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Diffusion MR images are prone to severe geometric distortions induced by head
movement, eddy-current and inhomogeneity of magnetic susceptibility. Various
correction methods have been proposed that depend on the choice of the acquisition
settings and potentially provide highly different data quality. However, the impact of
this choice has not been evaluated in terms of the ratio between scan time and
preprocessed data quality. This study aims at investigating the impact of six well-
known preprocessing methods, each associated to specific acquisition settings, on the
outcome of diffusion analyses. For this purpose, we developed a comprehensive toolbox
called Diffuse which automatically guides the user to the best preprocessing pipeline
according to the input data. Using MR images of 20 subjects from the HCP dataset,
we compared the six pre-processing pipelines regarding the following criteria: the ability
to recover brain’s true geometry, the tensor model estimation and derived indices in the
white matter, and finally the spatial dispersion of six well known connectivity pathways.
As expected the pipeline associated to the longer acquisition fully repeated with reversed
phase-encoding (RPE) yielded the higher data quality and was used as a reference to
evaluate the other pipelines. In this way, we highlighted several significant aspects of
other pre-processing pipelines. Our results first established that eddy-current correction
improves the tensor-fitting performance with a localized impact especially in the corpus
callosum. Concerning susceptibility distortions, we showed that the use of a field map
is not sufficient and involves additional smoothing, yielding to an artificial decrease of
tensor-fitting error. Of most importance, our findings demonstrate that, for an equivalent
scan time, the acquisition of a b0 volume with RPE ensures a better brain’s geometry
reconstruction and local improvement of tensor quality, without any smoothing of the
image. This was found to be the best scan time/data quality compromise. To conclude,
this study highlights and attempts to quantify the strong dependence of diffusion metrics
on acquisition settings and preprocessing methods.

Keywords: brain, DWI, distortions, preprocessing, toolboxc

Abbreviations: FS, full-sphere; HCP, Human Connectome Project; HS, half-sphere; MMI, Mattes Mutual Information; RPE,
Reverse Phase Encoding; TFE, Tensor Fitting Error.
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INTRODUCTION

Diffusion-weighted imaging (DWI) has established itself as a
reference technique for the in vivo inference of structural
brain connectivity and for the investigation of white matter
microstructure (Hagmann et al., 2010; Ghosh and Deriche,
2016). If echo-planar imaging (EPI) sequences, commonly
used in DWI, provide a high signal to noise ratio (SNR)
and rapid scan time, they are nonetheless prone to severe
artifacts such as non-zero off-resonance fields (Le Bihan
et al., 2006) stemming from the discontinuity of magnetic
susceptibility of the tissues and from eddy-currents induced
in the nearby conductors. The low bandwidth in the phase-
encode direction makes EPI sequences particularly sensitive
to these two artifacts which disrupt the spatial encoding
gradients (Schmitt et al., 1998). These artifacts can thus induce
important geometric distortions due to a voxel-shift in the
signal reconstruction, which may lead to wrong interpretations
if not corrected properly (Embleton et al., 2010; Yendiki et al.,
2014). Despite important technical advances to achieve high
quality diffusion signal modeling and fibers reconstruction
(e.g., Auría et al., 2015; Ning et al., 2015; Girard et al.,
2017; Bastiani et al., 2019), the quality of the preprocessing
is should not be neglected (Jones and Cercignani, 2010). Yet,
last advances in this area have mostly concerned research-
type acquisition protocols (Sotiropoulos et al., 2013; Glasser
et al., 2016; Bastiani et al., 2017). Transfer from research to
clinical context is still limited because of the complexity of
correction methods.

Magnetic susceptibility differences between tissue, air and
bone alter the B0 magnetic field and result in local MR
frequency variations at tissue interfaces such as the sphenoid
sinus, temporal lobe and brain stem. Such susceptibility-
induced gradients interfere with the spatial encoding gradients
and may cause signal dropout and geometric distortions.
Susceptibility-induced distortions do not depend on diffusion
gradients and remain constant across volumes, assuming that
head movements are not excessive. The susceptibility-induced
distortions can be corrected either by measuring the magnetic
field at the acquisition using an additional sequence or by
estimating it a posteriori. The former approach – field map-
based – consists in an additional double-echo acquisition
(Jezzard and Balaban, 1995; Reber et al., 1998) where the
phase difference between the two echoes is used to estimate
a B0 field map. This field map is used to estimate the
non-linear voxel-wise shift and the signal loss. This method,
however, suffers from the non-linearity of susceptibility-induced
distortions that causes neighboring voxels to collapse into
a single one resulting in an ill-posed problem of intensity
retrieval and a potential loss of information (Jones and
Cercignani, 2010). In the latter approach – image-based –
the distorted magnetic field can be estimated in two ways.
One way consists in computing the non-linear deformation
field between diffusion-weighted and anatomical (T1 or T2)
images, which suffers the same issues as the field map-based
approach. The other way consists in acquiring additional
non-diffusion weighted volumes with reversed phase-encode

direction (FSb0RPE) (Andersson et al., 2003). In this way, the
complementary information contained by opposed FSb0RPE
images allow recovering the full intensity information.

Diffusion-weighted imaging is also affected by eddy current
artifacts due to the rapid switch of strong diffusion encoding
gradients which generates electric currents in the nearby
conductors, inducing local magnetic fields that interfere with
the spatial encoding gradient (Jezzard et al., 1998). Eddy-
current artifacts typically induce shearing, stretching and/or
compression along the phase-encode direction which add
up to the motion-induced translations and rotations and
lead to a misalignment between successive volumes. Unlike
magnetic susceptibility induced distortions, these effects vary
across diffusion gradient orientations and are enhanced by the
fact that higher b-values require the application of stronger
diffusion gradients for longer periods. To a first approximation,
eddy-currents can be considered as originating from a linear
combination of the linear gradient coil fields. Hence, a simple
affine transformation can be applied to correct for eddy-current
induced distortions as well as head movements (Haselgrove
and Moore, 1996). This method does not require any specific
acquisition but is less appropriate for high b-value associated
to signal attenuation and increased contrast variation between
images (Ben-Amitay et al., 2012) where the affine registration
fails to correct the eddy-currents completely. Furthermore, the
linear assumption is no longer verified for modern scanners
where stronger gradients have a high degree of non-linearity
(Haselgrove and Moore, 1996). Indeed, authors in Rohde
et al. (2004) and Andersson and Sotiropoulos (2016) have
shown that higher order models provided a better fit of
the off-resonance field caused by eddy-currents. To correct
properly reconstruct the signal intensity, such techniques exploit
the fact that two images acquired with reversed diffusion
gradient directions or reversed phase-encoding (RPE) directions
would have similar diffusion contrast but reversed eddy-
current distortions (e.g., Bodammer et al., 2004; Shen et al.,
2004; Embleton et al., 2010). These reversed gradient methods
require at least that gradients are sampled over the full
sphere or that each diffusion gradient is repeated twice with
reversed polarity.

This interdependence between a variety of acquisition
settings and a variety of correction methods can result in
very different diffusion metric assessments and connectivity
inferences. Therefore, the choice of acquisition settings has
obviously a crucial role in the interpretation of results. This
choice – usually driven by the time constraint typically different
between clinical and research contexts – should also be done in
the light of analyses comparing its influence on final diffusion
measurements. For instance, for an equivalent time cost, it is yet
debatable whether the acquisition of a B0 field map image would
conduct to a better data quality than the acquisition of a single b0
volume with reversed phase encoding direction. Conversely, in
a context of uncontrolled external acquisition such as for public
or multicentric datasets, the limitations inherent to the quality
of the associated pre-treatments are still poorly documented.
To date, quantitative comparisons of preprocessing techniques
have only been performed in a clinical (e.g., Cusack et al., 2003;
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Wang et al., 2017) or a research context (e.g., Rohde et al., 2004).
A comprehensive evaluation of the existing and widely used pre-
processing methods and their dependence on acquisition settings
is still needed.

In the current study, we adopt a holistic approach, to quantify
the influence of various acquisition settings and the entire
associated preprocessing pipeline on typical DWI measurements,
including diffusion and tractography quantification. A holistic
approach is crucial for two reasons. First, for a given
configuration of acquisition settings, it should help orienting the
interpretation of results as well as any inter-study comparison
according to the limitations imposed by the corresponding
preprocessing methods. Second, for a given scope of analysis,
it should guide the choice of acquisition settings in the light
of the best data quality for acquisition time constrain. For
this purpose, we developed a dedicated and comprehensive
toolbox called Diffuse which, out of six different preprocessing
pipelines, automatically selects the one most adapted to the
acquisition settings. Diffuse also includes registration methods
as well as post-processing methods to perform local signal
modeling and tractography. Six different types of acquisition
settings were chosen because they are widely used in the
literature ranging from clinical to research contexts, and each
of them matches to a known dedicated preprocessing pipeline.
We selected MRI data of 20 subjects from the HCP database
(Van Essen et al., 2013) which is, to our knowledge, the only
database that includes all the data necessary to conduct this
work. To relate the same experiments in a clinical context, we
also acquired a similar acquisition set for one healthy subject
in a standard 3T scanner and with lower spatial resolution.
In the next section, we describe the six subsets extracted from
these data as well as the preprocessing pipelines involved. Then,
an overall comparison of the distortion correction pipelines
is performed through four different experiments. First, we
quantified their ability to recover brain geometry, which is
an important step in the normalization process for group
measurements, using a similarity measure between the corrected
DWI and T1w images. Second, both qualitative and quantitative
metrics were used to assess the influence of preprocessing
pipelines on the quality of diffusion tensor estimation in white-
matter tissues. The same experiment was then performed at
a local scale to evaluate the impact on central white-matter
regions that are of major interest for pathology studies and
used as seeds for tractography. Finally, we used a quantitative
metric of tract spatial dispersion to evaluated the distal
impact of preprocessing pipelines on the reconstruction of six
well-known bundles.

