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Abstract

We investigate the fast relaxation of internal energy in nonequilibrium gas mod-
els derived from the kinetic theory of gases. We establish uniform a priori
estimates and existence theorems for symmetric hyperbolic-parabolic systems
of partial differential equations with small second order terms and stiff sources.
We prove local in time error estimates between the out of equilibrium solution
and the one-temperature equilibrium fluid solution for well prepared data and
justify the apparition of volume viscosity terms.
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1. Introduction

The kinetic theory of polyatomic gases shows that the volume viscosity co-
efficient is related to the time required for the internal and translational tem-
peratures to come to equilibrium [6, 17, 39, 40, 3, 4, 5]. We establish in this
paper local in time error estimates between the solution of an out of equilib-
rium two-temperature model and the solution of a one-temperature equilibrium
model—including volume viscosity terms—when the relaxation time goes to
zero.

The system of partial differential equations modeling fluids out of thermody-
namic equilibrium as derived from the kinetic theory of gases is first summarized
[3, 4]. This system and its symmetrizability properties have been investigated
in our previous work [26]. The symmetrizing normal variable w of the out of
equilibrium model is taken in the form

w =
(
ρ,v,

1

Ttr
− 1

Tin
,− 1

T

)t

, (1.1)
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where ρ denotes the gas density, v the fluid velocity, Ttr the translational tem-
perature, Tin the internal temperature, and T the local equilibrium temperature.
The resulting system of partial differential equations is in the general form

A0(w)∂tw +
∑

i∈D

Ai(w)∂iw− ǫd
∑

i,j∈D

∂i
(
Bij(w)∂jw

)
+

1

ǫ
L(w)w = ǫdb(w, ∂xwii),

(1.2)
where ∂t denotes the time derivative operator, ∂i the space derivative oper-
ator in the ith direction, D = {1, . . . , d} the spatial directions, d the space
dimension, ǫ, ǫd ∈ (0, 1] two positive parameters and w = (wi,wii)

t is decom-
posed into its hyperbolic components wi and parabolic components wii. The
matrix A0 is symmetric positive definite and bloc-diagonal, Ai are symmetric,

B
t

ij = Bji, Bij have nonzero components only into the right lower B
ii,ii

ij blocs,

B
ii,ii

=
∑

i,j∈D B
ii,ii

ij (w)ξiξj is positive definite for ξ ∈ Σd−1, L is positive semi-

definite with a fixed nullspace E , and b(w, ∂
x
wii) is quadratic in the gradients.

Denoting by π the orthogonal projector onto E
⊥
, the normal variable w is such

that we have the commutation relation πA0 = A0π. The source term is also
naturally in quasilinear form as is typical in a relaxation framework and often
encountered in mathematical physics [52]. The small parameter ǫ is associated
with energy relaxation and the small parameter ǫd with second order dissipative
terms.

We establish uniform a priori estimates for linearized symmetric hyperbo-
lic-parabolic systems with small dissipation and stiff sources obtained from the
nonlinear equations (1.2). Symmetrized forms are important for analyzing hy-
perbolic as well as hyperbolic-parabolic systems of partial differential equations
modeling fluids [29, 18, 49, 38, 32, 37, 33, 36, 34, 7, 46, 21, 19, 54, 8, 9, 47,
31, 15, 51, 42, 35, 20, 22, 2, 16, 55, 47, 25, 9, 24, 43, 56, 44]. A priori esti-
mates are obtained uniformly with respect to the parameters ǫd ∈ (0, 1] and
ǫ ∈ (0, 1]. The differences with the estimates established by Kawashima [32]
are the inclusion of extra terms associated with the fast variables πw/ǫ and
πw/

√
ǫ as well as the coupling with the estimates for time derivatives. De-

noting by w⋆ a constant equilibrium state and τ̄ a positive time, we estimate
w − w⋆ in the space C0

(
[0, τ̄ ], H l

)
as well as ∂tw and πw/ǫ in L2

(
(0, τ̄ ), H l−1

)

for l ≥ [d/2] + 2 where H l = H l(Rd) denotes the usual Sobolev space when the
initial solution is close to the equilibrium manifold. A priori estimates require
the commutation between the mass matrix and the orthogonal projector onto
the fast manifold πA0 = A0π. These estimates lead to local existence theorems
for well prepared initial conditions on a time interval independent of both pa-
rameters ǫd ∈ (0, 1] and ǫ ∈ (0, 1]. Key points for local existence are notably
to take into account stiff sources in the linearized equations in order to build
approximated solutions, the new estimates for time derivatives, and the con-
vergence rate of successive approximations that may depends on ǫ. Stronger
estimates for ∂tw in C0

(
[0, τ̄ ], H l−2

)
as well as for π∂tw/ǫ in L2

(
(0, τ̄ ), H l−3

)

with l ≥ [d/2] + 4 are also established when the initial time derivative is close
to the equilibrium manifold. These theorems yield the first existence results for
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the out of equilibrium two-temperature model derived in [3] and symmetrized
in [26]. On the other hand, the situation of ill prepared initial data lay beyond
the scope of this work and we refer the reader to [28]. In the same vein, only
local existence results are investigated and we refer to [27] for global existence
results.

We finally investigate the singular limit ǫ, ǫd → 0 in the system modeling flu-
ids out of thermodynamic equilibrium. Various relaxation models have also been
investigated in the literature in different physical and mathematical contexts
[36, 7, 8, 10, 35, 41, 50, 16, 53, 43, 44]. In order to investigate the asymptotic
behavior of solutions as ǫ, ǫd → 0 we combine a priori estimates out of thermo-
dynamic equilibrium with stability results associated with the equilibrium limit
model. The fast variable notably corresponds to the rescaled temperature dif-
ference with (Ttr−Tin)/ǫ = −TtrTinπw/ǫ and we use that perturbed hyperbolic-
parabolic systems with small second order terms and perturbing right hand sides
admit local solutions that depend continuously on perturbations. Denoting by
we = (ρe,ve,−1/Te)

t the solution of the equilibrium one-temperature model
including the volume viscosity terms and by ϕw = (ρ,v,−1/T )t the projection
on the slow manifold of the normal variable w out of equilibrium, we establish
that ϕw−we = O

(
ǫ(ǫ+ ǫd)

)
. This justifies the addition of the volume viscosity

term −κe (∇·ve)I in the viscous tensor Πe at equilibrium

Πe = −κe (∇·ve)I − ηe
(
∇ve + (∇ve)

t − 2
3 (∇·ve)I

)
,

where κe and ηe denote the equilibrium volume and shear viscosities, discard-
ing O

(
ǫ(ǫ + ǫd)

)
Burnett type residuals. In the situation where ǫ = ǫd, it has

also been established that the equilibrium system corresponds to a second order
Chapman-Enskog expansion for small relaxation times [26] and the error esti-
mates of ϕw−we yields a rigorous jusitification of the second order accuracy. To
the author’s knowledge, it is the first time that the apparition of volume viscosity
terms is justified rigorously with an error estimate. Note incidentally that ex-
perimental measurements [45, 48] as well as theoretical calculations [6, 17, 39, 3]
have shown that the volume viscosity coefficient is of the same order as the shear
viscosity coefficient for polyatomic gases and the impact of volume viscosity in
fluid mechanics has also been established [12, 13, 11, 30, 1, 3].

The nonequilibrium two-temperature model and its symmetrization are sum-
marized in Section 2. A priori estimates and local existence results are estab-
lished in Section 3. Stability for equilibrium models and convergence of the
nonequilibrium model towards the one-temperature model is established in Sec-
tion 4.

2. Governing equations

The system of equations modeling fluids out of thermodynamic equilibrium
as derived from the kinetic of gases is summarized and recast into a convenient
normal form [3, 4, 26]. The local equilibrium temperature, the volume viscosity
coefficient, and the equations at equilibrium are also discussed.
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2.1. Conservation equations

In a nonequilibrium gas with internal degrees of freedom, the conservation
of mass, momentum, internal energy and total energy may be written in the
form [3]

∂tρ+∇·(ρv) = 0, (2.1)

∂t(ρv) +∇·(ρv⊗v + pI) +∇·Π = 0, (2.2)

∂t(ρein) +∇·(ρvein) +∇·Qin = ωin, (2.3)

∂t
(
ρ(etr + ein +

1
2 |v|

2)
)
+∇·

(
ρv(etr + ein +

1
2 |v|

2) + vp
)

+ ∇·(Qtr +Qin +Π ·v) = 0, (2.4)

where ∇ denotes the space derivative operator, ρ the mass density, v the fluid
velocity, ⊗ the tensor product symbol, p the pressure, Π the viscous tensor, I
the unit tensor in the physical space Rd, ein the internal energy of internal origin
per unit mass, Qin the heat flux of internal origin, ωin the energy exchange rate,
etr the internal energy of translational origin per unit mass, andQtr the heat flux
of translational origin. The components of v and∇ are written v = (v1, . . . , vd)

t

and ∇ = (∂1, . . . , ∂d)
t where vi denotes the velocity in the ith spatial direction,

∂i the derivation in the ith spatial direction and bold symbols are used for vector
or tensor quantities in the physical space R

d. The equations (2.2)–(2.4) have
to be completed by relations expressing the thermodynamic properties ein, etr,
and p, the rate of energy exchange ωin, and the transport fluxes Π, Qin and
Qtr.

2.2. Thermodynamics

The pressure p, the total internal energy per unit mass e, the internal energy
of translational origin per unit mass etr, and the internal energy of internal origin
per unit mass ein are in the form

p = ρrTtr, e = etr + ein, etr = cv,trTtr, ein = ein,st +

∫ Tin

Tst

cin(T
′) dT ′, (2.5)

where r denotes the gas constant per unit mass, cv,tr =
3
2r the translational heat

at constant volume per unit mass, Ttr the translational temperature, cin the
internal heat per unit mass, Tin the internal temperature, Tst the standard tem-
perature, and ein,st the internal formation energy at the standard temperature.
We will also use in the following the translational heat at constant pressure per
unit mass cp,tr =

5
2r and the formation energy at zero temperature e0in = ein(0).

The rate of energy exchange between the translational and internal degrees
of freedom ωin may also be written [3]

ωin =
ρcin
τin

(Ttr − Tin), (2.6)

where τin denotes the energy exchange time.
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2.3. Transport fluxes

In the framework of the kinetic theory of polyatomic gases out of thermo-
dynamic equilibrium, the translational and internal heat fluxes are in the form
[3]

Qtr =− λtr,tr∇Ttr − λtr,in∇Tin, (2.7)

Qin =− λin,tr∇Ttr − λin,in∇Tin, (2.8)

where λtr,tr, λtr,in, λin,tr, and λin,in denote thermal conductivities. On the other
hand, the viscous tensor is given by

Π = −η
(
∇v + (∇v)t − 2

d′
(∇·v)I

)
, (2.9)

where η denotes the shear viscosity and d′ the dimension of the velocity space
in the underlying kinetic framework. It will be assumed in the following that
the dimension of the kinetic velocity space d′ is such that 2 ≤ d′ and d ≤ d′.
The assumption 1 ≤ d ≤ d′ means that the spatial dimension d of the model
has eventually been reduced. The assumption 2 ≤ d′ is natural since d′ = 3 in
our physical world and since Π is identically zero when d′ = 1.

The thermal conductivities λtr,tr, λtr,in, λin,tr, and λin,in and the shear vis-
cosity η are obtained from the kinetic theory of non equilibrium gases [3]. From
the expression (2.9) it is also noted that the viscous tensor Π does not present
a volume viscosity term and our aim is to investigate the apparition of such a
contribution in the one-temperature equilibrium limit model as the relaxation
time τin goes to zero.

2.4. Mathematical assumptions

The mathematical assumptions for the thermodynamic properties, the en-
ergy exchange rate, and the transport coefficients are the following where κ ≥ 3
denotes the regularity class [23, 19, 3, 26].

(T1) The formation energy ein,st and formation entropies str,st and sin,st are
real constants. The mass per unit mole m, the gas constant R, and the
gas constant per unit mass r = R/m are positive. The internal species
heat per unit mass cin(Tin) is a Cκ−1 function over [0,∞) and there
exist constants c and c such that 0 < c 6 cin(Tin) 6 c for all Tin > 0.

(T2) The energy exchange rate τin(p, Ttr, Tin) is in the form

τin = ǫτ̄in = ǫ
pstτ̄ stin
p

, (2.10)

where ǫ ∈ (0, 1] denotes a positive parameter, τ̄in(p, Ttr, Tin) = pstτ̄ stin/p
the rescaled energy exchange time and τ̄ stin (Ttr, Tin) the rescaled energy
exchange time at the standard pressure pst which only depends on Ttr
and Tin. The rescaled time τ̄ stin is a positive Cκ function of the two
temperatures Ttr, Tin ∈ (0,∞).
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(Tr1) The coefficients η, λtr,tr, λtr,in, λin,tr, and λin,in are in the form

η = ǫdη̄, λtr,tr =ǫdλ̄tr,tr, λtr,in = ǫdλ̄tr,in,

λin,tr = ǫdλ̄in,tr, λin,in = ǫdλ̄in,in, (2.11)

where ǫd ∈ (0, 1] denotes a positive parameter, and η̄, λ̄tr,tr, λ̄tr,in, λ̄in,tr,

and λ̄in,in the rescaled transport coefficients. The rescaled coefficients η̄,

λ̄tr,tr, λ̄tr,in, λ̄in,tr, and λ̄in,in are Cκ functions of the two temperatures
Ttr, Tin ∈ (0,∞).

(Tr2) For any Ttr, Tin ∈ (0,∞), the matrix

[
T 2
inλ̄in,in T 2

trλ̄in,tr

T 2
inλ̄tr,in T 2

trλ̄tr,tr

]
, (2.12)

is symmetric positive definite. In the viscous tensor (2.9), the coefficient
η is positive and the dimension d′ of the kinetic velocity space is such
that max(2, d) ≤ d′.

