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Triplet pairing in Sr2RuO4 was initially suggested based on the hypothesis of strong ferromag-
netic spin fluctuations. Using polarized inelastic neutron scattering, we accurately determine the
full spectrum of spin fluctuations in Sr2RuO4. Besides the well-studied incommensurate magnetic
fluctuations we do find a sizeable quasiferromagnetic signal, quantitatively consistent with all macro-
scopic and microscopic probes. We use this result to address the possibility of magnetically-driven
triplet superconductivity in Sr2RuO4. We conclude that, even though the quasiferromagnetic sig-
nal is stronger and sharper than previously anticipated, spin fluctuations alone are not enough to
generate a triplet state strengthening the need for additional interactions or an alternative pairing
scenario.

Superconducting Sr2RuO4 [1–3] was proposed to be a
solid-state analogue of He3, i. e., a triplet superconduc-
tor [4, 5], based on its proximity to SrRuO3, a ferro-
magnetic (FM) metal. A simple model derived from the
density-functional theory (DFT) for SrRuO3, CaRuO3

and SrYRu2O6 [6] ascribed the mass and spin suscepti-
bility renormalization to FM fluctuations, and predicted
a triplet pairing [5]. Experimental evidence pointing to-
ward a particular (chiral-p) triplet was obtained, such
as temperature-independent uniform susceptibility for
the in-plane fields and time-reversal symmetry break-
ing [2, 7–9]. However, the dominant spin fluctuations
in Sr2RuO4 are not FM (i.e. q=0), but incommensu-
rate (IC) antiferromagnetic (AFM) [10, 11], and several
experiments are inconsistent with either triplet states,
or time-reversal breaking, or both [9]. Various theories
were proposed to explain triplet pairing by incorporat-
ing higher-order vertex corrections [12, 13], the interplay
of incommensurate charge and spin fluctuations [14] or
orbital fluctuations [15, 16], arriving at different super-
conducting (SC) states. Even the question about which
bands drive pairing remains controversial [17, 18].

The Fermi surface of Sr2RuO4 is known to tiny de-
tails [2, 19–21]. It has two quasi-one-dimensional (q1D),
and one rather isotropic quasi-two-dimensional (q2D)
sheets, derived from dxz,yz and dxy orbitals, respectively.
Sr2RuO4 exhibits an almost temperature independent
normal-state susceptibility [22], which is enhanced by a
factor ∼7 compared to the DFT value [23–25]. The en-
hancement factor of the IC fluctuations is even larger,
∼30 [11, 26, 27], since the bare susceptibility is larger
[10]. Also the electronic specific heat coefficient of about
38 mJ/mol·K2 is enhanced by a factor of ∼3, yielding
a Wilson ratio of ∼2. Similarly, quantum oscillations
show strong and band-dependent mass renormalizations,

which can be explained by quasiferromagnetic (qFM)
fluctuations [5], in the spirit of He3, but also in terms
of local Hund’s rule fluctuations [28, 29].

Inelastic neutron scattering (INS) experiments de-
tect strong IC spin fluctuations at qIC=(±0.3,±0.3,ql)
[11, 26, 27, 30–33] arising from nesting in the q1D bands.
Upon minor substitution with Ti or Ca this instability
condenses into a static spin-density wave with the same
Q [34–37]. INS also assesses the anisotropy of magnetic
excitations, which is known to favor triplet pairing [38–
40], and find it to be non-negligible, but still small [30].
Finally, recent high-resolution INS reveals that the nest-
ing fluctuations do not change between the normal and
superconducing states even for energies well below the SC
gap [33]. The NMR relaxation rate, 1/T1T , probes the
spin susceptibility χ′′(q, ω)/ω integrated over the entire
Brillouin zone, and exhibits the same temperature depen-
dence as the INS nesting signal [11, 26, 41, 42], indicating
that it is dominated by the latter. However, 1/T1T also
shows a weaker, temperature-independent offset, point-
ing to another contribution tentatively attributed to the
FM response. This tendency towards ferromagnetism can
be enhanced by Co [43] or Ca [44] substitution.