PREPROCESSING PIPELINES

Data
HCP Dataset
The HCP dataset (Van Essen et al., 2013) was found as the
only publicly available database including every MRI sequences
and acquisition settings necessary to pre-process images through
the six pipelines. MRI data of 20 participants were used in

this study (subject IDs are listed in the Section “Annexe”). All
individuals were right-handed males (age range 25–30). Images
were acquired using a modified version of Siemens Skyra 3T
scanner (Siemens, Erlangen, Germany) with a maximum gradient
strength of 100 mT/m, slew rate of 200 T/m/s and a 32-
channel head coil. T1-weighted images were acquired using 3D
MPRAGE sequence (TR/TE = 2400/2.14 ms, flip angle = 8◦,
FOV = 224 × 224 mm2, resolution = 0.7 mm isotropic).
Diffusion-weighted images were acquired with a spin-echo EPI
sequence consisting of 3 shells of 90 diffusion-weighted volumes
each (b = 1000, 2000, and 3000 s/mm2) and 6 interleaved b0
volumes each (TR/TE = 5520/89.5 ms, resolution: 1.25 mm
isotropic, FOV = 210 × 180 mm2, 111 axial slices, multiband
factor = 3, partial Fourier = 6/8, echo spacing = 0.78 ms).
Gradients directions were sampled over the entire sphere, using
the electrostatic repulsion method (Caruyer et al., 2013). The
entire diffusion sequence was repeated twice with RPE (L- > R,
R- > L). A B0 field map image was also acquired using a
dual-echo gradient-echo sequence (with delta TE = 2.46 ms,
resolution: 2 mm isotropic). Note that the DW images were
acquired during a different session from the T1 and field map
images. Different subsets of these data were extracted in order
to be compatible with the requirements of the six preprocessing
pipelines, as detailed in Table 1. In particular, to be comparable,
the 6 subsets share the same basis consisting in 3 shells of 90
gradient directions and 6 b0 volumes.

Clinical Dataset
The MRI images of a healthy volunteer were acquired using the
same sequences with clinical settings. Results from this clinical
dataset have no statistical value and are shown to illustrate the
consistency of the results even with data other than high quality
HCP scans. In particular, we used this data to illustrate the
impact of b-value and spatial resolution on the same analyses.
A thorough description of the acquisition settings and results can
be found in Supplementary Material S1.

Data Processing: The Diffuse Toolbox
Diffuse is a BrainVISA toolbox, written in the Python language
dedicated to diffusion MRI processing and publicly available
on Github1. Diffuse relies on algorithms from FSL2 (Jenkinson
et al., 2012), Dipy3. (Garyfallidis et al., 2014), Niftyreg4. (Modat
et al., 2010) and on functionalities provided by the BrainVISA
software platform5 for neuroimaging (Geffroy et al., 2011).
This platform already offers several processing pipelines for
other modalities such as structural and functional MRI. In
particular, an anatomical pipeline gives access to segmented T1w
images, cortical surface meshes and a number of tools providing
morphometric and functional measurements on the surface.
BrainVISA includes the Anatomist software (Rivière et al., 2011)
for visualization and interaction with all associated data formats.

1https://github.com/MecaLab/Brainvisa-Diffuse
2http://fsl.fmrib.ox.ac.uk/
3http://nipy.org/dipy/
4http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
5http://brainvisa.info
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TABLE 1 | Acquisition data subsets extracted for each of the six preprocessing pipelines.

Pipeline name HS HSfmap FS FSfmap FSb0RPE FSfullRPE

3 × 90 DW images (L -> R) • • • • • •

3 × 6 b = 0 images (L -> R) • • • • • •

3 × 90 DW images (R -> L) •

3 × 6 b = 0 images (R -> L) • •

B0 field map image • •

Total number of volumes 288 288+1 288 288+1 306 576

Scan duration ∼26 mn ∼26 mn + 2 mn15 ∼26 mn ∼26 mn + 2 mn15 ∼28 mn ∼53 mn

Example for the HCP dataset. Note that HS and FS pipelines use the same data subset with 3 shells of 90 diffusion gradients directions and 6 b0 volumes each.

All processes can be operated under a unified graphical user
interface or as batch and using parallel distribution for processing
groups of subjects.

T1w MR images were processed using BrainVISA’s
Morphologist pipeline, dedicated to the processing of anatomical
images (Fischer et al., 2012), to obtain bias corrected T1w
images as well as brain extraction, gray and white matter masks
and cortical surface meshes. Diffusion-weighted images were
processed through the Diffuse workflow described in Figure 1. It
consists in four steps that are detailed below: (1) importation and
reorientation of data, (2) distortion corrections, (3) structural to
diffusion space registration and (4) diffusion model estimation
and tractography.

Importation and Reorientation of Data
Data files are stored into a database to facilitate filesystem
organization and indexation. This is an important practical aspect
in the management of diffusion data with various complex data
types and, in our case, for testing multiple processing using
varying parameters. While input files are imported into the
BrainVISA database, the storage orientation of DWI data and
gradients vectors are changed to the neurological convention
(RAS+)6 which is supported by both FSL and Dipy tools.

Distortion Corrections
Motion and eddy-currents induced distortions
Motion and eddy-current-induced distortions were corrected
using three different methods.

The first method consists in using an affine registration,
considering the distortions as a linear combination of translation,
rotation, scaling and shearing. In Diffuse, we implemented a
method called ECCAR (Eddy-Currents Correction by Affine
Registration), derived from the previous ‘eddy_correct’ tool of
FSL (version 5.0.9 and anterior), to align all diffusion-weighted
images to the first non-diffusion weighted volume using a
two-step approach. To ensure minimal error due to intensity
differences between b0 and T1w images (Rohde et al., 2004;
Ben-Amitay et al., 2012), volumes are first aligned to the closest
interspersed b0 volumes, which are in turn aligned to the first
one. For the same reason, we used the mutual information cost
function which is adapted to multimodal registration. The two

6RAS+ stands for positive RAS orientation of axes such that X axis goes from
left to right, Y axis goes from posterior to anterior and Z axis goes from inferior
to superior.

transformations are combined to apply a single resampling to
each volume, with a spline interpolation. This single correction
step does not require any additional acquisition and constitutes
the first preprocessing pipeline called hereafter “HS pipeline”
(Half-Sphere), in contrast to the full-sphere sampling condition
required for the following methods. Note, however, that in this
article, for comparison purpose, we applied this pipeline to the
first subset of DWI data containing 90 multi-shell diffusion
gradient directions sampled over the full sphere and 6 b0 volumes
with LR phase-encoding direction.

The second method uses the fact that gradients directions have
been sampled over the full sphere. With a sufficient number of
samples, images with quasi-opposed gradients directions can be
considered with opposed distortions. This method implemented
in Diffuse calls the ‘eddy’ tool from the FSL software (Andersson
and Sotiropoulos, 2016). Using pairs of volumes with close
orientation but quasi-opposed polarity of diffusion gradients, the
algorithm applies a non-parametric Gaussian Process to estimate
a higher order distortion field caused by both eddy-currents
and motion and recover the midway geometry in the image.
During the final resampling, a spline interpolation is combined
with a Jacobian modulation to account for signal dilution in
areas with stretching. This single correction step constitutes
the preprocessing pipeline called hereafter “FS pipeline” (Full-
Sphere) and could be applied to the same first subset. The method
is also embedded in two other pipelines, depending on the
magnetic susceptibility-induced distortion method that is used in
conjunction, as described in the next sub-section.

The third method also calls the ‘eddy’ tool from FSL, but
with a different resampling technique. The repetition of all
diffusion gradient directions using the RPE direction RL provides
a mean to resolve signal intensity recovery in compressed areas
where signal has piled-up, with a least-squares reconstruction
(Andersson and Sotiropoulos, 2016). This method leads to the
pipeline called hereafter “FSfullRPE.” It should be emphasized,
however, that this method requires twice as much acquisition
time as compared to the two methods described above.

