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Abstract

This paper addresses the topic of the electrical flexi-
bility on the demand-side, by focusing on the residen-
tial buildings. Specifically, it aims to quickly formu-
late the optimal operation of building heat pumps,
according to environmental or grid issues. Indeed
the literature shows many examples of quantification
of the flexibility impacts, but mostly relying on pre-
defined strategies. To go from the evaluation of some
strategies to the formulation of the optimal plan-
ning, we are introducing a methodology based on the
automatic generation of models dedicated to mixed-
integer linear programming (MILP) optimization. Fi-
nally, the method was applied to a new residential
building during a month of winter.

Introduction

Flexibility context on the electrical system

According to the Intergovernmental Panel on Climate
Change (2018), climate-related risks to health, liveli-
hoods, food security, water supply, human security,
and economic growth are projected to increase with
global warming. Limiting global warming to 1,5 ◦C
requires the energy system to undergo a rapid tran-
sition. One solution to reduce the CO2 emitted by
the energy system is to increase the share of renew-
able energies into the energy production mix. As a
massive integration of variable renewable energies in
the power system could lead to stability issues, flexi-
bility becomes key to the energy transition (IRENA
(2018)). In order to increase the flexibility means on
the electrical system, the consumption site has been
involved through the concept of Demand-Side Man-
agement (Meyabadi and Deihimi (2017)).

According to the International Energy Agency
(2018), the global buildings sector accounts for more
than 55% of global electricity demand, so that they
represent a massive and diffuse electricity consump-
tion. Besides electrical appliances, the electricity can
be converted into heat in order to cover the ther-
mal needs. This possibility of conversion from elec-
tricity to heat is usually called Power-to-Heat (P2H)
and allows the use of the flexibility on a thermal

load for electrical grid purposes (Bloess et al. (2018)).
As buildings can store heat into their own envelope
thanks to thermal inertia, P2H can be applied to
buildings equipped with heat pumps, electric heaters
or even electric boilers.

Approaches for DSM modeling

In order to quantify the impacts of a DSM (Demand
Side Management) strategy, load forecast models are
required. In the particular case of using heat pumps
flexibility, the load to be predicted corresponds to the
thermal needs of the building. The literature mostly
shows two approaches for heat load forecasting:

1. Data-driven models

2. Physical models

In the first case, the load predictions rely on histor-
ical data, on which various machine learning meth-
ods (from linear regression to neural networks) are
applied for the future load forecast (Yildiz et al.
(2017), Amasyali and El-Gohary (2018)). In or-
der to be successful, these methods require a large
amount of data. Indeed, in order to provide efficient
hours-ahead building load forecasts, Ke et al. (2016)
used 15-minutes building load data from May 2012 to
April 2014. Similarly, Bacher et al. (2013) used mea-
surements over a two-year period with a 10-minute
time step. When as many data are not available,
an alternative to these ”black box” models is to ex-
ploit the laws of physics for thermal transfers, also
called ”white box” or ”grey box” (Harish and Kumar
(2016)). Besides solving a data issue, using physical
laws can lead to greater reliability of the load forecast.

A large range of physical models can be found in
the literature, from very-detailed to low-level models
(Reinhart and Davila (2016)). Very-detailed mod-
els are generally based on the thermal zone con-
cept, which considers parts of the building with a
homogeneous temperature as a single ”thermal zone”
and decomposed buildings elements such as walls
with a finite volume method (Peuportier and Blanc
(1990)). Software with detailed thermal models, in-
cluding all the thermal zones and the energy systems
are used for regulation purposes, such as guarantee-



ing the respect of the maximal energy consumption
of a building during the design phase (Allegrini et al.
(2015)). In the opposite, thermal models such as
Resistance-Capacitance (RC) networks applied to an
entire building can significantly reduce the simulation
time of the thermal load forecasting model. There-
fore, when scaling up from building to the district, RC
networks tend to be preferred (Elci et al. (2018)). An-
other alternative is available to gain time during the
design of the study case: model generation tools. By
using standard languages, these tools have the main
advantage to provide reusable models. For instance,
Remmen et al. (2018) provide TEASER (Tool for En-
ergy Analysis and Simulation for Efficient Retrofit)
for the creation of building models in the Modelica
language.

