
Evgeny A Pchelintsev, Serguei Pergamenchtchikov. Probabilistic tool for stochastic modeling. Master.
Russia. 2017. �hal-02365156�

https://hal.science/hal-02365156
https://hal.archives-ouvertes.fr


Probabilistic tool for stochastic modeling ∗

Pergamenshchikov Serguei†and Pchelintsev Evgeny, ‡

May 13, 2019

Abstract

The main goal of these lectures is to give the basic notions of the
stochastic calculus such that conditional expectations, predictable pro-
cesses, martingales, stochastic integrals and Ito’s formula.

∗This work was done under financial support of the Russian Federal Professor Programm
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1 Introduction

1.1 Probability space

Definition 1.1. The measurable space (Ω,F ,P) is called the probability space,
where Ω is any fixed universal set, F is σ - field and P is a probability measure.

It should be noted that if the set Ω is finite or countable then the field (or
σ - field) F is defined as all subsets of the set Ω, i.e. F = {A : A ⊆ Ω}.
Moreover, in this case the probability is defined as

P(A) =
∑
ω∈A

P({ω}) , (1.1)

where P({ω}) is defined for every ω from Ω.

Examples

1. The bernoulli space.

The set Ω = {0, 1} and F = {Ω , ∅ , {0} , {1}}. The probability is defined
as P({0}) = p and P({1}) = 1− p for some fixed 0 < p < 1. Note that,
if p = 1/2, then we obtain the ”throw a coin” model.

2. The binomial space.

The set Ω = {0, 1, . . . , n} and F = {A : A ⊆ Ω}. In this case for any
0 ≤ k ≤ n the probability is defined as

P({k}) =

(
n
k

)
pk(1− p)n−k . (1.2)

3. The finite power of the bernoulli spaces.

The set Ω = {0, 1}n = {ωl}1≤l≤2n , where ωl are n - dimensional vectors,
i.e. ωl = (ωl,1, . . . , ωl,n) and ωl,j ∈ {0, 1}. The field F = {A : A ⊆ Ω}
and

P(ωl) = pνl (1− p)n−νl , (1.3)

where νl =
∑n

j=1
ωl,j.

4. The infinite power of the bernoulli spaces.

The set Ω = {0, 1}∞ = {ω}. In this case ω = (ωl)l≥1 and ωl ∈ {0, 1}. In
this case this the set Ω is note countable, moreover, tis set is isomorphes
to interval [0, 1] by the natural representation

x =
∑
l≥1

ωl 2
−l ∈ [0, 1] . (1.4)
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So, for such set Ω the σ - field F is borel generated by the intervals from
[0, 1] i.e. F = B([0, 1]). The probability is the Lebesgue measure on the
interval [0, 1].

1.2 Random variables, vectors and mappings

We remind, that any measurable (Ω,F) → (R,B(R) function ξ is called a
random variable and (Ω,F) → (Rn,B(Rn) is called a random vector. Gener-
ally, for any measurable space ((X ,B(X )) a measurable (Ω,F) → (X ,B(X )
function is called a random mapping.

For any nonnegative random variable ξ we can define the Lebesgue integral
as

E ξ =

∫
Ω

ξ(ω) dP

which is called expectation. Note that any random variable ξ = ξ+−ξ−, where
ξ+ = max(ξ, 0) and ξ− = −min(ξ, 0). So, if E min(ξ+ , ξ−) <∞, then we can
define th expectation in general case as

E ξ = E ξ+ − E ξ− .

The function defined as F (x) = P(ξ ≤ x) is called distribution function
and

Examples

1. Construction of the probability space for fixed random variables
with values in R.

Let F be a distribution function on R. Now through Carathéodory’s
extension theorem we obtain the probability measure µ on the borel σ
- field B(R) for which µ(b, a) = F (b) − F (a) for any interval (a, b) with
a < b. To define the probability space we set Ω = R, F = B(R) and
P = µ. In this case the random variable ξ(x) = x has the distribution
function F .

2. Construction of the probability space for fixed random variables
with values in Rm.

Let µ be a probability measure on Rm. Similarly to the previous example
we set Ω = R, F = B(R) and P = µ. In this case the random variable
ξ(x) = x has the distribution µ.
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1.3 Conditional expectations and conditional probabil-
ities

Let now (Ω,F ,P) be some probability space. Moreover, let now ξ be some
integrated random variable with values in R and G a some σ - field in the
probability space, i.e. G ⊆ F .