Note that in the three methods, to preserve the directional
information of DWI data, the diffusion gradient vectors
are reoriented using the same rotation parameters used
to transform each volume during motion and eddy-current
correction. This step is critical to correctly estimate the diffusion
parameters and fiber orientation (Leemans and Jones, 2009;
Jones and Cercignani, 2010).
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FIGURE 1 | Workflow of the Diffuse toolbox for DWI data processing implemented in the BrainVISA software platform. It includes the four parts detailed in the
Section “Data Processing: The Diffuse Toolbox” of the manuscript. (In black) Importation, conversion and reorientation of data into the BrainVISA database. (In blue)
Distortion correction through the six pre-processing pipelines derived from different acquisition settings. Most of the correction methods use FSL tools. The pipelines’
names are indicated in blue diamonds. (In orange) The registration with the structural space is performed with either Niftyreg or FSL. Anatomical masks are extracted
from the registered T1 data and can be used to constrain tractography. (In green) The data post-processing includes diffusion model estimation (tensor or CSD) and
tractography (deterministic, probabilistic or global). All processes use Dipy tools except the global Gibbs tracking package implemented in Matlab.
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B0 susceptibility-induced distortions
In Diffuse, two approaches were implemented to correct for
magnetic susceptibility-induced distortions.

The first procedure uses the acquired B0 field map magnitude
and phase images to correct the data through the workflow
described in Cusack et al. (2003) involving the ‘fugue’ command
from FSL (Jenkinson et al., 2012). This correction step is applied
after eddy-current and motion correction to ensure that volumes,
and thus head-dependent distortion fields, are aligned. This yield
two other preprocessing pipelines called “HSfmap pipeline” and
“FSfmap pipeline.”

The second method uses non-diffusion weighted volumes
acquired with reversed phase-encode direction (FSb0RPE)
(Andersson et al., 2003). In the Diffuse toolbox, this approach
is implemented via the use of the ‘topup’ tool from FSL (Smith
et al., 2004). ‘Topup’ combines pairs of b0 images with opposed
distortions to estimate the susceptibility-induced off-resonance
field. This distortion field is used as input in the ‘eddy’ tool
which correct simultaneously for susceptibility, eddy-current
distortions and movements. A subset of DWI data containing
90 multi-shell diffusion gradient directions and 6 b0 volumes
with LR phase-encoding direction plus 6 b0 volumes with RL
phase-encoding direction was processed through the “FSb0RPE
pipeline.” The full subset with 90 multi-shell diffusion gradient
directions repeated in both LR and RL phase-encoding directions
was processed through the “FSfullRPE pipeline.”

Structural to Diffusion Space Registration
After distortion correction, all non-diffusion weighted volumes
are averaged to create a high SNR b0 image registered into
the T1w image referential using non-linear registration. Two
methods have been integrated in the toolbox, using either
‘fnirt’ from FSL (Andersson et al., 2009) or ‘reg f3d’ from
Niftyreg7 (Modat et al., 2010) (Figure 1). For both methods, an
initialization step is done using the rigid body transformation of
‘flirt’ from FSL. Note that the transformation is first estimated
between the fractional anisotropy map and the T1w image which
show similar gray-white contrasts and then applied to the b0
image. For our experiments, we use ‘reg f3d’ which outperformed
‘fnirt’. In particular, ‘fnirt’ failed to align regions with high
intensities in the FA map such as the brain stem and the corpus
callosum (data not presented in this article).

Diffusion Model Estimation and Tractography
Two diffusion models and three tractography algorithms
constitute the post-processing steps implemented in the
toolbox (Figure 1). For our experiments, the diffusion
tensor was estimated using Dipy (Garyfallidis et al., 2014)
from which were extracted tensor-derived indices such
as eigenvalues, eigenvectors, FA and MD [equations (4)
and (5) in Section Experiment 2], as well as the signal
prediction and the tensor fitting error [TFE, equation (2)].
To perform tracts reconstruction, we used the global Gibbs
tracker proposed by Reisert et al. (2011) which consists
in estimating fibers trajectory simultaneously in all voxels

7http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg

of the brain in a reasonable computational time. Global
tractography does not require any seeding strategy and is
more robust to local errors in the fiber orientation estimation
than deterministic and probabilistic tractography algorithms
(Reisert et al., 2011; Mangin et al., 2013).

EXPERIMENTS AND RESULTS

In this section, we investigated the performance of the six
preprocessing pipelines on the HCP data in four different
experiments, regarding: (1) their capacity to recover brain
geometry, (2) their influence on whole-brain diffusivity
measurements; (3) their influence on diffusivity in central
white-matter regions; (4) their influence on tractography
measurements. Experiments 1 and 2 were reproduced on the
clinical data, for the multi-shell subset as well as for the 3
separated b-values. Note that this dataset was not included in
the statistical analyses. For each experiment, complementary
analysis was also performed to compare the data corrected
through the six preprocessing pipelines with the raw uncorrected
data. Results can be found in Supplementary Materials and
interpretations will be drawn in the “Discussion” Section.

Experiment 1: Performance of Distortion
Correction Methods to Recover Brain
Geometry
The performance of each distortion correction pipeline was
assessed by measuring the similarity between the DWI and
the T1w images as done in Cusack et al. (2003). Indeed, after
correction for EPI distortions the brain should recover its initial
geometry and the similarity with the T1w (considered as non-
distorted) image should increase. To preserve local geometry, we
only used the initialization step described in Section “Structural
to Diffusion Space Registration” to rigidly align the average b0
image onto the T1w. Then, we computed the MMI as a similarity
metric between the two images (Mattes et al., 2001). The main
effect of distortion correction was evaluated using a one-way
repeated measure ANOVA (RM-ANOVA). Reported effect sizes
correspond to partial eta-squared (ηp

2) of the within-subject
design, defined as follows:

η2
p =

SSeffect

SSeffect + SSerror
(1)

with SSeffect the sum of squares of the effect and SSerror the sum of
squares of the error associated with the effect.

Then, the differences between pipelines of distortion
correction were assessed using Student’s paired samples t-tests.
The significance threshold was set to 0.003 (0.05/15pairs) to
account for multiple comparisons.

Figure 2A illustrates the results of linear registration of
the average b0 image onto the T1w image, for one subject
(see Supplementary Material S2 for the results on clinical
dataset). Our results show that the brain geometry in the
frontal and temporal lobes (red arrows) are recovered only
after explicit correction for susceptibility-induced distortions
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FIGURE 2 | Average b0 image of one subject linearly (A) and non-linearly (B) registered into the structural space, after distortion correction through the six pipelines.
Gray-white interface (black line) and cortical surface (red/green line) of the non-distorted T1w image are overlaid on the b0 image. (A) Susceptibility-induced
distortions correction enables to recover the true geometry of the brain (red arrows). The signal intensity in stretched areas can be corrected using a B0 field map
image (see empty arrows in the zoomed images). But only the use of a reversed phase-encoding acquisition (FSb0RPE and FSfullRPE) can properly reconstruct the
signal in compressed areas (see full arrows). Particularly one can observe that the ringing artifact coming from the correction with fmap is not visible after the
correction with topup (FSb0RPE and FSfullRPE). (B) Non-linear transformation is able to partially correct for residual geometric distortions in particular with a proper
geometry of the frontal, temporal lobes and ventricles (green arrows).

(HSfmap, FSfmap, FSb0RPE, and FSfullRPE pipelines). For
data processed through the HS and FS pipelines, where
susceptibility-induced distortions are not corrected explicitly,
images contain high-intensity regions resulting from signal pile-
up from surrounding voxels (full arrows) and low-intensity
regions due to stretched-out signal diluted into surrounding
voxels (empty arrows). The use of a B0 field map enables a sound
signal reconstruction in stretched areas. However, we observe
the same ringing artifacts in previously compressed areas as in
Andersson et al. (2003). These artifacts, that originate from the
ill-posed problem of recovering true intensity of two voxels that
has been pilled-up into a single one, can only be solved by
the acquisition of b0 volumes with RPE scheme (FSb0RPE and
FSfullRPE pipelines).

The MMI (Figure 3A) quantitatively reflects these
observations with a significant effect of preprocessing
strategy on the similarity between b0 images and T1w images
[F(5,19) = 244.7, η2

p = 0.93, p < 0.0001]. In particular, we found
that the information obtained from either a field map or RPE
images significantly improves the similarity score indicating that
such corrected images get closer to the subject’s true anatomy.
Post hoc tests revealed that the use of FSb0RPE yielded better
results than the use of a field map (tHSfmap < FSb0RPE = 7.9
and tFSfmap < FSb0RPE = 6.6, p < 0.0001). In general, the best
similarity score was obtained using the FSfullRPE pipeline

(tFSb0RPE < FSfullRPE = 5.5, p < 0.0001), where susceptibility
and eddy-current distortions are estimated and corrected
simultaneously with a single deformation field. We notice that
the correction of movements and eddy-currents using FS did not
improve the registration compared to the ECCAR method with
HS pipeline. This is expected since the non-weighted diffusion
volumes, used in the similarity measurement, are not impacted
by eddy-currents distortions. Yet, while both methods seem
to equally perform in motion correction, we observed a high
decrease in the similarity measurement when substantive subject
motion is not corrected (see Supplementary Material S3).