Once the consumption models created, the strategies
of demand-side management can be applied and eval-
uated. The performance of a strategy can be quanti-
fied by introducing evaluation indicators, such as the
CO2 emissions, the operative temperature or peak
shaving. However, in the case of simulation mod-
els, each strategy should be pre-defined, then tested
and evaluated afterward, so that a simulation-based
approach cannot provide new solutions. To go fur-
ther in the formulation of DSM scenarios according
to its purposes, optimization is thus needed. For this
reason, this paper aims to develop a methodology to
define optimal operation strategies of a building heat
pump.

Paper structure

First, the methodology implemented to quickly gen-
erate optimization models for DSM on buildings heat-
ing loads will be presented. Then, the methods will be
applied to a residential building, aiming either to min-
imize its electric peak power or its CO2 emissions. In
the results section, the optimization results obtained
on the study case will be presented. Finally, after a
discussion section, a conclusion will be drawn.

Methods

Quick generation of optimization models

The paper aims to provide a method to quickly deter-
mine optimal heat pumps operation strategies. Opti-
mization allows finding the best DSM strategy ac-
cording to criteria, instead of testing several pre-
defined strategies in simulation and evaluating the
impact afterward. For this purpose, a first require-
ment is heating loads models suited for optimiza-
tion. Then, the generation of these models has to
be fast and replicable. To do so, we rely on the
OMEGAlpes open source software1, which allows a
quick design of optimization problems. The models
are generated into a Mixed-Integer Linear Program-
ming (MILP) formulation in order to quickly provide
a solution with a large number of variables. Thus, the

1https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes

thermal load model has to respect this linear formu-
lation. This is a key point that we are addressing in
this paper, and especially for non-linearities occurring
in radiative exchanges.

Thermal load forecast

The district scale can be very different from the build-
ing scale by the number of stakeholders involved in
the energy decisions, and thus by the availability of
relevant data. Indeed, consumption data are much
easier to get for study cases at a building scale, than
for an entire district. This poor data access when
scaling up to the district scale needs to be taken into
consideration. Thus, data-driven load forecast meth-
ods can be difficult to apply to an entire district.
Moreover, a thermal load is much more correlated
to data such as the external temperature for low-
insulated buildings than for the new high-efficiency
ones. Therefore, this paper only focuses on a physi-
cal modeling approach.

However, as they require a large amount of specific
data on each building, very-detailed models are out
of scope too. Besides not being available, a very large
amount of data could lead to computational issues
during the resolution of the optimization problem.
Therefore, reduced models are wished for the opti-
mization model of the heating load prediction, as soon
the level of modeling is effective enough to describe
buildings responses to DSM events.

Low-level RC networks could fit the requirements
since their utilization in order to simulate the impact
of DSM strategies on building heating loads was vali-
dated in a previous study (Pajot et al. (2018)). More-
over, the model has to be linear in order to fit with
the linear formulation of the optimization problem
(MILP). As there are many variants of these models,
this study focus on the RC model used for regula-
tory studies in both the French and Swiss contexts
(RT2012 and SIA 2044) and drawn in Figure 1. The
model described in Figure 1 is related to SIA 2044
and was extracted from the framework City Energy
Analyst from ETH Zurich (Fonseca et al. (2016)).

Figure 1: Resistance-Capacitance network model

Six nodes of temperature are linked by five thermal
resistances and one capacitance. The three nodes on
the left of the thermal model are related to external
temperatures, while the right part describes internal
behaviours.

Then, the top represents the ventilation, through an



heat flow rates (Φvent) between the ambient air (Tint)
and the injected air (θea), according to :

Φvent = HEA(Tint − θea) (1)

The bottom part represents the heat exchanges at
the building mass. The temperature at its internal
surfaces is expressed by θm, while θem stands for its
external surfaces. Thus, the transmission losses with
outside (Φm

trans) can be expressed by the expression
(2). Moreover, an internal heat capacity (Cm) is con-
nected to the node (m), since the main source of heat
storage in a building corresponds to its mass.