The rescaled energy exchange time τ̄in as well as the rescaled transport co-
efficients η̄, λ̄tr,tr, λ̄tr,in, λ̄in,tr, and λ̄in,in have been introduced in order to in-
vestigate the fast relaxation limit.

2.5. Volume viscosity

The local thermal equilibrium temperature is defined as the unique scalar T
such that

etr(T ) + ein(T ) = etr(Ttr) + ein(Tin), (2.13)

keeping in mind that etr(T ) + ein(T ) is an increasing function of T . The tem-
perature T is a Cκ function of (Ttr, Tin) and is the temperature that would
be obtained at local thermal equilibrium Ttr = Tin assuming that the internal

energy etr + ein is kept fixed. Letting c̃in =
∫ 1

0 cin
(
Tin + s(T − Tin)

)
ds, we may

write ein(T )− ein(Tin) = (T − Tin)c̃in so that (Ttr − T )cv,tr = (T − Tin)c̃in and
(Ttr − T )c̃v = (Ttr − Tin)c̃in where c̃v = cv,tr + c̃in(T, Tin). Letting cv(Tin) =
cv,tr + cin(Tin) and

κ = κ(Ttr, Tin) =
r c̃in pτin
cvc̃v

= ǫ
r c̃in p

stτ̄ stin
cvc̃v

, (2.14)

the following relation is obtained after some algebra

ρr(Ttr − T ) = −κ∇·v − κ

p

(
Π:∇v +∇·Qtr −

cv,tr
cin

∇·Qin

+ ρ∂t(Ttr − Tin) + ρv·∇(Ttr − Tin)
)
. (2.15)

Note that we have κ = ǫκ̄ with κ̄ = r c̃in pτ̄in/(cvc̃v) from assumption (2.10).
Equation (2.15) is a relaxation equation that yields formally ρr(Ttr − T ) =

6



−κ∇·v + O
(
ǫ(ǫ + ǫd)

)
so that both temperatures Ttr and Tin should converge

towards the local equilibrium temperature T . In the momentum equation, the
pressure tensor ρrTtrI +Π is thus asymptotically in the form

ρrTtrI +Π = ρrTI − κ (∇·v)I − η
(
∇v + (∇v)t − 2

d′
(∇·v)I

)
+O

(
ǫ(ǫ+ ǫd)

)
.

This is in agreement with classical one-temperature models where the pressure
ρrT is evaluated at the thermal equilibrium temperature T and the viscous
tensor Π includes a volume viscosity term −κ(∇·v)I. Such a physically in-
tuitive derivation may be found in many physics papers and books either in a
molecular framework or in a macroscopic fluid framework usually around equi-
librium states [6, 17, 39, 40, 3, 4, 5]. Numerical simulations using Boltzmann
equation have consistently established that the limit one-temperature model is
an accurate description of the two temperature fluid when the relaxation time
is small [3]. In our previous work [26], it has further been established that the
Chapman-Enskog method exactly yields the one-temperature fluid equations
with the volume viscosity terms at second order in the fast relaxation limit. The
goal of this paper is to justify with an error estimate both the above physically in-
tuitive approximation as well as the accuracy of the two term Chapman-Enskog
expansion [26].

2.6. Quasilinear forms

Letting n = d+3, the conservative variable u ∈ R
n associated with equations

(2.1)–(2.4) is found to be

u =
(
ρ, ρv, ρein, ρ(etr + ein +

1
2 |v|

2)
)t
,

and the natural variable z ∈ R
n is defined by z =

(
ρ,v, Tin, Ttr

)t
. For conve-

nience, the velocity components of vectors in R
n = R × R

d × R
2 are generally

written as vectors of Rd. We introduce the corresponding open sets Ou and Oz

of Rn given by

Ou =
{
u =

(
uρ, uv, uin, utr + uin +

1
2

|uv|2
uρ

)t
; uρ > 0, uin > uρe

0
in, utr > 0

}
,

and Oz = (0,∞)×R
d×(0,∞)2. The following proposition has been established

in our previous work [26].

Proposition 2.1. Assuming that (T1) holds, the map z 7−→ u is a Cκ diffeo-
morphism from the open set Oz onto the open set Ou and the open set Ou is
convex.

The equations modeling fluids out of thermodynamic equilibrium may then
be written in the compact form

∂tu+
∑

i∈D

∂iFi + ǫd
∑

i∈D

∂iF
diss
i − 1

ǫ
Ω = 0, (2.16)

7



where Fi denotes the convective flux in the ith direction, ǫd the Knudsen number,
Fdiss
i the rescaled dissipative flux in the ith direction, ǫ the relaxation parameter,

and Ω the rescaled source term.
From the governing equations (2.1)–(2.4) the convective flux Fi in the ith

direction is given by

Fi =
(
ρvi, ρvvi + pei, ρeinvi, (ρetr + ρein +

1
2ρ|v|

2 + p)vi
)t
, (2.17)

where ei denotes the basis vectors of Rd. Similarly, the dissipative flux ǫdF
diss
i

is given by

ǫdF
diss
i =

(
0, Πi, Qin,i, Qtr,i +Qin,i +Πi·v

)t
, (2.18)

where Qtr = (Qtr,1, . . . , Qtr,d)
t, Qin = (Qin,1, . . . , Qin,d)

t, Πij , 1 ≤ i, j ≤ d, are
the components of the viscous tensor Π , and Πi = (Π1i, . . . , Πdi)

t. The source
term is finally given by

1

ǫ
Ω =

(
0,0, ωin, 0

)t
, (2.19)

where the rate of enegy exchange ωin is defined by (2.6). From the expressions
of the viscous tensor and of the heat fluxes we deduce that the dissipative fluxes
Fdiss
i are linear expression in terms of spatial derivatives of z and may thus

be written in the form Fdiss
i = −

∑
j∈D B̂ij(z)∂jz. Using Proposition 2.1, we

may then write that Fdiss
i = −

∑
j∈D Bij(u)∂ju where the dissipation matrix Bij

is defined as Bij = B̂ij∂uz. Further introducing the Jacobian matrices of the
convective fluxes Ai = ∂uFi the governing equations are finally rewritten into
the compact form

∂tu+
∑

i∈D

Ai(u)∂iu− ǫd
∑

i,j∈D

∂i
(
Bij(u)∂ju

)
− 1

ǫ
Ω(u) = 0. (2.20)

In our previous work [26], all possible normal variables leading to a symmet-

ric hyperbolic-parabolic structure have been shown to be
(
Fi(ρ),Fii(v, Tin, Ttr)

)t
where Fi and Fii are diffeomorphisms in R and R

d+2, respectively. The natural
variable z is in particular a normal variable but for convenience the following
normal variable will be used

w =
(
ρ,v,

1

Ttr
− 1

Tin
,− 1

T

)t

. (2.21)

The density wi = ρ is the hyperbolic variable, wii = (v, 1
Ttr

− 1
Tin
,− 1

T
)t the

parabolic variable, and the corresponding normal form has been evaluated [26].
The third component of w goes to zero with the relaxation time and the other

components
(
ρ,v,−1/T

)t
are expected to converge towards the corresponding

normal variable at thermodynamic equilibrium we =
(
ρe,ve,−1/Te

)t
.

Theorem 2.2. Assume that the assumptions (T1)(T2) and (Tr1)(Tr2) hold.
Then the map u → w is a Cκ−1 diffeomorphism from the open set Ou onto the
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open set Ow = (0,∞)×R
d×R×(−∞, 0). The system written in the w variable

is in the normal form with a source term in quasilinear form

A0(w)∂tw +
∑

i∈D

Ai(w)∂iw − ǫd
∑

i,j∈D

∂i
(
Bij(w)∂jw

)
+

1

ǫ
L(w)w = ǫdb(w, ∂xwii),

(2.22)
and the matrices A0, Ai, i ∈ D, Bij, i, j ∈ D, L, as well as the quadratic
residual b and the source term Ω are detailed in previous work [26]. The matrix

A0 is symmetric positive definite, Ai, i ∈ D, are symmetric, we have B
t

ij = Bji,

i, j ∈ D, L is positive semi-definite with a fixed nullspace E, and b(w, ∂
x
wii) is

quadratic in the gradients. Using the bloc structure induced by the partitioning
between hyperbolic and parabolic variable, A0 is bloc diagonal, Bij has nonzero

coefficients only in the right lower bloc B
ii,ii

ij and for any ξ in the sphere Σd−1

the matrix B
ii,ii

(w, ξ) =
∑

i,j∈D Bij(w)ξiξj is positive definite. The matrices Bij

have the structure Bij = 1
r
B
λ
δij +

η̄
rTtr

B
η

ij where B
λ
is associated with thermal

conductivities and B
η

ij with shear viscous effects. The equilibrium linear manifold

with respect to the normal variable is the fixed subspace E = R×R
d×{0}×R and

the normal variable w is quasilinear on the fast manifold E
⊥
= Red+2. Finally,

the normal variable is compatible with the fast manifold so that πA0 = A0π.

2.7. Equations at equilibrium

In order to investigate the fast relaxation limit ǫ → 0 we will need to es-
tablish a stability theorem for the equations governing fluids at thermodynamic
equilibrium that are summarized in this section. The equations modeling one-
temperature fluids are in the form [6, 17, 19]

∂tρe +∇·(ρeve) = 0, (2.23)

∂t(ρeve) +∇·(ρeve⊗ve + peI) +∇·Πe = 0, (2.24)

∂t(ρee +
1
2ρ|ve|2) +∇·

(
ve(ρee +

1
2ρ|ve|2 + pe)

)
+∇·(Qe +Πe·ve) = 0,

(2.25)

where the subscript e denotes thermodynamic equilibrium, ρe the mass density,
ve the fluid velocity, pe the pressure, Πe the viscous tensor involving the volume
viscosity, ee the internal energy per unit mass, and Qe the heat flux.

The pressure pe and the internal energy per unit mass ee are in the form

pe = ρerTe and ee = ee,st +
∫ Te

Tst

cv(T
′) dT ′ where cv(Te) = cv,tr + cin(Te) denotes

the heat at constant volume per unit mass, Te the equilibrium temperature, ee,st
formation energy at the standard temperature and we have ee(Te) = etr(Te) +
ein(Te). The equilibrium viscous tensor is in the form

Πe = −κe(Te) (∇·ve)I − ηe(Te)
(
∇ve + (∇ve)

t − 2
d′
(∇·ve)I

)
, (2.26)

where ηe(Te) = η(Te, Te) and κe(Te) = κ(Te, Te) so that κe = r cin pτin/c
2
v, and

the heat flux is given by Qe = −λe(Te)∇Te, with λe(Te) = λtr,tr(Te, Te) +
λtr,in(Te, Te) + λin,tr(Te, Te) + λin,in(Te, Te).
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Letting ne = d + 2, the conservative variable ue ∈ R
ne associated with

equations (2.23)–(2.25) is ue =
(
ρe, ρeve, ρee+

1
2ρeve·ve

)t
and the corresponding

natural variable reads ze =
(
ρe,ve, Te

)t
. The corresponding open sets are given

by Oue
=

{
ue = (uρ, uv, utl)

t ∈ R
ne ; uρ > 0, utl > f e(uρ, uv

}
where f e(uρ, uv) =

uρe
0
e +

1
2
uv ·uv
uρ

and Oze
= (0,∞)×R

d×(0,∞). The map ze → ue is easily shown

to be a Cκ diffeomorphism from Oze
onto Oue

. Introducing the convective and
dissipative fluxes of the equilibrium fluid model (2.23)–(2.25)

Fe
i =

(
ρevei, ρevevei + peei, (ρee + pe +

1
2ρe|ve|2)vei

)t
, (2.27)

ǫdF
e diss
i =

(
0, Πei, Qei +Πei·ve

)t
, (2.28)

using straighforward notation, the system at equilibrium may be rewritten in
quasilinear form

∂tue +
∑

i∈D

Ae
i (ue)∂iue − ǫd

∑

i,j∈D

∂i
(
Be
ij(ue)∂jue

)
= 0, (2.29)

where Ae
i , i ∈ D, denote the Jacobian matrices Ae

i = ∂ueF
e
i and Be

ij , i, j ∈ D, the

dissipation matrices at equilibrium with Fe diss
i = −

∑
j∈D Be

ij∂jue [32, 34, 19].
The equations of the one-temperature equilibrium model may also be written
in normal form [26] with the normal variable

we =
(
ρe,ve,−

1

Te

)t

, (2.30)

where the density wei = ρe is the hyperbolic variable and weii = (ve,− 1
Te
)t the

parabolic variable.

Theorem 2.3. Assume that (T1)(T2) and (Tr1)(Tr2) hold. Then the map ve →
we is a Cκ−1 diffeomorphism from the open set Ove

onto the open set Owe
=

(0,∞)×R
d×(−∞, 0). The system written in the we variable is of the normal

form

A
e

0(we)∂twe +
∑

i∈D

A
e

i (we)∂iwe − ǫd
∑

i,j∈D

∂i
(
B
e

ij(we)∂jwe

)
= ǫdbe(we, ∂xwiie),

(2.31)
where A

e

0, A
e

i , i ∈ D, B
e

ij, are detailed in [26] and have regularity at least κ− 1,

and be is a quadratic residual. The matrices at equilibirum are related to the
analog matrices out of equilibrium with the relations A

e

0 = ψtA0(ψwe)ψ, A
e

i =
ψtAi(ψwe)ψ with

ψ =




1 01,d 0

0d,1 I 0d,1

0 01,d 0

0 01,d 1



. (2.32)
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Moreover, the dissipation matrices B
e

ij have the structure B
e

ij = 1
r
B
λ,e
δij +

κ̄e

rTe

B
κ,e

ij + η̄e

rTe

B
η,e

ij with B
λ,e

= ψt B
λ
(ψwe)ψ and B

η,e

ij = ψt B
η

ij(ψwe)ψ whereas

the matrices B
κ,e

ij , i, j ∈ D, are given in [26].