To this end, we have used polarized INS to search for
the missing FM fluctuations in Sr2RuO4. The magnetic
response consists of two components: a broad maximum
around q = 0, which we will call qFM, and an IC, and
much stronger, AFM component. We entered this full
magnetic susceptibility into the BCS equations describ-
ing spin-fluctuation-induced SC pairing.

Because neutron polarization analysis suffers from a
reduced intensity, we used a large sample of ten aligned
crystals grown at Kyoto University [45] with a total vol-
ume of 2.2 cm3 and a mosaic spread of 1.9(2) degrees.
Experiments were performed on the spectrometer IN20
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at the Institut Laue Langevin, for details see [46]. In gen-
eral, neutron scattering only senses magnetic components
that are polarized perpendicular to the scattering vector
Q. The polarization analysis distinguishes spin-flip (SFi
with i=x, y, and z the direction of neutron polarization)
and non-spin-flip (nSFi) processes and adds further se-
lection rules. Phonon scattering and nuclear Bragg peaks
only contribute to the nSFi channels, but magnetic scat-
tering contributes to the SFi channel when the magnetic
component is perpendicular to the direction of neutron
polarization, and to the nSFi channel otherwise. We use
the conventional coordinate system with x parallel to Q,
z perpendicular to the scattering plane, and y = z× x.

Even with our large sample it was impossible to quan-
titatively analyze the qFM response by unpolarized INS,
because it is too little structured in q space impeding a
background (BG) determination, see supplemental ma-
terial [46]. In contrast, the polarization analysis permits
a direct BG subtraction at each point in Q and energy.
For instance, 2I(SFx)-I(SFy)-I(SFz) yields a BG-free to-
tal magnetic signal (up to a correction for the finite flip-
ping ratio). Fig. 1 (b-c) shows a representative scan
through both the IC and the FM Q positions. The full
polarization analysis is shown for the SF (b) and the
nSF (c) channels. The SF signals have been counted
with better statistics, because the SF count rates always
contain the magnetic signal and have a lower BG. Only
the nSFy and nSFz channels contain a single magnetic
component superposed with the larger nSF scattering,
which contains all the phonon contributions. The ap-
pearance of the nesting signal in various channels is well
confirmed; Fig. 1 (b) clearly shows the anisotropy of the
IC nesting signal at (−0.3, 0.7, 0) discussed in Ref. [30].
The sharp enhancement at (0, 1, 0) is present only in the
nSF channel, which proves its non-magnetic character
(the longitudinal zone-boundary phonon) [47, 48]. The
finite flipping ratio was determined on several phonon
modes, which integrates the signal of all individual crys-
tals, yielding values between 8 and 10. The final analysis
only used the SF data, corrected by the average flipping
ratio, because of their higher signal to BG ratio [49].

Polarized INS results displaying the average of two
magnetic components (in-plane plus out-of-plane) are
shown in Fig. 1 for T=1.6 K and in the supplemental ma-
terial for T=150 K [46]. In order to compare scans taken
at different but equivalent scattering vectors, a correc-
tion for the magnetic form factor has been applied. The
observation of magnetic fluctuations in so many differ-
ent scans unambiguously documents the existence of size-
able qFM fluctuations. The analysis furthermore yields
the absolute scale of the magnetic response throughout
the entire Brillouin zone, which allows us to construct a
model for the full susceptibility χ′′(q, E). The calibration
into absolute susceptibility units has been performed by
the comparison with the scattering intensity arising from
an acoustic phonon, similar to the procedure described
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FIG. 1: (a) 2D reciprocal space of Sr2RuO4; qFM scattering
is indicated by large (grey) discs and the IC signal by small
(yellow) circles. Arrows show typical scan directions. (b-c)
Diagonal scans at 8 meV and 1.6 K (across (-0.3,0.7,0) and
(0,1,0)): (b) SF count rates, (c) nSF count rates. (d) Mag-
netic signal along diagonal scans at 1.6 K; note that the BG is
eliminated through the polarization analysis. Scan paths are
not identical, but all run through one QIC towards (1,0,0),
see (a). The signal in (d-g) has been corrected for the mag-
netic form factor and the Bose factor and represents χ′′(q, E)
convoluted with the resolution function, labelled <∗χ′′(q, E).
In (e) the results of the scans parallel to the a*/b* axes are
shown. Energy scans at QIC and QFM are shown in (f) and
(g), respectively. Lines in (d-g) denote the fitted model folded
with the resolution. The unfolded incommensurate and qFM
susceptibilities are shown in (h) (single component).