Finally, the light surfaces of the building, such as the
windows, are integrated into the node (c). This node
reflects an average behavior between theses surfaces,
the building mass and the ambient air. The transmis-
sion losses occurring at light surfaces are thus consid-
ered by Φc

trans, as expressed in (2).{
Φc

trans = HEC(θc − θec)
Φm

trans = HEM (θm − θem)
(2)

However, theses losses can be compensated by heat
gains, from solar radiation, but also occupancy, ap-
pliances and lighting. All the gains from inside or
outside can be split between the three internal nodes
of temperature (Tint, θc and θm) and are respectively
called Φa, Φc and Φm, as shown Figure 1. Split-
ting the internal gain between the nodes was realized
with coefficients whose values were extracted from the
Swiss norm SIA 2044, according to the calculations
found in Fonseca et al. (2016). Therefore, the heat
flow rates from lightning (Φil), occupancy (Φip) and
appliances (Φia) are distributed according to (3) to
form the internal gains.{

Φint
a = (1− frl)Φil + (1− frp)Φip + (1− fra)Φia

Φint
c
m

= f
i
c
m

(frlΦil + frpΦip + fraΦia)

(3)
The external gains (Φs) are split between the nodes
of temperature (a, c and m), as follows (4):{

Φext
a = fsaΦs

Φext
c
m

= (1− fsa)f
s

c
m

Φs
(4)

Finally, the heat flow rate corresponding to the heat-
ing and cooling systems (Φhc) can be applied to the
nodes. The radiative fraction (Φhc,r) is applied to the
nodes relating to c and m (5).

Φ c
m

= Φint
c
m

+ Φext
c
m

+ f
i
c
m

Φhr,r (5)

For the ambient air, the convective fraction of the
heat flow rates from heating and cooling (Φhc,cv) is
added to the internal and external flows (6).

Φa = Φint
a + Φext

a + Φhr,cv (6)

The external gains (Φs) can be split into the net solar
radiation to the building (Isol) and heat flow rates the
re-irradiated to the sky (Irad).

Φs = Isol − Irad (7)

Both the incident and the re-irradiated heat flow rates
can be divided between the walls, the windows and
the roof (8 and 14). The incident solar gains to the
building depend on the average value of the solar ra-
diation (8).

Isol = Iavsol(γwin + γwall + γroof ) (8)

Where:
γwin = Awin ∗ (1− FF ) ∗ Fshwin

γwall = Awall ∗RSE ∗ awall ∗ Uwall

γroof = Aroof ∗RSE ∗ aroof ∗ Uroof

(9)

Despite benefiting from solar radiation, buildings are
continuously exposed to the sky, so that radiative ex-
changes occur between buildings elements (windows,
walls and roof) and the sky. For each element x, this
re-irradiated heat flow to the sky, which is non-linear
regarding surface temperature (θc), can be expressed
as (10) and is usually found under the form (11) in
building physics applications.

Irad,x = εx ∗ σ ∗Ac
x ∗ (T 4

sky − θ4c ) (10)

Irad,x = εxσ(T 2
sky + θ2c )(Tsky + θc)︸ ︷︷ ︸

hrad,x

∗Ac
x ∗ (Tsky − θc)

(11)

Where εx is the emissivity of the element x, σ the
Stefan-Boltzmann constant, Tsky the temperature of
the sky, θc the temperature defined previously, hrad,x

is an external radiative heat transfer coefficient for
the element x and Ac

x is its effective solar collecting
area (12) according to the norm ISO 13790 (2008):

Ac
x = Ff,x ∗RSE ∗ Ux ∗Ax (12)

Where RSE is the external surface heat resistance of
the opaque part, Ff,x is the form factor of the element
x (0,5 for vertical surfaces and 1 for horizontal sur-
faces), Ux is the thermal transmittance of the element
x and Ax is its surface.