Denoting by ϕ the linear operator ϕ = ψt where ψ is the rectangular matrix
(2.32), one of the goal of this paper is to establish that the equilibrium projection
ϕw of the normal variable w out of thermodynamic equilibrium is close to the
normal variable we at thermodynamic equilibrium so that ϕw − we = O

(
ǫ(ǫ +

ǫd)
)
.

3. Hyperbolic-parabolic systems with stiff source terms

We investigate in this section local existence theorems for hyperbolic-para-
bolic systems of partial differential equations in normal form with small second
order terms and stiff sources. We generally follow the elegant formalism and
methods of proof of Kawashima [32], the differences being the inclusion of extra
terms associated with the fast variables πw/ǫ and πw/

√
ǫ, the coupling with the

estimates for time derivatives, and the derivation of estimates uniformly with
respect to the parameters ǫd ∈ (0, 1] and ǫ ∈ (0, 1].

3.1. Preliminaries

We consider an abstract hyperbolic-parabolic system with small second order
terms and stiff sources in normal form. The system is written

A0(w)∂tw +
∑

i∈D

Ai(w)∂iw− ǫd
∑

i,j∈D

∂i
(
Bij(w)∂jw

)
+

1

ǫ
L(w)w = ǫdb(w, ∂xwii),

(3.1)
where w = (wi,wii)

t ∈ O
w
, O

w
is an open set of R

n, wi are the hyperbolic
components, wii the parabolic components, and ǫd, ǫ ∈ (0, 1] are two positive
parameters. The dimensions of the hyperbolic and parabolic components are
denoted by ni and nii respectively so that n = ni + nii. The matrices A0, Ai,
Bij , and L are assumed to have at least regularity κ − 2. We will generally
assume that κ is as large as required by the various theorems in the following,
in particular that κ − 3 ≥ l + 1 ≥ l0 + 2 where l0 = [d/2] + 1. The matrix
A0 is symmetric positive definite, the matrices Ai are symmetric, Bij satisfy

B
t

ij = Bji, and L is positive semi-definite with a fixed nullspace E . The matrices

A0 and Bij , i, j ∈ D, have the bloc structure

A0 =

[
A
i,i

0 0ni,nii

0nii,ni
A
ii,ii

0

]
, Bij =

[
0ni,ni

0ni,nii

0nii,ni
B
ii,ii

ij

]
,

and B
ii,ii

(w, ξ) =
∑

i,j∈D B
ii,ii

ij (w)ξiξj is positive definite for w ∈ O
w
and ξ ∈

Σd−1. The quadratic source term is also in the form

b(w, ∂
x
wii) =

∑

i,j∈D

mij(w)∂iw∂jw =
(
0,

∑

i,j∈D

m
ii,ii,ii
ij (w)∂iwii∂jwii,

)t

(3.2)
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where mij are third order tensors depending on w with at least regularity κ− 3.
Denoting by π the orthogonal projector onto the orthogonal of the equilibrium

manifold E
⊥
, we assume that A0 satisfies the compatibility condition

π A0(w) = A0(w)π, w ∈ O
w
. (3.3)

We are only interested in well prepared initial data in this paper, that is, we
assume that the initial condition w0 is close to the equilibrium manifold E in
such a way that πw0 is small, and we refer to [28] for the situation of ill prepared
initial data. In the same vein, only local existence is investigated and we refer
to [27] for global existence results.

We denote by u⋆ and w⋆ corresponding constant equilibrium states in the u,
and w variables respectively, so that w⋆ ∈ O

w
∩ E and πw⋆ = 0. We denote by

| • |l the norm in the Sobolev space H l = H l(Rd) and otherwise ‖ • ‖A in the
functional space A. If α = (α1, . . . , αd) ∈ N

d is a multiindex, we denote as usual
by ∂α the differential operator ∂α1

1 · · · ∂αd

d and by |α| its order |α| = α1+· · ·+αd.
The square of kth derivatives of a scalar function φ, like T , ρ, or vi, 1 ≤ i ≤ d,
is defined by

|∂kφ|2 =
∑

|α|=k

k!

α!
(∂αφ)2 =

∑

1≤i1,...,ik≤d

(∂i1 · · · ∂ikφ)2, (3.4)

where k!/α! are the multinomial coefficients and similarly, for a vector function
like v we define |∂kv|2 =

∑
1≤i≤d |∂kvi|2. Finally, for any map φ : [0, τ̄ ]×R

d →
R

n where τ̄ > 0 is positive and for any τ ∈ [0, τ̄ ], we denote by φ(τ) the partial
map x → φ(τ, x) defined over Rd.

3.2. A priori estimates

We consider in this section linearized equations in the form

A0(w)∂tw̃ +
∑

i∈D

Ai(w)∂iw̃ − ǫd
∑

i,j∈D

Bij(w)∂i∂jw̃+
1

ǫ
L(w)w̃ = f + ǫdg. (3.5)

Such linearized equations (3.5) are useful in order to build sequences of successive
approximations that converge towards solutions of the nonlinear equations (3.1)
as well as to estimate the derivatives of such solutions. For a given τ̄ > 0 and
l ≥ l0 + 1 where l0 = [d/2] + 1, we assume that w is such that

{
wi − w⋆

i
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−1

)
,

wii − w⋆
ii ∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
,

(3.6)

∂twii ∈ L2
(
(0, τ̄ ), H l−1

)
, (3.7)

and we define

sup
0≤τ≤τ̄

|w(τ)− w⋆|2l =M2,

∫ τ̄

0

|∂tw(τ)|2l−1 dτ =M2
1 . (3.8)
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We consider O0 such that O0 ⊂ Ow, d1 such that 0 < d1 < d(O0, ∂Ow), and
define

O1 = {w ∈ Ow; d(w,O0) < d1 }. (3.9)

It is also assumed that w0 and w are such that

w0(x) = w(0, x) ∈ O0, w(t, x) ∈ O1, t ∈ [0, τ̄ ], x ∈ R
d. (3.10)

The following priori estimates for linearized equations will be of fundamental
importance for existence theorem of the full quasilinear system (3.1). When the
source terms are not stiff such estimates have been established by Kawashima
[32]. The estimates in the situation of stiff sources differ by the inclusion of new
terms associated with the fast variable πw/ǫ as well as for the time derivatives
which cannot anymore be estimated directly from the governing equations but
require well chosen test functions. In particular, the time derivatives are not in
the space C0

(
[0, τ̄ ], H l−2

)
uniformly in ǫ but only in the space L2

(
[0, τ̄ ], H l−2

)
.

Stronger estimates in C0
(
[0, τ̄ ], H l−2

)
, obtained in the next section, indeed re-

quire the boundedness of |π∂tw0|2l−3/ǫ.

Theorem 3.1. Let l ≥ l0+1 with l0 = [d/2]+ 1, consider the linearized system
(3.5), and assume that the solution w̃ is such that

w̃i − w̃⋆
i
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−1

)
,

w̃ii − w̃⋆
ii
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
∩ L2

(
(0, τ̄), H l+1

)
,

(3.11)

where w̃⋆ = (w̃⋆
i
, w̃⋆

ii
)t is a constant state w̃⋆ ∈ E. Further assume that

f ∈ C0
(
[0, τ̄ ], H l−1

)
∩ L1

(
[0, τ̄ ], H l

)
, (3.12)

g ∈ C0
(
[0, τ̄ ], H l−1

)
, gi = 0, (3.13)

and denote by w̃0 the initial state w̃0(x) = w̃(0, x). Then there exists constants
c1(O1) ≥ 1 and c2(O1,M) ≥ 1, with c2(O1,M) increasing with M , such that
for any t ∈ [0, τ̄ ]

sup
0≤τ≤t

{
|w̃(τ) − w̃⋆|2l +

1

ǫ
|πw̃(τ)|20

}
+ ǫd

∫ t

0

|w̃ii(τ) − w̃⋆
ii
|2l+1 dτ

+
1

ǫ

∫ t

0

|πw̃(τ)|2l dτ ≤ c21 exp
(
c2(t+M1

√
t )
)(

|w̃0 − w̃⋆|2l +
1

ǫ
|πw̃0|20

+ ǫdc2

∫ t

0

|gii(τ)|2l−1 dτ + c2

{∫ t

0

|f(τ)|l dτ
}2

+ c2

∫ t

0

|πf(τ)|20 dτ
)
, (3.14)

1

ǫ
sup

0≤τ≤t

|πw̃(τ)|2l−1 +
1

ǫ2

∫ t

0

|πw̃(τ)|2l−1 dτ +

∫ t

0

|∂tw̃(τ)|
2
l−1 dτ

≤ c2 exp
(
c2(t+M1

√
t )
)(

|w̃0 − w̃⋆|2l +
1

ǫ
|πw̃0|2l−1 + ǫd

∫ t

0

|gii|2l−1 dτ

+
{∫ t

0

|f|l dτ
}2

+

∫ t

0

|f|2l−1 dτ
)
. (3.15)

Proof. The lengthy proof is given in Appendix A.
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3.3. Local existence

We first restate an existence theorem for the linearized equations (3.5) which
is a coupled system of hyperbolic-parabolic type established by Kawashima [32].
These linearized coupled hyperbolic-parabolic solutions are then used in order
to establish the existence of local solutions for the full nonlinear system (3.1).

Proposition 3.2. Let l ≥ l0 + 1 where l0 = [d/2] + 1, τ̄ > 0, assume that w is
such that (3.6), (3.7) and (3.10) hold, that f and g satisfy (3.12) and (3.13), and
that w̃0 is such that w̃0 − w̃⋆ ∈ H l for some constant state w̃⋆ ∈ E. Then there
exists a unique solution w̃ to the linearized equations (3.5) with initial condition
w̃0 and regularity (3.11).

We now establish a local existence theorem on a time interval τ̄ > 0 inde-
pendent of ǫd and ǫ for the system of partial differential equation in normal form
(3.1). Such an existence theorem is a fundamental step toward a convergence
theorem for ǫ, ǫd → 0. Since we are interested in convergence results on time
intervals including the time origin t = 0, we assume in this section that the
initial data is well prepared or equivalently that πw0 is small. We follow the ele-
gant method of proof of Kawashima in his seminal work on hyperbolic-parabolic
systems [32]. The differences are in the definition of the approximated solutions
which include the stiff sources, in the definition of the invariant set by itera-
tion, and fundamentally in the convergence rate of the successive approximated
solutions which may indeed depend on ǫ.

Theorem 3.3. Let d ≥ 1 and l ≥ l0 +1, be integers with l0 = [d/2]+ 1, and let
b > 0 be given. Let O0 such that O0 ⊂ Ow, d1 such that 0 < d1 < d(O0, ∂Ow),
and define O1 = {w ∈ Ow; d(w,O0) < d1 }. There exists τ̄ > 0 depending on
O1 and b, and independent on ǫd ∈ (0, 1] and ǫ ∈ (0, 1], such that for any w0

with

|w0 − w⋆|2l +
1

ǫ
|πw0|2l−1 < b2, (3.16)

and w0 ∈ O0, there exists a unique local solution w to the system

A0(w)∂tw +
∑

i∈D

Ai(w)∂iw − ǫd
∑

i,j∈D

∂i
(
Bij(w)∂jw

)
+

1

ǫ
L(w)w = ǫdb(w, ∂xwii),

(3.17)
with initial condition

w(0, x) = w0(x), x ∈ R
d,

such that
w(t, x) ∈ O1, t ∈ [0, τ̄ ], x ∈ R

d,

and
wi − w⋆

i ∈ C0
(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−1

)
,

wii − w⋆
ii
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
∩ L2

(
(0, τ̄), H l+1

)
.
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In addition, there exists C > 0 which only depend on O1 and b, such that

sup
0≤τ≤τ̄

(
|w(τ) − w⋆|2l +

1

ǫ
|πw(τ)|2l−1

)
+ ǫd

∫ τ̄

0

|wii(τ) − w⋆
ii
|2l+1 dτ

+
1

ǫ

∫ τ̄

0

|πw(τ)|2l dτ +
1

ǫ2

∫ τ̄

0

|πw(τ)|2l−1 dτ +

∫ τ̄

0

|∂tw(τ)|
2
l−1 dτ

≤ C
(
|w0 − w⋆|2l +

1

ǫ
|πw0|2l−1

)
. (3.18)

Proof. Solutions to the nonlinear system (3.17) are fixed points w̃ = w of the
linearized equations [32]

A0(w)∂tw̃ +
∑

i∈D

Ai(w)∂iw̃− ǫd
∑

i,j∈D

Bij(w)∂i∂jw̃+
1

ǫ
L(w)w̃ = ǫdg, (3.19)

with

g(w, ∂
x
w) =

∑

i,j∈D

∂i
(
Bij(w)

)
∂jw−

∑

i,j∈D

∂i(∂wv)
t (∂

v
w)tBij ∂jw. (3.20)

Fixed points are investigated in the space w ∈ Xl
τ̄

(
O1,M,M1

)
defined by

wi − w⋆
i ∈ C0

(
[0, τ̄ ], H l

)
, ∂twi ∈ C0

(
[0, τ̄ ], H l−1

)
, wii − w⋆

ii ∈ C0
(
[0, τ̄ ], H l

)
∩

L2
(
(0, τ̄), H l+1

)
, ∂twii ∈ C0

(
[0, τ̄ ], H l−2

)
∩ L2

(
(0, τ̄ ), H l−1

)
, w(t, x) ∈ O1, and

sup
0≤τ≤τ̄

|w(τ) − w⋆|2l + ǫd

∫ τ̄

0

|wii(τ) − w⋆
ii|2l+1 dτ +

1

ǫ

∫ τ̄

0

|πw(τ)|2l dτ ≤M2,

1

ǫ
sup

0≤τ≤τ̄

|πw(τ)|2l−1 +
1

ǫ2

∫ τ̄

0

|πw(τ)|2l−1 dτ +

∫ τ̄

0

|∂tw(τ)|2l−1 dτ ≤M2
1 .