Definition 1.2. The random variable E (ξ|G) is called the conditional expec-
tation if the following conditions hold:

1. E (ξ|G) is G measurable random variable;

2. For any bounded G measurable random variable α

Eαξ = E (αE(ξ|G)) (1.5)

Note that this definition is correct, i.e. if there exists a G - measurable
random variable ξ̌ satisfying the property (??), then it equals to the conditional
expatiation. Indeed, if we set

α = sign(ξ̌ − E(ξ|G)) ,

then the equality (??) implies that E |ξ̌ − E(ξ|G)| = 0, i.e. ξ̌ = E(ξ|G) a.s.
We can use the another definition for the conditional expectation also.

Definition 1.3. The random variable E (ξ|G) is called the conditional expec-
tation if the following conditions hold:

1. E (ξ|G) is G - measurable random variable;

2. For any A ∈ G
E1Aξ = E (1AE(ξ|G)) (1.6)

Note that to show the existence of the condition expectations we use the
Radon - Nikodym theorem. Indeed, for any A ∈ G we introduce the measure
ν as

ν(A) =

∫
A

ξ dP . (1.7)

It is clear that the measure ν is finite and, moreover, ν � P. So, through
the Radon - Nikodym theorem, there exists a G - measurable unique random
variable ρ such that

ν(A) =

∫
A

ρ dP .

It is clear that we can do the same construction for any positive random vari-
able ξ, not necessary integrable. So, we can define the conditional expectation
for any positive random variable ξ. For a general random variable ξ we can
define the conditional expectation if, E ξ− <∞. In this case we set

E(ξ|G) = E(ξ+|G)− E(ξ−|G) .
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Definition 1.4. Let now η be a some random variable. We define the condi-
tional expectation with respect to the random variable η as

E (ξ|η) = E
(
ξ|Gη

)
,

where Gη = σ {η}.

From the definition of the conditional expectation E(ξ|η) it follows that
there exists a some borel R→ R function m such that

E (ξ|η) = m(η) .

This function is called the conditional expectation with respect to the fixed
values of η, i.e. for any y ∈ R

E(ξ|η = y) = m(y) . (1.8)

Properties of the condition expectations.

1. If η is a constant, then E(ξ|η) = Eξ.

2. Let ξ and η be two random variables such that the conditional expec-
tations E(ξ|G) and E(η|G) exist and ξ ≤ η a.s. Then E(ξ|G) ≤ E(η|G)
a.s.

3. If ξ and η are independents, then E(ξ|η) = Eξ.

4. If the σ - field generated by the random variable ξ is more small than
the σ - field generated by the random variable η, i.e.

σ{ξ} ⊆ σ{η} ,

then E(ξ|η) = ξ.

5. Let ξ and η the random variables such that σ{ξ} ⊆ σ{η}. Then for any
integrable random variable γ

E(γξ|η) = ξE(γ|η) .

6. Let A and B two σ - fields such that A ⊆ B ⊆ F . Then

E(ξ|A) = E(E(ξ|B)|A) .
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7. Let ξ be a square integrated random variable, i.e. E ξ2 < ∞. The
conditional expectation E(ξ|G) is the projection in L2(Ω,F ,P) into the
subspace L2(Ω,G,P), i.e. for any η ∈ L2(Ω,G,P)

E (ξ − E(ξ|G))2 ≤ E (ξ − η)2 .

Let now ξ and η be two random variables with the density fξ,η(·, ·), i.e. for
any borel set B ⊆ R2

P ((ξ, η) ∈ B) =

∫
B

fξ,η(x, y) dx dy .

Note that, on this case the one-dimensional densities can be represented as

fξ(x) =

∫
R
fξ,η(x, y) dy and fη(y) =

∫
R
fξ,η(x, y) dx . (1.9)

In this case the conditional density is defined as

fξ|η(x|y) =
fξ,η(x, y)

fη(y)
1{fη(y)>0} . (1.10)

Proposition 1.1. Let g be a some measurable R→ R function for which the
expectation E |g(ξ)| <∞. Then for any y ∈ R

E(g(ξ)|η = y) =

∫
R
g(x) fξ|η(x|y) dx .

This proposition means that the conditional density may be used to calculate
the corresponding conditional expectations.

1.4 Stochastic basis

The family of the σ - fields (Ft)t≥0 is called filtration if Fs ⊆ Ft ⊆ F for any
0 ≤ s ≤ t. Moreover, for all t ≥ 0 we set

Ft− = σ{∪s<tFs} and Ft+ = ∩s>tFs .

