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LEARNING MULTI-PARTY DISCOURSE 

STRUCTURE USING WEAK SUPERVISION

Badene S. (sonia.badene@irit.fr), 

Thompson K. (catherine.thompson@irit.fr), 

Lorré J-P. (jplorre@linagora.com), 

Asher N. (asher@irit.fr)

Discourse structures provide a way to extract deep semantic information from text, e.g., 

about relations conveying causal and temporal information and topical organization, which 

can be gainfully employed in NLP tasks such as summarization, document classification, 

sentiment analysis. But the task of automatically learning discourse structures is difficult: 

the relations that make up the structures are very sparse relative to the number of possible 

semantic connections that could be made between any two segments within a text; 

furthermore, the existence of a relation between two segments de-pends not only on “local” 

features of the segments, but also on “global” con-textual information, including which 

relations have already been instantiated in the text and where. It is natural to try to leverage 

the power of deep learning methods to learn the complex representations discourse 

structures require. However, deep learning methods demand a large amount of labeled 

data, which becomes prohibitively expensive in the case of expertly-annotated discourse 

corpora. One recent advance in the resolution of this “training data bottleneck”, data 

programming, allows for the implementation of ex-pert knowledge in weak supervision 

system for data labeling. In this article, we present the results of our application of the data 

programming paradigm to the problem of discourse structure learning for multi-party 

dialogues.
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1. Introduction

Discourse structures are relational structures composed of discourse units (DUs), 

or instances of propositional content, and binary coherence relations over them, con-

veying semantic (causal, temporal) and presentational (thematic, argumentative) in-

formation expressed by a text. We represent such structures as graphs containing a set 

of nodes representing the DUs and a set of labelled arcs representing the coherence 

relations. In the case of dialogues occurring between multiple interlocutors, extrac-

tion of their internal discourse structures can provide useful semantic information 

to “downstream” models used, for example, in the production of intelligent meeting 

managers or the analysis of user interactions in online fora.

Such representational schemes serve as annotation models of which discourse 

theorists have proposed several: (RST1 [7], LDM2 [11], Graphbank [15], DLTAG 

[5], PDTB3 [12] and SDRT4 [4]). Much of computational discourse-analysis is based 

on RST, which supposes that discourse structures are trees. However, this assump-

tion becomes very difficult to maintain for dialogue [4] and even more unnatural for 

multi-party dialogue, which presents many examples of non-treelike structures [1] 

like the one shown in the Figure 1.

Figure 1: Interlocutors in segments 235, 236 and 238 all 

respond to a question asked at 234 (linked via edges labelled 

as Question-Answer Pair), and the interlocutor at segment 239 

responds to each answer (linked with Acknowledgement)

Such examples motivate the SDRT annotation model, in which discourse struc-

tures are not assumed to be trees but rather directed acyclical graphs (DAGs) [2–4]. 

SDRT was used to annotate the STAC corpus5, which is the corpus on which we trained 

1 Rhetorical Structure Theory

2 Linguistic Discourse Model

3 The Penn Discourse Treebank

4 Segmented Discourse Representation Theory

5 link to STAC corpus: https://www.irit.fr/STAC/index.html



a supervised deep learning model and a weakly supervised model in the discourse 

structure learning task in order to then compare them.

The data programming paradigm was introduced by Hazy Research in 2016 [14] 

along with a framework Snorkel [13] for using distant, disparate knowledge sources 

to apply noisy labels to large data sets, and then using those labels to train classic 

data-hungry machine learning (ML) algorithms. The data programming paradigm 

allows us to unify these noisy labels in order to generate a probability distribution 

for all labels for each data point. This set of probabilities replaces the ground-truth 

labels in a standard discriminative model outfitted with a noise-aware loss function 

and trained on a sufficiently large data set.