In a second analysis, we computed the similarity metric
between images non-linearly registered to evaluate the
performance of the non-linear transformation in handling
residual geometric distortions. The non-linear registration has
been used in several studies to correct for susceptibility-induced
distortions (Kybic et al., 2000; Merhof et al., 2007; Tao et al., 2009;
Bhushan et al., 2016). However, the generalization of registration
parameters setting across subjects is challenging and is highly
sensitive to the type of anatomical sequence used or the presence
of lesion (Albi et al., 2018). Here, we only evaluated its interest
as a complement to the initial pipeline to improve alignment
between anatomical and diffusion spaces. After the initial linear
registration, the high SNR b0 image was non-linearly registered
into the T1w image referential using ‘reg f3d’ as described in
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FIGURE 3 | Quantitative assessment of distortion correction methods using the similarity between diffusion and structural images. The Mattes Mutual Information
was computed as a similarity measure between the T1w image and the average b0 image registered into structural space, using affine transformation (A) or
non-linear transformation (B left). The black line with red dots corresponds to the clinical dataset. Student’s paired t-tests were performed to compare the
registration accuracy between linear and non-linear transformation for each pipeline separately (B right). The significant differences attest to the residual distortions
corrected with the non-linear registration. Significance threshold was set to 0.001 to account for multiple comparisons.

Section “Structural to Diffusion Space Registration.” A first
visual assessment in Figure 2B shows that the alignment of the
b0 images with the gray-white interface boundary is improved
for HS and FS pipelines (green arrows). Using Student’s paired
t-test, we quantified the improvement of this method with
respect to the linear registration (see Figure 3B). We show
that the non-linear transformation significantly improves the
similarity score between the b0 and the T1w images except for
the FSfullRPE pipeline, where results were not different. This
effect is particularly visible for pipelines which correct only
for eddy-currents distortions (HS and FS: tHS = −12.77 and
tFS = −15.13 respectively, p < 0.0001). These results corroborate
the fact that the non-linear transformation, based on local
deformations of voxels, can partly corrects for residual geometric
distortions. This is in line with the observation of Calhoun
et al. (2017) who used the T1 MNI template as reference image
rather than the individual T1 image. Interestingly, the difference
is not significant after Bonferroni correction when using the
FSfullRPE pipeline (tFSfullRPE = −2.638, p = 0.016), suggesting
that this method yielded optimal correction with least residual
distortions left.

Supplemental analyses were performed (results not presented
in this article) to ensure that the effect of non-linear registration
was not driven by potential residual deformations between
diffusion and T1 images caused by differences of gradient non-
linearities due to the change in position between the two sessions.

With the clinical data, we observed similar variations of
the MMI between pipelines but with lower amplitude. The
non-linear transformation also improved the similarity score.
Moreover, we found that the b-value had no impact on the
similarity metric (see Supplementary Material S5).

Experiment 2: Impact on Diffusivity
Measurements: Global Differences
In this section, we investigated the impact of each of the
6 preprocessing pipelines on the diffusion signal modeling.
For this purpose, the tensor model was estimated using the
weighted least square method from Dipy (Garyfallidis et al.,

2014) as described in Section “Diffusion Model Estimation and
Tractography,” on the diffusion data corrected through the six
preprocessing pipelines. From the tensor model, we extracted two
quantitative (TFE, mean dispersion index) and two qualitative
(mean diffusivity, fractional anisotropy) metrics (Kim et al., 2006)
to compare the quality of tensor estimation with respect to the
distortion correction method.

The tensor-fitting error (TFE) used as a measure of the
goodness-of-fit of the model (Papadakis et al., 2003) was defined
in each voxel with

TFE =
∑N

i=1
(Smi − Sfi)

2 (2)

where Smi is the measured signal, Sfi is the fitted signal and N
the number of diffusion-weighted volumes. A low TFE, i.e., more
signal information fitted in the tensor calculation, is expected
with better pre-processing.

The mean dispersion index (MDI) (Basser and Pajevic, 2000)
indicates the directional variations of the principal eigenvector in
the neighborhood (S) of each voxel:

MDI =
1

n(S)

∑
x∈S

√
λ2 + λ3

2λ1
(3)

where λi = 1,2,3 are eigenvalues of the mean dyadic tensor derived
from principal eigenvectors of the tensor in every voxels x of
the neighborhood. This value was extracted for each voxel in
the white-matter by considering a neighborhood of two voxels
along each axis. Pre-processing should lower the dispersion of the
tensor and thus reduce the MDI.

We also evaluated the impact of preprocessing pipelines on the
usual diffusion indices of mean diffusivity (MD):

MD =
λ1 + λ2 + λ3

3
(4)

and fractional anisotropy (FA):

FA =
√

1
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 + λ2
3

(5)
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FIGURE 4 | Effect of preprocessing pipelines on the values of four tensor-derived indices TFE, MDI, MD and FA in the white matter. The values of each index were
averaged across all white-matter voxels. For every subject represented with different colors for the HCP dataset and in black (red dots) for the clinical dataset, the
mean values are plotted as a function of the preprocessing pipeline used to correct distortions.

Values were averaged across all white-matter voxels. The effect of
preprocessing on these four indices was assessed using the same
statistical analysis as for the MMI. The significance threshold was
set to 0.0008 [0.05/(15pairs× 4indices)].

We found an important reduction of the inter-individual
variability in all the tensor-derived indices between uncorrected
and corrected data (Supplementary Figure S3). Yet, as illustrated
in Figure 4, we observed that the choice of preprocessing
pipeline result in significant variations in the values of all tensor-
derived indices [FTFE(5,19) = 390.62, η2

p = 0.95, p < 0.0001;
FMDI(5,19) = 348.88, η2

p = 0.95, p < 0.0001; FFA(5,19) = 200.3,
η2

p = 0.91, p< 0.0001; FMD(5,19) = 178.7, η2
p = 0.90, p< 0.0001],

with a particularly high consistency across individuals. Post hoc
analyses (see statistics in Table 2) revealed significant differences
between eddy-current correction methods, showing decreased
TFE and MD and increased MDI and FA for data corrected
by eddy (FS, FSfmap, FSb0RPE, and FSfullRPE) compared
to ECCAR (HS and HSfmap). Second, we found that, for
all subjects, the four metrics were jointly decreased by the
additional correction of susceptibility-induced distortions using
a field map image. On the contrary, the additional correction of
susceptibility-induced distortions using FSb0RPE (compared to
FS pipeline) did not yield significant differences in any indices.
Thus, the effect of field map-based correction could be attributed
to a smoothing effect induced by the second resampling involved

in this method, rather than an actual distortion correction.
Finally, all the tensor-derived indices were significantly reduced
when using FSfullRPE compared to FSb0RPE. These results
suggest that susceptibility-induced distortion correction has no
impact on the global tensor metrics, but only the method used to
correct for motion and eddy-currents do.

The clinical data presented similar variations for all tensor-
derived indices, but with a lower TFE and higher MDI.
In addition, we found that the b-value had an impact on
each index: TFE and MDI increased with b-values, and
MD and FA were largely decreased with higher b-values
(see Supplementary Material S6).

Experiment 3: Impact on Diffusivity
Measurements: Local Differences
The results of previous section could be difficult to interpret for
several reasons. First, the comparison between pairs of pipelines
can be hampered by a number of confounding factors inherent
to the correction methods. Indeed, apart from the distortion
correction performances, the methods differ in the number of
resampling steps applied to the data (two for HSfmap and FSfmap
pipelines, one for the others), in the use of intensity correction,
and in the level of SNR in corrected images. Second, the tensor-
derived indices should constitute reliable metrics in regions
where the tensor is an appropriate model of the diffusion signal,
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TABLE 2 | Statistical results of the post hoc analyses to compare the impact of distortion correction pipelines on tensor-derived indices, using Student’s paired samples
t-tests.

