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1Normandie Université, Unicaen, Computer Science Department, CNRS-GREYC UMR-6072,
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Abstract

In efficient markets, asset prices are equal to their fundamentals. This classical view is considered
valid for agricultural commodities’ spot and futures markets. However, fragmentation of orders
impacts price dynamics, leading to modification in spot and futures’ trade frequency, relative trade
frequency, and quantities exchanged. To highlight public policies on the impacts of fragmentation
of orders, it is necessary to improve the understanding of its theoretical consequences.

Based on a sequential trading framework, our main result showed that unbiased prices and a
minimal volatility of fundamental basis are achieved not with optimal trade frequencies but with
an optimal relative trade frequency.

Keywords– commodities; spot and futures prices; market efficiency; volatility; stock and frag-
mentation

1 Introduction

The physical market (also called spot market) and the financial market (referred to as the futures
market where futures contracts are exchanged), are linked for a single standardized agricultural raw
material (also called a commodity; cf. [1], [17]). There exists retro-action between the prices in
these two markets. The basis, defined as the spread between these two prices, is a source of risk,
and its volatility is a major stake for farmers and processors: it represents a major component of
their production and selling decisions (cf. [13]). However, price in the futures market evolves faster
than that in the spot market (cf. [15], [18]). Fragmentation of orders, defined as the division of
one specific order into several suborders, occurs in both markets. It entails a decrease in quantities
exchanged per transaction and an increase in the number of transactions in a market (cf. [14], [15],
[19]). Consequently, to buy the same quantity, agents pass more orders and trade frequency increases.
Although such fragmentation of orders is used in both spot and futures markets, transaction costs in
these two markets are not the same (cf. [18]). Fragmentation of orders is neither equal or proportional
in these two markets: it impacts both relative trade frequency (RTF) and quantities exchanged per
transaction in these markets. Several empirical studies analyzed the impact of order fragmentation on
market liquidity and price volatility (cf. [3], [6], [11]), but only for equity markets. However, equity
markets and agricultural commodity markets differ in many ways (cf. [2] for a review). The crucial
difference between the current study and this work is that we show how fragmentation of orders in
the spot market modifies the fundamental futures’ commodity price and fundamental volatility, in
particular regarding its impact on the released information and its price impact. The link between
financial information and market prices has been popularized by Eugene Fama (cf. [8], [7]):
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”I take the market efficiency hypothesis to be the simple statement that security prices
fully reflect all available information.” – (cf. [7], p1575)

In fact, the market efficiency hypothesis is a double one : first the market prices are supposed to be
fundamentally determined by information. Second, the process that turns information into prices is
supposed to be as efficient as it should be. The market efficiency research program belongs mainly to
empirical economics. The main conclusion of Fama is that the program that has been followed by so
many financial economists has never lead to reject the hypothesis. In this work, we use the central
part of Fama’s concept that is market prices result from the processing of financial information. We
can sum it up in a general manner: pt = g(It) where pt is the price at period t, It is the set of available
information and g is an economic function that turns information into prices (see below subsection
3.5). The main difference with Fama’s tradition is that we use the concept of market efficiency for a
research that is, in a first stage, a theoretical framework; that framework is dedicated to the study of
the formation of two series of market prices that are perfectly connected at the level of the underlying
fundamental values but which are not in fact perfectly correlated. Spot and futures prices normally
evolve in a like manner but they are not thoroughly linked at least because their dynamics are not
perfectly synchronized.

This study aims to examine the extent to which the difference in trade frequencies between the
two markets and the evolution of that difference influence market efficiency as well as to examine the
fundamental volatility of the basis, the spread between the two prices. Finally, we consider whether
there is an optimal level of trade frequencies that satisfies these two objectives. Our main result has a
major implication. We show that the use of limit order book pricing with fragmentation of orders in
the futures market coupled with fragmentation of orders in the spot market is not optimal, except if
order fragmentation in the futures market leads to infinite trade frequency in that market. Otherwise,
we argue that synchronization of trade frequency allows unbiased prices and minimal fundamental
basis volatility. We extrapolate from this result that there is a dilemma between market liquidity and
the two objectives.