In this study the structure learning problem is restrained to predicting at-

tachment between DU pairs. After training a supervised deep learning algorithm 

to predict attachments on the full STAC corpus, we then constructed for comparison 

a weakly supervised learning system in which we used 10% of the corpus as a develop-

ment set. SDRT experts who annotated the corpus wrote a set of Labeling Functions 

(LFs) and tested them against this development set. We treated the remainder of the 

corpus as raw/unannotated data. After applying the LFs to the unannotated data and 

obtaining the results from the generative and discriminative models, we found that 

we gained in accuracy over ten points with respect to the supervised method. When 

the generative model was used in stand alone fashion, we gained almost 30 points 

in F1 score over the supervised method, which uses a state of the art deep learn-

ing model. When we think of the time it takes experts to hand-annotate dialogues, 

this means that the generative model and weak supervision may be far preferable 

to straight deep learning methods, in at least some cases.

2. Attachment Prediction: State of the Art

A discourse structure in SDRT is defined as a graph V, E1, E2, , Last , where: 

V is a set of nodes or discourse units (DUs) and E1  V2 is a set of edges between DUs 

representing coherence relations. E2  V2 represents a dependency relation between 

CDUs6 and their constituent DUs. : E1  R is a labeling function that gives the seman-

tic type (an element of R) of an edge in E1, and Last is a designated element of V giving 

the last DU relative to textual or temporal order.

The process of learning an SDRT structure for a dialogue or text has three natu-

ral steps:

1. Segment the text into DUs

2. Predict the attachments between DUs, i.e. identify the elements in E1 and E2

3. Predict the semantic type of the edge in E1

In this paper, we focus on the second step, attachment prediction, the goal 

of which is to determine a substructure, V, E1, E2, Last , of the complete discourse 

6 SDRT also allows for Complex Discourse Units (CDUs), which are clusters of two or more 
DUs which can be connected as an ensemble to other DUs in the graph. The CDUs which are 
themselves graphs that can serve as arguments of coherence relations.



graph. This is a difficult problem for automatic processing: attachments are theoreti-

cally possible between any two DUs in a dialogue or text, and often graphs include 

long-distance relations. The attachment problem as we have stated it is endemic 

to SDRT and theories that posit dependency structures for discourse. In RST the prob-

lem of attachment is less clear (see [8]).

[Muller et al. 2012] [9] is one of the first papers we know of on discourse parsing 

that targets the attachment problem. It targets a restricted version of an SDRT graph, 

a dependency tree in which CDUs are eliminated by a “flattening” strategy similar 

to the one we use below. This means that the target representations are of the form 

V*, E*1, Last , where V* is V with the CDUs removed and E*1 results from running the 

flattening strategy on E1. It trains a simple MaxEnt algorithm to produce structures 

probability distributions over pairs of elementary discourse units and exploits then 

global decoding constraints to produce the targeted structures. It reports F1 scores 

of 66.2% with the A* algorithm.

In terms of discourse structure prediction for multi-party dialogues, Perret 

et al. (2016) [10] targets a more elaborate approximation of the SDRT graphs: DAGs 

in which CDUs are eliminated from V and the relations on CDUs are distributed over 

their constituents. As with [9], this requires another reworking of E1. Perret et al. then 

uses Integer Linear Programming (ILP) to encode both the objective function and 

global decoding constraints over local scores on multi-party dialogues and achieves 

an F-measure of 0.689 on unlabelled attachment.

3. The STAC Annotated Corpus

3.1. Overview

STAC is a corpus which captures strategic conversation between the players 

of an online version of the game Settlers of Catan. The full corpus contains 45 games, 

each of which is divided into an average of 57 dialogues. A dialogue begins at the 

beginning of a player’s turn, and ends at the end of that player’s turn. During the in-

terim, players can bargain with each other or make spontaneous conversation. These 

player utterances are “linguistic” turns, whereas “announcements” made by the game 

Server regarding the game state or a certain player status are “non-linguistic” turns. 

Both types of turns are segmented into discourse units (DUs), and these units are then 

connected by a semantic relations of one of the 17 types admitted by SDRT. As a result, 

each dialogue contains a weakly connected DAG which is its discourse structure.



Figure 2: Excerpt of a STAC dialogue illustrating relations like 

Sequence (dark blue), Result (green), linguistic turns spoken by 

players and non-linguistic turns emitted by “Server” or “UI”

3.2. Data Preparation

The full STAC corpus includes 2,593 dialogues (or discourse structures), 12,588 

linguistic DUs, 31,811 non-linguistic DUs and 31,251 semantic relations.