Eddy vs. Use of fugue Use of topup B0 vs. Full sequence

ECCAR (fieldmap) (B0) Repetition

HS < FS HS < HSfmap FS < FSfmap FS < FSb0RPE FSb0RPE < FSfullRPE

TFE t = −17.22 t = −29.85 t = −27.33 t = 0.5054 t = −23.85

p < 0.00001∗ p < 0.00001∗ p < 0.00001∗ p = 0.616 p < 0.00001∗

MDI t = 15.48 t = −35.38 t = −42.29 t = −3.506 t = −12.42

p < 0.00001∗ p < 0.00001∗ p < 0.00001∗ p = 0.002 p < 0.00001∗

MD t = −17.32 t = −36.35 t = −45.85 t = 2.504 t = −10.74

p < 0.00001∗ p < 0.00001∗ p < 0.00001∗ p = 0.022 p < 0.00001∗

FA t = 15.10 t = −33.21 t = −30.18 t = −1.588 t = −14.50

p < 0.00001∗ p < 0.00001∗ p < 0.00001∗ p = 0.129 p < 0.00001∗

The significance threshold was set to 0.0008 [0.05/(15pairs × 4indices)]. This table contains only the relevant comparisons. ∗Significant results.

which excludes regions with crossing fibers and superficial white-
matter. Thus, in this section we investigated spatial heterogeneity
in the differences observed on the tensor-derived indices in
deep white-matter regions with single fiber direction. Indeed,
differences caused by interpolation and resampling should have
spatially homogeneous effects in the brain whereas differences
caused by the performance of the distortion correction should
affect preferentially regions closer to susceptibility gradients
or adjacent to areas with distinct tissue architecture. For this
purpose, we non-linearly aligned the Johns Hopkins University
DTI-based white-matter atlas (JHU-ICBM-DTI-48) (Mori et al.,
2005) first into the structural space of each individual using ‘fnirt’
(which provides preconfigured parameters for MNI standard to
T1 image registration), and then into the diffusion space using
the non-linear registration of Niftyreg, as described in Section
“Structural to Diffusion Space Registration.” After registration,
all ROIs were binarized using a threshold at 0.5 to prevent
overlapping while keeping large enough ROIs to capture tracts
(see next section). From the 48 original labels, 10 (mostly
included in the brain stem) fell out of the field of view and were
excluded from the analysis. Results for one subject are illustrated
on Figure 5. In the remaining 38 regions, we computed the
average TFE, MDI, FA, and MD and compared the distortion
pipelines in the same way as in the previous section (see RM-
ANOVA results in Figure 6). Results of the comparison between
four pairs of pipelines are illustrated in Figure 7, where only
regions showing a statistically significant difference are shown
(p< 8.10−5 corrected for multiple comparisons).

Figure 6 shows that, although far from the air/bones
interfaces, most of these central regions are significantly impacted
by the choice of distortion correction pipelines. The effect size of
RM-ANOVA is particularly high for the local TFE index (above
0.5 in 50% of the regions). Post hoc paired t-tests revealed that
the eddy-currents correction methods (HS versus FS pipelines)
has a significant influence on the tensor fitting quality in the
corpus callosum (genu, body, and splenium), the best fit obtained
using FS, with a significant impact on FA and MD indices
(see Figure 7A). Second, we found that the influence of field
map-based correction was highly homogeneous for all indices
with significant reduction between FS and FSfmap pipelines in

FIGURE 5 | JHU-ICBM-DTI-48 white-matter atlas displayed in the MNI
standard coordinate space (top) and registered into the diffusion space of an
individual after ECCAR correction (HS pipeline) (bottom). 38 out of the 48
ROIs were included in the image. Note that even in the case of the simplest
correction pipeline, the central brain regions are properly aligned with the
subject’s anatomy.

respectively 71, 73, 89, and 87% of ROIs for TFE, MDI, MD
and FA (see Figure 7B). This result supports the hypothesis
of a smoothing effect due to the double resampling of the
image. Conversely, we found that the additional correction
of susceptibility-induced distortions using FSb0RPE (compared
to FS pipeline) yielded spatially heterogeneous differences on
local TFE, MDI, and FA, with 47, 29, 8% of ROIs respectively
affected (see Figure 7C). Interestingly, we can observe a reverse
symmetry in the effect size, which reminds the symmetrical
signal compression and dilution in both hemispheres due to
susceptibility artifacts. Lastly, the use of FSfullRPE compared to
FSb0RPE resulted in a homogeneous increase of tensor fitting
quality (92% of ROIs for TFE) but a spatially heterogeneous effect
for all other tensor-derived metrics with significant differences
in 37, 50, and 34% of ROIs in MDI, MD and FA respectively
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FIGURE 6 | Amplitude of the local main effect of preprocessing pipelines on the four tensor-derived indices TFE, MDI, MD, and FA. For each index, the mean values
were computed across the 38 regions of the JHU-ICBM-DTI-48 atlas and compared between the six preprocessing pipelines using a repeated measures ANOVA.
Effect sizes (partial eta-squared) are overlaid on the MNI-152 standard brain. A significant effect of preprocessing pipelines was found in regions with partial
eta-squared above 0.19 (p < 0.001 to account for multiple comparisons across the 38 ROIs).

(see Figure 7D). The latter suggests that this is not an effect of
resampling as with the fieldmap method. Instead, the significant
decrease of Mean Dispersion Index supports a local improvement
of the tensor fitting quality. Then, the homogeneous decrease
of TFE could be attributed to the higher SNR in images
corrected with FSfullRPE.

Experiment 4: Impact of Preprocessing
Methods on Tract Reconstruction
In this section, we evaluated the influence of preprocessing
pipelines on the trajectory of six well-known fascicles of different
sizes. Tracts reconstruction was performed using the global
Gibbs tracking algorithm (Reisert et al., 2011), as described in
Section “Diffusion Model Estimation and Tractography.” The
interest of this method in our experiment is many-fold. First,
Global tractography principle is based on optimization processes
that reconstruct all fibers at the same time, avoiding the need
of seeding strategies as opposed to step-by-step approaches
which has been found to modulate the shape and density of
fibers within fascicles (Girard et al., 2014). In our case, the use
of a seeding strategy would prevent any comparison of fiber
bundle trajectories between differently pre-processed – thus non-
aligned – brains. Second, Global tractography has been found
more robust to local errors in the fiber orientation estimation
(Reisert et al., 2011; Mangin et al., 2013). In particular, the
global Gibbs tractography (Reisert et al., 2011) was found to
outperform deterministic and probabilistic methods in various
connectivity metrics (Fillard et al., 2011; Neher et al., 2015),
in particular showing higher ability to detect valid bundles,
higher bundle coverage, and less prematurely ending fibers
(Christiaens et al., 2015). Finally, this method was chosen for the
valuable compromise between computational time, tractogram
quality, and file sizes for a whole-brain tractography (20 subjects
with 6 preprocessing pipelines led to 120 tractograms). Global
tractography was performed using the default parameters for a

dense reconstruction (3.108 iterations, 50 steps, starting/stopping
T◦ = 0.1/0.001, σ = 1 mm, l = 3 mm, w = 0.07). The whole-
brain tractogram was computed using the white-matter mask
as constraint, after being registered into the diffusion space.
From each individual whole-brain tractogram we extracted
the following fascicles: the cortico-spinal tract, the corpus
callosum, the superior longitudinal fascicle, the cingulum, the
uncinate and the fornix fascicles. These tracts were chosen
because they pass through the most distorted areas, cover
the three spatial directions, and can be identified for every
subject. They were extracted using ROIs of the JHU-ICBM-DTI-
48 atlas either as way-points or as exclusion-points following
the recommendations described in (Catani and Thiebaut de
Schotten, 2008). The labels used are detailed in Table 3. To
compare the impact of the different preprocessing pipelines on
tractography we analyzed the spatial variance of each fascicle
as in (Irfanoglu et al., 2012). This measurement first described
in Lazar and Alexander (2005) quantifies the spatial dispersion
of the fibers trajectory with the distance from the seed. It is
obtained by considering all voxels in the fascicle that are at a
certain distance (in voxels) from the seed (here the way-point
mask), and computing the covariance matrix of these voxels’
coordinates, weighted by the density of fibers crossing them.
For a full description of the spatial signature of the tracts we
extracted the spatial variance along the X, Y, Z axes, given by
the diagonal elements of the covariance matrix, as well as the
spatial variance along the principal mode, given by the primary
eigenvalue. The former corresponds to a description of the 3D
shape of the fascicles and can be used to measure their similarity
across subjects or across preprocessing pipelines. The latter can
be interpreted as a measure of the spatial dispersion of the tract
to assess the impact of distortion correction methods. We plotted
the spatial variances as functions of the absolute distance to the
seed, for each subject. The curves were smoothed by convolution,
over a sliding window of size 5, and we computed the average
curve across subjects. These tract signatures were compared
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FIGURE 7 | Results of the post hoc analyses on the local effect of preprocessing methods on tensor-derived indices. Post hoc paired t-tests were conducted in all
ROIs. Results are shown for the comparison between (A) HS and FS pipelines to assess the influence of eddy-current correction method, (B) FSfmap and FS
pipelines to assess the influence of geometric distortion correction using a B0 field map, (C) FSb0RPE and FS pipelines to assess the influence of geometric
distortion correction using a b0 with RPE, (D) FSfullRPE and FSb0RPE pipelines to compare the influence of using b0 versus the full sequence with RPE. Only
regions showing significant differences are shown (|t| > 5, p < 8.10−5 corrected for multiple comparisons).

TABLE 3 | Labels of the JHU-ICBM-DTI-48 atlas used either as way-points or exclusion-points to extract the fascicles from the “whole brain” tractograms.