We set F0− = F0. The filtration is called left continuous if Ft− = Ft, right
continuous if Ft+ = Ft and continuous if Ft− = Ft+ for any t ≥ 0. The
probability space with a filtration(

Ω,F , (Ft)t≥0,P
)
. (1.11)

is called stochastic basis.

Exercises
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1. Show that the definitions ?? and ?? are equivalents.

2. Show the properties 1 – 7 of the conditional expectations.

3. Let ξ and η be two independent random variables with Eξ = 0 and
Eξ2 = 1. Calculate

E
(
ηξ2|η

)
=? and E

(
η

1 + η2
ξ|η
)

=?

4. Let ξ and η be two random variables sucht that E(ξ|η) = 1 and Eη = 2.
Calculate E ξη = ?

5. Let ξ and η be two independent random variables and ξ be uniform on
the interval [0, 1].

(a) Calculate

E

(
η

1 + η2
sin(2πξ)|η

)
=?

(b) Show that

E (cos(ηξ) | η) =
sin(η)

η
.

6. Let ξ and η be two random variables such that their joint density function
is

fξ,η(x, y) =
1

π
√

2
e−(x2+y2−

√
2xy) .

(a) Find the densities fξ(x) and fη(y).

(b) Find the conditional density fξ|η(x|y).

(c) Calculate
E (ξ | η) =? and E

(
ξ2 | η

)
=?

7. Show Proposition ??.

8. Let (ξj)j≥1 be a sequence of random variables and Ft = σ{ξ1, . . . , ξ[t]}
with F0 = {∅,Ω}.

(a) Show that the filtration (Ft)t≥0 is right continuous.

(b) Check is this filtration left continuous or not ?
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2 Markovian moments

Let
(
Ω,F , (Ft)t≥0 ,P

)
be a fixed stochastic basis.

Definition 2.1. Random variable τ ∈ R+ is called markovian moment, if

{τ ≤ t} ∈ Ft ∀t ≥ 0 .

If P(τ <∞) = 1, then τ is stopping time.

We denote by M the set of all markovian moments and by M̌ the set of all
stopping times.

Definition 2.2. Let τ ∈M. We set

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀t ≥ 0}

and Fτ− is σ- algebra generated by F0 and the set of the form A∩{t < τ} with
A ∈ Ft .

Definition 2.3. A subset A ⊆ Ω× R+ is called random set.

It is clear that if A is a random set, then

πA =
{
ω ∈ Ω : ∃t ∈ R+ (ω, t) ∈ A

}
(2.1)

is its Ω - projection.
Now for any random set A we define

DA = DA(ω) = inf{t ≥ 0 : (ω, t) ∈ A}. (2.2)

We set DA =∞ if {t ≥ 0 : (ω, t) ∈ A} = ∅. This function is called the debut
of A.

Let σ and τ be two random variables with values in R.

Definition 2.4. We call stochastic intervals the following random sets

Jσ, τK = {(ω, t) : σ(ω) ≤ t ≤ τ(ω)} , Kσ, τJ= {(ω, t) : σ(ω) ≤ t < τ(ω)} ,

Kσ, τJ = {(ω, t) : σ(ω) < t ≤ τ(ω)} , Kσ, τJ= {(ω, t) : σ(ω) < t < τ(ω)} .

Moreover, we the set JτK = Jτ, τK is called the graphics of the random variable
τ .

Definition 2.5. A set is called thin if there exits a sequence of random vari-
ables (τn)n≥1 for which JτnK ∩ JτmK = ∅ for n 6= m such that

A = ∪n≥1JτnK .
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Definition 2.6. A random set A is called thin if there exits a sequence of
random variables (τn)n≥1 for which JτnK ∩ JτmK = ∅ for n 6= m such that

A = ∪n≥1JτnK .

A random set A is called negligible if P(πA) = 0.

Exercises

1. Show that if the filtration (Ft)t≥0 is right continuous, i.e. Ft = Ft+, then

τ ∈M ⇐⇒ {τ < t} ∈ Ft ∀t ≥ 0 .

2. Show, that the constants (i.e. τ(·) ≡ t0 ≥ 0) are stopping moments.

3. Show, that τ is measurable with respect to Fτ− for any τ ∈M.

4. Show, that Fτ is σ - field for any τ ∈M.

5. If τ(·) ≡ t0 ≥ 0, then Fτ = Ft0 .

6. Show, that Fτ− ⊆ Fτ for any τ ∈M.

7. Show, that the random variable τ + c ∈ M for any τ ∈ M and any
constant c > 0.

8. Show, that for any τ and σ from M such that τ(ω) ≤ σ(ω) we have

Fτ− ⊆ Fσ− and Fτ ⊆ Fσ .