in Ref. 50. This calibration can be performed with high
precision in the case of Sr2RuO4, because the phonon dis-
persion is well known and a lattice dynamical model ex-
ists that was used to calculate the phonon signal strength
at finite propagation vectors [47, 48], while in most cases
the q → 0 limit is used as an approximation. Note, how-
ever, that the INS signal does not directly correspond to
χ′′(q, E) but to its folding with the resolution function,
< ∗ χ′′(q, E), see Fig. 1 (d-g). Only if the resolution is
much better than the typical variation of χ′′(q, E) the
convolution has no visible effect.

The quantitative model fitted to the data consists of
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TABLE I: (Upper part) Parameters of the χ′′(q, E) model
for Sr2RuO4 refined with the polarized INS data for T=1.6
and 150 K. (Lower part) The largest triplet, T, and singlet, S,
eigenvalues (in arbitrary units) of the interaction matrices Vs
and Vt, respectively (Eq. 3), obtained for the isotropic sus-
ceptibility, χ′=χ′(q, 0) or for the anisotropic components χ′zz
and χ′ab; the largest eigenvalues for qFM or IC fluctuations
only are shown together with those for the total susceptibility.

T χ′FM W ΓFM χ′IC ξIC ΓIC

[K] [µ2
B/eV ] [r.l.u] [eV] [µ2

B/eV ] [Å] [eV]

1.6 22±1 0.53±0.04 15.5±1.4 213±10 9.7±0.5 11.1±0.8

150 22±2 0.47±0.06 19.0±3.5 89±7 6.1±0.5 17.8±2.9

qFM T qFM S IC T IC S total T total S

χ′ 10.6 0.21 16.8 94.8 18 87

χ′zz 11.7 0.23 29.1 164.2 30.3 155.6

χ′ab 9.6 0.19 9.7 54.7 11.3 48.3

two parts: the IC peaks centered at QIC and the broad
and weakly q-dependent qFM part at the zone center.
We write χ′′(q, E) = χ′′IC(q, E) + χ′′FM(q, E), where

χ′′IC(q, E) = χ′IC
ΓIC · E

E2 + Γ2
IC[1 + ξ2IC( 2π

a ∆q)2]2
(1)

is the single-relaxor formula with both (Γq)−1 and
χ′(q, 0) decaying with the same correlation length ξIC.
Here ∆q = |q − qIC|, and is measured in the reciprocal
lattice units, (r.l.u. ), equal to 2π/a.

Equation (1) describes a typical magnetic response
near an AFM instability [51]. The qFM term was de-
scribed by a broad Gaussian, and its energy dependence
in the single-relaxor form with the constant parameter
ΓFM:

χ′′FM(q, E) = χ′FM ·
ΓFM · E
E2 + Γ2

FM

· exp

(
− q2

W 2
4 ln(2)

)
(2)

and q is the distance to the nearest 2D Bragg point. The
parameters resulting from a global fit to the whole data
set are given in Table I [52]. The model susceptibility was
convoluted with the spectrometer resolution using the
reslib program package [53] and scaled through phonon
scattering [48] yielding the lines in Fig. 1 (d-g).