Tracts Way-points Exclusion-points

Cortico-spinal “Posterior limb of internal capsule” All other ROIs except 15, 16, 17, 18, 21, 22, 23, 24, 25, 26,

(19, 20) 27, 28, 43, 44

Corpus callosum “Genu,” “body” and “splenium” of corpus callosum (3, 4, 5) All other ROIs except 23, 24, 25, 26, 27, 28, 29, 30

Superior longitudinal “Superior longitudinal fasciculus” (41, 42) All other ROIs

Cingulum “Cingulum” (cingulate gyrus and hippocampus) (35, 36, 37, 38) All other ROIs

Uncinate “Uncinate fasciculus” (45, 46) All other ROIs

Fornix “Fornix” (column, body, cres) and “stria terminalis” 6, 39, 40 All other ROIs

The cortico-spinal and corpus callosum fascicles span through other ROIs of the atlas so that these regions could not be considered as exclusion points. For each tract,
we thus extracted only the fibers going through the way-points and which never cross exclusion-points.
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between preprocessing pipelines by performing a RM-ANOVA
on the area under the curve (AUC).

Figure 8 shows that each tract has a specific spatial signature
along the X, Y, Z axes. For instance, the cortico-spinal tract
showed a distal higher variance along the Y axis while the
superior longitudinal tract showed a proximal higher variance
along the X axis. These signatures looked highly similar across
subjects and across preprocessing pipelines (as seen on the
variance plot of the second column of Figure 8) although
we observed more variability for smaller fascicles such as the
cingulum, the uncinate and the fornix. We found a significant
influence of the preprocessing strategy on the tract spatial
variance along the principal mode (third column) for the
corpus callosum, the superior longitudinal and the cingulum
fascicles [respectively F(5,19) = 3.59, η2

p = 0.16, p = 0.005;
F(5,19) = 7.49, η2

p = 0.28, p < 0.00001; and F(5,19) = 8.69,
η2

p = 0.31, p < 0.00001] with better scores obtained for the
FSfullRPE pipeline, and a tendency for the cortico-spinal fascicle
[F(5,19) = 2.62, η2

p = 0.12, p = 0.029] with higher spatial
variance observed for the HS pipeline compared to others. The
AUC curves (fourth column) indicate the distance from the seed
at which the signatures start to differ. The last curves (fifth
column) show that the number of fibers does not differ between
pipelines, indicating that reductions of variance are not due to
a loss of fibers.

DISCUSSION

In this article, we studied the influence of preprocessing
distortion correction pipelines on diffusivity metrics and
tractography measurements. For this purpose, we developed
the Diffuse toolbox for DWI data processing which provides,
in a guided user interface, the adapted preprocessing pipeline
according to the data acquisition settings. Six different distortion
correction pipelines are available, compatible with most
acquisition type from clinical to research context. Two diffusion
models and three tractography algorithms constitute the
post-processing steps. Embedded in the BrainVISA open-source
platform, the toolbox comes with an automatic indexation of data
into a database organization as well as a visualization tool, and an
access to processed anatomical data. This software configuration
was well suited to investigate the impact of preprocessing
methods on diffusivity measurements and tractography.

To our knowledge, the previous work that is most similar to
our study is Yamada et al. (2014) where authors compared the
following 4 pipelines: ‘eddy_correct’ using trilinear interpolation;
‘eddy_correct’ using spline interpolation; ‘eddy’ combined with
‘topup’ on 60 diffusion gradients and 2 non-diffusion volumes
with RPE, equivalent to our FSb0RPE pipeline; and ‘eddy’
combined with ‘topup’ on 30 diffusion gradients repeated
with RPE, equivalent to our FSfullRPE pipeline. To assess
the differences between these 4 pipelines, authors compared
the FA values within the white-matter skeleton, assuming that
higher FA should be associated to better distortion correction.
Indeed, increased FA could result from restricted perpendicular
diffusivity, facilitated parallel diffusivity, or some combination of

the two, reflecting a reorganization in tissue structure. However,
in our work, we also observed that diffusivity metrics can be
affected by other cofounding factors such as interpolation and
smoothing effects. The major contributions of our study are:

- We compared quantitatively the impact of the distortion
correction using a field map in place of ‘topup’.

- We quantified the correction quality with a similarity
metric between DWI and T1

- We quantified the quality of tensor fitting with TFE
and MDI indices.

- We quantified the impact on tract spatial dispersion.

The Most Performant
Acquisition/Preprocessing Choice
From the quantitative analyses of this study, we were able to
sort the six pre-processing pipelines regarding the following
performance criteria: ability to recover brain’s true geometry
(through the MMI index); tensor fitting quality (through the
TFE index) and tract spatial variance. As expected, for all
these quantitative indices, the best score was obtained with
the FSfullRPE pipeline, that is when all diffusion gradients
are repeated twice with RPE. Importantly, we showed that
the FSfullRPE pipeline yielded the best similarity results, i.e.,
the geometry of the brain was quasi completely recovered, as
shown by the equal performance of linear registration compared
to non-linear registration. In previous studies, this pipeline
has also been shown to outperform the ‘eddy_correct’ tool, in
terms of eddy-current distortion correction, for b-values between
1500 to 7000 s/mm2 (Andersson and Sotiropoulos, 2016). In
terms of susceptibility-induced distortion correction, the ‘topup’
tool has been shown to outperform the use of a field map
acquisition (Andersson et al., 2003). Compared to uncorrected
data, this distortion correction pipeline yielded higher FA values
in the white matter as found in Yamada et al. (2014) and
lower MD values.

In the following, we will discuss the valuable interest of other
acquisition/pipeline choices, from the minimum requirements
(smaller set of acquired images and HS pipeline) to this
optimal preprocessing pipeline that requires a large number of
acquisitions, though at the cost of twice longer scan time.

Motion Correction Reduces
Inter-Individual Variability in Tensor
Metrics
Our results on uncorrected data showed that the similarity
between b0 and T1 images (Supplementary Material S3) as well
as the tensor-derived metrics (Supplementary Material S4) were
highly impacted by the subject movements. Interestingly, we
found that every preprocessing pipeline was able to reduce the
inter-individual variability due to a difference in head movements
during the scan. This finding emphasizes the importance of
motion correction to improve the tensor model estimation.

This should be particularly relevant when comparing healthy
subjects and patients who are more likely to move in the scanner
(Yendiki et al., 2014; Taylor et al., 2016). Note, however, that we
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FIGURE 8 | Results of the global tractography reconstruction and spatial dispersion analysis. Six fascicles were extracted from the whole brain tractograms using
ROIs of the JHU white-matter atlas as way-points and exclusion-points. (First column) On the left are illustrated these fascicles for one subject after data
preprocessing using the FSfullRPE pipeline. (Second column) On the graphs are plotted the tract signatures for the six pipelines, that is the mean spatial variance
of tracts (and standard deviation across subjects) along the X, Y, and Z axes as a function of the absolute distance to the seed. (Third column) The graphs show
the spatial dispersion of the tracts, that is the mean spatial variance of tracts along the principal mode. (Fourth column) The graphs show the cumulative area
under the curve of the spatial variance along the principal mode. It represents the amount of spatial dispersion from the seed. A RM-ANOVA was conducted on the
total AUC values to compare the spatial variance between pipelines. (Fifth column) The log of the number of fibers is plotted at each distance to the seed.
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did not address the issue of signal dropout due to fast “bulk”
motion of the subject during the acquisition of a volume. This
artifact is likely to occur in a clinical context where patients
and children are usually less compliant and more subject to
discomfort in the scanner. It can induce important signal loss
in several slices that can have dramatic consequences on post-
processing and diffusivity measurements (Roalf et al., 2016; Baum
et al., 2018). Several methods have been developed to detect
and remove (Oguz et al., 2014) or correct (Chang et al., 2005;
Farzinfar et al., 2013; Andersson et al., 2016, 2017) this erroneous
slices. Once motion correction is performed, we observe a high
inter-subject consistency in the variation of MMI as well as
tensor derived metrics between the six preprocessing pipelines.
This observation reinforces the strength of variations between
pre-processing pipelines that we will discuss hereafter.

On the Interest of Eddy-Current
Distortion Correction
When considering all the subjects, with and without important
head movements, we observed a general (not only for subjects
who presented substantial movement) and substantial reduction
of TFE and MD, and an increase of MDI and FA in the white
matter (see Supplementary Material S4). A similar increase
of FA was observed in Yamada et al. (2014) with the use
of ‘eddy_correct’ with spline interpolation. This result, found
for both ECCAR (HS) and ‘eddy’ (FS) methods in our study
highlights the importance of this step in the preprocessing
pipeline. Yet, we found significant differences depending on
the method used.