For w in Xl
τ̄

(
O1,M,M1

)
, we may use the estimates established for linearized

systems in Theorem 3.1 of Section 3.2. Noting also that f = 0, gi = 0, and that
gii is quadratic in the gradients, we obtain upper bounds in the form

|g(t)|2l−1 ≤ c2M
2, t ∈ [0, τ̄ ], (3.21)

and the constants c2 of this estimate may be taken identical to the constant
of the linear estimates, upon taking the maximum of both constants. Using
assumption (3.16) and combining these bounds with the linear estimates (3.14)
and (3.15), we obtain that

sup
0≤τ≤t

|w̃(τ) − w⋆(τ)|2l + ǫd

∫ t

0

|w̃ii(τ) − w⋆
ii
|2l+1 dτ

+
1

ǫ

∫ t

0

|πw̃(τ)|2l dτ ≤ c21 exp
(
c2(t+M1

√
t )
)(
b2 + tǫdc

2
2M

2
)
,

(3.22)
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1

ǫ
sup

0≤τ≤t

|πw̃(τ)|2l−1 +
1

ǫ2

∫ t

0

|πw̃(τ)|2l−1 dτ +

∫ t

0

|∂tw̃(τ)|
2
l−1 dτ ≤

c2 exp
(
c2(t+M1

√
t )
)(
b2 + tǫdc2M

2
)
. (3.23)

We now define

Mb = 2c1(O1)b, M1b = c2(O1,Mb)2c1(O1)b.

Let then be τ̄ ≤ 1 small enough such that

exp
(
c2(O1,Mb)(τ̄ +M1b

√
τ̄ )
)
≤ 2,

c22(O1,Mb)τ̄
(
2c1(O1)

)2 ≤ 1,

c0M1b

√
τ̄ < d1,

where we have used ‖φ‖L∞ ≤ c0|φ|l−1. Then for any w ∈ Xl
τ̄

(
O1,Mb,M1b

)
, any

w0(x) such that w0 − w⋆ ∈ H l, w0 ∈ O0, and |w0 − w⋆|2l + |πw0|2l−1/ǫ < b2, and
any ǫd, ǫ ∈ (0, 1], the solution w̃ to the linearized equations with initial condition

w0 stays in the space Xl
τ̄

(
O1,Mb,M1b

)
. More specifically, letting M̃2 and M̃2

1 be
the maximum of the left hand sides of (3.22) and (3.23) respectively, we obtain
from (3.22) that

M̃2 ≤ 2c21b
2
(
1 + 4ǫdc

2
1c

2
2τ̄
)
≤ 4c21b

2 =M2
b

and from (3.23) we deduce that

M̃2
1 ≤ 2c22b

2
(
1 + 4ǫdτ̄c

2
1

)
≤M2

1b,

since 4τ̄c21 ≤ 4τ̄c21c
2
2 ≤ 1 and finally that ‖w̃−w⋆‖L∞ ≤ c0M1α

√
τ̄ < d1 and we

have established that the space Xl
τ̄

(
O1,Mb,M1b

)
is stable.

Let w and ŵ be in Xl
τ̄

(
O1,Mb,M1b

)
, let w0(x) and ŵ0(x) such that w0−w⋆ ∈

H l, ŵ0 − w⋆ ∈ H l, w0, ŵ0 ∈ O0, |w0 − w⋆|2l + |πw0|2l−1/ǫ < b2, |ŵ0 − w⋆|2l +

|πŵ0|2l−1/ǫ < b2, let ǫd, ǫ ∈ (0, 1], and define δw = w − ŵ and δw̃ = w̃ − ˜̂w.
Forming the difference between the linearized equations, we obtain that

A0(ŵ)∂tδw̃ +
∑

i∈D

Ai(ŵ)∂iδw̃− ǫd
∑

i,j∈D

Bij(ŵ)∂i∂jδw̃ +
1

ǫ
L(ŵ)δw̃ = δf + ǫdδg.

(3.24)
Here

δf =−
∑

i∈D

(
A0(ŵ)

(
A0(w)

)−1
Ai(w)− Ai(ŵ)

)
∂iw̃

− 1

ǫ

(
A0(ŵ)

(
A0(w)

)−1
L(w)− L(ŵ)

)
πw̃, (3.25)
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δg =A0(ŵ)
(
A0(w)

)−1
g(w, ∂

x
w)− g(ŵ, ∂

x
ŵ)

+
∑

i,j∈D

(
A0(ŵ)

(
A0(w)

)−1
Bij(w)− Bij(ŵ)

)
∂i∂jw̃, (3.26)

and we have in particular δgi = 0. These expressions imply that

|δfi|2l−1 + |δfii|2l−1 ≤ c2

ǫ
|δw|2l−1,

|δgii|2l−2 ≤ c2|δw|2l−1,

where the 1/ǫ factor arises from the nonlinear stiff sources and will make the
convergence of the successive approximations more difficult to establish than for
non stiff problems. We define N2

l−1(a, a
′, δw̃) when [a, a′] ⊂ [0, τ̄ ] by

N2
l−1(a, a

′, δw̃) = sup
a≤τ≤a′

(
|δw̃(τ)|2l−1 +

1

ǫ
|πδw̃(τ)|2l−2

)
+ ǫd

∫ a′

a

|δw̃ii(τ)|2l dτ

+
1

ǫ

∫ a′

a

|πδw̃(τ)|2l−1 dτ +
1

ǫ2

∫ a′

a

|πδw̃(τ)|2l−2 dτ +

∫ a′

a

|∂tδw̃(τ)|2l−2 dτ. (3.27)

In order to obtain fixed points, we introduce the sequence of successive ap-
proximations {wk}k≥0 starting at w0 = w⋆ with wk+1 = w̃k, i.e., wk+1 is ob-
tained as the solution w̃ = wk+1 of linearized equations with w = wk and with
initial condition w0. We also denote by δkw the difference δkw = wk+1 − wk

for k ≥ 0. We first establish that the sequence of successive approximations
{wk}k≥0 is convergent for the norm Nl−1(0, τǫ, •) and thus also for the norm of
C0([0, τǫ], H

l−1) over [0, τǫ] for a suitable τǫ small enough and we then gradu-
ally extend the convergence domain over each interval [jτǫ, (j +1)τǫ] ⊂ [0, τ̄ ] by
induction on j. We also establish uniqueness of solutions first over [0, τǫ] and
gradually over each [jτǫ, (j + 1)τǫ] included in [0, τ̄ ].

Using the linearized estimates and the difference equation (3.24) we first
obtain

N2
l−1(0, τǫ, δw̃) ≤ c2

(
|δw0|2l−1 +

1

ǫ
|πδw0|2l−2

)
+
τǫc

′
2

ǫ
sup

0≤τ≤τǫ

|δw(τ)|2l−1. (3.28)

where c2 and c′2 depends on O1 and b and where δw0 = w0 − ŵ0. Let now τǫ be
small enough such that

c′2τǫ
ǫ

<
1

4
,

while τ̄/τǫ is an integer denoted by Nǫ+1. From the estimates (3.28) and since
the successive approximations have the same initial condition, that is δw0 = 0,
we obtain that

N2
l−1(0, τǫ, δ

k+1w) ≤ 1
4N

2
l−1(0, τǫ, δ

kw),

so that N2
l−1(0, τǫ, δ

kw) ≤ N2
l−1(0, τǫ, δ

0w)/4k and defining for convenience Γ0 =

N2
l−1(0, τǫ, δ

0w), we have established that 4kN2
l−1(0, τǫ, δ

kw) ≤ Γ0. Any fixed
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point w is also unique from the difference estimates (3.28) written between two
fixed points.

Letting for convenience

βj
k = N2

l−1(jτǫ, (j + 1)τǫ, δ
kw), 0 ≤ k, 0 ≤ j ≤ Nǫ,

we have established that 2kβ0
k ≤ Γ0, for k ≥ 0, and we next consider the interval

[τǫ, 2τǫ]. From the difference equations and the linearized estimates over [τǫ, 2τǫ]
we obtain that

N2
l−1(τǫ, 2τǫ, δ

k+1w) ≤ c2N
2
l−1(0, τǫ, δ

k+1w) +
τǫc

′
2

ǫ
N2

l−1(τǫ, 2τǫ, δ
kw), (3.29)

where we have used that |δw̃(τǫ)|2l−1 +
1
ǫ
|πδw̃(τǫ)|2l−2 ≤ N2

l−1(0, τǫ, δ
k+1w). This

now implies that β1
k+1 ≤ c2β

0
k+1 +

1
4β

1
k for k ≥ 0 and multiplying by 2k+1 and

letting
γjk = 2kβj

k, 0 ≤ k, 0 ≤ j ≤ Nǫ,

we have
γ1k+1 ≤ c2γ

0
k+1 +

1
2γ

1
k, 0 ≤ k. (3.30)

Since γ0k ≤ Γ0 it is easily deduced from (3.30) that γ1k ≤ 2c2Γ
0+γ10 and defining

Γ1 = 2c2Γ
0 + γ10 we have γ1k ≤ Γ1 for k ≥ 0. We further deduce that any

fixed point w is unique over [0, 2τǫ] since it is already unique over [0, τǫ] and
from (3.29) rewritten between two fixed points it is also unique over the interval
[τǫ, 2τǫ].

The same type of estimates may now be established by induction on j for
1 ≤ j ≤ Nǫ. More specifically, assume that for 0 ≤ i ≤ j−1 we have inequalities
in the form γik ≤ Γi where the majorizing bounds Γi are defined by Γ0 =
N2

l−1(0, τǫ, δ
0w) and Γi = 2c2Γ

i−1 + N2
l−1(iτǫ, (i + 1)τǫ, δ

0w) for 1 ≤ i ≤ j − 1,
and that uniqueness of fixed points holds over [0, jτǫ]. We then consider the
sequence of approximation over [jτǫ, (j + 1)τǫ]. Using the difference equations
and the linearized estimates over [jτǫ, (j + 1)τǫ], we obtain that

N2
l−1

(
jτǫ, (j + 1)τǫ, δ

k+1w
)
≤ c2N

2
l−1

(
(j − 1)τǫ, jτǫ, δ

k+1w
)

+ 1
4N

2
l−1

(
jτǫ, (j + 1)τǫ, δ

kw
)
, (3.31)

where we have used

|δw̃(jτǫ)|2l−1 +
1

ǫ
|πδw̃(jτǫ)|2l−2 ≤ N2

l−1

(
(j − 1)τǫ, jτǫ, δ

k+1w
)
,

so that βj
k+1 ≤ c2β

j−1
k+1+

1
4β

j
k. Multiplying by 2k+1 we have therefore established

that
γjk+1 ≤ c2γ

j−1
k+1 +

1
2γ

j
k, (3.32)

and since γj−1
k ≤ Γj−1 it is easily deduced from (3.32) that γjk ≤ 2c2Γ

j−1 + γj0
so that defining Γj = 2c2Γ

j−1 + γj0 = 2c2Γ
j−1 + N2

l−1(jτǫ, (j + 1)τǫ, δ
0w) we

have established that γjk ≤ Γj for k ≥ 0, so that

N2
l−1

(
jτǫ, (j + 1)τǫ, δ

kw
)
≤ Γj

2k
. (3.33)
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We also deduce that any fixed point w is unique over [jτǫ, (j + 1)τǫ] since it is
already unique over [0, jτǫ] and from (3.31) written between two fixed points it
is also unique over [jτǫ, (j + 1)τǫ].

Letting for short cǫ =
∑

0≤j≤Nǫ
Γj , it is obtained from (3.33) that

N2
l−1(0, τ̄ , δ

kw) ≤ cǫ

2k
, 0 ≤ k, (3.34)

where cǫ depends on ǫ, O1, b, and the data but is independent of k. We thus
conclude that the sequence if successive approximation {wk}k≥0 is convergent
over [0, τ̄ ] towards a fixed point w for the norm Nl−1(0, τ̄ ,w

k − w). Since the
sequence {wk}k≥0 is bounded in the space Xl

τ̄

(
O1,Mb,M1b

)
, it follows from

standard functional analysis arguments using weakly convergent subsequences
that w is the unique solution of the system of partial differential equations with
the required regularity.

The estimates (3.18) are next established by using the fact that the solution
is a fixed point w̃ = w. Denoting by w the solution of the nonlinear system of
equations, letting

M2
w
= sup

0≤τ≤τ̄

|w(τ) − w⋆(τ)|2l + ǫd

∫ τ̄

0

|wii(τ) − w⋆
ii
|2l+1 dτ +

1

ǫ

∫ τ̄

0

|πw(τ)|2l dτ,

the linearized estimate (3.14) now yields that

M2
w
≤ c21 exp

(
c2(τ̄ +M1

√
τ̄ )

)(
|w0 − w⋆|2l +

1

ǫ
|w0 − w⋆|20 + τ̄ ǫdc

2
2M

2
w

)
,

and since exp
(
c2(τ̄ +M1

√
τ̄ )

)
≤ 2 and 2c21c

2
2τ̄ ≤ 1/2 by definition of τ̄ we get

that

M2
w
≤ C

(
|w0 − w⋆|2l +

1

ǫ
|w0 − w⋆|20

)
, (3.35)

where C only depends on O1 and b. On the other hand, from the linearized
estimates (3.15) we further get that

1

ǫ
sup

0≤τ≤τ̄

|πw̃(τ)|2l−1 +
1

ǫ2

∫ τ̄

0

|πw̃(τ)|2l−1 dτ +

∫ τ̄

0

|∂tw̃(τ)|
2
l−1 dτ

≤ c2 exp
(
c2(τ̄ +M1

√
τ̄ )

)(
|w0 − w⋆|2l +

1

ǫ
|w0 − w⋆|2l−1 + τ̄ ǫdM

2
w

)
. (3.36)

Combining (3.35) and (3.36) finally yields (3.18) and the proof is complete.