The article is organized as follows. Section 2 presents all parameters and variables whereas section
3 presents the definitions and hypothesis of the model. Section 4 derives the influence of trade’s
frequencies and section 5 discusses in detail the impacts of fragmentation on whether only the spot
market, only the futures market, or proportional on both markets. In section 6, we study the existence
of optimal trade’s frequencies. Section 7 concludes and discusses the limitations of the model.

2 Parameters and variables

2.1 The parameters

The following set of parameters is used for the futures and spot markets:

Futures market tr ωf e a Qop Tr
Spot market tr ωs e

tr Unit of real time considered, such as a second or minute.
ωf Historical trade frequency in the futures market per unit of real time:(

Number of transactions in the futures market
tr

)
ωs Historical trade frequency in the spot market per unit of real time:(

Number of transactions in the spot market
tr

)
e Trend of the spot market information delivered in monetary value per unit of real

time.
a Advantages of possessing a unit of the storable commodity in monetary value, per

unit of real time.
Qop Optimal stock level of the commodity for agents.
Tr Maturity of the futures contract, expressed in a unit of real time.
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2.2 The variables

The following set of variables is used for the futures and spot markets:

Futures market t T I]t1,t2] Qt CYt
Spot market t I]t1,t2] q Qt

Futures market f̃t+1 ft FVft
Spot market s̃t+1 st FVst

t Time step of the model, which represents a transaction in the futures
market: t = tr × ωf and t ∈ N.

T Maturity expressed in the time scale t: T = Tr × ωf and T ∈ N.
I]t1,t2] Spot market information delivered in monetary value between t1 and t2,

t1 excluded.
q Quantities traded in the spot market at each transaction on the spot

market.
Qt Available stock of the commodity at time t.
CYt Convenience yield (advantage in detaining one unit of stock to face un-

certainty) in monetary value at time t until maturity T .

s̃t, f̃t, Q̃t Agents’ expectations of the spot price, futures price, and commodity
available stock, respectively, at time t.

st, ft Observed spot price and futures price, respectively, at time t.
FVst , FVft Fundamental value of the spot price and futures price, respectively, at

time t.

3 Definitions and hypotheses

3.1 Time scale and frequencies

We define Fs and Ff as the sets of all possible frequencies on the spot and futures markets. We have
0 /∈ (Fs ∪ Ff ), which means that the two markets exist. Therefore, (ωs, ωf ) ∈ Fs×Ff . Furthermore, we
assume that ωs ≤ ωf . Futures are more frequently traded than the commodity itself since transaction
costs are inferior (cf. [18]). This explains why we choose the transaction on the futures as the time
step (the smallest one). We assume that transactions on the futures markets are equally spaced out,
according to the futures market trade frequency (FTF),ωf . The real time between two transactions
on the futures market is constant. The effective FTF during the period is known, and the effective
spot market trade frequency (STF), is unknown. The historical STF, ωs, only gives the probability of
having a transaction in the spot market per unit of real time.

At each transaction in the futures market, there is an independent probability ωs
ωf

of having a

transaction in the spot market. This probability is equal to the historical RTF.
Let l define a relation wherein t′ represents the latest period when there was a synchronized

transaction in the spot and futures markets until t so that the following is true:
t′ l t if t′ ≤ t, and there is no element y′ 6= t′ nor y′ 6= t such that t′ ≤ y′ ≤ t. Thus, (t− 1)′ is the
latest period when there was a synchronized transaction in the spot market and futures market until
t− 1, and (t− 1)′ l t− 1. However, we do not have (t− 1)′ l t′ − 1. Indeed, t′ and (t− 1)′ can both
be equal to 0 such that 0 ≤ −1, which is impossible.

3.2 Spot market information

We assume that the monetary impact of incoming spot market information delivered at time t, denoted
I]t−1,t], follows any probabilistic law L whose mean is E

(
I]t−1,t]

)
= e

ωf
(t− (t− 1)) = e

ωf
. This mean

is a strictly decreasing function of ωf . As spot market information arrives between each transaction
in the futures market, we can naturally assume that if transactions are more frequent in the futures
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market, spot market information between two transactions in the futures market has, on average, a
lower price impact.

