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STRONG PROPERTY (T) FOR HIGHER RANK LATTICES

MIKAEL DE LA SALLE

Abstract. We prove that every lattice in a product of higher rank simple
Lie groups or higher rank simple algebraic groups over local fields has Vincent
Lafforgue’s strong property (T). Over non-archimedean local fields, we also
prove that they have strong Banach proerty (T) with respect to all Banach
spaces with nontrivial type, whereas in general we obtain such a result with
additional hypotheses on the Banach spaces. The novelty is that we deal with
non-cocompact lattices, such as SLn(Z) for n ≥ 3. To do so, we introduce
a stronger form of strong property (T) which allows us to deal with more
general objects than group representations on Banach spaces that we call two-
step representations, namely families indexed by a group of operators between
different Banach spaces that we can compose only once. We prove that higher
rank groups have this property and that this property passes to undistorted
lattices.

1. Introduction

Kazhdan’s property (T) is a rigidity property for unitary representations of a
locally compact group, which has found numerous applications in various areas of
pure and applied mathematics, see [3]. Vincent Lafforgue’s strong property (T)
is a strengthening of property (T) which deals with representations by bounded
operators with small exponential growth of the norm. Its introduction in [13] was
motivated by the Baum-Connes conjecture, as it is a natural obstruction to apply
Lafforgue’s approach to the Baum-Connes conjecture, see [15]. It has also found
several applications, notably its Banach-space version that we will discuss below, as
it provided the first examples of superexpanders (expanders which do not coarsely
embed into any uniformly convex Banach space), and as it implies strong fixed point
properties for affine actions on Banach spaces. Another notable recent application
is also to dynamics, as it was one of the steps in spectacular progresses on the
Zimmer program [7].

So far strong property (T) has been shown for higher rank connected simple Lie
groups (or higher rank simple algebraic groups over local fields) and their cocompact
lattices. The case when the Lie algebra contains sl3 was proven by Lafforgue in
[13]. The generalization to other algebraic groups was done by Liao [16] (for non-
archimedean local fields) and de Laat and the author [12] (for archimedean local
fields, i.e. R). In particular before the present work it was not known whether
SL3(Z) has strong property (T). The aim of this article is to extend these results
to cover the lattices which are not cocompact (for example SL3(Z)) as well. This
will have consequences on the Zimmer program [8]. We also take the opportunity
to state and prove all the results more generally for (lattices in) semisimple groups
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rather than simple groups, and also to some non semisimple Lie groups (Remark
4.3).

In the whole article, local field will mean commutative, non-discrete locally com-
pact topological field. So a local field is a finite extension of R (in which case it
is archimedean), or of Qp or Fp((t)) for some prime number p (in which case it
is non-archimedean). Higher rank simple group will mean either real connected
simple Lie group of real rank ≥ 2, or connected almost F-simple algebraic group
of F-split rank ≥ 2 over a local field F. Higher rank group will stand for a finite
product of Higher rank simple groups. We warn the reader that for us, products
of rank one groups such as SL2(R)× SL2(Qp) are not of higher rank. We refer to
[18, Chapter I] for the terminology. Note that real connected simple Lie group or
real rank ≥ 2 is more general than connected almost simple algebraic group of split
rank ≥ 2 over R. It includes for example some groups with infinite center, as the
infinite covering group of Sp2n(R).

Recall that a lattice in a locally compact group G is a discrete subgroup Γ such
that G/Γ carries a G-invariant Borel probability measure.

Theorem 1.1. Every lattice in a higher rank group has strong property (T).

Examples of lattices in higher rank groups include SLn(Z), SLn(Fp[t]) and

SLn(Z[
1
p ]) for n ≥ 3, or Sp2n(Z), S̃p2n(Z) (the preimage of Sp2n(Z) in the uni-

versal cover of Sp2n(R)) and Sp2n(Fp[X ]) for n ≥ 2. None of these examples is a
cocompact lattice, so for all these cases Theorem 1.1 is new.

When Γ is a cocompact lattice in a locally compact groupG, every representation
of Γ by bounded operators on a Hilbert (or Banach) space can be induced in
a satisfactory way to a representation of G by bounded operators on a Hilbert
(Banach) space. This is what allows one to prove that (Banach) strong property
(T) passes to cocompact lattices, see [13]. As we shall explain in §2.2, when Γ is not
cocompact, induction of representations which are not uniformly bounded does not
behave well, and we do not see any reasonable way to define an induced Banach
space representation. So the proof of Theorem 1.1 does not proceed by proving
that strong property (T) passes to lattices. And we still have no idea whether
such a statement is true (although amusingly, it is true that the negation of strong
property (T) passes to lattices, see Corollary 5.9). This might appear at first sight
a bit surprising, because it is now very well understood (this seems to go back at
least to the proof of the normal subgroup theorem by Margulis) that, although
they might not be cocompact, higher rank lattices are very much integrable (for
example they are Lp-integrable for every p < ∞ in the sense of [23]), and these
good integrability properties enable to induce in a satisfactory way cocycles with
values in isometric representations. The new idea that we introduce to overcome
this difficulty is a form of induction of representation π : Γ → GL(X) which, under
some assumption on the integrability of the lattice and the growth rate of the
norm of ‖π(γ)‖, produces a representation-like object, where one is only allowed to
compose once, and that we call a two-step representation.

Definition 1.2. A two-step representation of a topological group G is a tuple
(X0, X1, X2, π0, π1) where X0, X1, X2 are Banach spaces and πi : G → B(Xi, Xi+1)
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are strongly continuous1 maps such that

π1(gg
′)π0(g

′′) = π1(g)π0(g
′g′′) for every g, g′, g′′ ∈ G.

In this case we will denote by π : G → B(X0, X2) the continuous map satisfying
π(gg′) = π1(g)π0(g

′) for every g, g′ ∈ G.

It turns out that a form of strong property (T) also holds for two-step repre-
sentations of higher rank groups. And this property passes to undistorted lattices
(Theorem 5.4). This is the content of our main result Theorem 1.3, which contains
Theorem 1.1 as a particular case.

Before stating it, we recall the notion of length function that we use, which
contains as its main examples the word-length with respect to compact symmetric
generating sets. A length function on a locally compact topological group G is a
function ℓ : G → R+ such that

• ℓ is bounded on compact subsets of G.
• ℓ(g−1) = ℓ(g) for every g ∈ G.
• ℓ(gh) ≤ ℓ(g) + ℓ(h) for every g, h ∈ G.

The exponential growth rate of a two-step representation (X0, X1, X2, π0, π1)
with respect to a length function ℓ is

max
i=0,1

lim sup
ℓ(g)→∞

log ‖πi(g)‖
ℓ(g)

.

We say that a pair (G, ℓ) of a locally compact group with a length function
satisfies (*) if there exists s, t, C > 0 and a sequence mn of positive probability
measures whose support is contained in {g|ℓ(g) ≤ n} such that the following holds.
Let (X0, X1, X2, π0, π1) be a two-step representation and L a real number such that
X1 is a Hilbert space and ‖πi(g)‖ ≤ Lesℓ(g) for all g ∈ G and i ∈ {0, 1}. Then there
is P ∈ B(X0, X2) such that

(1.1) ‖π(mn)− P‖ ≤ CL2e−tn,

and such that

(1.2) lim
n

‖π(δg ∗mn ∗ δg′)− π(mn)‖ = 0 for every g, g′ ∈ G.

Strong property (T) corresponds to the case when X0 = X1 = X2 = X and π is
a representation. In that case (1.2) is usually replaced by the equivalent property
that P is a projection on the space of invariant vectors {x ∈ X |π(g)x = x∀g ∈ G},
parallel to a π(G)-invariant complement subspace. The condition (1.2) is nothing
but a reformulation which remains meaningful in the above generality when there
is no such thing as invariant vector or projection.

We say that G satisfies (*) if (G, ℓ) satisfies (*) for every length function ℓ, or
equivalently if G is compactly generated and (G, ℓ) satisfies (*) for the word-length
function coming from a compact generating set. See Lemma 2.6 for the equivalence.

Theorem 1.3. Every higher rank group or lattice in it satisfies the above property
(*).

Examples of maps π as in (*) are when X is a topological vector space (for
example the space of measurable functions on a manifold, or just a measure space)
and π : G → GL(X ) is a continuous representation of G on X which a priori does

1i.e. for every x ∈ Xi, the map g ∈ G 7→ π(g)x ∈ Xi+1 is continuous, see Section 2.
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not preserve any Banach space in X (for example because of losing of derivatives,
as in the Nash-Moser theorem, or of integrability). But there are three Banach
spaces X0, X1, X2 with X1 a Hilbert space with continuous embeddings into X
(for example encoding different scales of derivability or integrability) and such that
π(g) maps Xi to Xi+1 with norm ≤ Lesℓ(g). In that situation we can apply the
conclusion of the theorem. In particular, we get, for every x ∈ X0, that π(mn)x
converges in the norm of X1 (and hence in the topology of X ) to a π(G)-invariant
vector. In this setting, property (*) has therefore to be seen as a procedure to
systematically produce and locate invariant vectors in X .

I would like to point out that, even if one is only interested in strong property (T)
(so to representations on Hilbert spaces), it is crucial that in property (*) we allow
arbitrary Banach spaces X0 and X2. Indeed, the induction procedure explained
in Subsection 5.2, which is the heart of this work, cannot produce Hilbert spaces
but more general Banach spaces (namely Hilbert-space valued Lp spaces for various
values of p).

Banach space extensions. Higher rank groups over non-archimedean local fields
and their cocompact lattices are known to satisfy strong Banach property (T) with
respect to every class of Banach spaces of nontrivial (Rademacher) type [14, 16]
(see Section 2 for the definitions). Moreover, this class is essentially the optimal
class. Although some partial results have been obtained [21, 12, 11], it is still not
known whether the same holds over the real numbers. I regard this question as
the main open problem on the subject, as a positive answer would settle positively
the conjecture in [1] that every action by isometries on a uniformly convex Banach
space of a higher rank lattice has a fixed point, and prove that the standard Cayley
graphs of SL3(Z/nZ) form a family of superrexpanders.

In this article we also extend to all lattices the above mentionned results.
To state the results, we introduce the following notion: if E is a class of Banach

spaces we say that G (respectively (G, ℓ)) satisfies (∗E) if in (*) the assumption
that X1 is a Hilbert space is replaced by X1 ∈ E .

The following result extends the results of Lafforgue and Liao [14, 16].

Theorem 1.4. Let G be a higher rank simple group over a non-archimedean local
field, or a lattice therein. Then G satisfies (∗E) for every class of Banach space E
of nontrivial type.

In particular, every lattice in a higher group over nonarchimedean local fields
has strong property (T) with respect to every Banach space of nontrivial type.

In the real case the conditions we have to impose on the Banach spaces are a
bit longer to state, but we believe that they are equivalent to having nontrivial
type. For n ≥ 2, denote by S

n the unit sphere in euclidean Rn+1 and define a

family (T
(n)
δ )δ∈[−1,1] of operators on L2(S

n) by T
(n)
δ f(x) is the average of f on

{y ∈ S
n|〈x, y〉 = δ}.

For θ ∈ R/2π, denote by Sθ the operator on L2(SU(2)) given by

Sθf(u) =

∫ 2π

0

f(
1√
2

(
e−iθ −eiϕ

e−iϕ eiθ

)
u)

dϕ

2π
.

The following result extends the results of [21, 12, 11]. A version for general
higher rank groups is stated as Theorem 5.11.
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Theorem 1.5. Let G be a connected simple Lie group with Lie algebra g and Γ ⊂ G
be a lattice. Then both G and Γ have (∗E) (and therefore strong (T) with respect to
E) if one of the following conditions holds:

• g contains a Lie subalgebra isomorphic to sp4, and there is α ∈ (0, 1] and
C > 0 such that for every X ∈ E

(1.3) ‖Sθ − Sπ
4
‖B(L2(SU(2);X)) ≤ C|θ − π

4
|α4 ∀θ ∈ [0, 2π]

and

(1.4) ‖T (2)
δ − T

(2)
0 ‖B(L2(Sn;X)) ≤ C|δ|α2 ∀δ ∈ [−1, 1].