In buildings physic literature, numerous simplifica-
tions are realized for the expression of the external
radiation heat transfer coefficients (hrad,x) from em-
pirical values (around 5W/m2K) to more complex
calculation depending on the wind speed (Evange-
listi et al. (2017)). The Standard UNI EN ISO 6946
recommends to express hrad,x as follows (13).

hrad,x = 4 ∗ εx ∗ σ ∗ (
T t
sky + θt−1

c

2
)3 (13)



Therefore the re-irradiated heat flow can be expressed
by a polynomial of θt−1

c and Tt
sky (14).{

Irad = p(θt−1
c , T t

sky)(kwin + kwall + kroof )

p(x, y) = (y − x)(x+ y)3
(14)

Where:
kwin = Ff,win ∗RSE ∗ Uwin ∗Awin ∗ εwin ∗ σ/2
kwall = Ff,wall ∗RSE ∗ Uwall ∗Awall ∗ εwall ∗ σ/2
kroof = Ff,roof ∗RSE ∗ Uroof ∗Aroof ∗ εroof ∗ σ/2

(15)

In the case of Dynamic Thermal Simulation (DTS),
the resolution of the previous equations (or variants)
is realized once per time step. However, in order to
be integrated into an optimization approach, specific
requirements need to be considered.

Optimization requirements

In opposite to DTS models, the optimization model
has to integrate all the time steps simultaneously to
find the optimal operation of the heating system.
Thus, no iterative process can be incorporated into
the MILP formulation of the study case, which rep-
resents a big difference with the simulation models.

Besides considering the time-dependency when it is
the case, all the equations should be acausal. Thus,
all the dynamic variables calculated at each iteration
of the simulation become as many decisions variables
as the number of time steps and differential equations
can be written as difference equations. This way, all
equations from the simulation model can be converted
into optimization ones and expressed as optimization
constraints.

Moreover, the constraints expressed in a MILP model
can only be described as linear expressions of the de-
cision variables. However, the Stefan-Boltzmann law
expressed in (14) is non-linear and cannot be inte-
grated as such in the MILP model. Indeed, the θc
value is calculated at each iteration during the simu-
lation process and therefore is a decision variable in
the optimization model. In order to be considered,
this heat flow rate has to be linearized. In the case of
a MILP formulation, one solution is to introduce new
constraints with binary variables. Nevertheless, this
method could lead to computational issues when the
expression to be linearized is time-dependent. More
traditional approaches include using Taylor develop-
ment (16) to express the function around a point of
interest (xl) or several ones through a piecewise linear
function.

f(x) '
n∑

i=0

f (i)(xl)

i!
(x− xl)i (16)

Since the temperature of the sky (Tsky) only depends
on weather data and is entirely known out of the opti-
mization, the expression of the re-irradiated heat flow
has to be linearized only with respect to θc.

The range of variation of θc is relatively small as
the temperature of the surfaces is quite close to
the mean ambient temperature of a temperature-
regulated building. For this reason, an estimation of
the mean temperature of the thermal zone (Tmean)
is chosen as the point of interest in the linearization,
so that Irad can be expressed as (17).

Irad(θt−1
c ) '

n∑
i=0

I
t(i)
rad(Tmean)

i!
(θt−1

c − Tmean)i (17)

A first approach consist in assuming θc to be constant,
i.e. considering the Taylor formula (17) at the order
0. Then, a second step is realized with a development
at the first order. The two methods are illustrated in
Figure 2 and will be developed in the next subsection.

Figure 2: Illustration of the linearization method

Linearization results

As explained previously, the MILP formulation of the
optimization problem requires all equations to be lin-
ear in order to be set as constraints. As Irad can be
expressed as a fourth-degree polynomial of θc (14),
two linearization methods were presented:

1. The first linearization considered a fixed value of
θc equals to Tmean ((17) at order 0).

2. The second method assumed a linear variation of
Irad depending on θc ((17) at order 1).

Dynamic results of these linearizations are shown in
Figure 3 on a 48-hour period, with a time step of 10
minutes. For reference, the real calculation of Irad
is represented by a blue line, while the orange and
green bullets respectively stand for the first and sec-
ond method.

First, it can be noticed that results obtained by the
first method change per stages. This can be explained
by the time steps of the data. As the external tem-
perature is hourly predicted, the sky temperature is
calculated with an hourly time step. As the value of
θt−1
c in the method is set to Tmean ∀ t, the estima-

tion of Itrad only fluctuate according to Tt
sky. In the

other hand, the orange curve representing the second
linearization method fits all variations with a good
approximation.



Figure 3: Comparison between Irad and Irad lin-
earized (two ways) during 48 hours

The mean absolute error (18) obtained during a
month of winter with Tmean set to Tset = 19◦C is
0,89% for the first method and 0,0013% for the sec-
ond method.

