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1  | INTRODUC TION

The role of behavioral flexibility in evolution is controversial 
(Bailey, Marie‐Orleach, & Moore, 2018; Price, Qvarnstrom, & 
Irwin, 2003). In the context of speciation, the evolution and main‐
tenance of reproductive barriers between species can be strongly 
affected if mate preferences are learned or otherwise influenced 
through social experience (Dukas, 2013; Irwin & Price, 1999; 
Servedio & Dukas, 2013; Verzijden et al., 2012). For example, 
experiencing heterospecifics is often found to strengthen con‐
specific mating preferences (delBarco‐Trillo, McPhee, & Johnston, 
2010; Dukas, 2008; Fincke, Fargevieille, & Schultz, 2007; Kozak & 

Boughman, 2009; Magurran & Ramnarine, 2004). It is also critical 
to understand how social experience affects sexual signals upon 
which mating decisions are based (Verzijden et al., 2012), but sig‐
nal plasticity tends to receive less study. Of the studies that have 
tested this, some have found extensive learning effects in signal‐
ing, such as birds or sea mammals which learn song (Garland et 
al., 2011; Slabbekoorn & Smith, 2002), and this may accelerate 
speciation under some circumstances (Verzijden et al., 2012). In 
insects, song is more likely to be assumed to be innate, although 
social experience has been shown to influence signaling and re‐
productive tactics in several species (Bailey, Gray, & Zuk, 2010; 
Rebar, Barbosa, & Greenfield, 2016), and more broadly social 
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Abstract
Courtship behavior in Drosophila has often been described as a classic innate behav‐
ioral repertoire, but more recently extensive plasticity has been described. In particu‐
lar, prior exposure to acoustic signals of con‐ or heterspecific males can change 
courtship traits in both sexes that are liable to be important in reproductive isolation. 
However, it is unknown whether male courtship song itself is socially plastic. We 
examined courtship song plasticity of two species in the Drosophila melanogaster sub‐
group. Sexual isolation between the species is influenced by two male song traits, the 
interpulse interval (IPI) and sinesong frequency (SSF). Neither of these showed plas‐
ticity when males had prior experience of con‐ and heterospecific social partners. 
However, males of both species produced longer bursts of song during courtship 
when they were exposed to social partners (either con‐ or heterospecific) than when 
they were reared in isolation. D. melanogaster carrying mutations affecting short‐ or 
medium‐term memory showed a similar response to the social environment, not sup‐
porting a role for learning. Our results demonstrate that the amount of song a male 
produces during courtship is plastic depending on the social environment, which 
might reflect the advantage of being able to respond to variation in intrasexual com‐
petition, but that song structure itself is relatively inflexible, perhaps due to strong 
selection against hybridization.

K E Y W O R D S

acoustic signals, behavioral plasticity, reproductive isolation, social learning, speciation

www.ecolevol.org
mailto:￼
https://orcid.org/0000-0003-3362-1500
https://orcid.org/0000-0003-3531-7756
https://orcid.org/0000-0001-7913-8675
http://creativecommons.org/licenses/by/4.0/
mailto:lmo2@st-andrews.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.4759&domain=pdf&date_stamp=2018-12-10


     |  411MARIE‐ORLEACH Et AL.

learning can influence sexual isolation (Svensson, Eroukhmanoff, 
Karlsson, Runemark, & Brodin, 2010).

In species of the Drosophila melanogaster subgroup, several sex‐
ual traits show social plasticity (Schneider, Atallah, & Levine, 2017), 
including cuticular hydrocarbon profiles (Krupp et al., 2008), mate 
choice (Dukas, 2005; Mery et al., 2009), mating success (Billeter, 
Jagadeesh, Stepek, Azanchi, & Levine, 2012), and ejaculate charac‐
teristics (Garbaczewska, Billeter, & Levine, 2013; Sirot, Wolfner, & 
Wigby, 2011; Wigby et al., 2009). Recently, both male and female 
responses to song were shown to be influenced by social experi‐
ence transmitted through species‐specific male courtship song itself 
(Li, Ishimoto, & Kamikouchi, 2018). Li et al. (2018) found that both 
female song discrimination and a measure of male sexual arousal, 
“chaining,” were influenced, or tuned, more extensively following 
exposure to song carrying conspecific‐like IPIs than hetrospecific‐
like song, suggesting an important role for social experience in the 
auditory channel in causing plastic behavioral responses to auditory 
social information.