So, I]t′,t] represents the spot market information delivered in monetary value since the last trans-
action on the spot market (t′).

3.3 Quantities exchanged and influence of stock dynamics

We now define q, which indicates the quantities traded per transaction in the spot market as a function
such that

q : Fs → R+,∗

ωs 7→ q(ωs) = ω−εs , ε ∈ Q+ (1)

From the above function, quantities traded per transaction in the spot market are decreasing when
the spot market trade frequency increases. Note that parameter ε corresponds to the absolute value
of the elasticity of quantities traded per transactions in the spot market to the STF.

The available stock of the commodity at time t is defined using a discrete random variable (D.R.V).

Q0 > 0 and Qt :=

{
Qt−1 if t′ 6= t
Qt−1 − q (ωs) if t′ = t

}
= Qt−1 − q (ωs)1{t}

(
t′
)
∀ t ∈ [1, T ] ∈ N (2)

We assume that Q0 is such that for any ωs in Fs and any t in [0;T − 1], Qt − q (ωs) ≥ q (ωs). We
naturally assume that the available commodity is only purchased in the spot market during the period
considered (at maturity, commodity is purchased and consumed according to the commitments taken
in the futures market). We assume that production or harvest of the commodity is less frequent than
the consumption. Therefore, we do not insert it since it would only have a symmetric effect to the stock
consumption on the expectations and fundamental value. However, we can do it easily. Consequently,
the available stock evolves when and only when there is a transaction in the spot market. It is
important to underline that this assumption requires us to not consider that commodity is purchased
only to be sold later. For the sake of simplicity, there is no speculation on the spot market. Once
again, we could integrate a speculation Bernoulli D.R.V.

We assume that the storage cost per unit of real time is the same during the period considered, and,
consequently, they are linear with the time and will be perfectly expected. For the sake of simplicity,
we do not model them, but it can be done easily.

Despite positive stocks, the futures’ price can be inferior to the spot price because of the necessity
for corporates to maintain their stocks to face uncertainty (cf. [10]). This advantage (or disadvantage)
to detain a unit in stock at transaction t in monetary value until maturity, also called convenience
yield and denoted by CYt, is given by the following equation:

CYt :=
a

ωf
(T − t) (Qop −Qt) (3)

We assume that Qop is exogenous to the model. This is the same for all agents. When the stock is above
this level, there is no advantage to detain more units, and the convenience yield is negative. When
the stock is under this level, there is an advantage to detain the units of stock. This advantage also
depends on the number of transactions on the futures market remaining until maturity weighted by the
advantage per unit of real time between a transaction on the futures market ( a

ωf
(T − t) = a (Tr − tr)).

3.4 Agents’ expectations

We assume that all information is freely available and that, at time t, all agents know all prices and
market characteristics. Therefore, Φt = {st, ft, Qt, I]t′,t], CYt} is the common knowledge at time t.
Furthermore, we assume that agents form rational expectations in the sense that, on average, their
expectations reflect fundamental prices. They compute the average expected price evolution.

The expectation of the spot price is computed by

E (s̃t+1|Φt) = st′ + I]t′,t] +
e

ωf
(4)
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Recall that t′ represents the latest period when there was a synchronized transaction in the spot
market and futures market until t. Agents add to the current spot price (at period t), all spot market
information that should have been included in the spot price I]t′,t], and the expected incoming spot
market information for its average value E

(
I]t,t+1]

)
= e

ωf
.