3.4. Stronger time derivative estimates

We now strengthen the estimates for ∂tw obtained with the local exis-
tence theorem. Such extra estimates for ∂tw ∈ C0

(
[0, τ̄ ], H l−2

)
and π∂tw/ǫ ∈

L2
(
(0, τ̄), H l−3

)
, uniformly in ǫd, ǫ ∈ (0, 1] when l ≥ [d/2]+ 4 are relevant when

the initial time derivative ∂tw0 at t = 0 is close to the equilibrium manifold and
will be needed in the convergence analysis of the fast relaxation limit.
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Theorem 3.4. Keep the assumptions of Theorem 3.3 and further assume that
l ≥ l0 + 4. There exists C depending on O1 and b such that the following
estimates hold

sup
0≤τ≤τ̄

(
|∂tw(τ)|2l−2 +

1

ǫ
|π∂tw(τ)|2l−3

)
+ ǫd

∫ τ̄

0

|∂twii(τ)|2l−1 dτ

+
1

ǫ

∫ τ̄

0

|π∂tw(τ)|2l−2 dτ +
1

ǫ2

∫ τ̄

0

|π∂tw(τ)|2l−3 dτ +

∫ τ̄

0

|∂2tw(τ)|
2

l−3 dτ

≤ C
(
|w0 − w⋆|2l +

1

ǫ
|πw0|2l−1 + |∂tw0|2l−2 +

1

ǫ
|π∂tw0|2l−3

)
. (3.37)

Proof. The proof in given in Appendix B.

Corollary 3.5. Keeping the assumptions of Theorem 3.4, there exists C only
depending on O1 and b such that

1

ǫ2
sup

0≤τ≤t

|πw(τ)|2l−2 ≤ C
(
|w0 − w⋆|2l +

1

ǫ
|πw0|2l−1 + |∂tw0|2l−2 +

1

ǫ
|π∂tw0|2l−3

)
.

(3.38)
Moreover, if w and w′ corresponds to two initial conditions w0 and w′

0 as in

Theorem 3.3 and if |w0 − w⋆|2l + 1
ǫ
|πw0|2l−1 + |∂tw0|2l−2 +

1
ǫ
|π∂tw0|2l−3 remains

bounded by some constant only depending on O1 and b, letting δw = w−w′ and
δw0 = w0 − w′

0, then there exists C only depending on O1 and b such that

sup
0≤τ≤τ̄

(
|δw(τ)|2l−1 +

1

ǫ
|πδw(τ)|2l−2

)
+ ǫd

∫ τ̄

0

|δwii(τ)|2l dτ +
1

ǫ

∫ τ̄

0

|πδw(τ)|2l−1 dτ

+
1

ǫ2

∫ τ̄

0

|πδw(τ)|2l−2 dτ +

∫ τ̄

0

|∂tδw(τ)|
2
l−2 dτ ≤ C

(
|δw0|2l−1 +

1

ǫ
|πδw0|2l−2

)
.

(3.39)

Proof. The new estimate (3.38) is first a consequence of Theorem 3.4 and of the
relation (B.4).

In order to establish the differential estimate (3.39) we now combine the

linearized estimates, the equation (3.24) for the difference δw̃ (where w̃ = w, ˜̂w =
ŵ and δw̃ = δw) and the new estimates (3.38) of sup

0≤τ≤t

|πw(τ)|l−2/ǫ. Keeping

in mind the notation (3.27) for N2
l−1(0, τ

′, δw) we obtain from the difference
equations (3.24) and the linearized estimates that

N2
l−1(0, τ

′, δw) ≤ c2

(
|δw0|2l−1 +

1

ǫ
|πδw0|2l−2

)

+ c2

(
ǫd

∫ τ ′

0

|δgii|2l−2 dτ +
{∫ τ ′

0

|δf|l−1 dτ
}2

+

∫ τ ′

0

|δf|2l−2 dτ
)
.

From the expressions (3.25) and (3.26) of δf and δg, all terms in the right hand
side are easily majorized thanks to the a priori estimates obtained in the local
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existence theorem except for the terms arising from the stiff sources

δf′ = −1

ǫ

(
A0(ŵ)

(
A0(w)

)−1
L(w)− L(ŵ)

)
πw.

The corresponding integrals are next majorized with

{∫ τ ′

0

|δf′|l−1 dτ
}2

≤ τ ′
{∫ τ ′

0

|δf′|2l−1 dτ
}
≤ τ ′c2 sup

[0,τ ′]

|δw|2l−1,

using the estimate for 1
ǫ2

∫ τ̄

0
|πw(τ)|2l−1 dτ from the local existence theorem and

by

∫ τ ′

0

|δf′|2l−2 dτ ≤ τ ′
sup[0,τ̄ ] |πw|2l−2

ǫ2
sup
[0,τ ′]

|δw|2l−2 ≤ τ ′c2 sup
[0,τ ′]

|δw|2l−1,

since 1
ǫ2

sup[0,τ̄ ]|πw(τ)|2l−2 is bounded with the new estimates (3.38). Collecting
from previous results, we have established that

N2
l−1(0, τ

′, δw) ≤ c2

(
|δw0|2l−1 +

1

ǫ
|πδw0|2l−2

)
+ τ ′c2 sup

[0,τ ′]

|δw|2l−1,

and assuming then that τ ′ is such that τ ′c2 <
1
2 , we obtain the estimates (3.39)

over the interval [0, τ ′]. Reitering the linearized estimates over the intervals
[jτ ′, (j+1)τ ′] ⊂ [0, τ̄ ] whose number is independent of ǫ completes the proof.

Finally note that a priori estimates for πw/ǫ generally improve as w0 and
its time derivatives ∂kt w0, k ≥ 1, are closer to the equilibrium manifold E . We
may in particular use the extra estimates for the first time derivative itself and
obtain the following new estimates.

Theorem 3.6. Keep the assumptions of Theorem 3.3 and assume that l ≥ l0+6.
There exists C depending on O1 and b such that the following estimates hold

sup
0≤τ≤τ̄

(
|∂2tw(τ)|2l−4 +

1

ǫ
|π∂2t w(τ)|2l−5

)
+ ǫd

∫ τ̄

0

|∂2twii(τ)|2l−3 dτ

+
1

ǫ

∫ τ̄

0

|π∂2tw(τ)|
2

l−4 dτ +
1

ǫ2

∫ τ̄

0

|π∂2t w(τ)|
2

l−5 dτ +

∫ τ̄

0

|∂3tw(τ)|
2

l−5 dτ

≤ C
(
|w0 − w⋆|2l +

1

ǫ
|πw0|2l−1 + |∂tw0|2l−2 +

1

ǫ
|π∂tw0|2l−3

+ |∂2tw0|
2

l−4 +
1

ǫ
|π∂2tw0|

2

l−5

)
. (3.40)

Corollary 3.7. Keeping the assumptions of Theorem 3.6, we have estimates in
the form

1

ǫ2
sup

0≤τ≤t

|π∂tw(τ)|2l−4 ≤C
(
|w0 − w⋆|2l +

1

ǫ
|πw0|2l−1 + |∂tw0|2l−2

+
1

ǫ
|π∂tw0|2l−3 + |∂2tw0|

2

l−4 +
1

ǫ
|π∂2tw0|

2

l−5

)
.

(3.41)
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4. Convergence analysis and volume viscosity

Denoting by ϕ the linear operator

ϕ =




1 01,d 0 0

0d,1 I 0d,1 0

0 01,d 0 1


 , (4.1)

the ‘equilibrium components’ ϕw of the normal variable w are given by ϕw =
(ρ,v,−1/T )t. We first estimate in this section to what extend this equilibrium
projection ϕw of the normal variable w out of equilibrium satisfies the equations
of the normal variable we at thermodynamic equilibrium. We then restate a sta-
bility theorem for the equations governing fluids at thermodynamic equilibrium.
By combining these results, we rigorously establish that the difference ϕw− we

is O
(
ǫ(ǫ + ǫd)

)
. This yields a convergence theorem for the fast relaxation limit

as well as a rigorous justification of the volume viscosity term appearing in the
equilibrium fluid model.

4.1. Residual estimates

The equations governing fluids at thermodynamic equilibrium have been
investigated in Section 2.7 and the corresponding equations in normal form
read

A
e

0(we)∂twe +
∑

i∈D

A
e

i(we)∂iwe − ǫd
∑

i,j∈D

∂i
(
B
e

ij(we)∂jwe

)
− ǫdbe(we, ∂xweii) = 0,

(4.2)
where we = (ρe,ve,−1/Te)

t is the normal variable at equilibrium. Moreover,
using the Chapman-Enskog expansion, it has been established in our previous
work [26] that the equilibrium projection ϕw = (ρ,v,−1/T )t of the normal
variable out of equilibrium w is formally a second order approximate solution of
the one-temperature governing equations when ǫd = ǫ.

We estimate rigorously in this section the residual h defined by

A
e

0(ϕw)∂t(ϕw) +
∑

i∈D

A
e

i(ϕw)∂i(ϕw)− ǫd
∑

i,j∈D

∂i
(
B
e

ij(ϕw)∂j(ϕw)
)

− ǫdbe
(
ϕw, ϕ∂

x
wii

)
= h, (4.3)

that is, we estimate the ‘default to equilibrium residual’ of the projection ϕw.
Using estimates for h we will deduce in the next section estimates for the differ-
ence ϕw − we and establish a convergence theorem in the fast relaxation limit.

We begin by evaluating h in terms of fluid properties and this requires a
few notation and technical lemmas. We denote by θ the reduced temperature
difference

θ =
Ttr − Tin

ǫ
= −TtrTin

πw

ǫ
, (4.4)
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which thus essentially corresponds to the fast variable πw/ǫ. The estimates
for hyperbolic-parabolic systems with stiff sources obtained in Section 3 yield
in particular various estimates of θ uniformly with respect to the parameters
ǫ, ǫd ∈ (0, 1]. We first investigate the difference φ(Ttr, Tin)−φ(T, T ) for a smooth
function of the translational and internal temperatures.

Lemma 4.1. Let φ be a Cκ function φ(Ttr, Tin) of both temperatures Ttr and
Tin. Then

φ(Ttr, Tin)− φ(T, T ) = ǫh̄φ(θ, Ttr, Tin), (4.5)

where h̄φ is a Cκ−1 function of Ttr and Tin and is also proportional to θ.

Proof. We may first write

h̄φ = θ

∫ 1

0

∂Ttr
φ(T + s(Ttr − T ), T ) ds+ θ

∫ 1

0

∂Tin
φ(Ttr, T + s(Tin − T )) ds,

and since Ttr − T = (Ttr − Tin)c̃in/c̃v and (Tin − T ) = −(Ttr − Tin)cv,tr/c̃v we
obtain that

h̄φ = θ
{ c̃in
c̃v

∫ 1

0

∂Ttr
φ(T +s(Ttr−T ), T ) ds−

cv,tr
c̃v

∫ 1

0

∂Tin
φ(Ttr, T+s(Tin−T )) ds

}
.

Finally h̄φ is Cκ−1 since c̃in and c̃v are Cκ−1 functions of (Ttr, Tin), since T is
a Cκ function of (Ttr, Tin) and since φ is Cκ .

We may now use this lemma in order to rewrite in a convenient form the
various transport coefficients appearing in the governing equations. Keeping in
mind that the viscosity η is given by η = ǫdη̄ from (2.11), and using Lemma 4.1
with φ = η̄, we obtain that η̄(Ttr, Tin) − η̄e(T ) = ǫh̄η̄ where η̄e(T ) = η̄(T, T ).
Further defining the total conductivity as λ = λtr,tr + λtr,in + λin,tr + λin,in, we
may write from (2.11) that λ = ǫdλ̄ where λ̄ = λ̄tr,tr + λ̄tr,in + λ̄in,tr + λ̄in,in,

and using Lemma 4.1 with φ = λ̄, we then have λ̄(Ttr, Tin)− λ̄e(T ) = ǫh̄
λ̄
where

λ̄e(T ) = λ̄(T, T ). Finally, the volume viscosity may be written κ = ǫκ̄ from
(2.14) and using Lemma 4.1 with φ = κ̄ yields κ̄(Ttr, Tin)− κ̄e(T ) = ǫh̄κ̄ where
κ̄e(T ) = κ̄(T, T ). The transport coefficients are thus in the form

κ(Ttr, Tin)− κe(T ) = ǫ2h̄κ̄, η(Ttr, Tin)− ηe(T ) = ǫǫdh̄η̄,

λ(Ttr, Tin)− λe(T ) = ǫǫdh̄λ̄, (4.6)

with κe(T ) = ǫκ̄e(T ), ηe(T ) = ǫdη̄e(T ), and λe(T ) = ǫλ̄e(T ). We further define
the reduced transport fluxes

Qtr = −λ̄tr,tr∇Ttr − λ̄tr,in∇Tin, Qin = −λ̄in,tr∇Ttr − λ̄in,in∇Tin, (4.7)

Q = Qtr +Qin, Π = −η̄
(
∇v + (∇v)t − 2

d′
(∇·v)I

)
, (4.8)

in such a way that

Q = ǫdQ, Qtr = ǫdQtr, Qin = ǫdQin, Π = ǫdΠ. (4.9)

23



From the relation (2.15) we next obtain

ρr(Ttr − T ) = −κe(T )∇·v − ǫ2
(
h̄κ̄∇·v +

κ̄

rTtr
(∂tθ + v·∇θ)

)

−ǫǫd
κ̄

p

(
Π:∇v +∇·Qtr −

cv,tr
cin

∇·Qin

)
, (4.10)

and we are ready to investigate the structure of the residual h.