As discussed above, our task is to predict, for each dialogue, for each possible 

pair of DUs, whether the DUs are connected by a semantic relation, an operation 

which eventually yields a discourse structure for the dialogue. Before beginning our 

experiments, we implemented the following simplifying measures:

1.  Roughly 56% of the total dialogues contain only non-linguistic DUs. These 

represent player turns in which no players bargain or chat with one another. 

The annotations in these dialogues are fairly regular given the purely me-

chanical succession of DUs, and are much less difficult and less interesting 

from a discourse analysis perspective. For this reason we ignore these non-

linguistic-only dialogues for our prediction task.

2.  In the corpus, shorter relations are more frequent than long-distance rela-

tions such that 67% of relations occur between adjacent DUs, and 98% of re-

lations have a distance of 10 or less. (A relation of distance 10 stretches over 

9 DUs between the source and the target DU.) In order to avoid a combi-

natory explosion of possible DU pairs, we restrict the relations we consider 

to a distance of 10 or less.

3.  Out of the 17 possible relation types allowed by SDRT, we consider only 

the 4 most frequent: Question-answer-pair, Sequence (temporal), Result 

(causal), Continuation (thematic continuity). We retain about 70% of the 



total relations. The reason for this choice will become apparent in following 

detailed discussion of labeling functions.

4.  Because we are here only interested in predicting attachment between single 

DUs, following [9, 10] we “flatten” the CDUs by connecting all relations in-

coming or outgoing from a CDU to the “head” of the CDU, or its first DU. 

This results in shifts in the source and/or target DUs for about 40% of the 

relations.

5.  In order to reduce run-time for each rule during development, we created 

“sandbox” sets for each relation type: smaller versions of the development 

set which ignored all candidate pairs except those which could possibly 

be attached by the relation type in question. We have a sandbox data set for 

the rules pertinent to a particular discourse relation and a larger sandbox 

data set for the rules for the four discourse relations that we examined.

After the above preparation, the STAC corpus as we use it in our learning ex-

periments includes 1,130 dialogues, 12,509 linguistic DUs, 18,576 non-linguistic DUs 

and 22,098 semantic relations. (Here again we are only considering the 4 relations 

Question-answer-pair, Sequence, Result and Continuation.)

4. The Data Programming Pipeline: Experiments

4.1. Candidates and Labeling Functions

In constructing our weak supervision system, we took inspiration from the Snor-

kel implementation7 of the data programming paradigm. The first step in the Snorkel 

pipeline is candidate extraction, followed by LF creation. Candidates are the units 

of data from which labels will be predicted; LFs are the simple expert-composed func-

tions which will predict a label for each candidate. The prototypical Snorkel task 

is to predict whether there is a certain type of relation between two entities in a sen-

tence within a text: candidates are pairs of entities extracted from sentences, and LFs 

are written using contextual information at the sentence level.

In the case of dialogue attachment prediction, we needed to find a way to give 

our LFs access to contextual information from the entire dialogue which they could 

apply to each candidate, or pair of DUs within a dialogue. We did this by fixing the or-

der in which each LF would “see” the candidates such that it would consider adjacent 

DUs before distant DUs, and thus the LF would know its current position in a dialogue. 

We also allowed LFs to keep track of previously predicted relations to give them some 

information about dialogue history. Other information leveraged by the LFs included 

the DU raw text, speaker identities, the DU dialogue acts, DU types (linguistic or non-

linguistic) and the distance between DUs.

7 https://hazyresearch.github.io/snorkel/



Figure 3: Result connects a cause to its effect, i.e., the main eventuality 

of the first argument is understood to cause the eventuality given by 

the second. Here we show a sample of our rules written in python 

for the relation Result connecting two linguistic discourse units

As we are at present concerned only with predicting attachments, each LF re-

turns a 1, a 0 or a −1 (“attached”/“do not know”/“not-attached”) for each candidate. 