Expectations of the stock dynamics are given by

E
(
Q̃t+1|Φt

)
= Qt − q (ωs)

ωs
ωf

(5)

The expected stock evolution is given by quantities exchanged at each transaction on the spot market
(that we suppose consumed) weighted by the probability of having a transaction on the spot market
at the next transaction on the futures market. The convenience yield is expected such that

E
(
C̃Yt+1|Φt

)
=

a

ωf
(T − (t+ 1))

(
Qop − E

(
Q̃t+1|Φt

))
(6)

To prevent an arbitrage operation (defined as an operation that guarantees a positive profit without
risk of loss; cf. [16]), the basis must include the current level of stock since the lower stocks are, the
more agents have an interest in detaining it depending on the level of their optimal stock. Between
each transaction in the futures market, the advantage in detaining stocks decreases by a

ωf
for the same

level of stock than at t. However, there is a probability of ωs
ωf

of having a stock movement, and the

average stock evolution is not null. Thus, expected stock movement affects the expected advantage in
detaining stocks until maturity.

Finally, expectations of the futures price for the next period are

E
(
f̃t+1|Φt

)
:= E

(
s̃t+1 − C̃Yt+1|Φt

)
(7)

Equation 7 translates the fact that agents know what is the no arbitrage condition.

3.5 Price dynamics and fundamental values

Prices evolve according to the agents’ expectations if and only if a transaction occurs. Agents expect
the next prices but do not necessarily pass an order at these prices. Thus,

st+1 :=

{
st′ if (t+ 1)′ 6= t+ 1
E (s̃t+1|Φt) if (t+ 1)′ = t+ 1

}
= st′ + 1{t+1}

(
(t+ 1)′

) [
I]t′,t] + e

ωf

]
ft+1 := E

(
f̃t+1|Φt

) (8)

The fundamental value of a price corresponds to the instantaneous integration of all available
information on the price (cf. [9]). Assuming that FVs0 = s0 and FVf0 = f0, the fundamental values
are naturally defined by

FVst+1 := s0 + I]0,t+1]

FVft+1 := FVst+1 − CYt+1
(9)

The futures’ fundamental value is computed using a classical view, by its no arbitrage value (cf.
[4], [5], [12]).

3.6 Market efficiency and fundamental volatility

We study price bias and we refer to it as market efficiency, denoted by B. We are aware that an
unbiased price does not ensure that at each time t, the price fully reflects the information on the
market, but unbiased price is a sine qua non condition. We give the following function for the market
efficiency:

B : R+ → R+

pt 7→ B(pt) = |E (pt − FVpt)| , pt ∈ {st, ft} where | . | denote the absolute value
(10)
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Then, we consider the fundamental volatility criterion, denoted by V . It is computed using a
standard variance such that at time t

V : R+ → R+

FVpt 7→ V (FVpt) = V ar (FVpt) , pt ∈ {st, ft}
(11)

4 Impact of trade frequencies

In this section, we study the impact of trade frequencies on market efficiency and fundamental basis
volatility. Market efficiency regarding the fragmentation of orders has already been studied empirically
in previous literature (cf. [3], [11], [14], [15]). We provide a theoretical explanation of its impacts.
Finally, we show within this framework that fragmentation of orders also impacts fundamental basis
volatility.

4.1 Impact of trade frequencies on the market efficiency

Theorem 1. Let SM and FM respectively be a spot market and a futures market under our hy-
pothesis. For e 6= 0 and ωs 6= ωf , SM is not an efficient market, and the spot price bias is equal
to

B (st) =
|−e|
ωf

t∑
k=1

(
1− ωs

ωf

)k
> 0 (12)

Proof. See appendix A

If e 6= 0 and ωs 6= ωf , trade frequencies have an impact on spot market efficiency. They generate a
bias on the spot price dynamic that results in an adjustment delay in a number of transactions. How-
ever, spot market information is released between transactions. The adjustment delay in monetary
value is strictly positive.

Remark 1. For e = 0, B (st) = 0 ∀ t ∈ [1, T ].
When incoming information has no impact on average on the spot price, an adjustment delay in
the number of transactions does not generate a bias in the market. As the released spot market
information has on average no impact on monetary value, the adjustment delay in monetary value
corresponding to the bias is null.

For ωs = ωf , t′ = t ∀ t ∈ [1, T ], we have E (t′) = t; hence, B (st) = 0 ∀ t ∈ [1, T ].
When transactions are synchronized in both the spot and futures markets, there is no adjustment
delay in number of transactions on the futures market. Thus, the rational expectations assumption
ensures an unbiased spot price.