• g contains a Lie subalgebra isomorphic to sl3n−3 for n ≥ 2, and there is
α ∈ (0, 1] and C > 0 such that for every X ∈ E,

(1.5) ‖T (n)
δ − T

(n)
0 ‖B(L2(Sn;X)) ≤ C|δ|α2 ∀δ ∈ [−1, 1].

All the conditions (1.3), (1.4) and (1.5) imply that X has nontrivial type, and
we believe that they are actually all equivalent. However, we only know that the
condition when g contains sp4 is formally stronger that when it contains sl3, and
the condition (1.5) becomes formally weaker when n grows. When X is a Hilbert
space, both (1.3) and (1.4) hold with α = 1. Therefore, (1.3) and (1.4) hold if X
is isomorphic to a subspace of an interpolation space [X0, X1]α between a Hilbert
space X1 and an arbitrary Banach space X , or more generally if X is θ-Hilbertian
(with θ = α) in the sense of [20]. This holds in particular if X is isomorphic
a subspace of a superreflexive Banach lattice [19]. This includes for example all
reflexive Sobolev spaces or Besov spaces.

Since every real simple Lie algebra of real rank ≥ 2 contains a Lie subalgebra
isomorphic to sl3 or sp4, the preceding implies that every higher rank lattice has
strong (T) with respect to θ-Hilbertian Banach spaces, but the results are more
general as they include some non superreflexive spaces, for example those having
good enough type and cotype exponents, see [21].

We end this introduction with another particular case of the above theorem (see
[11] for the proof that the assumption in Corollary 1.6 implies that (1.5) holds for
n large enough).

Corollary 1.6. Let X be a Banach space for which there is β < 1
2 and C such

that, for every integer k, every subspace of X of dimension k is at Banach-Mazur
distance ≤ Ckβ from ℓk2. There is NX such that every lattice in a connected simple
Lie group of real rank ≥ NX has strong property (T) with respect to X.

Theorem 1.3, as well as its Banach space generalizations, is proven in several
steps. The first step is to prove the Theorem for the basic building blocks of
higher rank groups, namely for G = SL3(F), Sp4(F) for F = R,Qp or Fp((t)), or

G = S̃p4(R). This is achieved in Section 3. The second step is to extend this to
all higher rank groups in Section 4. The last step is to deal with lattices in such
groups in Section 5. A crucial ingredient is the fact that higher rank lattices are
exponentially integrable.

1.1. Acknowledgements. I thank David Fisher and Tim de Laat for many in-
teresting conversations and useful comments. I thank François Maucourant for
allowing me to include his proof of Theorem 5.3, much more elementary and gen-
eral than my initial argument based on the reduction theory of S-arithmetic lattices.
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Even though this argument is no longer present in the final version of this work, I
wish to thank Olivier Täıbi and Kevin Wortman for their very patient explanations
on the reduction theory of S-arithmetic lattices in positive characteristic.

2. Preliminaries

2.1. Notation. If G is a locally compact group, we will denote by Pc(G) the set of
all compactly supported Borel probability measures on G. To lighten the notation,
the convolution of probability measures m1,m2 ∈ Pc(G) will be written as m1m2.
So ∫

fd(m1m2) =

∫∫
f(g1g2)dm1(g1)dm2(g2).

We view Pc(G) as a set of linear forms on the space of continuous functions on
G, and equip it with the restriction of the weak-* topology.

IfX,X ′ are Banach spaces, a map π : G → B(X,X ′) is called strongly continuous
if for every x ∈ X , the map g ∈ G 7→ π(g)x ∈ X ′ is continuous. In that case, for
every m ∈ Pc(G), we denote by π(m) ∈ B(X,X ′) the operator x 7→

∫
π(g)xdm(x)

(Bochner integral). By applying the definitions, we readily obtain the following.

Lemma 2.1. If π : G → B(X,X ′) is strongly continuous, then the map π : Pc(G) →
B(X,X ′) is still strongly continuous.

We recall the definition of Lafforgue’s strong property (T).
Fix a left Haar measure dg on G. If ℓ is a length function on locally compact

groupG, denote by Cℓ(G) the Banach algebra obtained by completion of convolution
algebra Cc(G) under the norm ‖f‖ℓ = sup{‖π(f)‖} where the supremum is over all
strongly continuous representations π of G on a Hilbert space for which ‖π(g)‖ ≤
eℓ(g) for every g ∈ G. As for measures, π(f) is here the operator x 7→

∫
f(g)π(g)xdg.

For example, if ℓ = 0, we obtain C∗(G), the full C∗-algebra of G.

Definition 2.2. (Lafforgue) A locally compact group G has strong property (T) if
for every length function ℓ, there exists s > 0 such that for every c ≥ 0 the Banach
algebra Csℓ+c(G) has a Kazhdan projection, i.e. an idempotent P such that π(P ) is
a projection on the space of invariant vectors for every representation π satisfying
‖π(g)‖ ≤ esℓ(g)+c for every g ∈ G

A justification for this definition is the following well-known characterization of
property (T), which in particular asserts that the particular case ℓ = 0, c = 0 in
Definition 2.2 is equivalent to property (T).

Proposition 2.3. For a locally compact group G, the following are equivalent.

(1) G has property (T).
(2) There is a compactly supported probability measure µ on G such that, for

every unitary representation π of G on a Hilbert, ‖π(µ) − Pπ‖ ≤ 1
2 , where

Pπ is the orthogonal projection on the space of invariant vectors and the
norm is the operator norm on G.

(3) G has a symmetric compact generating set Q and there is a sequence µn of
probability measures supported in Qn such that, for every unitary represen-
tation π of G on a Hilbert, ‖π(µn)− Pπ‖ ≤ 2−n.

(4) for every length function ℓ on G, there are constants C, s > 0 and a sequence
µn of probability measures supported in {g ∈ G|ℓ(g) ≤ n} such that, for
every unitary representation π of G on a Hilbert, ‖π(µn)− Pπ‖ ≤ Ce−sn.
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(5) C∗(G) has a Kazhdan projection.

Remark 2.4. Actually this proposition holds representation-by-representation: given
a unitary representation π of a locally compact group G, the following are equiva-
lent:

• π has spectral gap in the sense that the orthogonal of the space of invariant
vectors does not carry almost invariant vectors.

• there is a compactly supported probability measure µ on G such that
‖π(µ)− Pπ‖ ≤ 1

2 .
• there is a symmetric compact subset Q ⊂ G, and a sequence of probability
measures µ on Qn such that ‖π(µn)− Pπ‖ ≤ 2−n.

• for every length function ℓ on G, there are constants C, s > 0 and a se-
quence µn of probability measures supported in {g ∈ G|ℓ(g) ≤ n} such
that ‖π(µn)− Pπ‖ ≤ Ce−sn.

If one defines correctly a Kazhdan projection for arbitrary Banach-algebra comple-
tions of Cc(G) (see [22]), these definitions are in turn equivalent to the existence of
a Kazhdan projection for the completion of Cc(G) for the norm ‖f‖ = ‖π(f)‖.

If E is a class of Banach spaces, one can denote similarly by Cℓ,E(G) the Banach
algebra obtained by completion of Cc(G) under the norm ‖f‖ℓ,E = sup{‖π(f)‖}
where the supremum is over all strongly continuous representations π of G on a
Banach space in E for which ‖π(g)‖ ≤ eℓ(g) for every g ∈ G, and define Banach
strong property (T) with respect to E as strong property (T) by replacing Csℓ+c(G)
by Csℓ+c,E(G).

Recall that a Banach space X has nontrivial Rademacher type (or simply non-
trivial type) if there exists p > 1 and a real number T such that

(2.1)

(
E‖
∑

i

εixi‖p
) 1

p

≤ T

(
∑

i

‖xi‖p
) 1

p

for every finite sequence xi in X , where εi are iid random variables uniformly dis-
tributed in {−1, 1}. This is equivalent to the fact that ℓ1 is not finitely representable
in X : there is N > 0 and c > 1 such that every linear map u between ℓ1N and every
N -dimensional subspace of X satisfies ‖u‖‖u−1‖ ≥ c.

More generally a class of Banach spaces E has nontrivial type if there exists p > 1
and T < ∞ such that (2.1) holds for every X ∈ E and every finite sequence (xi) in
X , or equivalently if ℓ1 is not finitely representable in E .

2.2. Why the naive attempt does not work. We now explain why the classical
notion of induction of representations, that we first recall, is not well-suited to
induce Strong (T) to non-cocompact lattices.

Let Γ be a lattice in a locally compact group G. Let Ω be a Borel fundamental
domain for G/Γ: Ω is a subset of Ω, belonging to the Borel σ-algebra, and such
that (ω, γ) ∈ Ω× Γ 7→ ωγ ∈ G is a bijection.

Let π be a representation of Γ on a Hilbert or Banach space X . Consider the

topological vector space X̃ of (Bochner-measurable) functions f : G → X satisfying
f(gγ) = π(γ)−1f(g), moded out by functions that vanish outside of a negligeable
set. Make G act on this space by left translation: π̃(g)f(h) = f(g−1h).
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It is natural to consider the Hilbert space of such functions satisfying moreover

(

∫

Ω

‖f(ω)‖2Xdω)
1
2 < ∞.

This space is naturally identified with L2(Ω;X). Under this identification, if gω =
(g · ω)α(g, ω) is the unique decomposition of gω in G = ΩΓ, then π̃(g) reads as

(π̃(g)f)(ω) = π(α(g−1, ω)−1)f(g−1 · ω) ∀g ∈ G,ω ∈ Ω.

The problem that occurs is that π̃(g) preserves L2(Ω;X) if and only if the function
ω 7→ ‖π(α(g−1, ω)−1‖ is essentially bounded on Ω:

Lemma 2.5. The norm of π̃(g) on L2(Ω;X) is equal to the essential supremum of
ω 7→ ‖π(α(g−1, ω)−1)‖.
Proof. Let Cg be the essential supremum of ‖π(α(g−1, ω)−1)‖. The inequality
‖(π̃(g)f)(ω)‖ ≤ ‖π(α(g−1, ω)−1)‖‖f(g−1 · ω)‖ implies that

‖(π̃(g)f)(x)‖2L2(Ω;X) ≤ C2
g

∫

Ω

‖f(g−1 · ω)‖2dω = C2
g‖f‖2L2(Ω;X)

because ω 7→ g−1 · ω preserves the measure on Ω.
For the other direction, for γ ∈ Γ, denote A = {ω ∈ Ω|α(g−1, ω)−1 = γ} =

Ω ∩ gΩγ−1. If A has positive measure, then for every x ∈ X we can consider

f = χAx. It has norm |A| 12 ‖x‖, and its image χgAπ(γ)x has norm |A| 12 ‖π(γ)x‖.
Taking the supremum over x yields the inequality ‖π̃(g)‖ ≥ ‖π(γ)‖. Taking the
supremum over all g such that Ω ∩ gΩγ−1 has positive measure prove that ‖π̃(g)‖
is larger than or equal to Cg. �

So in general π̃ is not a representation by bounded operators unless Γ is cocom-
pact or π is a uniformly bounded representation. There does not seem to be any

other reasonable pseudo-norm on X̃ for which π̃(g) is by bounded operators. There
is always the pseudo norm ‖f‖ = ∞ ∀f 6= 0, but this is clearly unreasonable. We
do not give a precise meaning to “reasonable”, but it should at least remember the
whole representation, for example by giving finite norm, for every x ∈ X , to the
constant function equal to x on Ω.

We mention however the construction in [9] where a pseudo-norm is constructed

on X̃, which, under the assumption that the bounded cohomology H1
b (Γ;π) is non

zero, gives rise to a nonzero space for which H1
b (G; X̃) is also non zero.

2.3. Comparing Theorem 1.1 and 1.3. We recall that Cℓ,E(G) has a Kazhdan
projection if and only if there is a sequence mn of signed2 compactly supported
measures on G with

∫
1dmn = 1 and C > 0 such that ‖mn−mn+1‖ℓ,E ≤ Ce−n and

such that limn ‖gmn − mn‖ℓ,E = 0 for every g ∈ G. Moreover, mn can be taken
to be of the form (m1)

n (the n-th convolution power of m1). In particular mn is
supported in {g|ℓ(g) ≤ nR} if m1 is supported in {g|ℓ(g) ≤ R}. Also, if E is stable
by duality and subspaces, then the preceding implies that limn ‖mng−mn‖ℓ,E = 0
for every g ∈ G. For details, we refer to [22] where these assertions were established.