Error =
1

period length
∗

∑
period

| Îtrad − Itrad |
| Îtrad |

(18)

In these cases, the approximation of the mean value
of θc (19◦C) is very close to the real mean tempera-
ture (18,9◦C). However, this method was applied to a
thermally controlled building, so that the mean tem-
perature of the surfaces is not supposed to vary much.
In cases of non-controlled buildings or during load
shedding strategies, higher variations of temperature
may occur on the surfaces. Therefore, the prediction
was realized again with an estimation of Tmean with
variations of +/- 1◦C and +/- 4◦C, with the same real
mean temperature. The results are shown in Table 1.

Tmean Error - lin. 1 Error - lin. 2
15◦C 15 % 0,30 %
18◦C 3,3 % 0,014 %
19◦C 0,89 % 0,0013 %
20◦C 4,8 % 0,028 %
23◦C 17 % 0,35 %

Table 1: Mean error of estimation of Irad according
to Tmean

Even with a supposed mean temperature of surfaces
4◦C lower or higher than the right one, the second
method estimates Irad more accurately than the es-
timation realized with the first method with 19◦C.
For this reason, the estimation of Irad provided by
the second method (Taylor development at the first
order) was integrated into the optimization model for
the prediction of the thermal needs.

Application to a residential building

In order to find the best operation of the heat pump
in a residential neighborhood, the desired objectives
for the DSM have to be defined. In this paper, two
objectives have been studied:

1. Minimizing the CO2 emissions

2. Minimizing the peak consumption power

For an eco-district, lowering its environmental impact
is very important, so that minimizing the CO2 emis-
sions related to the heating consumption of the build-
ings may be more and more investigated. However,
the CO2 emissions generated for the production of
a kilowatt-hour is time-dependent, according to the
production mix needed to match the consumption.
Shifting electrical loads to low-pollution periods can
easily be realized in case of a building thermally fed
by heat pumps and will be explored in this paper.

The CO2 emissions are calculated from the consump-
tion of the heat pump, according to the hourly emis-
sion of the French electrical system (19).

CO2em. =
1

COPHP

∑
January

cot2 ∗ Φt
hc (19)

The CO2 emissions of the French electrical system
(cot2) are taken during the year 2017, while the power
needs (Φt

hc) result from the optimal strategy. In this
case, the heat provided to the heat pumps comes from
ground water whose temperature can be considered
as constant, so that COPHP too.

Then, a more local point of view was adopted with the
minimization of the peak consumption power. Peak
shaving strategies can be crucial for distribution sys-
tem operators, as they can avoid congestion on the
power lines and reduce the risk of instability on the
entire power system. For this reason, the second ob-
jective studied in this paper is the minimization of
the peak consumption power required for the build-
ing heating needs.

From an electric point of view, the time of the year
when the grid is the most at risk in France is the
winter. For this reason, both of these objectives will
be applied for the month of January. During this
period, the dynamic was modeled with a time step
of 10 minutes. Moreover, to ensure simplicity in the
formulation, this paper focuses on the operation of
the heat pump of a single building of the block.

As an optimal operation of the heat pump could af-
fect the thermal comfort of the building occupants,
a specific constraint has been defined. In order to
express the thermal comfort, this paper relies on the
operative temperature calculated as the mean value
between the temperatures representing the radiative
and the convective heat flows for the occupants, ac-
cording to the approximation defined by ASHRAE
(2013). With the definition of θc, the norm calculates
Toperative as follows (20):

Toperative = 0, 69 ∗ θc + 0, 31 ∗ Tint (20)

The constraint ensures that the operative tempera-
ture, stays between +/- 1 ◦C around the temperature
set-point.

Then, all the external and internal flows are required
in order to build the thermal model. Internal flows



are usually estimated thanks to occupancy prediction
(see Figure 4), while the external heat flow rates rely
on weather data.

Figure 4: Internal heat flow rates per area

In this study, representative weather files for the lo-
cation were found online (EnergyPlus (2018)) and ex-
tracted for the month of January.