In reality, the FTF is higher than the STF. Furthermore, commodity prices have a seasonal ten-
dency such that e 6= 0 (cf. [2]). Then, the adjustment delay of the spot market can be important.

Corollary 1. Let FM be a futures market under our hypothesis. FM is an unbiased market, and
thus it can be an efficient market.

By construction, agents form rational expectations, and information arrives between two transac-
tions in the futures market. They perfectly expect, on average, the fundamental prices. As the futures
price always evolves according to the expectations, this leads to an unbiased futures price.

Remark 2. The futures market efficiency is independent from trade frequencies. However, the STF
has an indirect impact on stock dynamics and its expectations (cf. equations 2 and 5). One can infer
that this indirect impact is, on average, equal on both futures’ price and fundamental value dynamics.
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4.2 Impact of trade frequencies on the fundamental basis volatility

Theorem 2. Let SM and FM respectively be a spot market and a futures market under our hy-
pothesis. For a 6= 0, t < T , and ωs 6= ωf , we have the following properties:

(i) The volatility of the available stock at time t, denoted by V ar (Qt), is impacted by both STF
and FTF.

V ar (Qt) = tq (ωs)
2

(
1− ωs

ωf

)
ωs
ωf

(13)

(ii) The fundamental basis volatility at time t, denoted by V ar (FVft − FVst), is impacted by both
STF and FTF.

V ar (FVft − FVst) =

(
a

ωf

)2

((Trωf )− t)2 q (ωs)
2 t

(
1− ωs

ωf

)
ωs
ωf

(14)

Proof. See appendix B

If a 6= 0, ωs 6= ωf , and t < T , trade frequencies have an impact on the fundamental basis volatility.
They generate uncertainty on the dynamic of the commodity stock. Furthermore, the STF has an
impact on quantities exchanged in the spotmarket according to the absolute value of the elasticity ε.
A representation of the sensitivity of the fundamental basis volatility to trade frequencies according
to the elasticity of quantities traded at each transaction on the spot market to the STF is given in
figures 5, 6 and 7.

Remark 3. For a = 0, V ar (FVft − FVst) = 0 ∀ t ∈ [1, T ]. If there is no advantage in detaining stock
until maturity, as we do not integrate storage costs, both fundamental basis volatility and fundamental
basis are null.

For ωs = ωf , V ar (FVft − FVst) = 0 ∀ t ∈ [1, T ]. There are only synchronized transactions in
both markets. Consequently, there is no uncertainty; There is a transaction of q (ωs) unit(s) of the
commodity at each transaction in the futures market.

For t = T , V ar (FVft − FVst) = 0. As a consequence of the no arbitrage condition, if there is no
more time until maturity, the basis must be null and so its volatility.

In reality, the FTF is more important than the STF. Transaction costs on the spot market are
significant, and they prevent the STF from increasing. Then, quantities exchanged at each transaction
on the spot market are significant. Furthermore, the advantage of detaining stock is a major com-
ponent of the basis, such that a 6= 0. Then, basis fundamental volatility is higher with these market
characteristics.

5 Impact of a fragmentation of orders

From theorems 1 and 2, we proved that under the assumptions made, trade frequencies influence the
fundamental basis volatility and the spot price bias. We study in this section how this impact evolves
when these frequencies increase. We present some simulations and the associated mechanisms. We
study the impact of the fragmentation of orders on the spot market and futures market separately as
well as the impact of a proportional fragmentation of orders on the two markets. First, the spot price
bias (see below subsection 5.1) and, second, the fundamental basis volatility (see below subsection
5.2).

7



Figure 1: Representation of the spot price bias B (st). Parameters used are e = 0.01 and t = 40.

5.1 Impact of a fragmentation of orders on the spot price bias

Theorem 3. For e 6= 0, a 6= 0, and ωs 6= ωf , we have the following properties:

(i) If the STF increases, the spot price bias strictly decreases.

