Data-driven Modeling of Building Consumption Profile for Optimal Flexibility: Application to Energy Intensive Industry - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Data-driven Modeling of Building Consumption Profile for Optimal Flexibility: Application to Energy Intensive Industry

Résumé

Despite the vast research on the flexibility of buildings consumption, current literature is more about predicting the impacts of energy flexibility than fo-cusing on its modeling. In this paper, a methodology is provided to go from data-driven modeling of the load consumption to an optimization problem with a Mixed-Integer Linear Programming (MILP) formulation. Illustrated on an Energy Intensive Industries (EII) with an economic point of view, the methodology is suitable for any consumption site, allowing optimal energy planning studies at the district scale. Thus, it facilitates the definition of flexibility strategies to exploit the complementary of uses of the districts .
Fichier principal
Vignette du fichier
BS2019_256_8_211201_Pajot_2019-06-28_15-55_a.pdf (724.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02364669 , version 1 (15-11-2019)

Identifiants

  • HAL Id : hal-02364669 , version 1

Citer

Camille Pajot, Benoît Delinchant, Yves Maréchal, Frédéric Wurtz, Stephane Robin, et al.. Data-driven Modeling of Building Consumption Profile for Optimal Flexibility: Application to Energy Intensive Industry. Building Simulation Conference 2019, Sep 2019, Rome, Italy. ⟨hal-02364669⟩
315 Consultations
136 Téléchargements

Partager

More