Hence in the particular case when X0 = X1 = X2 = X and π is a representation
on X , property (*) for (G, ℓ) says a bit more than that Csℓ+c(G) has a Kazhdan
projection for every c > 0 : first it says that mn can be taken independant from c,
that C = O(e2c) and most importantly that mn can be taken to be positive.

2It is not known in general if mn can be taken to be positive.
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2.4. Basic properties. The first basic lemma implies that to prove Theorem 1.3,
it is enough to consider the word-length function with respect to some compact sym-
metric generating set (which exists because (*) is formally stronger than property
(T), which already implies compact generation [3]), or any other length function
quasi-isometric to it. Indeed, if ℓ is any length function on a locally compact com-
pactly generated group G, and Q is a compact symmetric generating set for G with
associated length function ℓQ, then there is a > 0 such that ℓ ≤ aℓQ. Namely the
supremum of ℓ on Q.

Lemma 2.6. Let ℓ, ℓ′ be two length functions, and a, b > 0 such that ℓ′ ≤ aℓ + b.
If (G, ℓ) has (∗E) then so does (G, ℓ′).

Proof. If (G, ℓ) has (∗E) with s, t, C and mn, it is immediate that (G, ℓ′) has (∗E)
with s

a , t/a, C
′ and m⌊(n−b)/a⌋, with C′ = Ce(2sb+ta+tb)/a. �

In each section of the paper, the proof of (*) or (∗E) is divided in two parts: one
first finds a sequence mn such that, if s > 0 is small enough and π is as in (*), then
π(mn) converges as in (1.1). Then one proves that (1.2) also holds. This second
part is always much harder than the first. The next remark shows that it is not
necessary to prove the norm convergence in (1.2).

Remark 2.7. In (*), condition (1.2) can be strengthened (or weakened). Indeed,
once one knows that (1.1) holds for every π as in (*), then for any µ1, µ2 ∈ Pc(G)
one can apply it to the new π′ given by π′(m) = π(µ1mµ2). Indeed, this π

′ satisfies
the same assumptions, but with L replaced by Le

s
2 (R1+R2) if the support of µi is

contained in {g|ℓ(g) ≤ Ri}. And so there is µ1Pµ2 ∈ B(X0, X2) such that for every
n,

(2.2) ‖π(µ1mnµ2)− µ1Pµ2‖ ≤ CL2es(R1+R2)−tn.

And so (1.2) is equivalent to each of the following properties:

• δgPδg′ = P .

• ‖π(gmng
′)− π(mn)‖ ≤ 2CL2es(ℓ(g)+ℓ(g′))−tn.

• for every x ∈ X0, limn ‖π(gmng
′)x − π(mn)x‖ = 0.

• for every x ∈ X0, limn π(gmng
′)x− π(mn)x = 0 weakly.

Lemma 2.8. If (G1, ℓ1) and (G2, ℓ2) have (*) (respectively (∗E)) then so does
(G1 ×G2, ℓ) where ℓ(g1, g2) = max(ℓ1(g1), ℓ2(g2)).

Proof. For i = 1, 2, let si, ti, Ci,m
(i)
n be as in (∗E) for Gi. Define mn = m

(1)
n ⊗m

(2)
n .

By definition it is a probability measure supported in {g ∈ G1 ×G2|ℓ(g) ≤ n}.
Let π : G1×G2 → B(X0, X2) be as in (∗E) for C, s. We claim that the conclusion

of (∗E) holds if s > 0 is small enough.
We can compute

‖π(mn)− π(mn+1)‖ ≤ ‖π(m(1)
n ⊗m(2)

n )− π(m(1)
n ⊗m

(2)
n+1)‖

+ ‖π(m(1)
n ⊗m

(2)
n+1)− π(m

(1)
n+1 ⊗m

(2)
n+1)‖.

By (1.1) applied to the map g2 ∈ G2 7→ π(m
(1)
n ⊗ δg2), if s ≤ s2 the first term is

dominated by 2C2L
2e2sn−t2n. Similarly, if s ≤ s1 the second term is dominated by

2C1L
2e2s(n+1)−t1n. So if s = min( t13 ,

t2
3 , s1, s2) then

‖π(mn)− π(mn+1)‖ ≤ (2C1e
2s + 2C2)L

2e−sn.
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This implies that π(mn) is Cauchy and that (1.1) holds with t = s and C =
2C1e

2s+2C2

1−e−s . The validity of (1.2) follows with a similar proof, taking into account
Remark 2.7. �

3. Proof of Theorem 1.3 for SL3 and Sp4

The aim of this section is to prove Theorem 1.3, Theorem 1.4 and Theorem 1.5

for SL3, Sp4 and S̃p4(R), and Theorem 1.5 for SL3n−3. As we shall see, the proofs
use the same two main ingredients as the proofs of strong property (T) : one is
harmonic analysis in the maximal compact subgroups, and the other is a careful
exploration process of the Weyl chambers using some elementary moves coming
from the maximal compact subgroup. These ingredients are the same, but they are
combined in a different way. We will give a complete and essentially self-contained
proof for SL3 and be much more sketchy for the other groups. This allows us to
divide the length of the paper by a factor of at least 2, and we believe that the
interested reader will be able to fill the details. The proof for SL3(F) is essentially
independant from the local field, but for a better readability we have chosen to first
focus on the real case, and then explain the small changes that one has to make to
deal with non-archimedean local fields.

3.1. Case of SL3(R). We prove the theorem for G = SL3(R). We denote by
K = SO(3) ⊂ G the maximal compact subgroup. By Lemma 2.6 it is enough to
prove the theorem for the length function ℓ(g) = max(log ‖g‖, log ‖g−1‖), where
‖ · ‖ is the norm induced from the natural K-invariant euclidean norm on R3:

‖(s1, s2, s3)‖ =
(
s21 + s22 + s23

) 1
2 .

More precisely, we will prove that (SL3(R), ℓ) has (*) with the parameters s < 1
4 , t =

1
2 − 2s, C = 100

1−4s and mn any K-biinvariant probability measure on {g|n − 1 ≤
ℓ(g) ≤ n}.

Let π as in Theorem 1.3 with s < 1
4 . Denote by d the distance on the compactly

supported Borel probability measures on G defined by

d(m,m′) = ‖π(m)− π(m′)‖B(X0,X2).

The following lemma lists the properties of d. In (3) and in the rest of the proof, λ
stands for the left regular representation of K. It is the representation on L2(K)
given by λ(k)f(·) = f(k−1·) for every k ∈ K and f ∈ L2(K). The crucial property
is (3). It is an incarnation for the compact group K of more general phenomenon:
uniformly bounded 2-step representations of amenable groups are governed by the
left regular representation. We do not elaborate on this as all we need is (3).

Lemma 3.1. The distance d has the following properties.

(1) (Convexity) For every m1,m2 ∈ Pc(G),

d(
m1 +m2

2
,
m′

1 +m′
2

2
) ≤ 1

2
(d(m1,m

′
1) + d(m2,m

′
2)).

(2) (Lower-semicontinuity) If Q ⊂ G is compact and mi (resp. m′
i) is a net

of probability measures supported in Q and converging weak-* to m (resp.
m′), then d(m,m′) ≤ lim infi d(mi,m

′
i).

(3) If µ, µ′ are probability measures on K and g1, g2 ∈ G then

d(δg1µδg2 , δg1µ
′δg2) ≤ L2esℓ(g1)+sℓ(g2)‖λ(µ− µ′)‖B(L2(K)).
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Proof. Property (1) is obvious, and (2) is immediate from the strong continuity of
π0, π1 (and hence of π), see Lemma 2.1. For (3), consider x ∈ X0 and y ∈ X∗

2 . For
every k ∈ K define F (k) = π0(k

−1g2)x ∈ X1 and H(k) = π1(g1k)
∗y ∈ X∗

1 . For
k1, k2 ∈ K we have

〈H(k1), F (k2)〉 = 〈y, π(g1k1k−1
2 g2)x〉.

We view the continuous function F as an element of L2(K;X1). Its norm is less
than supk∈K ‖π0(k

−1g2)x‖ ≤ Lesℓ(g2)‖x‖. Similarly, we view H in the topological

dual L2(Ω;X1)
∗, and it has norm ≤ Lesℓ(g1)‖y‖X∗

2
. We can compute

〈H, (λ(µ) ⊗ idX1)(F )〉 =
∫∫

K

〈H(k1), F (k−1
2 k1)〉dµ(k2)dk1 = 〈y, π(δg1µδg2)x〉.

One deduces

|〈y, π(δg1 (µ− µ′)δg2)x〉| ≤ ‖λ(µ− µ′)⊗ idX1‖‖F‖L2(K;X1)‖H‖L2(K;X1)∗ ,

which is less than

‖λ(µ− µ′)‖B(L2(K))L
2esℓ(g1)esℓ(g2)‖x‖‖y‖

because X1 is a Hilbert space. The lemma follows by taking the supremum over all
x and y in the unit balls of X1 and X∗

2 respectively. �

Remark 3.2. If we are in the setting of property (∗E) (that is if X1 is a Banach
space in E), then Lemma 3.1 and its proof still holds, with (3) replaced by

d(δg1µδg2 , δg1µ
′δg2) ≤ L2esℓ(g1)+sℓ(g2)‖λ(µ− µ′)‖B(L2(K;X1)).

We shall prove Theorem 1.3 for SL3(R) in the generality given by the previous
lemma. So let d be a distance on the compactly supported probability measures on
G satisfying the three conditions (1), (2) and (3) in the previous lemma.

We say that a probability measure ν on a compact group K is admissible if it
is absolutely continuous with respect to the Haar measure on K and if the Radon-
Nikodym derivative is strictly positive and is a coefficient of a finite dimensional
representation of K. We say that ν is central if it belongs to the center of the
convolution algebra of Borel measures on K.

Proposition 3.3. Denote by λK the Haar probability measure on K, seen as a
probability measure on G. There exists C > 0 such that if s < 1

4 and t := (12 −2s) >
0, then

(3.1) d(λKδgλK , λKδg′λK) ≤ C

1− 4s
L2max(e−tℓ(g), e−tℓ(g′)).

For every admissible and central probability measure ν on K, there is C(ν) ∈ R
such that for every g ∈ G,

(3.2) d(νδgλK , λKδgλK) ≤ C(ν)L2e−tℓ(g).

This proposition easily implies the Theorem. Indeed, the first half implies that
there is P in the completion of (Pc(G), d) (which is contained in B(X0, X2) in our
case) such that d(λKδgλK , P ) ≤ C

1−4sL
2e−tℓ(g).

More generally if m0 ∈ Pc(G), applying the same to d′(m,m′) = d(m0m,m0m
′)

(which satisfies the same assumptions than d with L2 replaced by L2esR if m0 is
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supported in {g, ℓ(g) = R}), we obtain m0P in the completion of (Pc(G), d) such
that

(3.3) d(m0λKδgλK ,m0P ) ≤ C

1− 4s
L2esR−tℓ(g).

Lemma 3.4. The map m0 7→ m0P is lower-semicontinuous.

Proof. Let mi (resp. m′
i), i ∈ I be a net converging weak-* to m0 (resp. m′

0) and
supported in a common compact subset of G, say {g, ℓ(g) ≤ R}. For every g ∈ G,
(3.3) yields

d(m0P,m′

0
P ) ≤ 2

C

1− 4s
L2esR−tℓ(g) + d(m0λKδgλK ,m′

0λKδgλK).

By the lower-semicontinuity of d, we deduce

d(m0P,m′

0
P ) ≤ 2

C

1− 4s
L2esR−tℓ(g) + lim inf

i
d(miλKδgλK ,m′

iλKδgλK),

which (by (3.3)) is bounded above by

4
C

1− 4s
L2esR−tℓ(g) + lim inf

i
d(mi

P,m′

i
P ).