However, each of our LFs is written and evaluated with a specific relation type Re-

sult, QAP, Continuation and Sequence in mind. In this way, LFs also leverage a kind 

of type-related information. This makes sense from an empirical perspective as well 

as an epistemological one: an attachment decision concerning two DUs is tightly 

linked to the type of relation relating the DUs, and so when an annotator decides that 

two DUs are attached, he or she does so with some knowledge of what type of relation 

attaches them. Figure 3 shows a sample of our rules used for attachment prediction 

with the Result relation in mind.

4.2. The Generative Model

Once we have applied the LFs to all the candidates, we then move to the gen-

erative step. In Snorkel, the generative model unifies the results of the LFs, which 

is a matrix of labels given by each LF (columns) for each candidate (rows). Though 

the simplest approach to unification would be to take the majority vote among the 

LFs for each candidate, this is less effective in cases where all the LFs abstain or give 

“0”. Further, this approach would not take into account the individual performances 

of the LFs. And so the generative model as specified in (1) provides a general distribu-

tion of marginal probabilities relative to n accuracy dependencies j( i; yi) between 

an LF j and true labels yi that depend on parameters theta i.

(1)



The parameters are estimated without access to the ground truth labels by mini-

mizing the negative log marginal likelihood of the output of an observed matrix  

as in (2).

(2)

This objective is optimized by interleaving stochastic gradient descent steps with 

Gibbs sampling ones. The model thus uses the accuracy measures for the LFs in (1) 

to assign marginal probabilities that two DUs are attached to each candidate. In this 

model, the true class labels yi are latent variables that generate the labeling function 

outputs, which are estimated via Gibbs sampling.

This calculation presupposes that the LFs are independent. However, the LFs are 

often dependent: one might be a variation of another or they might depend on a com-

mon source of distant supervision. If we don’t take this into account, we risk assigning 

incorrect accuracies to the LFs. Getting users to indicate dependencies by hand, how-

ever, is difficult and error-prone. The generative model in Snorkel comes with the op-

tion of automatically selecting which dependencies to model without access to ground 

truth. It uses a pseudo-likelihood estimator, which does not require any sampling 

or other approximations to compute the objective gradient exactly. It is much faster 

than maximum likelihood estimation, because the estimator relies on a hyper-param-

eter  that trades off between predictive performance and computational cost. With 

large values of  no correlations are included and as it reduces the value progressively 

more correlations are added, starting with the strongest.

4.3. Discriminative Model

While the generative model outputs the marginal probabilities for each of the 

labels for each candidate, the discriminative model generalizes this output and aug-

ments the coverage of the LFs. While this may lead to a small reduction in precision, 

it is in exchange for a boost in recall.

We used BERT’s [6] sequence classification model (source code on the link bel-

low8) with 10 training epochs and all default parameters otherwise. BERT, the Bidi-

rectional Encoder Representations from Transformers, is a text encoder pre-trained 

using language models where the system has to guess a missing word or word piece 

that is removed at random from the text. Originally designed for automatic translation 

tasks, BERT uses bi-directional self-attention to produce the encodings and performs 

at the state of the art on many textual classification tasks. While in principle we could 

have used any discriminative model, as is suggested in the Snorkel literature, BERT 

gave us by far the best results on attachment prediction. For this reason we also used 

BERT as our model for supervised learning of attachment to compare its results with 

those of the weak supervision method.

8 Link to BERT sequence classification model code: https://github.com/huggingface/pytorch-
pretrained-BERT/blob/master/examples/run_classifier.py



5. Results and Analysis

In order to write a set of LFs/rules which adequately covered the data, we had 

to find a way to reasonably divide and conquer the myriad characteristics of the re-

lations. We started by focusing on relation type: for each of the four most frequent 

relation types, we wrote a separate rule for each of the sets of endpoint types most 

prevalent for that relation. Result (RES) is the only relation type which was found 

between all four endpoint permutations: LL (linguistic source-linguistic target), LNL 

(linguistic source, non-linguistic target), etc. We used the relation behavior observed 

in our development/sandbox sets to write and revise the rules. The development set 

consisted of 3 games (10% of our data). The table 1 shows the performance of each 

rule on its own “sandbox” development set.