Here we focused on whether courtship song itself is socially 
plastic. Song is produced by wing vibrations, and two distinct param‐
eters of this important mating signal, the interpulse interval (IPI) of 
pulse song and frequency of sinusoidal sinesong (SSF; Figure 1), are 
well‐characterized targets of female mate choice (Ewing & Bennet‐
Clark, 1968; von Schilcher, 1976). Courtship song is species specific 
(Cowling & Burnet, 1981), evolves rapidly (Ritchie & Gleason, 1995), 

and females are more receptive when they are stimulated by con‐
specific song (Ritchie, Halsey, & Gleason, 1999). Genes with a large 
influence on song characteristics have been identified and manipu‐
lated (Ding, Berrocal, Morita, Longden, & Stern, 2016; Neville et al., 
2014; Wheeler et al., 1991), and fly song is in many ways a classic 
study system for behavioral neurogenetics (Hall, 1994; Kyriacou, 
2007).

To test whether males fine‐tune their song production depend‐
ing on social experience, we reared D. melanogaster and Drosophila 
simulans focal males either with conspecifics, with heterospecifics 
or in isolation, and analyzed their subsequent IPI, SSF and song 
production (Figure 1). Drosophila melanogaster and D. simulans are 
closely related, but males produce species‐specific IPIs and SSF 
when raised under ordinary conditions with conspecifics (Cowling 
& Burnet, 1981). The species identity of social partners has recently 
been shown to affect other male sexual behaviors in these spe‐
cies (Bretman, Rouse, Westmancoat, & Chapman, 2017). However, 
whether courtship song can be modified through social interactions 
with other males is at present not known. When in close proximity, 
male flies court and sing to other males, enage in aggressive physical 
contact, and can transmit visual and olfactory cues (Bailey, Hoskins, 
Green, & Ritchie, 2013; Griffith, 2014), so our experimental manip‐
ulation is likely to involve a full multimodal social experience (Krupp 
et al., 2008). In a first experiment, we tested whether male singing 
behavior responds to con‐ and heterospecific social environments. 

F I G U R E  1   Experimental procedure to 
test the social plasticity of courtship song. 
We manipulated the social environment 
by raising focal males for 6 days either 
in isolation, with five conspecific males, 
or with five heterospecific males. We 
exposed focal males to virgin females 
for 10 min, and recorded the courtship 
song. We assessed the key parameters of 
courtship songs: interpulse interval (IPI), 
sinesong frequency (SSF), and pulse song 
burst duration
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In a second experiment, we investigated the underlying mechanisms 
of song plasticity to the social environment, using neurological mu‐
tant strains that show learning and memory defects.

2  | MATERIAL AND METHODS

Flies were reared on a 12:12 light:dark cycle at 23°C. Fly density 
was standardized to 10 males and 10 females per vial for at least 
two generations prior to sampling experimental individuals. In ex‐
periment 1, we used D. melanogaster Canton‐S, and D. simulans 
14021–0251.199 (San Diego stock centre). In experiment 2, we used 
D. melanogaster dunce and amnesiac mutants (on a Canton‐S back‐
ground) that, respectively, show short‐ and middle‐term memory 
deficiencies (including courtship behavior) (Dubnau & Tully, 1998; 
Emmons & Lipton, 2003; Quinn & Dudai, 1976; Quinn, Sziber, & 
Booker, 1979; Rouse, Watkinson, & Bretman, 2018).