The lemma follows by making ℓ(g) → ∞. �

The second half of the proposition implies that d(νδgλK , P ) ≤ ( C
1−4s+C(ν))L2e−tℓ(g)

if ν is an admissible and central probability measure on K. Using the convexity (1)
and the lower-semicontinuity (2) of d we get that for g1 ∈ G,

d(νδg1λKδgλK , P ) ≤ (
C

1− 4s
+ C(ν))L2e−tℓ(g)+tℓ(g1).

Making ℓ(g) → ∞, we obtain νδg1
P = P . By the Peter-Weyl theorem we can find a

sequence νn of admissible and central probability measures on K converging weak-*
to δ1. By Lemma 3.4 we deduce that

d(P, δg1P ) ≤ lim inf
i

d(νiP, νiδg1P ) = 0.

To summarize, if mg is the K-biinvariant probability measure on KgK, we have

proven that d(mg, P ) ≤ C
1−4sL

2e−tℓ(g) and limg d(δg1mg, P ) = 0 for every g1 ∈ G.

If we consider the distance (m,m′) 7→ d(m̌, m̌′) for m̌ the image of m by the
inverse map3, we also have limg d(mgδg2 , P ) = 0 for every g2 ∈ G, and hence
limg d(δg1mgδg2 , P ) = 0. This proves the theorem.

It remains to prove Proposition 3.3. As in Lafforgue’s original proof [13] (see also
the exposition in [21]), the proof is based on the harmonic analysis in the compact
group K.

We introduce the subgroups U, Ũ ⊂ K of block-diagonal matrices

U =







∗ 0 0
0 ∗ ∗
0 ∗ ∗





 ∩K.

Ũ =







∗ ∗ 0
∗ ∗ 0
0 0 ∗





 ∩K.

3This new distance satisfies the same hypotheses as d.
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U and Ũ are both isomorphic to O(2).
For δ ∈ [0, 1] we introduce the following matrix kδ ∈ K with entry (1, 1) equal

to δ :

kδ =




δ −
√
1− δ2 0√

1− δ2 δ 0
0 0 1


 .

The fundamental inequality proven by Lafforgue in [13, Lemme 2.2] is that

(3.4) ‖
∫∫

U×U

λ(ukδu
′)− λ(uk0u

′)dudu′‖B(L2(K)) ≤ 2|δ| 12 .

This implies more generally that if µ1, µ2 are admissible probability measures on
U , then

(3.5) ‖
∫∫

U×U

λ(ukδu
′)− λ(uk0u

′)dµ1(u)dµ2(u
′)‖B(L2(K)) ≤ C(µ1, µ2)|δ|

1
2 .

See [13] or [11, Proposition 2.1].
For α, β, γ ∈ R with α+ β + γ = 0, we denote

D(α, β, γ) =



eα 0 0
0 eβ 0
0 0 eγ


 .

For α ≥ 0, we simply writeDα forD(2α,−α,−α). It has norm e2α and ℓ(Dα) = 2α.
We start with the proof of (3.1). Denote by Λ the Weyl chamber, that is Λ =

{(a1, a2, a3) ∈ R3|a1 ≥ a2 ≥ a3, a1 + a2 + a3 = 0}. For (a1, a2, a3) ∈ Λ denote

c(a1, a2, a3) = λKδD(a1,a2,a3)λK .

By the KAK-decomposition, (3.1) is equivalent to the inequality

d(c(a1, a2, a3), c(a
′
1, a

′
2, a

′
3)) ≤

C

1− 4s
L2max(e−tmax(a1,−a3), e−tmax(a′

1,−a′

3)).

Since Dα commutes with every element of U , we can write

λKδDαkδDα
λK = λKδDα

λUδkδ
λUδDα

λK .

It therefore follows from (3.4) and the properties of d in Lemma 3.1 that

d(λKδDαkδDα
λK , λKδDαk0Dα

λK) ≤ 2L2e4sα|δ| 12 .
To make this formula more readable we compute the KAK decomposition ofDαkδDα.
For δ = 0, we have

(3.6) Dαk0Dα = D(α, α,−2α)k0.

For δ 6= 0 we have the lemma.

Lemma 3.5. For every r ∈ [α, 4α] there are δ ∈ [0, 1] and ur,α, u
′
r,α ∈ Ũ such that

δ ≤ er−4α ≤ 1 and

DαkδDα = ur,αD(r, 2α− r,−2α)u′
r,α.

Proof. For δ 6= 0, g = DαkδDα is block diagonal with one eigenvalue e−2α and
another block of the form DkD for D = diag(e2α, e−α) and k an isometry. In
particular ‖g−1‖ = e2α. If we define rα(δ) ∈ [0,∞) by ‖g‖ = erα(δ) we therefore

have that g ∈ ŨD(rα(δ), 2α− rα(δ),−2α)Ũ . By saying that the norm of g is larger
that the absolute value of its (1, 1) entry we get the desired inequality δe4α ≤ erα(δ).
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It remains to show that rα is surjective. But rα is continuous on the interval [0, 1]
so its image contains the interval [rα(0), rα(1)] = [α, 4α]. We do not need it, but it
is not hard to check that rα is actually bijective from [0, 1] onto [α, 4α]. �

In particular for every (a1, a2, a3), (a
′
1, a

′
2, a

′
3) ∈ Λ satisfying a3 = a′3, by applying

the preceding lemma with −2α = a3 = a′3 we have that,

(3.7) d(c(a1, a2, a3), c(a
′
1, a

′
2, a

′
3))| ≤ 4L2(e

a1
2 +(1−2s)a3 + e

a′

1
2 +(1−2s)a′

3).

Notice that if a2 ≥ −1 we have a1

2 + (1− 2s)a3 = a1+a2+a3

2 + (12 − 2s)a3 − a2

2 ≤
1
2 + (12 − 2s)a3. Therefore (3.7) implies

(3.8) d(c(a1, a2, a3), c(a
′
1, a

′
2, a

′
3)) ≤ 14L2e(

1
2−2s)a3 if a3 = a′3 and a2, a

′
2 ≥ −1.

If we apply the same for the distance d′(m,m′) = d(ρ∗m, ρ∗m
′) for ρ the Cartan

automorphism

g 7→



0 0 1
0 1 0
1 0 0


 (g−1)t



0 0 1
0 1 0
1 0 0




−1

,

we get that

(3.9) d(c(a1, a2, a3), c(a
′
1, a

′
2, a

′
3)) ≤ 14L2e−( 1

2−2s)a1 if a1 = a′1 and a2, a
′
2 ≤ 1.

In particular if cr = c(r, 0,−r) and 1 ≤ r1 ≤ r2 ≤ r1 + 1,

d(cr2 , cr1) ≤ d(cr2 , c(r2, r1 − r2,−r1)) + d(c(r2, r1 − r2,−r1), cr1)

≤ 14L2(e−( 1
2−2s)r2 + e−( 1

2−2s)r2).

This implies (since
∑

k≥0 e
−( 1

2−2s)k ≤ 3
1−4s ) that for every r, r′ ≥ 1,

d(cr , cr′) ≤
42

1− 4s
L2 max(e−( 1

2−2s)r, e−( 1
2−2s)r′).

It follows easily from the above estimates that

d(c(a1, a2, a3), c(a
′
1, a

′
2, a

′
3)) ≤

70

1− 4s
L2max(e−( 1

2−2s)max(a1,−a3), e−( 1
2−2s)max(a1,−a3)),

which is exactly (3.1). The previous computations are best understood on a picture
(see Figure 1) : (3.8) expresses that c is almost constant on lines of slope − 1

2 in the
region s ≥ −1, whereas (3.9) expresses that c is almost constant on vertical lines
in the region s ≤ 0. These estimates are combined by the zig-zag path in Figure 1.

We now move to the proof of (3.2). We start by a general lemma, valid for any
pair of compact groups U ⊂ K.

Lemma 3.6. Every admissible probability measure ν on K can be written as ν1µ
for admissible probability measures ν1 on K and µ on U .

Proof. By assumption, the Radon-Nikodym derivative dν/dk of ν is positive and
is a coefficient of a finite dimensional representation V of K. Denote by CV the
finite dimensional space of real-valued matrix coefficients of V , equipped (say) with
the L∞(K)-norm. Let µn be a sequence of admissible probability measures on U
converging weak-* to δe. Then Tn : f ∈ CV 7→ f ∗ µn ∈ CV converges pointwise to
the identity. Since CV has finite dimension, for n large enough this linear map is
invertible and there is a sequence fn ∈ CV converging to dν/dk such that Tnfn =
dν/dk. Since dν/dk is positive, so is fn for n large enough. In other words,
ν1 = fndk is a probability measure such that ν1µn = µ, as requested. �
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r = s

s = t

s = −1

s = 0

Figure 1. The zig-zag path in the Weyl chamber Λ.

Let us fix ν an admissible and central probability measure on K. Let ν = ν1µ
be a decomposition given by the previous lemma. Since Dα commutes with every
element of U , one can write for α > 0 and δ ∈ [−1, 1]

νδDαkδDα
λK = ν1δDα

µδkδ
λUδDα

λK .

By the convexity and lower-semicontinuity of d, the distance

d(νδDαkδDα
λK , νδDαk0Dα

λK)

is therefore bounded by

sup
k,k′∈K

d(δkDα
µδkδ

λUδDαk′ , δkDα
µδk0λUδDαk′).

By combining this inequality with the last point in Lemma 3.1, (3.5), (3.6) and
Lemma 3.5, we get a constant C(ν) such that for every α and r ∈ [α, 4α]

d(νδur,αD(r,2α−r,−2α)λK , νδD(α,α,−2α)λK) ≤ C(ν)L2e
r
2−(2−4s)α.

In particular and as for (3.8), if a = (a1, a2, a3) ∈ Λ satisfies a2 ≥ 0 and a3 = −2α,

there is ua ∈ Ũ such that

d(νδuaD(a1,a2,a3)λK , νδD(α,α,−2α)λK) ≤ C(ν)L2e(1−4s)α.

Let us apply the preceding to the distance d′(m,m′) = d(δuu−1
a
m, δuu−1

a
m′) for some

u ∈ Ũ , which satisfies the same assumptions as d. Note that since ν is central and
D(α, α,−2α) commutes with uu−1

a , we have

δuu−1
a
νδuaD(a1,a2,a3)λK = δuνδD(a1,a2,a3)λK

and

δuu−1
a
νδD(α,α,−2α)λK = νδD(α,α,−2α)λK .

Therefore we obtain

(3.10) d(δuνδD(a1,a2,a3)λK , νδD(α,α,−2α)λK) ≤ C(ν)L2e(1−4s)α.
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In particular, by the triangle inequality

d(δuνδD(a1,a2,a3)λK , νδD(a1,a2,a3)λK) ≤ 2C(ν)L2e(
1
2−2s)a3

for every u ∈ Ũ and (a1, a2, a3) ∈ Λ with a2 ≥ 0. Similarly by applying the Cartan
automorphism ρ we obtain

d(δuνδD(a1,a2,a3)λK , νδD(a1,a2,a3)λK) ≤ 2C(ν)L2e−( 1
2−2s)a1

for every u ∈ U and (a1, a2, a3) ∈ Λ with a2 ≤ 0. Indeed, ρ exchanges U and Ũ
and preserves ν.

Consider for a moment the particular case a2 = 0. In that situation both esti-
mates can be applied, and give that

d(δuνδD(a,0,−a)λK , νδD(a,0,−a)λK) ≤ 2C(ν)L2e−( 1
2−2s)a

for every u ∈ U ∪ Ũ . But every element of K can be written as a product of ≤ 3

elements of U ∪ Ũ , so the preceding inequality implies

d(δkνδD(a,0,−a)λK , νδD(a,0,−a)λK) ≤ 6C(ν)L2e−( 1
2−2s)a

for every k ∈ K. If we average with respect to K (and use one last time the
convexity and lower-semicontinuity of d) we obtain

d(λKδD(a,0,−a)λK , νδD(a,0,−a)λK) ≤ 6C(ν)L2e−( 1
2−2s)a.

By (3.10) we get

d(λKδD(α,α,−2α)λK , νδD(α,α,−2α)λK) ≤ 8C(ν)L2e−(1−4s)α.