Proposition 4.2. The residual h may be written in the form

h = ǫ2hr + ǫǫdhd, (4.11)

with

hr =
(
(∂we

ve)(ϕw)
)t ∑

i∈D

∂ihr,i, hd =
(
(∂we

ve)(ϕw)
)t ∑

i∈D

∂ihd,i, (4.12)

and denoting by ξ = (ξ1, . . . , ξd)
t an arbitrary vector of Rd, the components hr,i

and hd,i are given by ∑

i∈D

ξihr,i =
(
0, aξ, av·ξ

)t
, (4.13)

∑

i∈D

ξihd,i =
(
0, h̄η̄S·ξ + bξ, h̄η̄〈Sv, ξ〉+ bv·ξ + h̄

λ̄
∇T ·ξ + c

)t
, (4.14)

where
a = h̄κ̄∇·v + (κ̄/rTtr)(∂tθ + v·∇θ), (4.15)

b = (κ̄/p)
(
Π :∇v +∇·Qtr − (cv,tr/cin)∇·Qin

)
, (4.16)

ci = (λ̄tr,tr + λ̄in,tr)∂i(θc̃in/c̃v)− (λ̄tr,in + λ̄in,in)∂i(θcv,tr/c̃v), (4.17)

and where S = ∇v + (∇v)t − 2
d′
(∇·v)I.

Proof. The residual h associated with the normal form is directly related to the

residual hu associated with the conservative variable by h =
(
∂we

ve(ϕw)
)t
hu. It

is thus sufficient to establish that

hu = ǫ2
∑

i∈D

∂ihr,i + ǫǫd
∑

i∈D

∂ihd,i, (4.18)

by using the error functions h̄η̄, h̄κ̄, h̄λ̄, the reduced transport fluxes Π, Qtr,

Qin, the coefficients κ̄, η̄, λ̄, and the expression (4.10).
In order to evaluate the residual hu associated with the conservative formu-

lation, we start from the total mass, momentum and total energy conservation
equations. In the momentum and energy conservation equations, the transla-
tional temperature Ttr appearing in the state law is expressed in terms of T
and the volume viscosity correction by using (4.10). All transport coefficients
in the momentum and energy conservation equations are also expressed using

24



Lemma 4.1. In addition, the temperatures Ttr and Tin in the heat fluxes are
expressed as Ttr = T + ǫθc̃in/c̃v and Tin = T − ǫθcv,tr/c̃v.

More specifically, from (4.10) we first obtain the expression of hr,i as well
as the contributions proportional to (κ̄/p)

(
Π:∇v +∇·Qtr − (cv,tr/cin)∇·Qin

)

in hd,i. The remaining contributions in hd,i then arise from the viscous tensor
which is written

Π = −ηe(T )S− ǫǫdh̄η̄S,

and from the heat flux written

Q =− λe(T )∇T − ǫǫdh̄λ̄∇T

− ǫǫd

(
(λ̄tr,tr + λ̄in,tr)

∇(Ttr − T )

ǫ
+ (λ̄tr,in + λ̄in,in)

∇(Tin − T )

ǫ

)
.

Using then Ttr = T + ǫθc̃in/c̃v and Tin = T − ǫθcv,tr/c̃v and regrouping the
various error terms completes the proof.

We now estimate the residuals hr and hd from (4.11)–(4.12) in the func-
tional spaces L2

(
(0, τ̄ ), H l−4

)
and L2

(
(0, τ̄), H l−3

)
, respectively, uniformly with

respect to the parameters ǫ, ǫd ∈ (0, 1].

Theorem 4.3. Assume that l ≥ l0 + 4 and that w0 is such that

|w0 − w⋆|2l +
1

ǫ
|πw0|2l−1 + |∂tw0|2l−2 +

1

ǫ
|π∂tw0|2l−3

is uniformly bounded independently of ǫ ∈ (0, 1]. Then the residual hr be-
longs to C0

(
[0, τ̄ ], H l−3

)
and is bounded in L2

(
(0, τ̄), H l−4

)
independently of

ǫ, ǫd ∈ (0, 1], and the residual hd belongs to C0
(
[0, τ̄ ], H l−3

)
and is bounded in

L2
(
(0, τ̄), H l−3

)
independently of ǫ, ǫd ∈ (0, 1].

Proof. It is sufficient to establish the regularity property and the uniform es-
timates for the residuals

∑
i∈D ∂ihr,i and

∑
i∈D ∂ihd,i associated with the con-

servative form hu since h = (∂we
ve)

thu. It is thus sufficient to establish that
hr,i ∈ C0

(
[0, τ̄ ], H l−2

)
is uniformly bounded in L2

(
(0, τ̄), H l−3

)
and that hd,i ∈

C0
(
[0, τ̄ ], H l−2

)
is uniformly bounded in L2

(
(0, τ̄), H l−2

)
for i ∈ D.

Using the relations (4.13) and (4.15) for hr,i and the relations (4.14), (4.16)
and (4.17) for hd,i, where θ has been written (Ttr −Tin)/ǫ, a direct examination
of their components shows that there are all in the space C0

(
[0, τ̄ ], H l−2

)
since

w − w⋆ ∈ C0
(
[0, τ̄ ], H l

)
, ∂

x
w ∈ C0

(
[0, τ̄ ], H l−1

)
, ∂tw ∈ C0

(
[0, τ̄ ], H l−2

)
and

∂2
x
w ∈ C0

(
[0, τ̄ ], H l−2

)
.

On the other hand, the uniform bound for hr,i in L
2
(
(0, τ̄), H l−3

)
is a con-

sequence of the uniform bound for first derivatives of w in L2
(
(0, τ̄), H l−1

)
, of

the uniform bound for ∂
x
θ in L2

(
(0, τ̄), H l−2

)
due to (3.18), and of the uniform

bounds of ∂tθ in L2
(
(0, τ̄ ), H l−3

)
obtained with (3.37). Similarly, the uniform

bounds for hd,i in L
2
(
(0, τ̄ ), H l−2

)
are consequences of the uniform bounds for

first and second derivatives in L2
(
(0, τ̄ ), H l−2

)
, and of the uniform bounds for

∂
x
θ in L2

(
(0, τ̄), H l−2

)
due to (3.18). It is interesting to note that the most

difficult term to estimate is the time derivative of the fast variable ∂tθ.
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4.2. Local stability at equilibrium and convergence

We restate a local existence theorem for an abstract perturbed hyperbolic-
parabolic system of partial differential equations in normal form with small
second order terms and without sources [32]. This theorem is established by
Kawashima [32] without the perturbing right hand side but including such per-
turbed terms does not present serious difficulties. These results are then applied
to the limit one-temperature fluid model presented in Section 2.7. For the sake of
notational simplicity we keep the notation of our previous sections even though
these results are to be applied to the normal variable we of equilibrium fluids.

Theorem 4.4. Let d ≥ 1 and l ≥ [d/2] + 2 be integers and let b > 0 be given
and consider the perturbed system of equations

A0(w)∂tw+
∑

i∈D

Ai(w)∂iw−ǫd
∑

i,j∈D

∂i
(
Bij(w)∂jw

)
−ǫdb(w, ∂xw) = f+ǫdg, (4.19)

where b = −∑
i,j∈D ∂i(∂wv)

t (∂
v
w)tBij ∂jw and where for some positive τ̄m > 0

f ∈ C0
(
[0, τ̄m], H

l−1
)
∩ L1

(
[0, τ̄m], H

l
)
, (4.20)

g ∈ C0
(
[0, τ̄m], H

l−1
)
, gi = 0. (4.21)

Let O0 be given such that O0 ⊂ Ow, d1 such that 0 < d1 < d(O0, ∂Ow), and
define

O1 = {w ∈ Ow; d(w,O0) < d1 }.
There exists τ̄ with 0 < τ̄ ≤ τ̄m and χ > 0 depending on O1 and b, and
independent on ǫd ∈ (0, 1], such that for any w0 with w0 ∈ O0 and any f and g

satisfying (4.20)(4.21) with

|w0 − w⋆|2l < b2,
{∫ t

0

|f|l dτ
}2

+

∫ t

0

|f|2l−1 dτ < χb2,

∫ t

0

|g|2l−1 dτ < χb2,

(4.22)
there exists a unique local solution w to the perturbed system (4.19) with initial
condition

w(0, x) = w0(x), x ∈ R
d,

such that
w(t, x) ∈ O1, t ∈ [0, τ̄ ], x ∈ R

d,

and
wi − w⋆

i ∈ C0
(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−1

)
,

wii − w⋆
ii
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
∩ L2

(
(0, τ̄), H l+1

)
.

In addition, there exists C > 0 only depending on O1 and b, such that

sup
0≤τ≤τ̄

|w(τ) − w⋆|2l + ǫd

∫ τ̄

0

|wii(τ)− w⋆
ii
|2l+1 dτ ≤

C
(
|w0 − w⋆|2l +

{∫ τ̄

0

|f|l dτ
}2

+ ǫd

∫ τ̄

0

|g|2l−1 dτ
)
, (4.23)
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∫ t

0

|∂tw(τ)|
2
l−1 dτ ≤ C

(
|w0 − w⋆|2l +

{∫ τ̄

0

|f|l dτ
}2

+

∫ τ̄

0

|f|2l−1 dτ + ǫd

∫ τ̄

0

|g|2l−1 dτ
)
.

(4.24)

Moreover, if w and w′ correspond to two different inital conditions and different
perturbations, letting δw = w− w′, δf = f − f′, δg = g − g′, then

sup
0≤τ≤τ̄

|δw(τ)|2l−1 + ǫd

∫ τ̄

0

|δwii(τ)|2l dτ

≤ C
(
|δw0|2l−1 +

{∫ τ̄

0

|δf|l−1 dτ
}2

+ ǫd

∫ τ̄

0

|δg|2l−2 dτ
)
. (4.25)

Remark 4.5. We have not included nonstiff source terms in the stability the-
orem since they are not required for our application to fluids out of thermody-
namical equilibrium. However, it is straightforward to add such nonstiff extra
sources in the stability analysis.

Remark 4.6. The decomposition of the right hand side in the form f+ ǫdg with
(4.20)(4.21) is of course not unique. A right hand side in the form ǫdg

′ may be
decomposed for instance into f = ǫdg

′ and g = 0 as well as f = 0 and g = g′. The
interest of the g term is that only the lower regularity g′ ∈ C0

(
[0, τ̄m], H

l−1
)
is

needed, but the price to pay is a factor
√
ǫd since the dissipative terms are O(ǫd)

and there are correspondingly ǫd factors in the estimates of higher derivatives.
In particular, in the estimates (4.25), even though ǫdg

′ is O(ǫd), the perturba-
tion δw is only shown to be O(

√
ǫd). On the contrary, with the f factor, any

scaling of f is fully tranmitted to δw, but we then need the stronger relularity
f ∈ C0

(
[0, τ̄m], H

l
)
.

We now combine the estimate of the residual h to the stability theorem at
equilibrium in order to obtain a convergence theorem.

Theorem 4.7. Let d ≥ 1, l ≥ l0+4, l0 = [d/2]+ 1, be integers and let b > 0 be
given. Let O0 be given such that O0 ⊂ Ow, d1 such that 0 < d1 < d(O0, ∂Ow),
and define O1 = {w ∈ Ow; d(w,O0) < d1 }. There exists τ̄ > 0 depending
on O1 and b, and independent on ǫd ∈ (0, 1] and ǫ ∈ (0, 1], such that for any
w0 ∈ O0 with

|w0 − w⋆|2l +
1

ǫ
|πw0|2l−1 < b2, (4.26)

and such that

|w0 − w⋆|2l +
1

ǫ
|πw0|2l−1 + |∂tw0|2l−2 +

1

ǫ
|π∂tw0|2l−3,

is also bounded independently of ǫ, there exists a unique solution of the out
of equilibrium system such that the estimates (3.18) and (3.39) holds, as well
as the estimates (3.37), and furthermore, there exists a unique solution of the
equilibrium system starting from ϕw0. Then there exists a constant C depending
on O1 and b and independent of ǫ, ǫd ∈ [0, 1) such that

sup
τ∈[0,τ̄]

|ϕw − we|l−4 ≤ Cǫ(ǫ + ǫd).
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Proof. Wemay use the estimates of the residual term h in Theorem 4.3 and apply
Theorem 4.4 with f = h, g = 0, and use the differential estimates (4.25).

In particular, in the special case ǫd = ǫ, we have established that the two
term Chapmen-Enskog expansion derived in the companion paper [26], which
includes the O(ǫ) volume viscosity terms, is effectively of second order accuracy.

Note that Theorem 4.7 presents a convergence result but also a second order
error estimate and this explains the loss of four derivatives. Indeed, the residual
h associated with the error contains terms in the form ∇∂t(πw/ǫ) that need
to be bounded in some Sobolev space, all other terms being easier to control.
There is then a first loss of dervative due to the fact that we need estimate
πw/ǫ and not πw/

√
ǫ as established by in (3.18). There are next two extra loss

of derivatives since we need to control the time derivative ∂t(πw/ǫ) of πw/ǫ
and we are dealing with second-order systems of partial differential equations
for which time derivatives have the same regularity as second-order derivative.
This already yields three loss of derivatives as stated in (3.37) There is finally an
extra loss since we need to control the first-order spatial derivative ∇∂t(πw/ǫ)
of ∂t(πw/ǫ) and this results in a total loss of four derivatives for a second-order
O(ǫ2) error estimate.

