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Abstract 

The rate of heat dissipation from a 2D nanostructure strongly depends on the interfacial thermal 

conductance with its substrate. In this paper, the interfacial thermal conductance of carbon-nitride 2D 

nanostructures (C3N, C2N, C3N4’s) with silica substrates was investigated using transient molecular 

dynamics simulations. It was found that a 2D nanostructure with higher thermal conductivity, has a 

lower value of interfacial thermal conductance with the silica substrate. The thermal conductivity of 

suspended carbon-nitride 2D nanostructures was also calculated using Green-Kubo formalism and 

compared with that of graphene as a reference structure. It was found that the thermal conductivities of 

C3N, C2N, C3N4 (s-triazine) and C3N4 (tri-triazine) are respectively 62%, 4%, 4% and 2% that of 

graphene; while their interfacial thermal conductances with silica are 171%, 113%, 188% and 212% 

that of graphene. This different behaviors of the thermal conductivity and the interfacial thermal 

conductance with the substrate can be important in the thermal management of carbon-nitride 2D 

nanostructures in nanoelectronics. 

1. Introduction

Carbon-nitride 2D nanostructures have non-zero electronic energy band-gap (~ 2 eV) in 

contrast to mono-elemental 2D structures such as graphene, silicene, germanen, and stanine 

[1]. This brilliant property of carbon-nitride 2D nanostructures makes them excellent 

* Email: volz@iis.u-tokyo.ac.jp
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candidates for future applications in electronic devices such as transistors or optic diodes [2,3]. 

Therefore, several studies have been recently targeting thermophysical properties of carbon-

nitride 2D nanostructures. By performing first-principle calculations, structural, phononic, 

thermal and mechanical properties of nitrogenated holey graphene (C2N) as one of the essential 

carbon-nitride 2D nanostructures have been reported [4,5]. Besides, by performing first-

principle calculations, nonequilibrium molecular dynamics and equilibrium molecular 

dynamics simulations, the thermal conductivity of C2N has been calculated and a dramatically 

lower value than the one of graphene was obtained [4,6,7]. Nonequilibrium Green’s function 

shows a more efficient thermoelectric behavior of C2N compared to the one of graphene [8]. 

Another carbon-nitride 2D nanostructure C3N with a structure similar to regularly nitrogen-

doped graphene also indicates high mechanical strength and phononic thermal conductivity [9–

13]. Other carbon-nitride 2D nanostructures named as C3N4 recently synthesized in the two 

forms of s-triazine-based and tri-triazine-based show low thermal conductivity but high 

mechanical strength property [1,14,15]. 

Although the properties of carbon-nitride 2D nanostructures make them appropriate in 

electronic applications, they should be in contact with a substrate such as SiO2 in electronic 

devices. In those latter, generated heat leads to the temperature rise and consequently decrease 

life time and effectiveness of electronic devices. The rate of heat dissipation strongly depends 

on the interfacial thermal conductance between a 2D nanostructure and its substrate. Thus, heat 

transfer analysis between these two bodies is crucial in their optimal thermal design. Although 

several studies on the calculation of interfacial thermal conductance between silica or silicon 

substrate and 2D nanostructures such as graphene, silicene, phosphorene and MoS2 have been 

published, the interfacial thermal conductance between carbon-nitride 2D nanostructures and 

SiO2 has not yet been reported [16–19].

In this study, we first calculate the thermal conductivities of four carbon-nitride 2D 

nanostructures as C3N, C2N, C3N4 (s-triazine) and C3N4 (tri-triazine) by performing 

equilibrium molecular dynamics simulations. By using the same potential functions and MD 

method, the thermal conductivity of those structures can be accurately compared in contrast to 

previous studies. Then by simulating carbon-nitride 2D nanostructures deposited on a silica 

substrate, we report the interfacial thermal conductance using a transient molecular dynamics 

method inspired from the experimental pump-probe technique. Finally, the dependency of the 

thermal conductivity and the interfacial thermal conductance to the substrate temperature will 

be examined.  
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2. Molecular dynamics simulation model

The atomistic geometries of studied carbon-nitride 2D nanostructures are shown in Figure 1. 

The simulated structures are squares 30nm in edge with periodic boundary conditions in the 

two planar directions. This size is enough to ensure that MD results are not sensitive to the 

chosen dimensions. Tersoff potential function is used to describe carbon (C) and nitrogen (N) 

interactions in 2D nanostructures and also between silicon (Si) and oxygen (O) in the silica 

substrate [20,21]. The former potential was widely used to study the thermal transport in 

nitrogen-doped graphene[22–25]. For Van der Waals interactions between 2D nanostructures 

and substrate, Lennard-Jones potential function is employed with coefficients presented in 

Table 1. The coefficients are extracted from the UFF table [26]. The time-step for running the 

simulations for graphene, C3N and C2N nanostructures was set to 1fs; while for C3N4 

nanostructures it was set to be 0.1 fs to stabilize the system. LAMMPS package was employed 

to perform all the simulations. 