By (3.10) again this implies that

d(λKδD(a1,a2,a3)λK , νδD(a1,a2,a3)λK) ≤ 10C(ν)L2e(
1
2−2s)a3

for every (a1, a2, a3) ∈ Λ with a2 ≥ 0. By symmetry (i.e. by conjugating by the
Cartan automorphism) we also get

d(λKδD(a1,a2,a3)λK , νδD(a1,a2,a3)λK) ≤ 10C(ν)L2e−( 1
2−2s)a1

for every (a1, a2, a3) ∈ Λ with a2 ≤ 0. To summarize, we have proven that

d(λKδgλK , νδgλK) ≤ 10C(ν)L2e−( 1
2−2s)ℓ(g)

for every g of the form D(a1, a2, a3). Considering the KAK decomposition, we
obtain the validity of the preceding inequality for g ∈ G be arbitrary. This concludes
the proof of (3.2) and therefore of Theorem 1.3 for SL3(R).

Remark 3.7. The only place in the proof where we used in an essential way that
X1 is a Hilbert was in the conclusion (3) of Lemma 3.1, which allowed us to exploit
(3.4) and (3.5). However, for Banach spaces we have Remark 3.2, and the rest of
the above proof shows that (SL3(R), ℓ) satisfies (∗E) provided that there is α > 0
and C > 0 such that for every δ ∈ [−1, 1] and X ∈ E ,

‖
∫∫

U×U

λ(ukδu
′)− λ(uk0u

′)dudu′‖B(L2(K;X)) ≤ C|δ|α2

and

‖
∫∫

U×U

λ(ukδu
′)− λ(uk0u

′)dµ1(u)dµ2(u
′)‖B(L2(K;X)) ≤ C(µ1, µ2)|δ|

α
2 .
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The first equality is equivalent to (1.4), and the second actually follows from the
first, see [11, Proposition 2.1]. This proves Theorem 1.5 for the group G = SL3(R).

3.2. Case of SL3(F). The proof of Theorem 1.3 for G = SL3(F) and F = Qp or
Fp((t)) for some prime number p is essentially the same as for F = R.

We only give a rapid overview of the small adjustements one has to make. In
that case the maximal compact subgroup K ⊂ G is SL3(O) if O is the ring of units
of F (namely O = Zp or Fp[[t]]). It is more natural to prove the theorem for the
length function ℓ(g) = max(log ‖g‖, log ‖g−1‖), where ‖·‖ is the norm induced from
the natural K-invariant norm ‖(s1, s2, s3)‖ = max(|s1|, |s2|, |s3|) on F 3 (where |s|
is the standard absolute value on F , i.e. the amount by which the Haar measure
on (F,+) is scaled under the multiplication by s). With this normalization, as for

the case F = R, Theorem 1.3 holds with any s < 1
4 , t = 1

2 − 2s, C = C0p
1−4s for

a constant universal constant C0 (independant from p) and for any K-biinvariant
sequence mn supported in {g ∈ G|ℓ(g) = n}.

Indeed, Lemma 3.1 holds in this setting, and all amounts to proving Proposition

3.3. For that, one defines the subgroups U, Ũ by the same formulas as for the real
case, but in that case they are both isomorphic to GL2(O). The matrix kδ ∈ K is
defined for every δ ∈ O by the formula

kδ =



δ −1 0
1 0 0
0 0 1




Both formulas (3.4) and (3.5) hold in this setting. This can be derived from [13],
see also the more general Proposition 3.10 below.

The Weyl chamber is now replaced by its discretized version Λ = {(a1, a2, a3) ∈
Z3|a1 ≥ a1 ≥ a3, a1 + a2 + a3 = 0}, which still parametrizes the K-double cosets
by the matrices

D(α, β, γ) =



eα 0 0
0 eβ 0
0 0 eγ


 ,

where e denotes the inverse of a uniformizer in O. To fix ideas, e = p−1 if F = Qp

and e = t−1 if F = Fp((t)).
Lemma 3.5 is replaced by its formal analogue

Lemma 3.8. Let α ∈ N. For every integer r ∈ [α, 4α] there are δ ∈ O and

ur,α, u
′
r,α ∈ Ũ such that |δ| ≤ |e|r−4α ≤ 1 and

DαkδDα = ur,αD(r, 2α− r,−2α)u′
r,α.

The proof is similar and actually even simpler than in the archimedean case,
because when F is non-archimedean the operator norm of a matrix g ∈ SL3(F ) is
simply ‖g‖ = maxi,j |gi,j |. Therefore one may take δ = er−4α.

Proposition 3.3 is deduced from (3.4), (3.5) and the preceding lemma in the
same way as in the real case. There is just one difficulty that occurs from the
discreteness of Λ. Indeed, since α has to be an integer in the preceding lemma,
one obtains (3.7) only when a3 = a′3 = −2α is even. A way to obtain the same
inequality also when a3 = a′3 is odd (say equal to 1 − 2α for an integer α) is
to apply the same reasoning (by replacing DαkδDα by DαkδDα−1) to the new
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distance d′(m,m′) = d(u0(m), u0(m
′)) for u0 is the (non-inner) automorphism of

G preserving U and given by

(3.11) u0(g) =



e−1 0 0
0 1 0
0 0 1


 g



e 0 0
0 1 0
0 0 1


 .

Indeed, one checks easily that u0(DαkδDα−1)) ∈ ŨD(a1, a2, a3)Ũ if δ = e2a3−a1 ,

and to D(α, α − 1, 1 − 2α)Ũ if δ = 0, and this leads to the validity of (3.7) also
when a3 = a′3 is odd, at the cost of replacing L by L|e|s. The reason for this is that,
since u0 does not preserve the length but only satisfies |ℓ(g) − ℓ(u0(g))| ≤ log |e|,
Lemma 3.1 holds for d′ with L replaced by L|e|s. The same adjustment has to be
made to obtain (3.2).

Another way to fix this parity issue is to work from the beginning with PGL3(F)
where the automorphism u0 becomes inner, as in [13].

Remark 3.9. When X1 is a Banach space, Remark 3.7 holds similarly, except that
in that case we know exactly for which Banach spaces there exists α,C > 0 such
that for every δ ∈ O

‖
∫∫

U×U

λ(ukδu
′)− λ(uk0u

′)dudu′‖B(L2(K;X)) ≤ C|δ|α2 .

These are exactly the Banach spaces of nontrivial Rademacher type, see [14] or
Proposition 3.10 below. This proves Theorem 1.4 for the group G = SL3(F).

We are left to prove the following proposition, which is a variant of [14, Lemme
4.4].

Proposition 3.10. Let E be a class of Banach spaces with nontrivial type. There

is α > 0, and for every admissible probability measures µ1, µ2 on Ũ , a constant
C(µ1, µ2) such that

‖
∫∫

U×U

λ(ukδu
′)− λ(uk0u

′)dµ1(u)dµ2(u
′)‖B(L2(K;X)) ≤ C(µ1, µ2)|δ|

α
2 .

The starting point is the following consequence of the Hausdorff-Young inequality
of Bourgain [6], see [14, Corollaire 2.2]: there is ε > 0 and C > 0 such that for
every finite abelian group G, every X ∈ E and every f : G → X ,

(3.12)


∑

χ∈Ĝ

‖Es∈Gχ(s)f(s)‖2



1
2

≤ C(#G)−ε

(
∑

s∈G

‖f(s)‖2
) 1

2

.

Let us fix α ∈ (0, ε). We shall prove Proposition 3.10 for this value of α, by
applying the preceding to the additive group of the residue rings On := O/e−nO
for different values of n, in which case C(#G)−ε = Cp−εn. We start with the
following consequence, which follows rather easily from Lemma 3.2 in [14].

Lemma 3.11. There is a constant C′ such that for every integer h ≥ 1, every
nontrivial character χ of the additive group of Oh and every integer n ≥ h, the
operator Sn,χ ∈ B(ℓ2(On ×On)) defined by

Sn,χf(y, t) = Ex∈On,z∈Oh
χ(z)f(x, t+ eh−nz + xy)

satisfies
‖Sn,χ‖B(ℓ2(On×On;X)) ≤ C′p−α(n−h).



STRONG PROPERTY (T) FOR HIGHER RANK LATTICES 19

for every X ∈ E.
Proof. Define h0 as the smallest integer satisfying (Cp−εh0) ≤ p−αh0 . We consider
three cases.

Case 1: χ is non-degenerate, that is χ is not trivial on the subgroup e−h+1O/e−hO ⊂
Oh, and h ≥ h0. In that case, Lemma 3.2 in [14] applies, and together with (3.12),
shows that

‖Sn,χ‖B(ℓ2(On×On;X)) ≤ (Cp−εh)
n
h
−1 ≤ p−α(n−h),

where the last inequality holds because (Cp−εh) ≤ p−αh (we assumed h ≥ h0).
Case 2: 1 ≤ h < h0 and χ is non-degenerate. The homomorphism z ∈ Oh 7→

eh−h0z ∈ Oh0 induces a surjective q : Ôh0 → Ôh, and for every z̃ ∈ Oh0 , the
orthogonality of characters implies that

∑

χ̃∈q−1(χ)

χ̃(z̃) =

{
ph0−hχ(z) if z̃ = eh−h0z ∈ eh−h0Oh

0 otherwise.

As a consequence we have Sn,χ =
∑

χ̃∈q−1(χ) Sn,χ̃, and moreover every character in

q−1(χ) is non-degenerate. Taking into account Case 1, we obtain

‖Sn,χ‖B(ℓ2(On×On;X)) ≤ ph0−hp−α(n−h0) = p(1+α)(h0−h)p−α(n−h) for every X ∈ E .
To summarize, we have proven the lemma with C′ = p(1+α)(h0−1) under the

additional restriction that χ is non-degenerate.
In the general case, let d ≥ 1 be the largest integer such that χ is trivial on

e−dO/e−hO. Then χ induces a non-degenerate character χ′ of Od, and one checks
that Sn,χ = i ◦ Sn−h+d),χ′ ◦ P where i : ℓ2(On−h+d × On−h+d) → ℓ2(On × On) is
the natural isometric embedding and P is the orthogonal projection. This shows

‖Sn,χ ⊗ idX‖ ≤ ‖Sn−h+d,χ′idX‖ ≤ C′p−α(n−h+d−d) = C′p−α(n−h)

and proves the lemma. �

Now for an integer n and δ ∈ On, we define the operator Sn,δ on ℓ2(On × On)
by

Sn,δf(y, t) = Ex∈On
f(x, t+ δ + xy).

We deduce

Lemma 3.12. For every integer h, there is a constant C(h) such that for every
n ≥ h and δ, δ′ ∈ eh−nOh,

‖Sn,δ − Sn,δ′‖B(ℓ2(On×On;X)) ≤ C(h)p−α(n−h)

for every X ∈ E.
Proof. Write δ = eh−na and δ′ = eh−nb with a, b ∈ On−h, and consider the function
ϕ = ph(δa − δb) : Oh → R. We can decompose ϕ in the basis of characters ϕ =∑

χ∈Ôh
tχχ. Since ϕ has mean 0, the trivial character does not appear in this

decomposition, and it follows from the definitions that

Sn,δ − Sn,δ′ =
∑

χ∈Ôh

tχSn,χ.

Lemma 3.11 implies that

‖Sn,δ − Sn,δ′‖B(ℓ2(On×On;X)) ≤ C′p−α(n−h)
∑

χ

|tχ|.
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The lemma follows with C(h) = 2C′ph because tχ = χ(a) − χ(b) has modulus
≤ 2. �

When E is made of Hilbert spaces, a direct diagonalization of the operators Sn,δ

show that Lemma 3.12 holds with a constant C(h) independant from h. We believe
that this should hold for every class E of nontrivial type, but we could not prove it.

We now move to the proof of Proposition 3.10.

Proof of Proposition 3.10. By the very same argument as in the proof of [11, Propo-
sition 2.1] (suitably adapted to replace Lie groups by totally disconnected groups),
we could restrict to the case when µ1 = µ2 is the Haar measure on U . But it
does not require much more effort to provide the argument in the general case, we
therefore do so. Let µ1, µ2 be two admissible probability measures on U , and for
k ∈ K denote by Ak, Bk, Ck the following operators on L2(K):

Ak =

∫∫

U×U

λ(uku′)dµ1(u)dµ2(u),

Bk =

∫

U

λ(uk)dµ1(u),

Ck =

∫∫

U

λ(ku′)dµ2(u),

so that BkCk′ = Akk′ .
For every integer j, denote by Uj the kernel of the reduction morphism U →

SL3(Oj). Since (Uj)j forms a basis of neighbourhoods of the identity in U , every
finite dimensional representation of U is trivial on Uj for all j large enough, and
therefore every admissible probability measure on U is left and right-invariant under
Uj for all j large enough. Fix j such that this invariance holds for µ1 and µ2. So
we have that Ak = Auku′ for every k ∈ K and u, u′ ∈ Uj.