The corresponding real part of the susceptibility at
zero energy χ′(q, E = 0), i.e. the amplitudes of the
spectra at fixed q, as well as χ′′(q, E) for q along the
Brillouin zone diagonal are displayed in Fig. 2. The
qFM signal shows no significant anisotropy and corre-
sponds to the macroscopic susceptibility, which also ex-
hibits only weak anisotropy [2, 3]. For the IC peak, the
model describes the average of the in-plane and out-of-
plane susceptibilities [30], with χ′c (χ′ab) slightly larger
(smaller) than this value. The model was obtained by
refining the only 6 parameters with the total set of 120

FIG. 2: The real part of the static susceptibility χ′(q, E = 0)
as described by eqs. (1,2) along the zone diagonal (a) and for
the entire zone (c) at 1.6 K and (d) at 150 K; in (b) χ′′(q, E)
is shown along the Brillouin zone diagonal.

independent data points at 1.6 K and 76 at 150 K. Thus
obtained χ′IC and ΓIC are somewhat higher than those
extracted from unpolarized INS [11, 26]. The correla-
tion length ξIC is less accurate but the qualitative de-
crease at higher temperature is unambiguous. In prin-
ciple, one should consider the in-plane and out-of-plane
components of the IC peak separately and then take their
superposition, but the limited statistics does not allow for
that. In contrast to the IC signal, the qFM one is ba-
sically temperature-independent, in agreement with the
macroscopic measurement [22]. Thus, the qFM response
becomes more visible at high temperatures. Note that,
due to the simplicity of the model [52], the macroscopic
susceptibility of ∼28µ2

B/eV·(f.u.) is smaller than in the
model, ∼41µ2

B/eV·(f.u.).

The model χ′′(q, E) can also be successfully verified
against 1/T1T in NMR [41, 42, 54–57] and specific heat
data [22, 58, 59], see supplemental material [46]. The
impact of the qFM fluctuations must not be underes-
timated; because of the larger phase space, they yield
about 85% of the specific-heat enhancement.

The qFM signal in Sr2RuO4 does not correspond to
the paramagnon scattering expected close to a FM insta-
bility [51]; instead it can be viewed as as an AFM insta-
bility with a small but finite propagation vector near the
Brillouin-zone center and a width that largely exceeds
the length of the propagation vector. The superposition
of several low-q contributions can result in the observed
broad feature centered at q=(0,0) and indeed several cal-
culations of the q-dependent susceptibility in Sr2RuO4

reveal sharp features near (0.1,0.1,0) associated with the
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γ band [60, 61, 67]. Ca2−xSr2RuO4 with 0.2 < x < 0.5
as well as Sr3Ru2O7 exhibit FM or metamagnetic transi-
tions with sizeable moments [44, 62]. In these truly FM
compounds the magnetic fluctuations also differ from the
FM paramagnon response and retain a small-q incom-
mensurate AFM character [63–66], although the q width
in these materials is much smaller than that of the qFM
part in Sr2RuO4. The qFM signal in Sr2RuO4 exhibits a
characteristic energy that is only a little larger than that
of the IC signal, supporting the notion that Sr2RuO4 is
also close to FM order [43, 44].

To access the role of the qFM fluctuations in the SC
pairing we apply a simple weak-coupling approach relat-
ing the spin-mediated pairing interaction V (k,k′) to the
full χ(q, E), see, e.g. Ref. [67]: λ∆(k) =

∑
k′ V (k,k′) ·

∆(k′), where ∆(k) characterizes the SC order parame-
ter (SOP). V (k,k′) is, for the singlet and triplet pairings
[67]:

Vs(q = k− k′) = −3I2(q)χ′(q, 0)
1√

vF (k)vF (k′)
(3)