Focal males were reared either in isolation, with five conspecific 
males, or with five heterospecific males for 6 days (Figure 1). To vi‐
sually distinguish focal males, we removed the last two or three tarsi 
of their left mesothoracic leg (including focals raised in isolation), 
from which flies rapidly recover and seem to show no significantly 
impaired movement. We removed the focal male without anesthetic 
and immediately placed it in a recording chamber for 10 min with a 
conspecific 1‐day‐old female. Copulation did not occur in our trials 
(1‐day‐old females usually do not copulate), which allowed us to re‐
cord all trials for the same duration but prevented us from gathering 
data on mating. Recordings used an INSECTAVOX (Gorzyca & Hall, 

1987) with internal temperature recording, band‐pass filtered (Fern 
Developments EF5‐04) at 100–700 Hz, and digitized with the soft‐
ware Audacity (www.audacityteam.org).

We measured the interpulse interval (IPI), the sinesong fre‐
quency, and the pulse song burst duration using DataView v.10.6.0 
(Heitler, 2007). Pulse song was analyzed after filtering all song files 
(100–500 Hz frequency range). We isolated pulses by applying a 
Teager Energy Operator (time = 3, iteration = 4) and a Hill‐Valley 
analysis (uphill and downhill thresholds = 50%, absolute peak height 
filter = 15 robust SD, max duration = 15 ms). Then we detected pulse 
song bursts using specific parameters for D. melanogaster and D. sim‐
ulans strains. For D. melanogaster strains, bursts were detected when 
they contained five pulse intervals of <55 ms, with an average du‐
ration of 25–50 ms and a coefficient of variation of 50%. For the 
D. simulans strain, bursts were detected when they contained five 
pulse intervals of <75 ms, with an average duration of 30–70 ms and 
a coefficient of variation of 50%. We discarded any pulses that oc‐
curred outside a burst. Finally, we averaged the interpulse intervals 
(IPIs), and the pulse song burst durations over the 10‐min recordings. 
Sinesong frequency was computed using a fast Fourier transform al‐
gorithm on manually isolated sinesong bursts (resolution <1 Hz, FFT 
window = Hamming, and 50% overlap).

For IPI, SSF, and pulse song burst duration, we used ANCOVAs 
to test the effects of focal strain, social environment, the focal 
strain × social environment interaction, with recording temperature 
as a covariate (23.7°C [19.5–26.2] and 24.3°C [21.8–26.5] in exper‐
iments 1 and 2, respectively; mean [min–max]). We conducted post 
hoc Tukey’s HSD tests for pairwise comparisons. Burst duration was 

F I G U R E  2   Effects of focal strains and social environment on courtship song of Drosophila melanogaster and Drosophila simulans wild‐type 
strains (a–c), and on D. melanogaster wild‐type and memory mutant strains (d). Means and 95% confidence intervals are indicated by the 
horizontal and vertical black bars, respectively. i: isolated, mel: D. melanogaster; sim: D. simulans. Sample sizes are indicated in brackets, and 
statistics are in Table 1

(d)

(a) (b) (c)

http://www.audacityteam.org
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ln transformed prior to analysis to account for skewed data distribu‐
tions. Heteroscedasticity and residual distributions were checked, 
and Welch ANOVAs were performed when the data showed un‐
equal variances among groups. All statistical analyses were carried 
out in JMP 7.0 (SAS Institute Inc., Cary NC, USA).