C N (tri-triazine)

C2N

C N (s-triazine)

C3N

Figure 1: Atomistic configuration of carbon-nitride 2D nanostructures. Gray and blue atoms are 

carbon and nitrogen, respectively. 
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Table 1. Lennard-Jones potential coefficients for van der Waals interactions [26].

 (meV)𝜀 𝜎 (Å)

C-Si 8.91 3.33

N-Si 7.16 3.53

C-O 3.44 3.00

N-O 2.76 3.19

3. Results and Discussion

3.1 Thermal conductivity

The thermal conductivity was calculated from the Green-Kubo relation as follows:

(1)𝜅 =
1

𝑘𝐵𝑇2∫
∞
0 < 𝑞𝑥(𝑡)𝑞𝑥(0) > 𝑑𝑡

where  is the Boltzmann constant,  is the equilibrium temperature and  refers to the 𝑘𝐵 𝑇 𝑞𝑥

instantaneous heat flux in the system. Figure 2 reports the thermal conductivity of carbon-

nitride 2D nanostructures by replacing the upper integration bound by a variable time limit in 

equation 1. For comparison, results were normalized by the thermal conductivity of graphene 

(  = 847.7 W/mK) at T=300K. This value is in agreement with the EMD result reported by 𝜅𝐺𝑟

Pereira and Donadio [27]. The thermal conductivities of carbon-nitride 2D nanostructures 

display considerable differences between each other, so that the thermal conductivities of C3N, 

C2N, C3N4 (s-triazine) and C3N4 (tri-triazine) structures are respectively 62%, 4.4%, 4.1% and 

2.2% that of graphene. Those discrepancies might be due to the differences in lattice structures 

with graphene [28]. This might explain why C3N has the largest thermal conductivity which 

has a honeycomb lattice structure similar to graphene. 

In order to better understand the differences in the thermal conductivities, the phonon density 

of states [29,30] was reported in figure 3. The phonon spectra of the graphene and C3N structure 

are similar except that the maximal phonon frequency is lower in C3N. However, the phonon 

spectrum of C2N and C3N4 structures differ from the ones of graphene and C3N which reveals 

phonon softening and justifies the lower conductivities of C2N and C3N4 structures compared 
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to those of graphene and C3N. Moreover, C2N and C3N4 have less atoms per unit surface and 

therefore a smaller density of states and a smaller thermal conductivity.

In order to probe the dependency of the thermal conductivity of carbon-nitride 2D 

nanostructures to temperature variations, the thermal conductivity was calculated in the 

temperature range of 200-700 K as shown in figure 4. The results were normalized to the 

thermal conductivity of graphene at T=200 K.  The thermal conductivity of all structures 

decreases when the temperature increases, which is due to the rise of the phonon-phonon 

scattering rate [31]. The largest reduction (77%) occurs for the thermal conductivity of 

graphene, and the smallest one (63%) corresponds to C3N and C3N4 (s-triazine). However, the 

rate of thermal conductivity decrease as a function of temperature is almost the same for all 

structures. 

0.001

0.01

0.1

1

0 5 10 15 20
Time (ps)

κ
κ⁄

Graphene

C N

C2N
C N (s-triazine)

C N (tri-triazine)

Figure 2: Time accumulated thermal conductivity of carbon-nitride 2D nanostructures computed with 

equation (1) and normalized by the thermal conductivity of graphene. 
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Figure 3: Phonon densities of states of carbon-nitride 2D nanostructures and of the silica substrate.   

0.001

0.01

0.1

1

100 200 300 400 500 600 700 800

Graphene
C N
C N
C N (s-triazine)
C N (tri-triazine)

Temperature (K)

κ
κ⁄

Figure 4: Thermal conductivity of carbon-nitride 2D nanostructures with respect to temperature 

normalized by the thermal conductivity of graphene at T=200K. 
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3.2 Interfacial thermal conductance

Figure 5 shows the atomistic simulation of a carbon-nitride 2D nanostructure deposited on a 

substrate. There are a lot of MD techniques to compute the interfacial thermal conductance 

[32–36]. In this work, a transient technique inspired by an experimental method was performed. 

To this aim, the initial temperature of the carbon-nitride 2D nanostructure was set to 500K, 

while the temperature of the substrate was maintained at 300K using Nóse-Hoover thermostats. 