On the Benefit of Using a Full-Sphere Sampling
Scheme
Our results showed an even better tensor fitting quality when
using ‘eddy’ (FS, FSfmap, FSb0RPE, FSfullRPE pipelines; full
sphere sampling scheme) compared to the ECCAR method
(HS and HSfmap pipelines; HS sampling scheme). Note that
the HCP data were acquired with strong gradients (up to
100 mT/m), high b-values (up to 3000 s/mm2) and high spatial
resolution. In this “research-type” context, images were strongly
affected by susceptibility and eddy currents deformations and it
is not surprising that the use of a first order affine transform
(ECCAR) rather than a high order model (eddy) results in a
poor alignment between successive volumes, which in turn can
affect the quality of the diffusion tensor estimation. Similar
conclusions were drawn from the study of Jezzard et al. (1998),
where authors performed an in-depth comparison between ‘eddy’
and ‘eddy_correct’ tools, from which is derived the ECCAR
method. In Graham et al. (2016), authors confirmed the higher
performance of ‘eddy’ over ‘eddy_correct’ on realistic numerical
simulations of DWI with distortions. Indeed, the performance
of eddy-current correction using the ‘eddy_correct’ method was
found to depend on the b-value and/or SNR of DWI data (Nilsson
et al., 2015; Graham et al., 2016), with lower registration quality
for higher b-values. In our case, ECCAR uses a two-step approach
to register the DWI volumes, first to the closest b0 volume and
second to the first acquired one, in combination to the use of
mutual information as cost function. Although this might greatly

improve the registration quality compared to ‘eddy_correct’, this
is not sufficient to properly correct for eddy-current and motion
in high b-value data. It would be interesting to further investigate
our metrics on data with lower b-values and fewer gradient
directions, in addressed in Graham et al. (2016) where authors
evaluated the robustness of ‘eddy’ with in silico simulations.

Note that we purposely chose to use the same resampling
scheme with spline interpolation in both pipelines to avoid
confounding effects. Indeed, interpolation techniques used to
resample data are known to play a critical role in the final quality
of the image and particularly in the robustness of the registration
algorithm (Mahmoudzadeh and Kashou, 2013). Notably, the
trilinear interpolation, often used as default parameter, usually
results in less intensity errors but more blurring in the image
than other methods. Here, we cautiously employed the same
interpolation method (spline) in all pipelines. However, further
investigations showed that the use of trilinear interpolation for
ECCAR had the effect to increase TFE and reduce MDI, FA,
and MD. This results corroborates the alternative decreases or
increases of FA observed in Yamada et al. (2014) when using
respectively trilinear or spline interpolation in ‘eddy_correct.’

Eddy-Current Distortions Also Affect Central
White-Matter Regions
ROI-based analysis revealed that the improvement of the tensor
fitting is localized in the corpus callosum and is accompanied
by a decrease of MD and an increase of FA mostly in the genu
of the corpus callosum. Two reasons could explain this finding.
First, the corpus callosum is defined by a high anisotropy and a
high directionality of the diffusivity. Thus, this area is likely to be
sensitive to a small difference in the tensor estimation. Second,
a poor alignment of successive volumes could impact differently
the tensor model in regions surrounded by different white-matter
architectures. Indeed, a residual shift in voxels position often
leads to a characteristic rim of high anisotropic voxels at the
edge of the brain (Alexander et al., 1997; Jones and Cercignani,
2010). However, while this outside effect is visually easy to
detect, a similar effect can happen at the intersection between
distinct tissue types or micro-structural architectures such as
white-matter and CSF (Jezzard et al., 1998). For instance, as
observed in local analyses for FA and MD, the genu of the corpus
callosum is in a brain region that is highly prone to geometric
distortions and is adjacent to the lateral ventricles. Likewise, in
the literature, the influence of eddy-current distortion correction
on the diffusivity indices has often been reported differently
depending on the regions studied. For instance, previous visual
observations of fractional anisotropy maps showed sharper
contours and reduced blurring after eddy-current corrections
using gradients with reversed polarity (Alexander et al., 1997;
Bodammer et al., 2004), compared to no correction. Other
quantitative studies found increased FA in corrected data using
affine registration (Rohde et al., 2004), as well as using FS-
equivalent method (Shen et al., 2004), in several regions which
were not visible in the anisotropy maps of uncorrected data.
However, in Kim et al. (2006), authors found a decrease of
FA for several correction methods in the uncinate and corpus
callosum tracts. Finally, in Rohde et al. (2004), an artificial

Frontiers in Neuroscience | www.frontiersin.org 15 June 2019 | Volume 13 | Article 536

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00536 June 7, 2019 Time: 11:5 # 16

Brun et al. Diffusion MRI Preprocessing Methods

increase of anisotropy in the left-right orientation, in isotropic
regions such as gray-matter, was reduced after correction, while
MD was not affected.

On the Interest of Susceptibility-Induced
Distortion Correction
The first experiment clearly demonstrates the ability of
susceptibility-induced distortion corrections to recover the
brain’s true geometry. In line with Cusack et al. (2003) and
Tao et al. (2009) we found that the use of a field map brings
significant improvement in the registration accuracy between
DWI and T1w data. In Cusack et al. (2003), authors ascertained
that this difference did not originate from the slight smoothing
produced by the resampling procedure. Here, the significant
improvement also measured with the FSb0RPE compared to the
FS pipeline, which both use the same resampling procedure,
further supports the benefit of susceptibility-induced distortion
correction. However, we observed major differences between the
use of a field-map and the use of a b0 volume to correct for
these distortions.

Reversed b0 Volume Outperforms Field-Map
First it should be noted that the field map images were not
acquired during the same session as the diffusion images.
Thus, a change in head position in the scanner probably
led to slight variations in the field map induced by the
interaction between shimming and gradient non-linearities. As
a consequence, our field map-based correction shows probably
lower performance than it should if the field map was acquired
during the dMRI session. Second, compared to the use of a
field map, the advantage of FSb0RPE is two-fold. In addition
to the improved registration accuracy (results Experiment 1),
with a more realistic signal reconstruction in stretched and
compressed areas as seen in Figure 2A, the FSb0RPE pipeline
(as well as the FSfullRPE) combines both motion, eddy-current
and susceptibility distortions in a single distortion field to
correct simultaneously for all these artifacts (Andersson and
Sotiropoulos, 2016). Conversely, the field map-based correction
is performed as a second step, involving a second resampling
and interpolation of signal intensity which is likely to induce
smoothing in the corrected images (Wang et al., 2017).

Indeed, ROI-based analyses showed that, compared to HS
and FS pipeline, the additional use of a field map resulted in
a highly homogeneous reduction of all tensor-derived metrics,
while we expected the effect to be higher in regions prone to
severe geometric artifacts, as reported in Wu et al. (2008). To
understand this artificial decrease of tensor-derived metrics, one
has to understand the effects that a 3D smoothing has on the 4th
dimension of DWI data (i.e., across gradient directions). In fact,
we can imagine that the smoothing would flatten the ellipsoid of
the tensor model by removing high frequency fluctuations in the
signal. As a consequence, one can expect that the tensor model
would give better fitting performance and the TFE as defined by
the equation (2) should be reduced. Besides, when considering
only white-matter voxels where the signal is highly anisotropic,
i.e., low intensity signal in a given gradient direction and high
intensity in the others, the smoothing should flatten the signal of

the voxel across volumes which explains the reduced FA and MD.
Finally, the differences between neighboring voxels which diffuse
in different directions are also flattened, thus decreasing the local
variation of the tensor orientation represented by the MDI.

Conversely, ROI-based analyses revealed a local influence of
the distortion correction using b0 volumes with RPE compared to
the FS pipeline. Interestingly these results concern regions closest
to the frontal and temporal lobes, with symmetric effects for TFE
and MDI, which echoes the left-right orientation of geometric
distortions. Note that this symmetry induces a compensation
which might account for the null global effect. Importantly, the
methodological difference between FS and FSb0RPE pipelines
is that, in the latter, the distortion field used in eddy to
correct data also includes the susceptibility-induced distortions
estimated with topup. Besides that, both methods use the same
interpolation procedure and the same intensity reconstruction
(by Jacobian modulation).

In Cusack et al. (2003), authors highlight another disadvantage
of B0 field map acquisition which does not capture the interaction
between distortion field and subject movements during the scan
which could introduce additional variations across subjects. In
particular, this should be kept in mind when comparing different
types of population such as healthy volunteers and patients
or children who are more prone to motion. These findings
emphasizes the benefits of acquiring a single b0 volume with RPE
instead of a double-echo field map sequence, for an acquisition
time of respectively a few seconds and around 2 min, a substantial
difference in the context of clinical acquisitions (Treiber et al.,
2016). Note also that equivalent co-registration quality with T1
was found for FSb0RPE and FSfullRPE pipelines after non-
linear registration.

Differences Between FSb0RPE and FSfullRPE
The methodological difference between FSb0RPE and FSfullRPE
lies in the repetition of all diffusion weighted volumes twice in the
latter pipeline. The interest is twofold. First, every pair of volumes
with opposed phase-encoding directions are averaged, yielding
the same final number of volumes as for the other pipelines.
This doubles the amount of information in each voxel, increasing
the SNR, which explains the homogeneous decrease of TFE in
the white-matter. Indeed, the more information contained in the
signal, the easier the tensor model could fit the data. Second,
compared to the Jacobian modulation which only account for
signal dilution, the least-square restoration provides a better
signal reconstruction in compressed areas (Andersson et al.,
2003) which could be at the origin of the heterogeneous decrease
of MDI, FA and MD. This concords with Yamada et al. (2014),
where authors also observed an heterogeneous decrease of FA
lateralized in the left hemisphere.