(ii) If the FTF increases

• For ωs
ωf
∈
]
0; 1−

(
1
t+1

) 1
t

[
⊂
]
0; 1

2

[
, the spot price bias strictly decreases;

• For ωs
ωf
∈
]
1−

(
1
t+1

) 1
t

; 1

[
⊃
]
1
2 ; 1
[
, the spot price bias strictly increases.

(iii) If both STF and FTF increase such that the RTF, equal to ωs
ωf

, is unchanged, the spot price bias

strictly decreases.

Proof. See appendix C

An increase in the STF (i.e., fragmentation of orders on the spot market) decreases the
average adjustment delay in number of transactions on the futures market (cf. Figure 1; the bias is
strictly decreasing when ωs increases). As the average spot market information impact between two
transactions in the futures market is unchanged, the spot price bias decreases in monetary value. This
explains the first assertion of theorem 3.

An increase in the FTF (i.e., fragmentation of orders on the futures market) increases
the average adjustment delay in number of transactions in the futures market. However, the average
spot market information impact between two transactions in the futures market decreases. The first
effect overcomes the second one when the RTF is initially sufficiently low. The impact of the FTF on
the RTF and thus on the probability of having a transaction in the spot market at each transaction on
the futures market is not linear. Figure 1 graphically represents the upper level of the plan, wherein
for a given (little) STF, there is an FTF above that the bias decreases. This explains the second
assertion of theorem 3.

Remark 4. The above condition depends on the number of transactions in the futures market con-
sidered, denoted by t. To have fragmentation in the futures market that reduces the spot price bias,
the more we consider a high t, the lower the RTF must be (i.e., ωf >> ωs). With a high initial FTF,
an increase in the FTF has a small effect on the RTF. Figures 2, 3 and 4 illustrate the effect of t
considered. Looking at the upper part of the plan, the higher t is when ωf >> ωs, the less the spot
price bias decreases.
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Figure 2: Representation of the spot price bias B (st). Parameters used are e = 0, 01 and t = 20.

Figure 3: Representation of the spot price bias B (st). Parameters used are e = 0, 01 and t = 60.

Figure 4: Representation of the spot price bias B (st). Parameters used are e = 0, 01 and t = 100.
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Figure 5: Representation of the fundamental basis volatility V ar (FVft − FVst). Parameters used are
a = 0.01, t = 50, Tr = 2500, and ε = 0.2.

A proportional increase in both STF and FTF such that ωs
ωf

is unchanged does not modify the

probability of synchronized transaction’s occurrence. However, between two transactions in the futures
market, the average monetary impact of the information on the futures market strictly decreases. Thus,
the spot price bias strictly decreases. This result explains the third assertion of theorem 3. Figure 1
illustrates it. When following a parallel of the first bisector, the RTF is unchanged and the spot price
bias decreases.

5.2 Impact of a fragmentation of orders on the fundamental basis volatility

Theorem 4. For e 6= 0, a 6= 0, t < T , and ωs 6= ωf , we have the following properties:

(i) If the STF increases,

• For ωs
ωf
∈
]
0, 12
[
, the fundamental basis volatility strictly decreases if the following condition

is verified:

−ε < −
ωf − 2ωs

2 (ωf − ωs)
, where − ε is the elasticity of q (ωs) to ωs (see equation 1) (15)

• For ωs
ωf
∈
]
1
2 , 1
[
, the fundamental basis volatility strictly decreases.

(ii) If the FTF increases,

• For ωs
ωf
∈
]
0, 12
[
, the fundamental basis volatility strictly decreases if the following condition

is verified:

−
ωf − 2ωs

2 (ωf − ωs)
< − t

Trωf − t
(16)

• For ωs
ωf
∈
[
1
2 , 1
[
, the fundamental basis volatility increases.

(iii) If both STF and FTF increase such that the RTF, equal to ωs
ωf

, is unchanged, the fundamental

basis volatility strictly decreases if the following condition is verified:

−ε < − t

Trωf − t
(17)

Proof. See appendix D

10



Remark 5. Let f be a function such that

f : Fs\ {ωf} × Ff → R
(ωs, ωf ) 7→ f (ωs, ωf ) = − ωf−2ωs

2(ωf−ωs)

It is easy to prove that f is a C1 class function.