Then by switching off the thermostats, the temperature changes of both materials and the total 

energy reduction of the 2D nanostructure were recorded as reported for C2N in figure 6a.  The 

energy balance equation for the carbon-nitride 2D nanostructure can be considered as follows:

(2)
∂𝐸𝑡

∂𝑡 = ―𝐺𝐴(𝑇𝐶𝑁 ― 𝑇𝑆𝑖)

where  is the total energy of the 2D system and TCN is its temperature. TSi refers to the Et

temperature of the silica substrate with thickness of 0.5nm which is equal to the cut-off distance 

of carbon and oxygen atomic interaction subtracted by the gap distance between carbon-nitride 

structure and the silica substrate. G is the interfacial thermal conductance and A refers to the 

surface area of the interface. By integrating equation 2 with respect to time, G was fitted to the  

molecular dynamics results. Figure 6b shows the variation of the total energy of C2N with 

respect to the integral of the MD computed temperature difference between C2N and the silica 

substrate. It can be seen that the slope of the curve is almost constant in the considerable portion 

of the curve, which supports the assumption of constant interfacial thermal conductance during 

the thermal relaxation. 

Results of the interfacial thermal conductance for different carbon-nitride 2D nanostructures 

and graphene are shown in figure 7. The changes in the interfacial thermal conductance value 

for different structures contrast with the ones of the thermal conductivities. The higher the 

thermal conductivity of a structure, the smaller its interfacial thermal conductivity. 

In order to better understand the differences in the interfacial thermal conductances, the phonon 

density of states of carbon-nitride 2D nanostructures and silica substrate are represented in 

figure 3. The densities of states of graphene and silica are in good agreement with those of 

previous studies [37]. The dissimilarity between graphene and C3N with their silica substrates 

are significantly more marked than the one of other carbon-nitride 2D nanostructures and their 

silica substrates.  Expectedly, a larger difference between phonon spectra leads to a lower 

phonon coupling between two structures and consequently, a lower interfacial thermal 

conductance. 
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Z

X

Z

X

Y

Carbon-nitride 2D
nanostructure

Silica substrate

Figure 5: Atomistic configurations (top and perspective views) of a carbon-nitride 2D nanostructure 

deposited on a silica substrate. 

In order to determine the dependence of the interfacial thermal conductance between carbon-

nitride 2D nanostructures and a silica substrate to the temperature variations of the substrate, 

the interfacial thermal conductance was calculated in the temperature range of 200-700 K as 

shown in figure 8. The interfacial thermal conductance of all structures increases when the 

temperature increases due to the enhancement of anharmonic phonon coupling of the two 

systems[37,38]. The largest enhancement (111% and 100%) corresponds to the interfacial 

thermal conductance of graphene and C3N, and the smallest one (76 %) is computed in C2N 

structure. However, all the interfacial thermal conductance variations with respect to 

temperature are in the same range. 
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Figure 6: (a) Time evolutions of C2N total energy as well as of C2N and silica substrate temperatures 

during thermal relaxation. (b) Variation of the total energy of C2N with respect to the integral of the 

temperature difference between C2N and silica substrate.  The slope of the latter curve directly yields 

the interfacial thermal conductance as deduced from equation 1.  

0

5

10

15

20

25

30

35

Graphene C N C N C N
(tri-tri.)

Crystalline silica substrate

Amorphous silica substrate

In
te
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Co
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ta
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e
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W
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C N
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Figure 7: Interfacial thermal conductance between carbon-nitride 2D nanostructures and the silica 

substrate with crystalline and amorphous forms
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Figure 8: Interfacial thermal conductance of carbon-nitride 2D nanostructures with respect to the 

substrate initial temperature. 

4. Summary

In this study, the thermal conductivities of carbon-nitride 2D nanostructures and their 

interfacial thermal conductance with the silica substrate were calculated with molecular 

dynamic simulation. The results showed that the thermal conductivities of these nanostructures 

are significantly different, so that the thermal conductivity of the structures C3N, C2N, C3N4 

(s-triazine) and C3N4 (tri-triazine) is equal to 62%, 4.4%, 4.1% and 2.2% that of graphene at 

T=300K, respectively. Therefore, it can be concluded that the presence of holes in C2N, C3N4 

(s-triazine) and C3N4 (tri-triazine) structures has led to a sharp decrease in their thermal 

conductivities. Interestingly, the behavior of the interfacial thermal conductance of these 

structures with the silica substrate is contrasting the one of their thermal conductivities in the 

suspended films.  The structure with higher thermal conductivity has lower interfacial thermal 

conductance with the silica substrate. Also, the sensitivity of the thermal conductivity and of 

the interfacial thermal conductance to the temperature was investigated. It was shown that their 

sensitivity is lower than that of graphene.  The proposed understanding of the thermal 
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behaviour of carbon nitride 2D nanostructures is promoting this material for the thermal 

management of micro/nano opto/electronic devices. 
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