Overall, our results suggest that the correction of
susceptibility-induced distortions using RPE scheme provides
better tensor fitting performance, in particular with a local
influence on tensor-derived metrics. To confirm our hypotheses,
it would be interesting to conduct voxel-wise analyses, to test, for
instance, the spatial correlation of the four diffusion indices with
multiple variables such as signal intensity or local deformation
needed to correct for geometric distortions.
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Handling Residual Geometric Distortions
A major outcome of this work is that the quality of the
registration between diffusion and structural space mostly
depend on the susceptibility-induced distortion correction
method. As shown in our results, the remaining geometric
distortions are hardly handled by an affine transformation.
As a consequence, a misalignment between structural and
diffusion space may be present when registering an atlas, a
template or a group of subjects together. In order to take into
account residual distortions, we highly recommend using a
non-linear transformation for inter-subject as well as for intra-
subject registration of mask, ROIs or atlases for connectivity
purpose (Cusack et al., 2003).

Impact on Bundle Trajectories
Our results on tract spatial variance revealed very different
signatures for each fascicle, supporting the suitability of this
metric to quantify the variability in the shape of fiber bundles.
However, the tract signatures obtained in this article look highly
different from those obtained in Irfanoglu et al. (2012). Several
factors could participate in these different results. First, authors
in Irfanoglu et al. (2012) used deterministic and probabilistic
tractography algorithm, both requiring potentially different
parameters such as the number of iterations, stopping criteria and
curvature threshold. They also filtered out isolated fibers while
we did not, which can explain the higher distal dispersion of
tracts in our results. For these reasons, the tractograms of the
two articles are hardly comparable. In our study, the consistency
of tract signatures across subjects and preprocessing pipelines
(Figure 8) illustrates the robustness of the global tractography
to reconstruct fascicles regarding inter-individual variability and
residual distortions in the image. This observation is particularly
true for the largest fascicles of the cortico-spinal, corpus callosum,
superior longitudinal, and cingulum pathways.

Despite this robustness, the trajectory of some fascicles is
sensitive to the distortion correction strategy. It is the case
for the commissural pathway of the corpus callosum and two
association pathways, namely the superior longitudinal tract
and the cingulum tract which project from the frontal lobe
to the temporal lobe. Although this quantitative analysis could
not allow a clear distinction between an effect of eddy-current
distortions or susceptibility-induced distortions, these two main
regions are known to be prone to severe geometrical artifacts
due to their proximity to air/bone tissues interfaces. Indeed,
as shown in Embleton et al. (2010), the misalignment of
voxel-wise fiber orientations in these regions could lead to
a premature ending of reconstructed pathways. In the same
line, linear and non-linear correction of eddy-current have
been found to visually reduce the dispersion of uncinate and
corpus callosum tracts, especially in the temporal and frontal
parts (Kim et al., 2006). However, the short pathways of
uncinate and fornix tracts did not show significant sensitivity
to distortion corrections. A possible reason is that the small
seeds used to extract these tracts are likely to be subject
to higher inter-individual variability and higher registration
errors. This could explain why we were not able to distinguish

the effect of preprocessing pipelines out of the intrinsic
tract variability.

Finally, it should be noted that the global tractography
algorithm includes optimization process that takes into account
the uncertainty in the DWI data and has been reported to prevent
from overfitting (Daducci et al., 2015). Yet, other tractography
algorithms such as probabilistic or deterministic tractography
might be prone to more important changes due to a higher
sensitivity to inter-scan variability.

Relevance Toward Clinical Data
To relate our observations with the clinical context we
reproduced the same experiments on a similar dataset but
acquired on a Siemens Prisma 3T MR-system with similar
maximum gradient strength and slew rate as for the HCP scanner
but using different acquisition settings. In particular, the T1w
image had a lower resolution which, as we found, did not
alter neither the capacity nor the interest of using non-linear
registration to improve the alignment between T1 and diffusion
weighted images.

Importantly, the performance differences that we observed
between pipelines is still valid for the dataset acquired in a context
closer to the clinical environment. Although we found differences
between the two datasets, common to all pipelines, as a global
shift. For instance, the tensor-fitting quality was highly different
from the HCP data which could be attributed to a higher SNR in
the images, relative to the lower spatial resolution of DW images
and the lower acceleration factor.

With this clinical dataset, we also highlighted the impact
of b-value on the tensor fitting performance. Indeed, we
found a better tensor fitting for lower b-values. Also, the FA
and MD values measured in the white matter showed an
important sensitivity to the b-value. This finding is probably
related to the amount of SNR as well as the quality of
distortion correction. Indeed, lower b-values involve lower
gradient amplitudes and thus less eddy-currents. Apart from
the amount of distortions, a higher SNR in the images
could imply that conventional image registration algorithms
perform better (Andersson and Sotiropoulos, 2016). It has been
reported in the literature that the amount of noise in the raw
image can have an influence on the tensor-derived metrics
(Manjón et al., 2013; Hutchinson et al., 2017).

Limitations and Future Work
One important limitation in our study lies in the choice of
regions restrained to the central white-matter for the ROI-
based analysis. These brain areas are not the most impacted by
geometric distortions. This work should be extended to the rest
of the brain, for instance by including regions of interest with
superficial white-matter. In particular, it would be interesting to
correlate the variation in diffusivity indices to the amplitude of
distortions, or the amount of displacement necessary to align
each voxel to the structural image. However, this investigation
would require using other metrics that are not based on the tensor
model, which reliability is limited to regions with single fiber’s
direction. More suited models intended to fit the complex white-
matter architecture such as NODDI would be more appropriate
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(Graham et al., 2016) but require specific acquisition settings
with multi-shell sampling of gradients, in particular with a “mini-
shell” that can model the high-diffusion compartments.

A second limitation is the difficulty to quantify the differences
between pipeline’s performance regarding the reconstruction
of tracts. Especially, we could not easily reproduce results of
previous studies, due to the inability to reproduce the seeds
position and the complexity of algorithm parameters settings.
One way to overcome these limitations would be to perform
similar analyses on numerical phantoms with a known ground
truth. Also, further work is necessary to investigate the impact
of preprocessing methods on the connectivity measurements
between cortical regions. Such analysis would probably be less
influenced by outlier fibers that show higher spatial dispersion.

CONCLUSION

The aim of this study was to evaluate the impact of different
preprocessing pipelines on the quality of corrected data. While
most studies try to isolate the cofounding factors coming from
acquisition settings, data or processing quality, we instead found
interesting to consider the combination of eddy-current and
susceptibility-induced distortion corrections into single pipelines
dedicated to distinct acquisition contexts. Hence, we could
highlight the resulting differences between outcome data and
their consecutive diffusivity and tractography measurements. As
these pipelines are optimal for different acquisition contexts,
our observations will help for both a careful choice of
acquisition settings and a precautious interpretation of DWI
analysis. In the light of our results, the acquisition of several
interspersed b0 volumes plus an additional b0 volume with
RPE is highly recommended as default settings, rather than the
acquisition of a field-map. Moreover, we highly recommend to
use non-linear registration with anatomical images to handle
residual distortions. Ideally, acquisition settings should be chosen
depending on the study purpose and on the acquisition and
processing times that can be afforded depending on the context
(e.g., clinical or research). For instance, to compare two different
populations, investigators should focus on an efficient motion
correction method. However, if effects are expected in regions
exposed to magnetic susceptibility differences, such as temporal
and frontal lobes, a particular attention should be paid to
geometric distortion correction and signal intensity recovery.
Besides, investigators should limit the number of resampling
steps applied on images to avoid artificial tensor over-fitting.
Finally, optimal correction performance can be obtained with
FSfullRPE acquisition but at the expense of long acquisition
and processing times. A crucial outcome here is that analysis
should never be conducted on datasets which underwent distinct
preprocessing pipelines. Finally, further investigations should
be performed to evaluate the influence of the same pipelines
regarding other acquisition settings such as b-value, q-space
sampling size, and noise reduction, where the correction of
eddy-currents should be of major importance.

The Diffuse software toolbox implemented to conduct the
present study is available at this link: https://github.com/

MecaLab/Brainvisa-Diffuse. It offers an automatic selection of
the optimal preprocessing pipeline given the acquired DWI
data. It also provides registration with anatomy, local model
reconstruction and tractography algorithms. The Diffuse toolbox
is embedded in the BrainVISA platform which gives access to
volume-based and surface-based anatomical data processing, as
well as to an efficient database management.

ANNEXE

List of subject IDs as provided by the Human Connectome
Project: S1:106319, S2:150625, S3:188751, S4:193441,
S5:220721, S6:424939, S7:627852, S8:773257, S9:932554,
S10:983773, S11:102513, S12:110613, S13:114621, S14:147030,
S15:158843, S16:159946, S17:176441, S18:346137, S19:677766,
and S20:942658.
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