5. Conclusion

We have proved rigorously for the first time that the solution of the out of
equilibrium gas model converges towards the solution of the one temperature
model. We have further established that the distance between these two solu-
tions is of the order of Burnett type residuals. This is in full agreement with our
previous work where it has been established that the volume viscosity coefficient
is obtained with a two term Chapman-Enskog expansion [26].
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Appendix A. Linearized equations estimates

We establish in Appendix A the proof of the linearized estimates (3.14)(3.15).
It is sufficient to establish these estimates for smooth solutions since we may use
mollifiers and convolution operators [32]. We follow the elegant method of proof
of Kawashima [32] and mainly indicate the differences due to the stiff sources.

Step 0. Preliminaries. In the following δ1 = δ(O1) ≤ 1 denotes a generic small
constant only depending on O1, c1 = c1(O1) ≥ 1 a generic large constant only
depending on O1, and c2 = c2(O1,M) ≥ 1 a generic large constant depending
on O1 and M . The various occurrences of these constants may be distinguished
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and the minimum of all δ1 and the maxima of all c1 and c2 may be taken
at the end of the proof so that only single constants ultimately remain. The
dependence on d, l, n of these estimating constants, on the other hand, is left
implicit. For k ≥ 0 and φ ∈ Hk we also define

E2
k(φ) =

∑

0≤|α|≤k

|α|!
α!

∫

Rd

〈
A0(w)∂

αφ, ∂αφ
〉
dx, (A.1)

Ê2
k(φ) =

∑

0≤|α|≤k

|α|!
α!

∫

Rd

〈
L(w)∂αφ, ∂αφ

〉
dx. (A.2)

In order to alleviate notation in the proof we denote for short δw̃ = w̃− w̃⋆. We
will use the classical estimates

|f(φ)− f(0)|k ≤ c0‖f‖Ck(‖·‖≤‖φ‖L∞)(1 + ‖φ‖L∞)k−1 |φ|k, (A.3)

where k ≥ 1 and c0 denotes a generic constant independent of O1 and M , as
well as the estimates |uv|2k ≤ c0|u|2l |v|

2
k, for 0 ≤ k ≤ l, and ‖φ‖L∞ ≤ c0|φ|l

valid for any l ≥ l0 = [d/2] + 1. We also have the commutator estimate∑
0≤|α|≤l

∣∣[∂α, u]v
∣∣
0
≤ c0|∂xu|l−1|v|l−1 valid for any l ≥ l0 + 1 where [∂α, u]v =

∂α(uv)−u∂αv denotes the commutator between ∂α and u. Finally, we have the
Garding inequality

δ1|φii|21 ≤
∑

i,j∈D

∫

Rd

〈Bii,ii

ij (w)∂iφii, ∂jφii〉dx+ c2|φii|20,

for any vector valued function φii : R
d → R

nii in the space H1.

Step 1. The zeroth order estimates. Multiplying (3.5) by δw̃ = w̃−w̃⋆ integrat-
ing over R

d, using the symmetry of A0 and Ai, using Garding inequality, and
noting that |∂xw|l−1 ≤ M , while c2 may depend on M , we obtain after some
algebra that

∂tE
2
0(δw̃)+ǫdδ1|δw̃ii|21+

δ1
ǫ
|πw̃|20 ≤ c1|f|0|δw̃|0+ǫdc1|gii|20+c2(1+|∂tw|l−1)E

2
0(δw̃).

Letting γ2(t) = sup
0≤τ≤t

E2
0

(
δw̃(τ)

)
+δ1ǫd

∫ t

0 |δw̃ii|21 dτ+ δ1
ǫ

∫ t

0 |πw̃|20 dτ , noting that γ

is nondecreasing so that
∫ t

0
|f|0γ(τ) dτ ≤ γ(t)

∫ t

0
|f|0dτ , and using

∫ t

0
|∂tw|l−1 dτ ≤

M1

√
t we obtain from Gronwall inequality with γ2 that

sup
0≤τ≤t

∣∣δw̃(τ)
∣∣2
0
+ ǫd

∫ t

0

|δw̃ii(τ)|21 dτ +
1

ǫ

∫ t

0

|πw̃|20 dτ

≤ c21 exp
(
c2(t+M1

√
t )
) (

|δw̃0|20 + ǫdc1

∫ t

0

|gii|20 dτ + c1

{∫ t

0

|f|0 dτ
}2)

.
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Similarly, multiplying the governing equation (3.5) by (1/ǫ)πw̃ and proceed-
ing as above we get

1

ǫ
∂tE

2
0 (πw̃) +

δ1
ǫ2
|πw̃|20 ≤ c1|πf|20 + ǫ2dc1|gii|20 +

c1

ǫ
|∂tw|l−1E

2
0(πw̃)

+ c1|δw̃|21 + ǫ2dc1|δw̃ii|22. (A.4)

Moreover, multiplying the governing equation by ∂tw̃, integrating over R
d, using

the symmetry of L, and proceeding similarly we obtain that

δ1|∂tw̃|20 +
1

ǫ
∂tÊ

2
0 (πw̃) ≤ c1|f|20 + c1ǫ

2
d|gii|20 +

c1

ǫ
|∂tw|l−1Ê

2
0 (πw̃)

+ c1|δw̃|21 + ǫ2dc1|δw̃ii|22. (A.5)

Step 2. The lth order estimate. We first differentiate the hyperbolic-parabolic
system (3.5) with respect to the space variable. Denoting by ∂α the αth deriva-
tive spatial operator, we obtain that

A0(w)∂t∂
αw̃ +

∑

i∈D

Ai(w)∂i∂
αw̃−ǫd

∑

i,j∈D

Bij(w)∂i∂j∂
αw̃+

1

ǫ
L(w)∂αw̃ = fα+ǫdg

α,

(A.6)
with

fα = A0∂
α
(
A

−1

0 f
)
−

∑

i∈D

A0

[
∂α,A

−1

0 Ai

]
∂iw̃− 1

ǫ
A0

[
∂α,A

−1

0 L
]
πw̃, (A.7)

gα = A0∂
α
(
A

−1

0 g
)
+

∑

i,j∈D

A0

[
∂α,A

−1

0 Bij

]
∂i∂jw̃. (A.8)

Multiplying equation (A.6) by ∂αδw̃ and |α|!/α!, integrating over Rd, sum-
ming over 0 ≤ |α| ≤ l, and proceeding as for the zeroth order estimate, we
obtain that

∂tE
2
l (δw̃) + ǫdδ1|δw̃ii|2l+1 +

δ1
ǫ
|πw̃|2l ≤ c2(1 + |∂tw|l−1)E

2
l (δw̃)

+
∑

0≤|α|≤l

|α|!
α!

∫

Rd

〈fα, ∂αδw̃〉dx+ ǫd
∑

0≤|α|≤l

|α|!
α!

∫

Rd

〈gα, ∂αδw̃〉dx.

We next have to investigate the residuals associated with fα and gα. Keeping
in mind that the zeroth order terms with |α| = 0 have already been examined
in Step1, we only have to analyze the terms such that 1 ≤ |α| ≤ l.

The nonstiff terms are estimated in the classical way [32] using commutator

estimates (and integration by parts for the terms A0∂
α
(
A

−1

0 g
)
when |α| = l)

and we obtain that
∣∣∣
∫

Rd

〈
A0∂

α
(
A

−1

0 f
)
, ∂αδw̃

〉
dx

∣∣∣ ≤ |A0|∞ |A−1

0 f|l |δw̃|l ≤ c2|f|l |δw̃|l,
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∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 Ai

]
∂iw̃, ∂

αδw̃
〉
dx

∣∣∣ ≤ |A0|∞
∣∣[∂α,A−1

0 Ai

]
∂iw̃

∣∣
0
|δw̃||α|,

∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 Ai

]
∂iw̃, ∂

αδw̃
〉
dx

∣∣∣ ≤

c0|A0|∞
∣∣∂x(A

−1

0 Ai)
∣∣
l−1

|∂iw̃|l−1|δw̃|l ≤ c2|δw̃|2l ,
∣∣∣
∫

Rd

〈
A0∂

α
(
A

−1

0 g
)
, ∂αδw̃

〉
dx

∣∣∣ ≤ c2|gii|l−1 |δw̃ii|l+1,

∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 Bij

]
∂i∂jw̃, ∂

αδw̃
〉
dx

∣∣∣ ≤ c2 |δw̃ii|l+1 |δw̃ii|l.

On the other hand, for the stiff terms 1
ǫ
A0

[
∂α,A

−1

0 L
]
πw̃ it is obtained that

1

ǫ

∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 L
]
πw̃, ∂αw̃

〉
dx

∣∣∣ ≤

c0

ǫ
|A0|∞

∣∣∂x(A
−1

0 L)
∣∣
l−1

|πw̃|l−1|πw̃|l ≤
c2

ǫ
|πw̃|l−1|πw̃|l.

Collecting all contributions we have established that

∂tE
2
l (δw̃) + ǫdδ1|δw̃ii|2l+1+

δ1
ǫ
|πw̃|2l ≤ c2(1 + |∂tw|l−1)E

2
l (δw̃)

+ c2|f|lEl(δw̃) +
c2

ǫ
|πw̃|2l−1 + ǫdc2|gii|2l−1. (A.9)

In order to handle the term (c2/ǫ)|πw̃|2l−1 in the right hand side we use the
following classical consequence of interpolation inequalities |φ|2l−1 ≤ β|φ|2l +

C(β)|φ|20 valid for any φ ∈ H l, any β > 0 and where C(β) depends on β, and
we may also add the projected zeroth order inequality (A.4). Keeping in mind
that l ≥ l0 + 1 ≥ 2 we obtain that

∂t

(
E2

l (δw̃) +
1

ǫ
E2

0 (πw̃)
)
+ ǫdδ1|δw̃ii|2l+1 +

δ1
ǫ
|πw̃|2l +

δ1
ǫ2
|πw̃|20 ≤

c2(1+ |∂tw|l−1)
(
E2

l (δw̃)+
1

ǫ
E2

0(πw̃)
)
+ c2|f|lEl(δw̃)+ ǫdc2|gii|2l−1+ c1|πf|20.

From Gronwall inequality we obtain after some algebra the first estimate (3.14).
It is interesting to note that in the absence of stiff source terms we may let π = 0
and we recover the usual estimates [32].

Step 3. The lth order derived estimate. Multiplying the equation (A.6) by
∂t∂

αw̃ and |α|!/α!, integrating over R
d, summing over 0 ≤ |α| ≤ l − 1, and

proceeding as for the zeroth order derived estimate, we obtain that

δ1|∂tw̃|2l−1 +
1

ǫ
∂tÊ

2
l−1(πw̃) ≤ c1|δw̃|2l + c1ǫ

2
d|δw̃ii|2l+1 +

c1

ǫ
|∂tw|l−1Ê

2
l−1(πw̃)
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+
∑

0≤|α|≤l−1

c1
|α|!
α!

(
|fα|20 + ǫ2d|gα|20

)
.

and we have to investigate the residuals associated with fα and gα. Keeping in
mind that the zeroth order terms with |α| = 0 have already been examined in
Step 3 we only have to analyze the terms such that 1 ≤ |α| ≤ l − 1.

The nonstiff terms in fα and gα are estimated as usual whereas the stiff
terms are estimated with

1

ǫ2

∫

Rd

∣∣A0

[
∂α,A

−1

0 L
]
πw̃

∣∣2 dx ≤ c0

ǫ2
|A0|2∞

∣∣∂x(A
−1

0 L)
∣∣2
l−2

|πw̃|2l−2 ≤ c2

ǫ2
|πw̃|2l−2,

and collecting all contributions we have established that

∑

0≤|α|≤l−1

(
|fα|20+ ǫ2d|gα|20

)
≤ c2(|f|2l−1+ ǫ

2
d|gii|2l−1+ |δw̃|2l−1+ ǫ

2
d|δw̃ii|2l )+

c2

ǫ2
|πw̃|2l−2.

In order to control the last term (c2/ǫ
2)|πw̃|2l−2 we now have to write the

(l−1)th projected equation. Multiplying equation (A.6) by 1
ǫ
∂απw̃ and |α|!/α!,

integrating over Rd, and summing over 0 ≤ |α| ≤ l − 1, yields that

1

ǫ
∂tE

2
l−1(πw̃) +

δ1
ǫ2
|πw̃|2l−1 ≤ c1|δw̃|2l + c1ǫ

2
d|δw̃ii|2l+1 +

c1

ǫ
|∂tw|l−1E

2
l−1(πw̃)

+
∑

0≤|α|≤l−1

c1
|α|!
α!

(
|fα|20 + ǫ2d|gα|20

)
.

Using the previous estimates of |fα|0 and |gα|0, the inequality |φ|2l−2 ≤ β|φ|2l−1+

C(β)|φ|20, the equivalence of Ê2
l−1(πw̃) and E

2
l−1(πw̃), and combining the derived

lth estimate with the projected lth estimate, we now obtain that

δ1|∂tw̃|2l−1+
1

ǫ
∂t

(
Ê2

l−1(πw̃)+E
2
l−1(πw̃)

)
+
δ1
ǫ2
|πw̃|2l−1 ≤ c1|δw̃|2l +c1ǫ

2
d|δw̃ii|2l+1

+
c1

ǫ
|∂tw|l−1Ê

2
l−1(πw̃) + c2

(
|f|2l−1 + ǫ2d|gii|2l−1 + |δw̃|2l−1 + ǫ2d|δw̃ii|2l +

1

ǫ2
|πw̃|20

)
.