Let n ≥ j. Denote by x ∈ On 7→ ẋ ∈ O any section. For a, b, x, y ∈ On we define
matrices in K

α(a, b) =



1 −e−jȧ −e−2j ḃ
0 0 1
0 −1 0


 , β(x, y) =



e−2j ẏ −1 0
e−j ẋ 0 −1
1 0 0


 .

Then

α(a, b)β(x, y) =



e−2j(ẏ − ȧẋ− ḃ) −1 e−jȧ

1 0 0
−e−j ẋ 0 1


 .

If δ ∈ O is such that |δ| ≥ pj−n, then for every a, b, x, y ∈ On such that y−ax−b =

δ + e−nO we have ẏ − ȧẋ − ḃ ∈ δ + e−nO and ω = ẏ−ȧẋ−ḃ
δ ∈ 1 + e−jO. We have

that α(a, b)β(x, y) ∈ Ujke−2jδUj as the explicit complutation shows:


ω−1 0 0
0 1 0
0 e−jωẋ ω


α(a, b)β(x, y)



1 0 0
0 ω e−jω−1ȧ
0 0 ω−1


 = k

e
−2jδ.

In particular, Aα(a,b)β(x,y) = Ak
e
−2jδ

.
Consider unit vectors ξ ∈ L2(K;X) and η ∈ L2(K;X)∗. Define f : On ×On →

L2(K;X) and g : On × On → L2(K;X)∗ by f(x, y) = Bβ(x,y)ξ and g(a, b) =
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C∗
α(a,b)η. Then the norm of f in ℓ2(On×On;L2(K;X)) is less than pn and similarly

for g. Moreover

〈f(x, y), g(a, b)〉 = 〈Cα(a,b)Bβ(x,y)ξ, η〉 = 〈Aα(a,b)β(x,y)ξ, η〉.
For δ as above, denote δ its image in On and compute

〈Sn,δf, g〉 =
∑

a,b∈On

Ex∈On
〈f(x, b + δ + ax), g(a, b)〉

=
∑

a,b∈On

Ex∈On
〈Ak

e
−2jδ

ξ, η〉

= p2n〈Ak
e
−2jδ

ξ, η〉.
We deduce that, for δ, δ′ of absolute value ≥ pj−n,

〈(Ak
e
−2jδ

−Ak
e
−2jδ′

)ξ, η〉 = 〈(Sn,δ − Sn,δ′)f/p
n, g/pn〉.

Taking the supremum over ξ, η we obtain for every Banach space X ,

‖Ak
e
−2jδ

−Ak
e
−2jδ′

‖B(L2(K;X)) ≤ ‖Sn,δ − Sn,δ′‖B(ℓ2(On×On;L2(K;X))).

By Fubini this last quantity is equal to ‖Sn,δ − Sn,δ′‖B(ℓ2(On×On;X)). From now

on we assume X ∈ E . We deduce from Lemma 3.12 that if n ≥ h ≥ j and |δ|, |δ′|
belong to [pj−n, ph−n] then

‖Ak
e
−2jδ

−Ak
e
−2jδ′

‖B(L2(K;X)) ≤ C(h)p−α(n−h).

In particular, if |δ| = p1+j−n and |δ′| = pj−n, we can take h = j + 1 and obtain

‖Ak
e
−2jδ

−Ak
e
−2jδ′

‖B(L2(K;X)) ≤ C(j + 1)|δ|α.
Making n vary, we see that the previous inequality holds for every δ, δ′ ∈ O sat-
isfying |δ|/|δ′| = p. Now take δ, δ′ ∈ O with 0 < |δ′| ≤ |δ|. Denote |δ| = p−m

and |δ′| = p−m′

, so m ≤ m′. Pick a sequence δ = δ0, δ1, . . . , δm−m′ = δ′ such that
|δi| = p−(m+i). Then we have

‖Ak
e
−2jδ

−Ak
e
−2jδ′

‖B(L2(K;X)) ≤
m−m′∑

i=1

‖Ak
e
−2jδi−1

−Ak
e
−2jδi

‖B(L2(K;X))

≤
m−m′∑

i=1

C(j + 1)p−α(m+i−1) ≤ C(j + 1)

1− p−α
|δ|α.

Making δ′ → 0 we obtain

‖Ak
e
−2jδ

−Ak0‖B(L2(K;X)) ≤
C(j + 1)

1− p−α
|δ|α.

This concludes the proof of Proposition 3.10. �

3.3. Case of Sp4(F). The case of Sp4(F) for F = R,Qp or Fp((t)) proceeds in
the same way as for SL3(F) : Lemma 3.1 holds without any change, and again all
amounts to proving Proposition 3.3. And this is achieved by adapting the known
proofs of strong property (T) [16, 12] in the same way as for SL3. Actually, the
same strategy allows us, as in [12], to prove Theorem 1.3 for the universal cover

S̃p4(R). The same arguments also show the conclusion of Theorem 1.4 for Sp4(F)

and of Theorem 1.5 for Sp4(R) and S̃p4(R). We leave the details to the reader.
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3.4. Case of SL3n−3(R). A particular case of the results of the next section is that
SLN (R) satisfies property (*) for every N ≥ 3, and more generally that it satisfies
(∗E) whenever SL3(R) does. The reason is that SL3 ⊂ SLn. This does not prove
Theorem 1.5 for SL3n−3(R) because it is unknown whether condition (1.5) implies
(1.4). However, we can inject in the general argument presented in Subsection 3.1
the exploration process of the Weyl chamber of SL3n−6 that was obtained in [11]
using copies of Sn−1 and obtain Theorem 1.5 for SL3n−3(R).

4. Generalization to other higher rank groups

We now prove Theorem 1.3 for higher rank groups, using that we already know

that it holds for SL3, Sp4 and S̃p4. By Lemma 2.8 we can restrict to the case of
higher rank simple groups. The arguments are close to [13, Section 4] and [16, §5].
We refer to these references for the missing details.

We start with the proof for the case when G is a connected simple Lie group of
real rank ≥ 2.

By the classification of higher rank Lie algebras G contains a closed subgroup
H whose Lie algebra is sl3 or sp2, see [18, Proposition I.1.6.2]. This means that H

is isomorphic to a finite extension of SL3(R) or Sp2(R), or to S̃p4(R). Since, as
the reader can easily check, property (*) remains true if one replaces H by a finite
extension or by a quotient by a finite group, we know that the theorem holds for
H : let s(H), t(H) > 0 and mn be a sequence of probability measures supported on
{h ∈ H, ℓ(h) ≤ n} as in the theorem.

Let a ∈ H be the exponential of a nonzero semisimple element X , and g = ⊕λgλ
be the decomposition as eigenspaces for Ad(a). In this way, for Y ∈ gλ, ad(a)(Y ) =
eλY and a exp(Y )a−1 = exp(eλY ).

We shall prove that (*) holds for (G, ℓ) with the parameters s, t = t(H) and the
sequence mn (seen as probability measures on G) if s ≤ s(H) is small enough.

Let π be as in (*) for (G, ℓ). Then since s ≤ s(H), we know that there is
P ∈ B(X0, X2) such that

(4.1) ‖π(mn)− P‖ ≤ Ce−nt.

Moreover, if µ, ν are probability measures on G supported in {g, ℓ(g) ≤ R} and
{g, ℓ(g) ≤ R′} respectively then by applying the preceding to π̃(·) = π(µ · ν) we
obtain µPν ∈ B(X1, X2) such that

(4.2) ‖π(µmnν)− µPν‖ ≤ CL2es(R+R′)−nt.

We have to prove that µPν = P for every µ, ν. By assumption, we know that

µPν = P if µ, ν are supported in H . More generally µPν only depends on the
images of µ (resp. ν) in G/H (resp. in H\G). Finally as in Lemma 3.4 the map
(µ, ν) 7→ µPν is lower-semicontinuous.

Lemma 4.1. The following holds if s is small enough. Let µ, ν be compactly sup-
ported measures on G. Then for every λ 6= 0 and Y ∈ gλ,

µδexp(Y )
Pν = µPν .

Proof. Since ν 7→ ‖µδexp(Y )
Pν − µPν‖ is lower semicontinuous, we can restrict the

proof to the case when ν belongs to some dense subset. So we can assume that ν is
absolutely continuous with respect to the Haar measure with a compactly supported
and Lipschitz Radon-Nikodym derivative. By replacing a by a−1 (i.e. X by −X)
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we can also assume that λ > 0. Let c be an integer, the value of which will be
determined at the end of the proof. From the preceding discussion, we know that

µδexp(Y )
Pν = µδexp(Y )acnPν and µPν = µδacnPν . Applying (4.2) with µ replaced by

µδexp(Y )acn and µδacn we obtain by the triangle inequality

‖µδexp(Y )
Pν − µPν‖ ≤ 2CL2es(R+R′+cnℓ(a)+ℓ(exp(Y )))−nt

+ ‖π(µδexp(Y )acnmnν − µδacnmnν)‖.

The first term goes to zero as n → ∞ if s < t
cℓ(a) .

Let us bound the second term. Let αn denote the measure µδexp(Y )acnmnν −
µδacnmnν. Then αn is supported in {g ∈ G|ℓ(g) ≤ Rn} for some Rn ≤ C′ + n(1 +
ℓ(a)). Therefore, ‖π(αn)‖ ≤ CL2esRn‖αn‖TV . But by the triangle inequality, the
total variation norm ‖αn‖TV of αn is less than

sup
ℓ(g)≤n

‖δg−1a−cn exp(Y )acngν − ν‖TV .

However a−cn exp(Y )acn = exp(e−λcnY ) because Y ∈ gλ. Let C > 0 be such that
ad(g) is eC -Lipschitz on the 1-neighbourhood of the identity in G for every g with
ℓ(g) ≤ 1. For ℓ(g) ≤ n, ad(g) is enC-Lipschitz on the e−C(n−1)-neighbourhood of
the identity, so that in particular is c is large enough (namely such that C−λc < 0)
we have that g−1a−cn exp(Y )acng is at distance O(e(C−λc)n) from the identity.
Remembering that ν has a compactly supported and Lipschitz Radon-Nikodym
derivative, we obtain

sup
ℓ(g)≤n

‖δg−1a−cn exp(Y )acngν − ν‖TV = O(e(C−λc)n).

One deduces that ‖π(αn)‖ goes to zero if eC+s(1+ℓ(a))−λc < 1. To conclude, if c is
chosen so that λc > C for every λ 6= 0 in the sectrum of ad(a), then ‖µδexp(Y )

Pν −
µPν‖ = 0 provided that s ≤ min( λc−C

1+ℓ(a) ,
t

cℓ(a) ). �

We can now conclude the proof of the theorem, for the value of s ≤ s(H) given
by the preceding lemma. Clearly, the set of elements of G such that µδgPν = µPν

for every compactly supported measures µ, ν on G is a group. Lemma 4.1 shows
that this group contains the group generated by ∪λ6=0 exp(gλ), which is the whole
group G. Similarly we have that µPδgν = µPν for every g ∈ G. In particular we
have δgPδg′ = Pδg′ = P for every g, g′ ∈ G. This proves the theorem.

Consider now a non-archimedean local field F and an almost F-simple algebraic
group G with F-split rank ≥ 2. We can assume that F = Qp or Fp((t)) for some
prime number p. Indeed, if F is a finite extension of F ′ then G is isomorphic to
an almost F ′-simple algebraic group with F ′-split rank ≥ 2. Moreover, replacing
G by a finite extension, we can assume that G is simply connected as an algebraic
group over F (Lemma 5.5 in [16]). In that case, by Lemma 5.3 and 5.4 in [16], we
are in the same situation as in the real case and the rest of the proof applies with
no change.