9. Let (τn)n≥1 ∈M. Show that

σ = inf
n≥1

τn ∈M , τ = sup
n≥1

τn ∈M and Fσ = ∩n≥1Fτn .

10. Show, that for any τ and σ from M and A ∈ Fσ, the intersection

A ∩ {σ < τ} ∈ Fτ− .

11. Show, that for any A ∈ F∞ = σ{∪t≥0Ft} and τ ∈ M the intersection
A ∩ {τ =∞} ∈ Fτ−.
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3 Stochastic processes

Let X be a stochastic process, i.e. X is a a family of the random variables
X = (Xt)t≥0. We recall that for any fixed ω ∈ Ω the R+ → R function
(Xt(ω))t≥0 is called trajectory of the stochastic process X.

Definition 3.1. A stochastic process X is called adapted if the random variable
Xt is Ft measurable for each t ∈ R+. The stochastic process X is called
measurable if the mapping

X :
(
Ω× R+ , F ⊗ B(R+)

)
→ (R , B(R))

is measurable.

Definition 3.2. A stochastic process X is called progressively measurable if
for any t ∈ R+ the mapping

X : (Ω× [0, t] , Ft ⊗ B([0, t]))→ (R , B(R))

is measurable.

In the sequel we denote by C the space of the continuous R+ → R functions
and by D the Skorokhod space, i.e. the space of R+ → R functions which are
right-continuous and have left-hand limits. Such function are called cadlag.
For any stochastic process X with the trajectories from D we set:

X− = (Xt−)t≥0 and ∆X = (∆Xt)t≥0 ,

where ∆Xt = Xt −Xt−. Moreover, for any markovian moment τ ∈M we set

Xτ = (Xt∧τ )t≥0 and ∆Xτ =
(
Xτ −Xτ−

)
1{τ<∞} ,

where a ∧ b = min(a, b). The process Xτ is called stopped.

Exercises

1. Show that if X is right or left continuous, then it is progressively mea-
surable.

2. Show that the debut DA defined in (??) is mrakovian moment for any
progressively measurable set A.

3. For any random moment τ and A ∈ F we set

τA =

 τ , if ω ∈ A ;

+∞ , if ω ∈ Ac .
(3.1)

Show that τ is markovian moment for any A ∈ Fτ and τ ∈M.
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4. Let τ and σ be two markovian moments, i.e. τ and σ from M. Show
that

{τ = σ} ∈ Fτ ∩ Fσ , {τ ≤ σ} ∈ Fτ ∩ Fσ ,

{σ < τ} ∈ Fσ− , {σ <∞} ∈ Fσ− .

5. Let X = (Xt)t≥0 be progressively measurable process and τ ∈M. Show
that Xτ1{τ<∞} is measurable with respect to Fτ .

6. Let X = (Xt)t≥0 be progressively measurable process and τ ∈M. Show
that the stopped process Xτ = (Xτ∧t)t≥0

is adapted with respect to

(Ft)t≥0.

4 Optional and Predictable σ - fields

Let
(
Ω,F , (Ft)t≥0 ,P

)
be a fixed stochastic basis.

Definition 4.1. A σ - field D ⊂ F×B(R+) is called optional if it is generated
by the stochatsic intervals J0 , τK, τ ∈M.

A σ - field P ⊂ F × B(R+) is called predictable if it is generated by the
set J0AK = {(ω, t) : ω ∈ A , t = 0} with A ∈ F0 and the stochatsic intervals
J0 , τK with τ ∈M.

Note that P ⊆ D. We set

τ 0
A

=

 0 , if ω ∈ A ;

+∞ , if ω ∈ Ac .

As it is shown τ 0
A

is markovian moment for any A ∈ F0. Taking this into
account we can represent the set J0AK as

J0AK = ∩n≥1 Jτ 0
A
, τ 0

A
+ 1/nJ ∈ D .

Moreover, for any τ ∈M we have

J0 , τK = ∩J0 , τ + 1/nJ ∈ D .

Therefore, P ⊆ D.
Let us now P1 be a σ - field generated by the adapted left continuous

processes, and

P2 = σ {J0AK , A ∈ F0 , A× [s, t] , A ∈ Fs} (4.1)

11



Proposition 4.1. The σ - fields P1 and P2 are predictible, i.e.