Data relative to the building were obtained from
mandatory studies for the construction of new res-
idential buildings. An occupancy schedule was real-
ized and provides us the internal gains of the building
per surface (Figure 4).

Standard data about the envelope of the building
were also available and the most important param-
eters (U-values, areas, emissivity: ε and absorptivity:
α) are summarized in Table 2.

Table 2: Envelope data of the building
U [W/(m2K)] A [m2] ε α

Windows 1.1 520 0.9
Walls 0.18 1990 0.9 0.6
Roof 0.12 263 0.9 0.5

Once the model built, three optimization problems
were launched: a reference scenario, the minimiza-
tion of the CO2 emissions and the minimization of
the maximal peak power. For comparison, the opera-
tion for reference scenario corresponds to the heating
supply providing the least variation of the operative
temperature around its set-point.

Results

In this section, the results for optimal operation of
the heat pump of a new residential building during
January are detailed. First two mono-objective ap-
proach are investigated in order to study both the
environmental and financial objectives. Then, the re-
sults from a multi-objectives study are presented to
find some trade-offs between these points of view.

Mono-objective optimizations

As explained before, a reference scenario was defined
as the heat pump operation needed to lower the gap
between the operative temperature and its set-point.
Then, two optimal scenarios respectively minimizing
the consumption peak and the CO2 emissions have
been studied through a MILP formulation.

With 93745 variables (80353 continuous and 13392 bi-
nary) and 271859 non-zeros, this optimization prob-
lem was solved within 32 seconds with the Gurobi

Table 3: Optimization results
Ref. Obj. peak Obj. CO2

Pelec
peak 50,0 kW 4,41 kW 16,7 kW

CO2 em. 173 kg 98,6 kg 82,0 kg
Elec cons. 12 MWh 6,9 MWh 5,8 MWh

Top
mean 19,0 ◦C 19,1 ◦C 18,7 ◦C

solver on an Intel bicore i5 2.4 GHz CPU. The results
obtained from the three operation strategies can be
found in Table 3, in terms of electrical peak power
(pelecpeak), CO2 emissions (CO2 em.), electrical con-
sumption (Elec cons.) and mean operative temper-
ature (Top

mean). For comparison to other buildings, it
can be added that the considered building includes
an area of 3436m2 heated by a heat pump with a
coefficient of performance equals to 4.

As we can see, the reference scenario is the worst from
three points of views (the emissions of CO2, the elec-
trical peak power and electrical consumption). Even
from the operative temperature perspective, 0,1 ◦C
more on average are obtained by minimizing the peak
power.

For this first objective, the heat pump operation al-
lows dividing the peak power by 11 (91% of diminu-
tion), while reducing both the CO2 emissions and the
energy consumption, from 43%. In order to reach a
reduction of the CO2 emissions from 53% with the
second optimization, the power peak decreases from
67% and the energy consumption is lowered with 52%.

In both cases, the energy consumption decreases as
much as CO2 emissions, which suggests that reduc-
ing the energy consumption could lead to a similar
reduction of the CO2 emissions.

Multi-objectives optimization

In order to find trade-offs between the two points of
views, study cases with weighted objectives have been
realized and are shown on a Pareto diagram (Fig-
ure 5). Thus, several possibilities can be found al-
lowing stakeholders to choose the better compromise
according to them, between peak shaving and the de-
sire of minimizing the CO2 emissions. These trade-off
scenarios can be found in the bottom-left area of the
Figure 5, where increasing the peak allows to con-
sumed more during low-CO2 periods and vice-versa.

Figure 5: Pareto diagram for trade-off between CO2

emissions reduction and electrical peak shaving



Finally, a specific trade-off providing an electrical
peak power of 5,70 kW, while emitting 82,7 kg of CO2

was selected (see Figure 5). The heat pump opera-
tion is drawn Figure 6 in line with the dynamic CO2

emissions from the French electrical system (during
2017) and the operative temperature of the building,
which must remain between 18 ◦C and 20 ◦C.

Figure 6: Heat pump operation for the selected trade-
off according to CO2 rate and operative temperature
It can be noticed that the heat pump is operat-
ing preferably during the low-CO2 emissions periods
while being constrained by the operative temperature
range to maintain. By considering a trade-off instead
of the solution of minimizing the CO2 emissions, the
power peaks during low-CO2 periods are limited to
5,70 kW, instead of 16,7kW.