Remark 4.2. The preceding argument shows more generally that if a higher rank
simple group G contains a group locally isomorphic to a group with property (∗E),
then G also satisfies (∗E). Together with Remarks 3.9 (resp. 3.7 and Subsection
3.4) this proves Theorem 1.4 (resp. 1.5) for higher rank groups.
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Remark 4.3. The above proof for simple Lie groups shows the following more general
fact. Let H be a closed subgroup of a connected Lie group G, with Lie algebras
h ⊂ g. Assume that H has (*) (respectively (∗E)), and that g is the smallest Lie
subalgebra containing h and

{Y ∈ g : ∃X ∈ h, [X,Y ] = Y }.

Then G has (*) (respectively (∗E)).
For example, SL(n,R) ⋉Rn has (*) for n ≥ 3, and even (∗E) for every class E

for which SL(n,R) has (∗E) .

5. Passing to lattices

5.1. Facts on lattices. We collect two facts on lattices.
The first one is a celebrated theorem from [17] which asserts that the embedding

of a lattice in a higher rank group is a bilipschitz map (we call such a lattice
undistorted).

Theorem 5.1. (Lubotzky–Mozes–Raghunathan) Let G be a higher rank group with
word-length ℓG with respect to some compact generating set, and Γ ⊂ G be a lattice
with word-length ℓΓ with respect to some finite generating set. There is C > 0 such
that for every γ ∈ Γ,

ℓΓ(γ) ≤ CℓG(γ).

The results in [17] do not formally include the preceding statement, as they do not

include the non-algebraic groups (as S̃p2n(R)). However the general case follows,
as in [12, Section 7], from the following Lemma which is certainly well-known.

Lemma 5.2. Let G be a higher rank group, with center Z(G) and Γ ⊂ G be a
lattice. The image of Γ in G/Z(G) is a lattice in G/Z(G).

Proof. Write G =
∏

i∈I Gi the decomposition of G into finitely many simple pieces:
each Gi is either a connected simple Lie group of real rank ≥ 2, or a connected
almost Fi-simple algebraic group of Fi-split rank ≥ 2 over a local field Fi.

Γ preserves a probability measure on G/Z(G), so we have to prove that the image
of Γ in G/Z(G) is discrete, or equivalently that ΓZ(G) is discrete in G. For this we
prove that the centralizer C of Γ coincides with Z(G), and in particular is discrete.
This is enough: by property (T), Γ is finitely generated, and so discreteness of its
centralizer is equivalent to discreteness of its normalizer (which contains ΓZ(G)).

For each i ∈ I, the group Gi/Z(Gi) is a linear algebraic group over Fi, and
the image in it of C centralizes the Zariski closure of the image of Γ, which is
Gi/Z(Gi) by Theorem II.2.5 and Lemma II.2.3 in [18]. Since Gi/Z(Gi) is centerless,
this implies that the image of C in Gi/Z(Gi) is trivial. This proves that C ⊂∏

i∈I Z(Gi) = Z(G) and the Lemma. �

Proof of Theorem 5.1. Let G be a higher rank group and Γ ⊂ G a lattice. Let G′ =
G/Z(G) and Γ′ ⊂ G′ be the image of Γ in the quotient. Denote by ℓ, ℓ′, ℓΓ, ℓΓ′ , ℓZ
the word-length functions on G,G′,Γ,Γ′, Z(G) with respect to some compact gen-
erating sets. By Lemma 5.2, Γ′ is a lattice in G′, and so Γ has finite index in the
preimage in G of Γ. Without loss of generality we can assume that Γ is actually
equal to the preimage in G of Γ′.
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G′ is a finite product of connected almost simple algebraic groups over local
fields, so we can apply [17] to every irreducible component of Γ′ and obtain that
ℓ′Γ′ and ℓ′ |Γ′ are quasi-isometric.

By [10] the central extension G of G′ is given by a bounded 2-cocycle. This
implies that G is quasi-isometric to G′ × Z(G) and that (Γ, ℓΓ) is quasi-isometric
to (Γ′ × Z(G), ℓΓ′ × ℓZ(G)) with compatible maps. Puting everything together we
get

(Γ, ℓΓ) ≃ (Γ′ × Z(G), ℓΓ′ × ℓZ(G)) ≃ (Γ′ × Z(G), ℓ′ |Γ′ × ℓZ(G)) ≃ (Γ, ℓ |Γ )
which proves the Theorem. �

The second result says that, for higher rank lattices, the measure of the cusps
in G/Γ decay exponentially fast. In a first version of this paper, I had sketched
a proof, similar to [18, Section VII.1], relying on Margulis’ arithmeticity theorem
and the Harish-Chandra–Borel–Behr–Harder reduction theorem for S-arithmetic
lattices. François Maucourant explained to me that this is a direct consequence of
property (T) (actually even of spectral gap), and that it applies more generally to
all Lie groups and all simple algebraic groups over local fields [2, 5, 4]. I thank him
for allowing me to include this proof here.

Theorem 5.3. (Maucourant) Let G be a property (T) locally compact group with
length function ℓ, and Γ ⊂ G be a lattice. There is a Borel fundamental domain
Ω ⊂ G and s0 > 0 such that

∫

Ω

es0ℓ(g)dx < ∞.

More generally, if Γ ⊂ G is a lattice in a locally compact group equipped with a
length function ℓ, and if and G y G/Γ has spectral gap, then there is a compact
subset Q ⊂ G such that the image of Qn in G/Γ has measure ≥ 1− 2−n.

Proof. The second statement is clearly more general than the first, so let us focus
on the second. Equip G/Γ with the unique G-invariant probability measure, and
consider λ, the regular representation of G on L2(G/Γ). The invariant vectors
are exactly the constant functions on G/Γ. Denote by P : L2(G/Γ) → L2(G/Γ)
the orthogonal projection on the constant functions, i.e. the linear map sending
f to the constant function equal to

∫
G/Γ

f . By Remark 2.4, there is a symmetric

compact subset Q ⊂ G and a sequence of probability measures on Qn such that
‖λ(µn)− P‖ ≤ 2−n. We may assume that Q has positive measure.

For an integer n, denote by Ωn the image of Qn in G/Γ. Let fn the indicator
function of Ωn. If g ∈ Qn, we have that gQn+1 contains Q, so

〈λ(g)fn+1, f1〉 = |gΩn+1 ∩ Ω1| = |Ω1|
and

〈λ(µn)fn+1, f1〉 = |Ω1|
On the other hand, we have

〈Pfn+1, f1〉 = |Ωn+1||Ω1|.
So we have

|Ω1|(1 − |Ωn+1|) = 〈(λ(µn)− P )fn+1, f1〉 ≤ 2−n.
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We deduce 1 − |Ωn+1| ≤ C2−n = 2C2−n−1 for C = 1
|Ω1|

, which is finite because

Q has positive measure. Replacing Q by some power allows to remove the factor
2C. �

5.2. Inducing from exponentially integrable lattices. Our goal in this sub-
section is to prove the following result.

Theorem 5.4. Let Γ ⊂ G be a lattice in a locally compact group G and ℓ be a
length function on G. Then (G, ℓ) has (*) if and only if (Γ, ℓ |Γ ) has (*).

Remark 5.5. More generally, if E is a class of Banach spaces which is stable by
X 7→ L2(Ω, µ;X) for every measure space (Ω, µ), then (G, ℓ) has (∗E) iff (Γ, ℓ |Γ)
has.

Proof. We can assume that G has property (T), as otherwise Γ does not have prop-
erty (T) either and the theorem is empty. By Theorem 5.3, Γ admits a fundamental
domain Ω ⊂ G and s0 > 0 such that

(5.1)

∫

Ω

es0ℓ(x)dx < ∞.

We can assume furthermore that every element ω of Ω almost minimizes the
length of its Γ-orbit, for example that it satisfies

(5.2) ℓ(ω) ≤ inf
γ∈Γ

ℓ(ωγ) + 1 for every γ ∈ Γ.

Indeed, if (γn)n≥0 is an enumeration of Γ (say with γ0 = e) and if f(ω) = ωγn for
the first n satisfying ℓ(ωγn) ≤ 1+ infγ ℓ(ωγ), then we can replace Ω by f(Ω), which
remains a Borel fundamental domain for Γ, which still satisfies (5.1) and which
moreover satisfies (5.2). Of course, in most interesting cases, ℓ is proper and we
can remove the +1 in (5.2).

For convenience we choose the normalization of the Haar measure on G so that
Ω has measure one.

For every g ∈ G and ω ∈ Ω we denote by

gω = (g · ω)α(g, ω)
the unique decomposition of gω as a product of g · ω ∈ Ω and α(g, ω) ∈ Γ. Recall
that (g, ω) 7→ g · ω is a probability measure preserving action of G on Ω, and that
α is a cocycle, i.e. is satisfies the cocycle relation

α(g1g1, ω) = α(g1, g2 · ω)α(g2, ω)
for every g1, g2 ∈ G and ω ∈ Ω. We start with a Lemma which shows that, in
a sense close to Shalom’s notion of Lp-integrable lattice, (5.1) implies that Γ is
exponentially integrable.

Lemma 5.6. There is C > 0 such that for every s ≤ s0
2 ,∫

Ω

esℓ(α(g,ω))dω ≤ Ce2sℓ(g).

Proof. We write α(g, ω) = (g · ω)−1gω. By the symmetry of ℓ and (5.2), we have

ℓ((g · ω)−1) = ℓ(g · ω) ≤ ℓ(gω) + 1.

By the subadditivity of ℓ we deduce

ℓ(α(g, ω)) ≤ 1 + 2ℓ(gω) ≤ 1 + 2ℓ(g) + 2ℓ(ω).
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The lemma follows by integrating, with C = es0/2
∫
Ω
es0ℓ(ω)dω. �

We start with the interesting direction, namely the implication (G, ℓ) has (*) =⇒
(Γ, ℓ |Γ ) has (*).

Let s̃, t̃, C̃ > 0 and m̃n be a sequence of probability measures on {g ∈ G|ℓ(g) ≤ n}
as in (*) for (G, ℓ).

Let π : Γ → B(X0, X2) be such that π(gg′) factors as π1(g)π0(g
′) for a Hilbert

space X1 and two maps π0 : Γ → B(X0, X1) and π1 : Γ → B(X1, X2). Assume
that there is L > 0 such that ‖πi(γ)‖ ≤ Lesℓ(g) for all γ ∈ Γ and i ∈ {0, 1}, with
s = min( s04 ,

s̃
2 ).

For x ∈ X0, g ∈ G and ω ∈ Ω, define π̃0(g)x(ω) = π0(α(g
−1, ω)−1)x ∈ X1. By

Lemma 5.6, since s ≤ s0
4 the measurable function π̃0(g)x is L2-integrable:

‖π̃0(g)x‖L2(Ω;X1) ≤
(∫

Ω

L2e2sℓ(α(g
−1,ω))‖x‖2dω

) 1
2

≤ CLe2sℓ(g).

This proves that π̃0(g) has norm ≤ CLe2sℓ(g) from X0 to L2(Ω;X1). Similarly, for
every f ∈ L2(Ω;X1) we can bound

∫
‖π1(α(g

−1, ω)−1f(g−1 · ω)‖X2dω ≤
∫

Lesℓ(α(g
−1,ω))‖f(g−1 · ω)‖X1dω

≤ L

(∫
e2sℓ(α(g

−1,ω))dω

) 1
2

‖f‖2.

Therefore, we can define a map π̃1(g) : L2(Ω;X1) → X2 by

π̃1(g)f =

∫
π1(α(g

−1, ω)−1)f(g−1 · ω)dω =

∫
π1(α(g, ω))f(ω)dω,

and it satisfies ‖π̃1(g)‖ ≤ CLe2sℓ(g). It is easy to check that π̃0 and π̃1 are strongly
continuous. By the cocycle formula, we have

π̃1(g)π̃0(g
′) = π̃(gg′)

where

π̃(g)x =

∫
π(α(g−1, ω)−1)xdω.

So since s ≤ s̃
2 , the map π̃ satisfies the assumption in (*), so that there is P ∈

B(X0, X2) such that

‖π̃(m̃n)− P‖ ≤ C̃C2L2e−t̃n

and for every g1, g2 ∈ G

lim
n

‖π̃(m̃n)− π̃(δg1m̃nδg2)‖ = 0.