P = P1 = P2 . (4.2)

Exercises

1. Show that P is generated by the adapted continuous processes.

2. Show that any set A from P is progressively measurable.

Definition 4.2. A process X is called predictable if it is measurable with re-
spect to P.

Proposition 4.2. Let X be a predictible process and τ a markovian moment,
i.e. τ ∈M. Then

1. the random variable Xτ 1τ<∞ is measurable with respect to Fτ−;

2. the stopped process Xτ is predictible.

Definition 4.3. A random variable τ with values in R+ is called predictible
moment if JτK ∈ P.

We denote by Mp the set of all predictible moments.

Proposition 4.3. A moment τ is predictible, i.e. τ ∈ Mp if and only if
J0, τJ∈ P.

Exercises

1. Let X be a predictible increasing process. Now, for some fixed c ∈ R we
set

τ = inf{t ≥ 0 : Xt ≥ c}

and τ = +∞ if this set is empty, i.e. {t ≥ 0 : Xt ≥ c} = ∅. Show that
τ ∈Mp.

2. Let X be a predictible cadlag process, i.e. with values in the Skorokhod
space D. We set

τ = inf{t ≥ 0 : |∆Xt| > 0}

and τ = +∞ if this set is empty, i.e. {t ≥ 0 : |∆Xt| > 0} = ∅. Show
that τ ∈Mp.

3. Let τ and σ be two predictible moments, i.e. τ and σ from Mp. Show
that σ ∧ τ ∈Mp and σ ∨ τ ∈Mp.

4. Let a sequence (τn)n≥1 be from Mp. Show that sup
n≥1

τn ∈Mp.
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Theorem 4.1. Let τ be a predictible moment (i.e. τ ∈ Mp) and A be a set
from Fτ−. Then τA is predictible moment, i.e. τA ∈Mp.

Corollary 4.1. Let σ ∈ Mp and τ ∈ M. Then for any set A from Fσ− the
set A ∩ {σ ≤ τ} ∈ Fτ−.

Proposition 4.4. Let σ, τ be markovian moments (i.e. σ, τ from M) and Y
be a some random variable.

1. If τ ∈Mp and Y ∈ Fσ then the process

X = Y 1Kσ,τJ

is predictible;

2. If σ ∈Mp and Y ∈ Fσ− then the process

X = Y 1Jσ,τK 1{τ<∞}

is predictible;

3. If σ, τ ∈Mp and Y ∈ Fσ− then the process

X = Y 1Jσ,τJ 1{τ<∞}

is predictible;

Definition 4.4. An increasing sequence of markov moments (τn)n≥1 (i.e. τn ≤
τn+1 and (τn)n≥1 ⊂ M) is called foreshadowing sequence for some random
moment τ if the following condtions hold:

1. for any ω ∈ Ω
lim
n→∞

τn(ω) = τ(ω) ;

2. for any n ≥ 1 and ω ∈ {ω ∈ Ω : τ(ω) > 0}

τn(ω) < τ(ω) .

Theorem 4.2. A random moment τ ∈ Mp if and only if there exists a fore-
shadowing sequence of markovian moments (τn)n≥1 for τ .
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Theorem 4.3. Any predictable process X can be represented as

X = Y +
∑
k≥1

∆Xτk
1JτkK ,

where the sequence stopping times τk ∈Mp.

Exercises

1. Show that any non random constant t ≥ 0 belongs to τ + t ∈Mp

2. Show that for any τ ∈M and any fixed t > 0 the moment τ + t ∈Mp.

5 Martingales

Definition 5.1. A stochastic process M = (Mt)t≥0 is called martingale, sub-
martingale or supermartingale if

1. M is adaptive;

2. M is integrated, i.e. E |Xt| <∞ for any t ≥ 0;

3. for any 0 ≤ s ≤ t

E (Mt|Fs) = Ms;

E (Mt|Fs) ≥Ms;

E (Mt|Fs) ≤Ms .

Definition 5.2. A stochastic process M = (Mt)t≥0 is called local martingale
if there exists increasing sequence τn with τn → ∞ as n → ∞ such that the
stopping process M τn is martingale for any n ≥ 1.

Definition 5.3. A martin gal M = (Mt)t≥0 is called square integrated if for
any t > 0

EM2
t
< ∞ .

It should be noted that for any square integrated martingale M there exists

M∞ = lim
t→∞

Mt a.s.,

such that EM2
∞ <∞ and Mt = E (M∞|Ft) for any t ≥ 0.