3  | RESULTS

3.1 | Experiment 1

Isolated D. simulans males produced shorter IPIs than those with 
social experience, but in contrast, D. melanogaster IPI was not sig‐
nificantly influenced by the social environment (Figure 2a, Table 1). 
Drosophila simulans males produced longer IPIs than D. melanogaster 
males (Figure 2a, Table 1) but, because their variances differed 
(Figure 2a), we also used a Welch ANOVA to confirm this effect 
(F = 299.4, dfnum = 1, dfden = 140.0, p < 0.001). SSF was not affected 
by the social environment in either species (Figure 2b, Table 1). Pulse 
song burst duration was affected by both focal strain and the social 
environment: Isolated males of both species produced shorter pulse 
song bursts compared to both the conspecific and heterospecific 
treatments (Figure 2c, Table 1). Note that longer pulse song dura‐
tion produced by males previously reared with a social partner is 
not due to longer IPI, but reflects a greater number of pulses per 
burst (males raised in isolation produced 8.2 ± 1.3 pulses/burst, 

while males raised with con‐ or heterospecific males, respec‐
tively, produced 9.3 ± 1.9 and 9.5 ± 2.4 pulses/burst [mean ± SD]; 
ANCOVA: focal strain: F1,253 = 0.1, p = 0.74, social environment: 
F2,253 = 12.7, p < 0.001, interaction: F2,253 = 0.8, p = 0.43, tempera‐
ture: F1,253 = 0.1, p = 0.75). See Supporting Information Appendix S1 
for additional statistics.

3.2 | Experiment 2

Experiment 2 confirmed that D. melanogaster produced longer 
pulse song bursts after exposure to other males (Figure 2d, Table 1). 
However, memory mutant strains responded to the social environ‐
ment in a similar way as the wt strain, because focal strain and so‐
cial experience affected pulse song burst duration but there was no 
significant interaction between these effects. Moreover, dunce and 
amnesiac males produced significantly shorter pulse song bursts 
than the wt D. melanogaster strain, presumably due to pleiotropic 
effects (Table 1). See Supporting Information Appendix S1 for ad‐
ditional statistics.

4  | DISCUSSION

Social plasticity in sexual signals may have important consequences for 
the evolution of sexual isolation (Irwin & Price, 1999; Verzijden et al., 
2012). We found that male fruit flies exposed to other males during 
development alter their song production. When reared in a social en‐
vironment with other individuals of the same sex, males of both spe‐
cies produce longer song bursts (and, in D. simulans, slightly longer IPIs). 
Unexpectedly, this social effect was consistent regardless of which spe‐
cies the focal males experienced in previous social encounters.

Our finding of elevated courtship intensity or effort is similar to 
effects of social experience on mate choice described in fruit flies 
(Bretman, Fricke, & Chapman, 2009) and other insects (Bailey & 
Macleod, 2014). Males reared in social groups may expect greater 
risk and intensity of intrasexual competition over mating partners 
and therefore raise their courtship efforts upon contacting females. 
We are unaware of any evidence suggesting that females express 
preferences for burst length. However, increased burst length during 
courtship will result in more song per unit time, which seems likely to 
increase the stimulatory effect of song on females and thus the cop‐
ulation success of males that produce longer bursts. Consistent with 
this, male D. pseudoobscura experimentally evolved under height‐
ened sexual competition increase the amount of song they can 
sustain during active courtship (Debelle, Courtiol, Ritchie, & Snook, 
2017). Also, D. melanogaster males produce shorter burst lengths of 
songs when courting females in the presence of other males (Tauber 
& Eberl, 2002), suggesting that males may modulate their singing ef‐
forts in opposing ways depending on whether the competition with 
other males is direct or not.

Drosophila males are known to be highly sensitive to variation in 
their social environment, to which they can respond by strategically 
allocating resources such as sperm and accessory gland secretions 

TA B L E  1   ANCOVAs summary statistics

dfnum dfden F ratio p value

Experiment 1: Drosophila melanogaster and Drosophila simulans

Interpulse interval (IPI)