Let us denote by m
(0)
n the probability measure on Γ given as the image of mn ⊗

dω by the map (g, ω) 7→ α(g−1, ω)−1. Then by Fubini’s theorem one can write

π̃(m̃n) = π(m
(0)
n ). To summarize, we have proven that whenever π : Γ → B(X0, X1)

is as above with s = min( s04 ,
s̃
2 ), then π(m

(0)
n ) is well-defined (i.e. the series∑

γ m
(0)
n (γ)π(γ) converges in norm) and is Cauchy in B(X0, X2). In particular,

for every γ1, γ2 ∈ Γ, limn π(γ1m
(0)
n γ2) exists.

We shall prove that this limit is P . To do so we will prove that

(5.3) lim
n

π(γ1m
(0)
n )x = Px for every x ∈ X0.
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for every γ1 ∈ Γ. Before we do so, let us explain how (5.3) allows us to conclude
the proof of Theorem 5.4. By the preceding discussion, (5.3) implies the seemingly

stronger conclusion that limn ‖π(γ1m(0)
n ) − P‖ = 0. By symmetry (consider the

dual maps π(g−1)∗ ∈ B(X∗
2 , X

∗
0 )) (5.3) implies that

lim
n

‖π(m(0)
n γ2)− P‖ = 0

for every γ2 ∈ Γ. And hence ‖π(γ1m(0)
n γ2)− π(m

(0)
n )‖, which is less than

‖π(γ1m(0)
n γ2)− π(γ1m

(0)
n )‖+ ‖π(γ1m(0)

n )− π(m(0)
n )‖

by the triangle inequality, goes to zero for every γ1, γ2 ∈ Γ (for the first term, this
is (5.3) applied to the map γ 7→ π(γ1γ)). The preceding inequality is almost (*)

for (Γ, ℓ), except that m
(0)
n is not supported on Bn := {γ ∈ Γ|ℓ(γ) ≤ n}. This is

however almost true for mn/5, as will be deduced from the following lemma.

Lemma 5.7. If s ≤ s0
4 , then for every integer n

∫
esℓ(γ)1ℓ(γ)≥5ndm

(0)
n (γ) ≤ Ce(−

3s0
2 +5s)n ≤ Ce−

s0
4 n.

Proof. We have esℓ(γ)1ℓ(γ)≥5n ≤ e
s0
2 ℓ(γ)−5(

s0
2 −s)n. By integrating and using the

definition of m
(0)
n we obtain∫

esℓ(γ)1ℓ(γ)≥5ndm
(0)
n (γ) ≤ sup

ℓ(g)≤n

∫
e

s0
2 ℓ(α(g−1,ω))−5(

s0
2 −s)ndω.

One concludes by Lemma 5.6. �

So one defines mn as the conditional probability m
(0)
n/5(· ∩ Bn)/m

(0)
n/5(Bn). By

definition mn is supported on Bn. On the other hand, Lemma 5.7 provides a
constant C′ (depending on C and s0 only) such that, if s ≤ s0

4 ,

‖π(mn)− π(m
(0)
n/5)‖ ≤ C′L2e−

s0
20n.

Therefore
‖π(mn)− P‖ ≤ C′′L2e−tn

for t = min( s020 ,
t̃
5 ) and C′′ = C′ + C̃C2. Similarly

lim
n

‖π(γ1mnγ2)− π(γ1m
(0)
n/5γ2)‖ = 0

for every γ1, γ2 ∈ Γ. This proves (*) for (Γ, ℓ) with s = min( s04 ,
s̃
2 ), t = min( s020 ,

t̃
5 ).

It remains to justify (5.3).
Fix a probability measure ν0 on Γ with full support and satisfying

∫
esℓ(γ)dν0(γ) <

∞. Let ν be the probability measure on G given by
∫
fdν =

∫
f(ωγ)dωdν0(γ). We

define a new map π̃′
1(g) : L2(Ω;X1) → L1(G, ν;X2) by setting

π̃′
1(g)f(ωγ) = π1(γ

−1α(g−1, ω)−1)f(g−1 · ω),
so that π̃1(g)f =

∫
(π̃′

1(g)f)(ω)dω. To check that π̃
′
1(g) maps L2(Ω;X1) to L

1(G, ν;X2),
we compute
∫

‖π1(γ
−1α(g−1, ω)−1)f(g−1 · ω)‖dωdν0(γ)

≤ L

∫
esℓ(γ)esℓ(α(g

−1,ω))‖f(g−1 · ω‖dωdν0(γ).
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This is less than

L

∫
esℓ(γ)dν0(γ)Ce2sℓ(g)‖f‖2

by the Cauchy-Schwarz inequality and Lemma 5.6. Also, we have π̃′
1(g)π̃0(g

′) =
π̃′(gg′) where

π̃′(g)x(ωγ) = π(γ−1α(g−1, ω)−1)x

for x ∈ X0. So (recall 2s ≤ s̃) we can apply (*) for (G, ℓ). In particular, if x ∈ X0

we get that fn = π̃′(m̃n)x converges to some f ∈ L1(G, ν;X2), and π̃′(gm̃n)x
converges to the same f for every g ∈ G.

On the one hand, for g, g′ ∈ G and almost every ωγ ∈ G, one checks from the
definitions that

(π̃′(gg′)x)(ωγ) = (π̃′(g′)x)(g−1ωγ).

This means that both functions fn and h 7→ fn(g
−1h) converge in L1(G, ν;X2) to f .

Since ν is equivalent to the Haar measure of G, this implies that f(g−1h) = f(h) for
almost every h ∈ G. But this holds for every g ∈ G, therefore there exists y ∈ X2

such that f(h) = y for ν-almost every h.

On the other hand, by definition of m
(0)
n and by the fact that π̃(g) is the com-

position of π̃′(g) and of the map f 7→
∫
fdν, we have

π(m(0)
n )x = π̃(m̃n)x =

∫
fn(ω)dω

and Px =
∫
f(ω)dω = y. Similarly,

π(γ1m
(0)
n )x =

∫∫
π(γ1α(g

−1, ω)−1)xdωdm̃n(g)

=

∫
fn(ωγ

−1
1 )dω.

By our choice of ν0, the map h 7→
∫
h(ωγ−1

1 )dω is bounded on L1(G, ν;X2). This

implies that limn π(γ1m
(0)
n )x =

∫
f(ωγ−1

1 )dω, which is equal to y = Px. This
concludes the proof of (5.3) and therefore of the only if direction in Theorem 5.4.

The if direction is easier. Assume that (Γ, ℓ |Γ ) satisfies (*), with s, t, C, (mn)n≥0.
Without loss of generality we can assume that s ≤ s0. Let π : G → B(X0, X1) be
as in the definition of (*) with this value of s. We can apply (*) to the restriction
of π to Γ. More generally, for every measure µ1, µ2 on G such that C(µi) :=
L
∫
esℓ(g)dµi(g) < ∞, we can apply (*) to the map γ 7→ π(µ1δγµ2) and get an

operator µ1Pµ2 in B(X0, X1) satisfying

‖µ1Pµ2 − π(µ1mnµ2)‖ ≤ CC(µ1)C(µ2)e
−tn

and µ1δγ1
Pδγ2µ2 = µ1Pµ2 for every γ1, γ2 ∈ Γ. But since s ≤ s0, we can in particular

apply the preceding to µ1 = µ2 = µ the probability measure on Ω, and to its
translates by any g ∈ G. For g1 ∈ G, we can decompose the probability measure
δg1µ as a sum

∑
γ∈Γ µγδγ for a family of measures µγ on Ω suming to µ. This leads

to the equality

g1µPµ =
∑

γ

µγδγPµ =
∑

γ

µγ
Pµ = µPµ

where the easy justifications of the convergence are left to the reader. Similarly

g1µPµg2 = µPµ for every g1, g2 ∈ G. This is almost (*) for G and the sequence of
probability measures m̃n = µ ∗mn ∗ µ. The only issue is that m̃n is not supported
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in {g ∈ G|ℓ(g) ≤ n}. This is fixed by suitably truncating m̃n as in the only if
direction. �

We also have the following variant of the easy direction in the preceding theorem.

Proposition 5.8. Let G,Γ, ℓ be as in Theorem 5.4. There exists s0 > 0 such that,
for every s ≤ s0 and c ≥ 0, if Csℓ+c(Γ) has a Kazhdan projection, then so does
Csℓ+c(G).

More generally if G y G/Γ has spectral gap, if E is a class of Banach spaces
and if Csℓ+c,E(Γ) has a Kazhdan projection, then so does Csℓ+c,E(G).

Proof. If Csℓ+c(Γ) has a Kazhdan projection for some s, c ≥ 0, then in particular
Γ has property (T) and G also. Let Ω be the fundamental domain et s0 > 0 the
real number given by Theorem 5.3. Let µ be the uniform probability measure on
Ω. If s ≤ s0, µ belongs to Csℓ+c,E(G) with norm ≤

∫
Ω
esℓ(g)+cdµ(g), and more

generally the map f ∈ C[Γ] 7→ µf (the convolution of µ and of f , seen as the
measure

∑
γ f(γ)δγ on G) extends to a linear map of norm ≤

∫
Ω
esℓ(g)+cdµ(g) from

Csℓ+c,E(Γ) to Csℓ+c,E(G). We claim that if P ∈ Csℓ+c,E(Γ) is a Kazhdan projection,
then µP ∈ Csℓ+c,E(G) is also a Kazhdan projection. We have to prove that for every
g1 ∈ G, δg1µP = µP . As in the preceding proof, we can decompose the probability
measure δg1µ as a sum

∑
γ∈Γ µγδγ for a family of measures µγ on Ω suming to µ.

This leads to the desired formula

δg1µP =
∑

γ

µγδγP =
∑

γ

µγP = µP

where the middle inequality is because P is a Kazhdan projection for Γ, and where
the justification of the summability of both series is straighforward. �

A direct corollary of Proposition 5.8 is that the negation of strong property (T)
is inherited by lattices in full generality.

Corollary 5.9. Let Γ be a lattice in a locally compact group G. If G does not have
strong property (T), then Γ does not have strong property (T) either.

5.3. End of proof of Theorem 1.3. The fact that every higher rank group sat-
isfies property (*) has already been proven in Section 4. It remains to prove it for
a lattice Γ in higher rank group G. Let ℓ be the word-length function on G with
respect to some compact generating set. By Lemma 2.6 and Lubotzky–Mozes–
Raghunathan’s Theorem 5.1, it is enough to prove that (Γ, ℓ |Γ ) satisfies (*). By
Theorem 5.3 and Theorem 5.4, this follows from the fact, already proven, that G
satisfies (*).

Remark 5.10. If we take into account Remark 5.5 and note that having nontrivial
Rademacher type, as well as (1.3), (1.4), (1.5) are all Banach-space properties which
are stable by the operation X 7→ L2(Ω, µ;X), we complete similarly the proofs of
Theorem 1.4 and Theorem 1.5. In fact we get the following more general result.
In the statement, if G =

∏
i∈I Gi is a product of higher rank simple groups, the

real factors are those Gi’s which are real Lie groups, whereas the non-archimedean
factors are the others, that is those Gi’s which are algebraic groups over non-
archimedean local fields.

Theorem 5.11. Let G be a higher rank group, Γ ⊂ G a lattice and E a class of
Banach spaces. Then both G and Γ have (∗E) (and therefore strong (T) with respect
to E) if one of the following conditions holds:
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• G has no real factor and E has nontrivial Rademacher type.
• the Lie algebra of every real factor of G contains a Lie subalgebra isomorphic
to sp4 or sl3, and there is α ∈ (0, 1] and C > 0 such that (1.3) and (1.4)
hold for every X ∈ E.

• the Lie algebra of every real factor of G contains a Lie subalgebra isomorphic
to sl3n−3 for n ≥ 2, and there is α ∈ (0, 1] and C > 0 such that (1.5) for
every X ∈ E.
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[14] Vincent Lafforgue. Propriété (T) renforcée banachique et transformation de Fourier rapide.

J. Topol. Anal., 1(3):191–206, 2009.
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