14



Definition 5.4. A process X = (Xt)t≥0 is called process of the Dirichlet class
if the family (Xτ )τ∈M̌ is uniformly integrated, i.e.

lim
a→+∞

sup
τ∈M̌

E|Xτ |1{|Xτ |>a} = 0 .

In the stochastic analysis the Doob – Meyer decomposition theorem plays
the key role for the construction of the integrals.

Theorem 5.1. Let X be a sub-martingale of the Dirichlet class. Then there
exists unique pre visible integrated process A = (At)t≥0 with A0 = 0 such that

Xt = At +Mt

where M = (Mt)t≥0 is an uniformly integrated martingale with M0 = X0, i.e.

lim
a→+∞

sup
t≥0

E |Mt|1{|Mt|>a} = 0 .

Let now X = (Xt)t≥0 be a square integrated martingale. Then by the Doob -
Meyer theorem

X2
t

= At +Mt , (5.1)

where A is a pre visible process and M is a martingale. The predictable process
A is called quadratic characteristic or predictable variation which is denoted as
< X,X > or < X >. Let now X and Y be two square integrated martingales.
Then the joint quadratic characteristic or predictable quadratic covariation
< X, Y > is called the predictable process defined as

< X, Y >t=
1

4
(< X + Y >t − < X − Y >t) . (5.2)

Definition 5.5. A process W = (Wt)t≥0 is called brownian motion if the
following properties hold:

1. the process W is a.s. continuous and W0 = 0;

2. the process W is a process with the independent increments, i.e. for any
m ≥ 2 and 0 = t0 < t1 . . . < tm the random variables

Wt1
, Wt2

−Wt1
, . . . ,Wtm

−Wtm−1

are jointly independent;

3. for any 0 ≤ s ≤ t the random variable Wt − Ws is gaussian with the
parameters (0 , t− s).
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Note that the existence of such process can be shown by the Kolmogorov
theorem ??. Indeed, to this end it suffices to define the family (??) as the
family of the (0, Km) gaussian distributions in Rm with the correlation matrix

Km =
(
min(ti, tj)

)
1≤i,j≤m

,

i.e. for any 0 ≤ t1 < . . . , tm the distributions Φt1,...,tm
is m dimensional gaussian

with the parameters (0, Km).

Definition 5.6. A process N = (Nt)t≥0 is called homogeneous Poisson process
of the intensity λ > 0 if for any t > 0

Nt =
∑
k≥1

1{ε̌1+...+ε̌k≤t} , (5.3)

where (ε̌k)k≥1 i.i.d. λ exponential random variables.

In the sequel we denote by the (FW
t

)t≥0 and (FN
t

)t≥0 the corresponding filtra-
tions with FW

t
= σ{Wu , u ≤ t} and FN

t
= σ{Nu , u ≤ t}.

Exercises

1. Let M = (Mt)t≥0 be a square integrated martingale. Show that Xt = M2
t

is submartingale;

2. Let ξ be a some integrated random variable. Show that Xt = E (ξ|Ft) is
martingale.

3. Show the Doob - Meyer decomposition theorem for the discrete time.

4. Let W = (Wt)t≥0 be brownian motion.

(a) Show that the processes Wt with respect to the filtration (FW
t

)t≥0.

(b) Show that the process Xt = W 2
t
− t is martingale with respect to

the filtration (FW
t

)t≥0.

(c) Calculate the quadratic characteristics < W > and < X >.

5. Let N be a homogeneous Poisson process of the intensity λ > 0. Show
that the process Nt − λt is martingale with respect to the filtration
(FN

t
)t≥0.

6. Let N be a homogeneous Poisson process of the intensity λ > 0 and
(ξk)k≥1 be i.i.d. sequence of the gaussian (0, 1) random variables. We set

Zt =

Nt∑
j=1

ξj . (5.4)
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(a) Show that the process Z is a martinagale with respect to the filtra-
tion (FZ

t
)t≥0 with FZ

t
= σ{Zu , u ≤ t}.

(b) Calculate the quadratic characteristic < Z >.

6 Stochastic integral

Let now M = (Mt)t≥0 be a square integrated martingale. Let H = (Ht)t≥0 be
a simple predictable process, i.e.