Conclusion and perspectives

Conclusion

In this paper, two main subjects have been developed.

A generic methodology for quick generation of MILP
optimization models for DSM on buildings heating
loads at the district scale, suitable for any building
type. A low-level RC model dedicated for thermal
dynamic simulation was converted into a MILP opti-
mization model, by applying two linearization meth-
ods of the heat flow rate re-irradiated to the sky
(Irad). Providing the best estimation, the second
method, based on a Taylor development at the first
order, was kept for an illustration on the study case.

The application of the optimization models on a new
residential building, in order to find the best oper-
ation of the heat pump according to two criteria:
the CO2 emissions and the peak power. First, the
two objectives have been studied separately and com-
pared to a reference scenario. Then, combining the
two point of views was investigated by weighting the
objectives. These results were shown in a Pareto dia-
gram and a trade-off was selected for further studies.
Finally, dynamic results of the heat pump operation
were presented for a 48-hour period.

Perspectives

As explained previously, this work was based on a
low-level RC-model, with one capacitance. As these
elements represent the thermal storage capacity of
the building, further work is needed to confirm the
accuracy of the results. To do so, this approach could
be confronted with the results obtained with a highly-
detailed simulation model, by applying the optimal
strategies obtained and evaluate the same indicators
(power peak, CO2 emissions, electrical consumption
and mean operative temperature).

Another perspective is to extend this methodology to
the entire block of buildings. This step only requires
the envelope data from the buildings (U-values, ar-
eas, emissivity, and absorptivity of the walls and win-
dows), as well as the internal gains.
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Nomenclature

Ax: Area of the element x
Ac

x: Effective solar collecting area of x
Cm: Internal heat capacity
cot2: CO2 emissions of a French electrical

kWh at time t (during 2017)
CO2,em: Total CO2 emissions
COPHP : Heat pump coefficient of performance
εx: Emissivity of the element x
FF : Frame area faction coefficient
Ff,x: Form factor of the element x
f
i
c
m

: SIA 2044 internal coefficient for the
node c/m

fra: SIA 2044 coefficient for appliances
frl: SIA 2044 coefficient for lightning
frp: SIA 2044 coefficient for occupancy
fsa: SIA 2044 coefficient for the node a
f
s

c
m

: SIA 2044 external coefficient for the
node c/m

hrad,x: External radiative heat transfer coef-
ficient for the element x

HXY : Thermal transmission coefficient be-
tween the nodes X and Y

Îrad: Estimation of the heat flow rate re-
irradiated to the sky

Irad: Heat flow rate re-irradiated to the sky
Irad,x: Heat flow rate re-irradiated to the sky

from the element x
Isol: Net solar radiation to the building
Iavsol: Average value of the net solar radia-

tion to the building
Φa: Heat flow rate at the node a
Φext

a : External heat flow rate at the node a
Φint

a : Internal heat flow rate at the node a
Φc: Heat flow rate at the node c
Φm: Heat flow rate at the node m



Φext
c
m

: External heat flow rate at the node
c/m

Φint
c
m

: Internal heat flow rate at the node
c/m

Φhc: Building heating/cooling power
Φhc,cv: Convective part of heating/cooling
Φhc,r: Radiative part of heating/cooling
Φia: Internal gains from appliances
Φil: Internal gains from lightning
Φip: Internal gains from occupancy
Φk

trans: Heat flow rate due to transmission
through the envelope at the node k

Φs: External heat gains
Φvent: Heat flow rate due to ventilation
RSE : Thermal resistance of external sur-

faces according to ISO 6946
σ: Stefan-Boltzmann constant
θea: Temperature at the node ea [ ◦C]
θec: Temperature at the node ec [ ◦C]
θem: Temperature at the node em [ ◦C]
θc: Temperature at the surfaces [ ◦C]
θm: Temperature at the thermal mass [ ◦C]
Tint: Temperature of the ambient air [ ◦C]
Tmean: Estimation of the mean temperature

of the surfaces [ ◦C]
Toperative: Operative temperature of the zone
Tsky: Temperature of the sky [K]
Ux: Thermal transmittance of x
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