Vt(q = k− k′) = I2(q)χ′(q, 0)
|v̂F (k) · v̂F (k′)|√
vF (k)vF (k′)

where I(q) is defined as I(q) = χ0(q)−1 − χ(q)−1,
and χ0(q) is the noninteracting (Lindhardt) susceptibil-
ity. Note that only the amplitude of the single-relaxor
spectra, χ′(q, 0), enters the interaction matrices in this
simple model. We use the tight binding Hamiltonian
of Ref. [68] and parameterize the interaction as [10]:
I(q) = I(0)/[1 + b( aπ )2q2], further details are given in
[46]. The matrices Vs,t(k,k

′) are diagonalized by dis-
cretizing the Fermi surface into 1301 vectors k. The
largest eigenvalue of the interaction matrix defines the
solution with the highest critical temperature, and the
corresponding eigenvector defines the symmetry and the
structure of the SOP. The interaction parameter I(q) is
crucial. Based on their calculations for SrRuO3, Mazin
and Singh [5, 10, 69] assigned the q dependence of I to the
Hund’s rule coupling on oxygen, and estimate b = 0.08.
In the experiment, we find a much larger value b = 0.44,
see Fig. 3(a), thus favoring more the triplet pairing.

We have diagonalized the matrices described by equa-
tion (3) using the two contributions separately, and using
the total χ′ = χ′(q, 0). The results are shown in Table
I. As expected, for the IC fluctuations alone singlet so-
lutions are most stable, and the qFM ones give triplets.
With the total susceptibility, the IC fluctuations signifi-
cantly contribute to the triplet solution as well, but the
most stable state is still a singlet: the ratio of the largest
singlet to the largest triplet eigenvalue is rather high,
Rs/t =4.8 [52]. Even a five times larger qFM part (clearly
incompatible with the experiment) only reduces the ratio
to Rs/t=1.4. Sharpening the parameter I(q) significantly
helps the triplet case, but not enough; tripling b to 1.32
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FIG. 3: (a) The interaction I(q) = I(0)/[1 + b( a
π

)2q2] for
b=0.08 (dashed line) and b=0.44 (solid line) compared with
the experimental estimates; (b) 2D Fermi surface of Sr2RuO4

with the q1D (green) and q2D (blue) sheets; (c,d) SC order
parameter on these sheets plotted against the angle with re-
spect to the kx-axis for the most stable singlet (c) and triplet
(d) solutions.

only reduces Rs/t to 2.2. Fig. 3 (c) and (d) present
the SOPs for the most stable singlet and triplet solutions
with the experimental set of parameters. The triplet so-
lution is degenerate with the one rotated by 90◦, so that
a chiral state can be constructed. Note that both solu-
tions have strong angular anisotropies (even vertical line
nodes), not imposed by the p or d symmetries.

We have also estimated the potential effect of matrix
elements in various ways [46] and studied the impact of an
anisotropic susceptibility, but in all realistic cases the sin-
glet state turned out to be the most instable one. Within
simple spin-fluctuation theory it seems almost impossible
to obtain a stable triplet solution even though the qFM
signal is much sharper than previously thought.

In conclusion, we have identified the long-sought qFM
fluctuations in Sr2RuO4, and, by comparing with the
phonon scattering, quantitatively determined their am-
plitude. Combining this qFM signal and the nesting-
driven IC response we have constructed the total mag-
netic susceptibility χ′′(q, E) at all q, which is consis-
tent with the macroscopic susceptibility, with the spe-
cific heat coefficient in the normal state and with the
1/T1T NMR results. Even though the experimentally
determined qFM response is stronger and sharper than
thought before, the IC component still dominates the
spin-fluctuation spectrum in Sr2RuO4, so that the total
susceptibility favors a singlet order parameter for simple
spin-fluctuation mediated pairing. Thus, if the super-
conductivity in Sr2RuO4 is triplet, interactions beyond
spin-fluctuation exchange would be required for the pair-
ing mechanism.
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