Table 1: Number of true positives, true negatives, false 

positives, false negatives and accuracy score for each LF when 

applied to the “sandbox” candidates from the STAC data

TP TN FP FN Accuracy

QAP LL 294 1798 112 138 0.89

QAP NLNL 84 187 0 0 1.00

RES NLNL 739 2,929 13 55 0.98

RES LNL 13 2158 93 97 0.91

RES LL 25 316 19 37 0.85

RES NLL 2 139 0 2 0.98

Cont LL 16 9,818 110 106 0.97

Cont NLNL 613 3,254 0 1 0.99

SEQ NLL 90 658 2 14 0.97

SEQ NLNL 236 1,220 10 76 0.94

Table 2: Evaluations of the combination of the four LFs (QRSC)’ attachment 

with the weakly supervised and supervised approaches on the sandbox data set

Generative Model Discriminative Model on Test

Dev Train Test with Marginals with Gold annotations

Precision 0.67 0.70 0.68 0.45 0.61

Recall 0.84 0.85 0.84 0.54 0.53

F1 score 0.75 0.77 0.75 0.49 0.57

Accuracy 0.92 0.93 0.92 0.84 0.88

We first evaluated the LFs for each discourse relation type individually on the 

development corpus, providing a measure of their coverage and accuracy on a subset 

of the data. Then we evaluated the generative model on the combination of the four 

LF types and the discriminative model on the test set of the corpus. The table 2 pres-

ents the results at the end of each step in our weak supervision system. To compare the 

two approaches, the discriminative model was first trained on the marginals provided 



by our generative model, then on the “gold” annotations, which are manual annota-

tions of the Stac corpus.

We find the results of the generative model striking as they are almost 20 points 

higher in F1 score concerning positive attachment over the discriminative model 

trained on the gold annotations. This shows the power of the rule based approach even 

when compared to a state of the art deep learning system. Another interesting point 

is that the discriminative model can still perform acceptably with the marginals data 

compared to its performance using the gold annotations; its accuracy is only 4 points 

lower and its F1 score is 8 points lower but still comparable with results in the litera-

ture, showing that the generative model has information to offer that the discrimina-

tive model can exploit well—thus opening up the possibility for transfer learning. 

Rather than naively treat these noisy training labels as ground truth, our noise-aware 

discriminative model gives a slight improvement in recall with a decrease in precision 

compared to the supervised approach. With respect to the individual LFs in isolation, 

we find that, apart from QAP, our rules for each relation type have an accuracy, pre-

cision and recall comparable to those for the supervised models. One reason for our 

lower precision for QAP may be attributable to a deficiency in the flattening procedure 

the effects QAP more frequently; in some cases the flattening algorithm re-attaches 

the QAP relation to a CDU head which was not in fact the component of the CDU which 

marked the question. What is interesting is the synergy between the rules such that 

when they all interact on the test data, they do very well on the generative model.

6. Conclusions and Future Work

Having chosen a single discriminative model for all our experiments, we were 

able to compare our weak supervision approach, in which we leveraged parts of the 

Snorkel system, with that of a standard supervised model on the difficult task of dis-

cursive attachment. Our approach allows us to model the discourse more precisely 

and to be generalized to other corpora. In contrast to a supervised algorithm, our 

results on the generative model are almost 30 points higher without covering all types 

of rules. In addition, we generate a lot of annotated data in a very short time.

In future work, we plan to enrich our weak supervision system by first covering 

all 17 types of SDRT relations on all data. We also plan to give LFs access to more 

sophisticated context which will take into account sequence-constraints in the attach-

ments of the complete conversation and global structuring constraints. We will at that 

point be in a position to evaluate the structure of the global discourse by using our 

structured predictions as inputs to a maximum spanning tree (MST) for example. And 

in a broader scope, our experiments with this paradigm may suggest possible lines 

of inquiry into how weakly supervised methods might effectively capture the global 

structural constraints on discourse structures without decoding or elaborate learning 

architectures.
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