Ht = α1 1[0,t1] +
n∑
j=2

αj 1{]tj−1,tj ]} , (6.1)

where 0 = t0 < t1 < . . . tn are fixed nonrandom moments and the random
variable αj is measurable with respect to Ftj−1

. Moreover, we assume that

E

∫ T

0

H2
t
d < M >t < ∞ . (6.2)

In this case the stochastic integral with respect to the martingale M is
defied as ∫ T

0

HtdMt =
n∑
j=1

αj (Mtj
−Mtj−1

) . (6.3)

It should be noted (see, for example, [?], p.82) that for any predictable process
H = (Ht)t≥0 which satisfies the condition (??) there exists a sequence of
simple square integrated predictable processes Hn = (Hn

t
)t≥0, i.e. processes

which satisfies the conditions (??) and (??) such that

lim
n→∞

E

∫ T

0

(
Ht −Hn

t

)2
dt = 0 .

In this case the stochastic integral with respect to the martingale M is defined
as ∫ T

0

HtdMt = l.i.m.

∫ T

0

Hn
t

dMt , (6.4)

i.e.

lim
n→∞

E

(∫ T

0

HtdMt −
∫ T

0

Hn
t

dMt

)2

= 0 .
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One can show (see, for example, [?], p.82) that the limit in (??) is the same for
any approximate sequence (Hn)n≥1, i.e. for any predictable square integrated
process the stochastic integral with the martingale M is correctly defined by
the limit (??).

For any sure integrated predictable process H = (Ht)t≥0 we define the
process X = (Xt)t≥0 as

Xt =

∫ t

0

HsdMs . (6.5)

Properties of the stochastic integrals.

1.
EXt = 0 .

2.

EX2
t

= E

∫ t

0

H2
s
d < M >s .

3.

< X >t=

∫ t

0

H2
s
d < M >s .

4. For any t > 0
∆Xt = Ht∆Mt .

5. The process X = (Xt)t≥0 is the martingale.

Let now f be a twice continuous differentiable R → R function. Let now
M = (Mt)t≥0 be some square integrated martingale such that

Mt = M c
t

+Md
t
, (6.6)

where M c = (M c
t
)t≥0 is continuous martingale and Md = (Md

t
)t≥0 is the pure

discret martingale defined as

Md
t

= Md
0

+
∑

0≤s≤t

∆Ms − Adt , (6.7)

where Ad = (Ad
t
)t≥0 is some predictable process with the finite variation on

the finite interval [0, T ] (see, for example, [?], Theorem 4, p. 44) .
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Theorem 6.1. Assume that

E

∫ T

0

(
f ′(Mt−)

)2
d < M >t<∞

and ∫ T

0

∣∣f ′′(Mt−)
∣∣ d < M c >t<∞ a.s..

Then

f(MT ) = f(M0) +

∫ T

0

f ′(Mt−) dMt +
1

2

∫ T

0

f ′′(Mt−)d < M c >t (6.8)

+
∑

0≤t≤T

(
f(Mt)− f(Mt−)− f ′(Mt−) ∆Mt

)
,

where < M c > is the quadratic characteristic of the continuous martingale M c

defined in (??).

Exercises

1. Show the properties 1)–5) of stochastic integrals.

2. We set

Xt =

∫ t

0

Ns−dZs , (6.9)

where Z = (Zt)t≥0 is the martingale defined in (??) and N = (Nt)t≥0 is
the Poisson process. Calculate < X >.

3. Write the Ito formula for the function f(x) = x4 for the process (??).

4. Let now
Mt = Wt +Xt , (6.10)

where W = (Wt)t≥0 is the Wiener process and X = (Xt)t≥0 is the process
sec:StI.5.

(a) Find the martingales M c and Md in the decomposition (??).

(b) Write the Ito formula for the martingale (??) for the functions
f(x) = x2 and f(x) = x4.
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7 Appendix

A.1 Carathéodory’s extension theorem

In this section we consider some fixed universal set Ω.

Definition 7.1. For a given Ω the family S of the subsets of Ω is called semi-
ring if the following properties hold

• ∅ ∈ S;

• for all A,B ∈ S the intersection A ∩ A ∈ S (closed under pairwise
intersections);

• for all A,B ∈ S there exist disjoints sets (Di)1≤i≤n from S such that
A \ B = ∪n

j=1
Di (relative complements can be written as finite disjoint

unions).

Definition 7.2. For a given Ω the family R of the subsets of Ω is called ring
if the following properties hold

• ∅ ∈ R;

• for all A,B ∈ R the intersection A ∪ B ∈ R (closed under pairwise
unions);

• for all A,B ∈ R we have A\B ∈ R (closed under relative complements).