For ωs
ωf
∈
]
0, 12
[
,
∂f(ωs,ωf)

∂ωs
= −−2(2(ωf−ωs))−(ωf−2ωs)(−2)

(2(ωf−ωs))
2 =

ωf

2(ωf−ωs)
2 > 0. The higher ωs is, the higher

the elasticity of spot quantities traded to ωs can be to verify equation 27.

For ωs
ωf
∈
]
0, 12
[
,
∂f(ωs,ωf)

∂ωf
= −12(ωf−ωs)−(ωf−2ωs)2

4(ωf−ωs)
2 = − ωs

2(ωf−ωs)
2 < 0. The higher ωf is, the lower ε

has to be to verify equation 27.

Remark 6. Let g be a function such that

g : Ff × [1; (Tr × ωf )− 1] → R
(ωf , t) 7→ g (ωf , t) = − t

(Trωf−t)
(18)

It is easy to prove that g is a C1 class function.

For ωs
ωf
∈
]
0, 12
[
,
∂g(ωf ,t)
∂ωf

= −t(−Tr)
(Trωf−t)

2 > 0. Referring to remark 5, the left term of the condition given

by equation 16 is decreasing when ωf increases. The higher ωf is, the less restrictive is the condition
given by equation 16.

For ωs
ωf
∈
]
0, 12
[
,
∂g(ωf ,t)

∂t = −1(Trωf−t)−t(−1)

(Trωf−t)
2 = − Trωf

(Trωf−t)
2 < 0. The higher is the number of transac-

tions on the futures market t, the more restrictive is the condition of equation 16.

An increase in the STF (i.e., fragmentation of orders on the spot market) reduces the
volatility of the fundamental basis by two mechanisms if the RTF is superior to 1

2 (cf. Figure 5;
the fundamental basis volatility curve decreases with an increasing STF when ωs

ωf
> 1

2). First, the

volatility of the occurrence of transactions in the spot market decreases. Second, quantities traded
per transaction in the spot market are inferior, smoothing the stock dynamic. If the RTF is inferior
to 1

2 , the first mechanism does not hold but the second still holds. The volatility of the occurrence
of transactions on the spot market increases. The ”smoothing per trade exchanged quantities” effect
must overcome the ”increasing occurrence of transaction’s volatility” effect. To smooth the stock
dynamic enough, the elasticity must be under a threshold (sufficiently high in absolute value) such
that quantities exchanged per trade sufficiently decrease. This condition is given by equation 15 and
illustrated in Figures 6 and 7. For ε = 0, 8 (cf. Figure 7), the elasticity is high in absolute value,
and the volatility is decreasing with an increasing ωs. On the contrary, for ε = 0, 2 (cf. figure 5),
the volatility is increasing when the STF is originally low. These results explain the first assertion of
theorem 4. A study of the condition is presented in Remark 5, and highlights the following remark.

Remark 7. This condition depends on the initial levels of trade frequencies. The higher the STF
initially is, the lower are the quantities exchanged per transaction in the spot market. Thus, the higher
the elasticity can be (the lower in absolute value) such that quantities traded will decrease enough,
and overcome the increasing volatility in the stock dynamic. Near the first bisector, the fundamental
basis volatility decreases with an increasing STF for all values of ε (cf. Figures 5, 6, and 7).
Based on the same reasoning, the higher the FTF is, the more restrictive is the threshold. The in-
creasing part of the curve for a given STF is more important when the FTF increases. To overcome
this increasing effect, the elasticity must be sufficiently high in absolute value to ensure a sufficient
decrease in quantities exchanged per trade on the spot market. The analytic condition is given
in equation 16. In Figures 5, 6, and 7, the plan twists according to the value of ε, representing this
threshold. We observe that the higher ε is, the less the plan is twisted starting from low values of FTF.