We now combine this inequality to the lth order governing equation (A.9) mul-
tiplied by a large constant k1 only depending on O1 so as to compensate the
term c1ǫ

2
d|δw̃|2l+1 in the right hand side. We also add the zeroth order derived

equation (A.4) multiplied by a factor k2 in order to compensate for the term
(c2/ǫ

2)|πw̃|20. We have then obtained a governing inequality in the form

∂t

(1
ǫ
Ê2

l−1(πw̃)+
1

ǫ
E2

l−1(πw̃)+k1E
2
l (δw̃)+

k2

ǫ
E2

0(πw̃)
)
+ δ1|∂tw̃|2l−1+

δ1
ǫ2
|πw̃|2l−1

+ǫdδ1|δw̃ii|2l+1 +
δ1
ǫ
|πw̃|2l ≤ c2

ǫ
(1 + |∂tw|l−1)Ê

2
l−1(πw̃) + c2|f|2l−1

+ c2ǫd|gii|2l−1 + c2(1 + |∂tw|l−1)E
2
l (δw̃) + c2|f|lEl(δw̃).
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From the Gronwall inequality we get after some algebra the second estimate
(3.15).

Finally, the various occurencies of the constant c2 in the proof all involve
simple polynomials in M with positive coefficients, either arising as simple mul-
tiplication by M or through the estimate (A.3) so that the final constant c2 is
an increasing function of M and the proof is complete.

Appendix B. Time derivatives estimates

We present in Appendix B the proof of the extra time derivative estimates
of Theorem 3.4. Since l ≥ l0 + 4 we first deduce from the governing equations
and the regularity of the solution w that

∂twi ∈ C0
(
[0, τ̄ ], H l−1

)
∩ C1

(
[0, τ̄ ], H l−3

)
,

∂twii ∈ C0
(
[0, τ̄ ], H l−2

)
∩ C1

(
[0, τ̄ ], H l−4

)
∩ L2

(
(0, τ̄), H l−1

)
,

although we do not have uniform bounds in these spaces because of the stiff
sources. Letting m̂ij(w) = mij + ∂wBij , i, j ∈ D, the third order tensors m̂ij

have at least regularity κ− 3 and the governing equations may then be written

A0(w)∂tw +
∑

i∈D

Ai(w)∂iw− ǫd
∑

i,j∈D

Bij(w)∂i∂jw

+
1

ǫ
L(w)w = ǫd

∑

i,j∈D

m̂ij(w)∂iw∂jw.

Differenciating this system with respect to time we obtain that w̃ = ∂tw satisfies

A0(w)∂tw̃ +
∑

i∈D

Ai(w)∂iw̃− ǫd
∑

i,j∈D

Bij(w)∂i∂jw̃+
1

ǫ
L(w)w̃ = ft + ǫdgt, (B.1)

where

ft = −
∑

i∈D

A0∂w(A
−1

0 Ai)w̃∂iw − 1

ǫ
A0∂w(A

−1

0 L)w̃ πw, (B.2)

gt =
∑

i,j∈D

A0∂w(A
−1

0 Bij)w̃∂i∂jw +
∑

i,j∈D

A0∂w(A
−1

0 m̂ij) w̃ ∂iw ∂jw

+
∑

i,j∈D

m̂ij ∂iw̃ ∂jw+
∑

i,j∈D

m̂ij ∂iw ∂jw̃. (B.3)

Step 0. The expressions (B.2)(B.3) are not convenient and are rewritten by

using the generalized inverse L
♯
of L such that L L

♯
= L

♯
L = π, L

♯
= (L

♯
)t,

N(L
♯
) = E and R(L

♯
) = E

⊥. This pseudo inverse L
♯
is the generalized inverse of
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L with prescribed range R(L
♯
) = E

⊥ and nullspace N(L
♯
) = E, and is a smooth

function of L [14, 26]. Using L
♯
we deduce from the governing equations that

πw

ǫ
= −L

♯
(
A0(w)πw̃ +

∑

i∈D

Ai(w)∂iw − ǫd
∑

i,j∈D

Bij(w)∂i∂jw− ǫdb
)
, (B.4)

keeping in mind that L
♯
= L

♯
π and πA0 = A0π. We may thus rewrite ft and gt

in the form

ft = −
∑

i∈D

A0∂w(A
−1

0 Ai)w̃∂iw+
∑

i∈D

A0∂w(A
−1

0 L)w̃L
♯
Ai∂iw

+ A0∂w(A
−1

0 L)w̃ L
♯
A0πw̃, (B.5)

gt =
∑

i,j∈D

A0∂w(A
−1

0 Bij)w̃∂i∂jw +
∑

i,j∈D

A0∂w(A
−1

0 m̂ij) w̃ ∂iw ∂jw

−
∑

i,j∈D

A0∂w(A
−1

0 L)w̃L
♯
Bij∂i∂jw−

∑

i,j∈D

A0∂w(A
−1

0 L)w̃L
♯
mij∂iw∂jw

+
∑

i,j∈D

m̂ij ∂iw̃ ∂jw+
∑

i,j∈D

m̂ij ∂iw ∂jw̃. (B.6)

The equation (B.1) is thus formally ‘linearized’ except for the quadratic term in

ft arising from the stiff sources A0∂w(A
−1

0 L)w̃ L
♯
A0πw̃. In order to derive the

new estimates, we use a similar notation as in Theorem 3.1 and Theorem 3.3.
In particular, δ1 = δ(O1) ≤ 1 denotes a generic small constant only depending
on O1, c1 = c1(O1) ≥ 1 a generic large constant only depending on O1, and
c2 = c2(O1, b) ≥ 1 a generic large constant depending on O1 and the constant b
of Theorem 3.3.

Step 1. Zeroth order entropic estimates for w̃ = ∂tw. We multiply (B.1) by w̃

and proceed as in the proof of Theorem 3.1. Using the symmetry of A0 and Ai,
integrating over Rd, and using the Garding inequality, we obtain that

∂tE
2
0(w̃) + ǫdδ1|w̃ii|21 +

δ1
ǫ
|πw̃|20 ≤ c2(1 + |∂tw|l0)E2

0 (w̃) +

∫

Rd

〈ft + ǫdgt, w̃〉dx.

All terms linear in w̃ in ft and gt yield contributions majorized by c1|∂xw|l0 |w̃|20+
ǫdc1

(
|∂

x
w|2l0 + |∂2

x
wii|l0

)
|w̃|20+ ǫdc1|∂xw|l0 |w̃ii|1|w̃|0 and the quadratic term is also

majorized by c1|w̃|l0 |w̃|20. Using the estimates of Theorem 3.3 and l0 = [d/2] +
1 > d, we obtain after some algebra

∂tE
2
0(w̃) + ǫdδ1|w̃ii|21 +

δ1
ǫ
|πw̃|20 ≤ c2(1 + |∂tw|l0)E

2
0 (w̃).

From the Gronwall inequality and the estimates (3.18) we thus obtain that for
0 ≤ t ≤ τ̄

sup
0≤τ≤t

∣∣w̃(τ)
∣∣2
0
+ ǫd

∫ t

0

|w̃ii(τ)|21 dτ +
1

ǫ

∫ t

0

|πw̃|20 dτ ≤ c21 exp
(
c2(t+M1

√
t )
)
|w̃0|20.
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Step 2. The projected zeroth order estimate. We multiply the governing equa-
tion (B.1) by (1/ǫ)πw̃ and proceed as in the proof of Theorem 3.1. Integrating
over Rd we obtain that

1

2ǫ
∂tE

2
0(πw̃) +

δ1
ǫ2
|πw̃|20 ≤ c1

ǫ
|∂tw|l0 |πw̃|

2
0 +

c1

ǫ
|w̃|1|πw̃|0

+ǫd
c1

ǫ
|w̃ii|2|πw̃|0 +

1

ǫ

∫

Rd

〈ft + ǫdgt, πw̃〉dx.

All terms linear in w̃ in ft and gt yield contributions majorized by

c1

ǫ
|∂

x
w|l0 |w̃|0|πw̃|0 + ǫd

c1

ǫ

(
|∂

x
w|2l0 + |∂2

x
wii|l0

)
|w̃|0|πw̃|0 + ǫd

c1

ǫ
|∂xw|l0 |w̃ii|1|πw̃|0,

and the quadratic term is also majorized by (c1/ǫ)|w̃|l0 |πw̃|20. Using the Cauchy-
Schwarz inequality and the estimates (3.18) of Theorem 3.3 we obtain after some
algebra

1

ǫ
∂tE

2
0(πw̃) +

δ1
ǫ2
|πw̃|20 ≤ c1

ǫ
|∂tw|l0E

2
0 (πw̃) + c2|w̃|21 + ǫ2dc1|w̃ii|22. (B.7)

Step 3. The l′th zeroth order estimate. We let for short l′ = l − 2 so that
l′ ≥ l0 + 2. Differentiating the hyperbolic-parabolic system (B.1) with respect
to the space variable and denoting by ∂α the αth derivative spatial operator we
obtain that

A0(w)∂t∂
αw̃ +

∑

i∈D

Ai(w)∂i∂
αw̃−ǫd

∑

i,j∈D

Bij(w)∂i∂j∂
αw̃+

1

ǫ
L(w)∂αw̃ = fαt +ǫdg

α
t ,

(B.8)
with

fαt = A0∂
α
(
A

−1

0 ft
)
−

∑

i∈D

A0

[
∂α,A

−1

0 Ai

]
∂iw̃ − 1

ǫ
A0

[
∂α,A

−1

0 L
]
πw̃, (B.9)

gαt = A0∂
α
(
A

−1

0 gt
)
+

∑

i,j∈D

A0

[
∂α,A

−1

0 Bij

]
∂i∂jw̃. (B.10)

Multiplying equation (B.8) by ∂αw̃ |α|!/α!, integrating over R
d, summing

over 0 ≤ |α| ≤ l′, and proceeding as for the zeroth order estimate, we obtain
that

∂tE
2
l′(w̃) + ǫdδ1|w̃ii|2l′+1 +

δ1
ǫ
|πw̃|2l′ ≤ c2(1 + |∂tw|l0)E

2
l′ (w̃)

+
∑

0≤|α|≤l′

|α|!
α!

∫

Rd

〈fαt + ǫdg
α
t , ∂

αw̃〉dx,
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and we have to investigate the residuals associated with fαt and gαt . Keeping in
mind that the zeroth order terms with |α| = 0 have already been examined in
Step 1, we only have to analyze the terms such that 1 ≤ |α| ≤ l′.

The terms in fαt and gαt arising from A0∂
α
(
A

−1

0 ft
)
and A0∂

α
(
A

−1

0 gt
)
yield

contributions majorized by c2
(
|w̃|2l′ + ǫd|w̃|l′ |w̃ii|l′+1+ |w̃|3l′

)
, where the last term

arise from the quadratic contribution in ft. On the other hand, the commutators
contributions are estimated as

∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 Ai

]
∂iw̃, ∂

αw̃
〉
dx

∣∣∣ ≤ c2|w|l′ |w̃|2l′ ,

1

ǫ

∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 L
]
πw̃, ∂αw̃

〉
dx

∣∣∣ ≤ c2

ǫ
|w|l′ |πw̃|l′−1|πw̃|l′ ,

∣∣∣
∫

Rd

〈
A0

[
∂α,A

−1

0 Bij

]
∂i∂jw̃, ∂

αw̃
〉
dx

∣∣∣ ≤ c2 |w|l′ |w̃ii|l′+1 |w̃ii|l′ .

Collecting all contributions and after some algebra we have established that

∂tE
2
l′(w̃) + ǫdδ1|w̃ii|2l′ +

δ1
ǫ
|πw̃|2l′ ≤ c2(1 + |∂tw|l′−1)E

2
l′ (w̃) +

c2

ǫ
|πw̃|2l′−1. (B.11)

In order to handle the term (c2/ǫ)|πw̃|2l−1 in the right hand side arising from
the commutators we use the inequality |φ|2l′−1 ≤ β|φ|2l′ + C(β)|φ|20 and add the
resulting inequality to the projected zeroth order inequality (B.7) obtained in
Step 2. Assuming that l′ ≥ l0 + 1 ≥ 2 we obtain that

∂t

(
E2

l′(w̃) +
1

ǫ
E2

0(πw̃)
)
+ ǫdδ1|w̃ii|2l′+1 +

δ1
ǫ
|πw̃|2l′

+
δ1
ǫ2
|πw̃|20 ≤ c2(1 + |∂tw|l′−1)

(
E2

l′ (w̃) +
1

ǫ
E2

0(πw̃)
)
,

From the Gronwall inequality, we obtain that

sup
0≤τ≤t

(
E2

l′

(
w̃(τ)

)
+

1

ǫ
E2

0

(
πw̃(τ)

))
+ ǫd

∫ t

0

|w̃ii(τ)|2l′+1 dτ +
1

ǫ

∫ t

0

|πw̃|2l′ dτ

+
1

ǫ2

∫ t

0

|πw̃|20 dτ ≤ c21 exp
(
c2(t+M1

√
t )
) (

|w̃0|2l′ +
1

ǫ
|πw̃0|20

)
,

which is the l′ order estimate for w̃ = ∂tw and l′ = l − 2.

Step 4. Application of linearized estimates to w̃ = ∂tw. Taking into account the
l′ order estimate for w̃ = ∂tw, it is now possible to apply the linearized estimates
(3.15). From the expression (B.5) and (B.6) of ft and gt, we indeed obtain that
ft ∈ C0

(
[0, τ̄ ], H l−2

)
and gt ∈ C0

(
[0, τ̄ ], H l−3

)
so that ft ∈ C0

(
[0, τ̄ ], H l−3

)
∩

L1
(
(0, τ̄), H l−2

)
and gt ∈ C0

(
[0, τ̄ ], H l−3

)
with uniform estimates in terms of

|w0 − w⋆|2l +
1

ǫ
|πw0|2l−1 + |w̃0|2l−2 +

1

ǫ
|πw̃0|2l−3.

The estimates (3.37) are then a direct consequence of (3.14) and (3.15) applied
with l′ = l − 2 in place of l and with w̃ = ∂tw.
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