Examples

1. Let (Xj , Bj)1≤j≤n be n measurable spaces, i.e. Xi be some sets with σ -
fields Bi.
In this case the family S = {A = D1× . . .×Dn, Di ∈ Bi} is the semi-ring
in Ω = X1 × . . .×Xn.

2. Let S is a semi - ring in Ω. Then family

R =
{
A : A = ∪n

j=1
Dj with the Dj ∈ S

}
is the ring R(S) generated by S.

3. Let (Fj)1≤j≤n be σ - fields in Ω. In this case

R = ∪n
j=1
Fj

is the ring.
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Definition 7.3. Let R be a ring and let ν : R → [0,+∞] be a set - function.
This function is called pre-measure if

• ν(∅) = 0;

• for any countable (finite) sequence (Aj)j∈J (with Aj ⊆ R for j ∈ J)
pairwise disjoint sets whose union lies in R

ν
(
∪j∈J Aj

)
=
∑
j∈J

ν
(
Aj
)
.

Theorem A.1. (Carathéodory’s extension theorem) Let R be a ring on some
set Ω and µ be a pre-measure on R. Then there exists a measure µ̌ on the σ -
field generated by the ring R such that µ̌(A) = µ(A) for any A ∈ R.

A.2 Radon - Nikodym theorem

In this subsection we consider the measurable space (Ω,F), where Ω is some
set and F is a σ - field of the subsets of Ω.

Definition 7.4. Un positive measure ν on F is called σ - finite if there exists
a sequence of disjoint sets (An)n≥1 from F such that

Ω = ∪n≥1An and ν(An) <∞
for any n ≥ 1.

Definition 7.5. Let ν and µ be two positive measures on F . The measure ν
is called absolutely continuous with respect to the measure µ if for any A ∈ F
for which µ(A) = 0 the measure ν(A) = 0. We write in this case ν � µ. The,
measures ν and µ are called equivalents if simultaneously ν � µ and µ � ν.
In this case we write ν ∼ µ.

Theorem A.2. (Radon - Nikodym theorem) Let ν and µ be two positive σ
- finite measures on F such that ν � µ. Then there exists a measurable
Ω→ [0,+∞[ function f such that for any A ∈ F

ν(A) =

∫
A

fdµ . (A.1)

The function f in (??) is called the Radon - Nikodym derivative and de-
noted as

f =
dν

dµ
.

Note that, if ν is a probability measure and µ is the Lebesgue measure in
Rn then the function f is called the probability density.
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A.3 Kolmogorov theorem

Let now X be the set of all (R+,B(R+)→ (R , B(R)) functions, where B(R+)
and B(R) are the borel σ - fields on R+ and on R correspondently. For any
0 ≤ t1 < . . . < tm and any borel sets Γ1 ∈ B(R) , . . . ,Γm ∈ B(R) the set in X

Ct1,...tm(Γ1) = {x ∈ X : x(t1) ∈ Γ1 , . . . , x(tm) ∈ Γm} (A.2)

is called cylinder set. We denote by C the family of all cylinder sets in X and
by F the σ - field generated by this family, i.e. F = σ{C}. Let now((

Φt1,...,tm

)
(t1,...,tm)∈Rm

+

)
m≥1

(A.3)

be a family of the finite dimensional distributions Φt1,...,tm
on B(Rm).

C1) Assume that for any 0 ≤ t1 < . . . < tm and any borel sets Γ1 ∈
B(R) , . . . ,Γm ∈ B(R)

Φt1,...,tm
(Γ1 × . . .× Γm) = Φtj1

,...,tjm
(Γj1 × . . .× Γjm) .

C2) Assume that for any 0 ≤ t1 < . . . << tm < tm+1 and any borel sets
Γ1 ∈ B(R) , . . . ,Γm ∈ B(R)

Φt1,...,tm,tm+1
(Γ1 × . . .× Γm × R) = Φt1,...,tm

(Γ1 × . . .× Γm) .

Theorem A.3. (Kolmogorov theorem) Assume that the family of the finite
dimensional distributions (??) satisfies the conditions C1) and C2). Then
there exists an unique measure µ on the σ - field F such that for any 0 ≤ t1 <
. . . < tm and any borel sets Γ1 ∈ B(R) , . . . ,Γm ∈ B(R)

µ(Γ1 × . . .× Γm) = Φt1,...,tm
(Γ1 × . . .× Γm) .
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(French. French summary) [Measure and integration theory] Publications
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