Focal strain 1 253 408.7 <0.001

Social environment 2 253 5.4 0.005

Interaction 2 253 4.7 0.010

Temperature 1 253 31.1 <0.001

Sinesong frequency

Focal strain 1 221 125.8 <0.001

Social environment 2 221 0.5 0.591

Interaction 2 221 1.3 0.265

Temperature 1 221 16.8 <0.001

Pulse song burst duration

Focal strain 1 253 52.9 <0.001

Social environment 2 253 16.3 <0.001

Interaction 2 253 2.5 0.088

Temperature 1 253 4.0 0.047

Experiment 2: D. melanogaster memory mutants

Pulse song burst duration

Focal strain 2 316 22.6 <0.001

Social environment 2 316 6.9 0.001

Interaction 4 316 0.3 0.894

Temperature 1 316 15.7 <0.001

Significant p values are indicated in bold. 
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(Garbaczewska et al., 2013; Sirot et al., 2011; Wigby et al., 2009). 
In our study, males did not seem to distinguish between con‐ and 
heterospecific social partners as they respond to both similarly by 
increasing their song bout duration. This contrasts with recent find‐
ings showing that D. melanogaster males increase their mating dura‐
tion to a lesser extent after being raised with D. simulans males than 
with D. melanogaster males (Bretman et al., 2017), suggesting that 
the response may be finely tuned to species identity for some but 
not all traits. Both species are commonly co‐collected with standard 
Drosophila trapping techniques and mixed species mating encoun‐
ters have been described, but the likelihood and intensity of these 
mixed species interactions during development or courtship behav‐
ior in the field is not well understood (Gromko & Markow, 1993).

The memory mutant strains we used to investigate the role of learn‐
ing in plastic song responses have been shown to display dysfunctional 
social responses and courtship learning (Griffith, 2014). For instance, 
amnesiac, but not dunce, do not increase mating duration in response 
to the presence of conspecific rivals (Rouse et al., 2018). Similarly, both 
amnesiac and dunce fail to suppress courtship efforts after unsuccess‐
ful mating attempts (Emmons & Lipton, 2003). We found that amnesiac 
and dunce strains adjusted their singing effort in response to the so‐
cial environment in a similar manner to wild‐type D. melanogaster. We 
cannot reject the hypothesis that such social responses involve learning 
and memory, but our data suggest that the learning pathways disrupted 
by amnesiac and dunce mutations are not involved. We consider it likely 
that during early adult development, males are sensitive to the pres‐
ence of other males in the environment and adjust allocation to court‐
ship effort, as well as the strategic allocation they make to postmating 
investment. Allocation to singing effort could therefore represent more 
of an investment trade‐off modulated by social exposure, rather than 
an actively learned response. Further studies would be required to as‐
sess costs of such a trade‐off and the contribution of different sensory 
modalities or signals as cues in this plasticity.

Males raised with con‐ or heterospecific social partners pro‐
duced courtship song with unchanged parameters, that is, similar 
IPI and SSF. Recent findings suggest that that D. melanogaster males 
can distinguish conspecific from D. simulans males (Bretman et al., 
2017). This finely tuned response to species identity contrasts with 
the inflexibility of IPI and SSF we found. These courtship traits are of 
particular interest because they influence species isolation (Cowling 
& Burnet, 1981; Ritchie & Gleason, 1995; Ritchie et al., 1999). 
Theoretical models predict that, because phenotypic plasticity de‐
couples a phenotype from its underlying genetics, socially inherited 
traits may undergo slower genetic evolution and therefore inhibit 
speciation (Price et al., 2003; Verzijden et al., 2012) or, alternatively, 
lead to faster speciation by facilitating more genetic drift (Lachlan 
& Servedio, 2004). Relatively inflexible or innate sexual traits may 
constitute more reliable cues for species discrimination than socially 
inherited traits. It remains possible that fruit fly courtship song is 
influenced by other components of the social environment such as 
the social environment experienced during the larval stages (Kim, 
Ehrman, & Koepfer, 1992, 1996), or male–female interactions during 
adulthood, but our results do not support the idea that intrasexual 

social experience influences song structure even though it can in‐
fluence song preferences and responses (Li et al., 2018). Given the 
increasingly widespread evidence for plasticity of courtship and 
reproductive behaviors, it may be important in future studies to 
consider and test the conditions under which strong sexual trait ca‐
nalization, rather than plasticity, is predicted and observed.
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