An increase in the FTF (i.e., fragmentation of orders in the futures market) strictly
increases the volatility of the fundamental basis by two mechanisms if the RTF is superior to 1

2 (cf.
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Figure 6: Representation of the fundamental basis volatility V ar (FVft − FVst). Parameters used are
a = 0.01, t = 50, Tr = 2500 and ε = 0, 4.

Figure 7: Representation of the fundamental basis volatility V ar (FVft − FVst). Parameters used are
a = 0.01, t = 50, Tr = 2500 and ε = 0, 8.
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Figure 5; the fundamental basis volatility plan increases with an increasing ωf when ωs
ωf

> 1
2). The

volatility of the occurrence of synchronized transactions increases. Furthermore, a transaction in the
spot market long before the maturity has more impact on the convenience yield than if it happens at
maturity, as a consequence of the no arbitrage value and the time remaining until maturity. Here, we
have horizon t, expressed by a number of transactions in the futures market, to study the fundamental
basis volatility. An increase in the FTF reduces the real time at which the first t transactions are made.
Each transaction takes place earlier, and there is more real time remaining until maturity. An increase
in the FTF gives more weight to the first t possible transactions in the spot market. It consequently
increases the fundamental basis volatility. However, when the RTF is inferior to 1

2 , an increasing FTF
decreases the volatility of synchronized transaction’s occurrence. This effect overcomes the real-time
scale effect if the condition given by equation 16 is verified. Figures 8, 9 and 10 illustrate the latest
condition. These results explain the second assertion of theorem 4.

A proportional increase in the STF and the FTF such that ωs
ωf

is unchanged does not modify

the occurrence of synchronized transaction’s volatility. However, for a given real time, there are more
transactions in the futures’ market. When considering a given number of transactions in the futures
market t, it reduces the ”real time” considered. Therefore, each potential evolution of the stock has
more impact on the convenience yield, since the real time remaining between the first t transactions
and maturity is superior. The increase of the STF reduces quantities traded per transaction in the
spot market such that it reduces the stock dynamic volatility at an unchanged time horizon. To ensure
that this effect overcomes the higher importance of stock evolution until maturity, the elasticity of
quantities traded per transaction on the spot market to the STF must be under the threshold given
by equation 17 (i.e., sufficiently high in absolute value). This result explain the third assertion of
theorem 4. A study of this condition is presented in Remark 6.

Remark 8. Equation 17 underlies the importance of the choice in the number of transactions con-
sidered to study the effect of a proportional increase in the STF and the FTF.
This threshold firstly depends on t. The nearer to maturity t is, the more restrictive is the condition
given by equation 17. The impact of the modification of the real-time scale is higher if the initial real
time considered is important. Consequently, the longest the initial horizon is, the higher the quantity
effect has to be.
Second, this threshold depends on the FTF. The modification of the ”time scale effect” relies on the
initial level of the FTF. Hence, a study of the condition shows that the higher the FTF is, the less
restrictive is the condition given by equation 17. If the t transactions considered occur with a high
FTF, only a little real time is considered. Consequently, an increase in the FTF reduces the real time
considered but not significantly, and the quantity effect is not strong.

Remark 9. The condition given by equation 17 is independent from the RTF. Since the increases
in the STF and the FTF are proportional such that the RTF is unchanged, there is no effect on the
volatility of occurrence of synchronized transactions. Then, the only condition to ensure a reducing
fundamental basis volatility relies on the elasticity of quantities traded at each transaction on the spot
market to the STF and the initial levels of both STF and FTF.

The latest result has strong implications. In subsection 5.1, we demonstrated that a proportional
fragmentation reduces spot market bias. One could think that proportional fragmentation can re-
duce fundamental basis volatility. However, this intuition is unverified if the decreasing quantities
exchanged per transaction in the spot market are insufficient. This strong result shows the extent to
which the spot market and its structure influences the futures market and can reduce the benefit of
proportional fragmentation in both markets.

The elasticity of quantities traded per transaction in the spot market to the STF is constant.
Otherwise, we could face a condition (given by equation 17) depending on the current level of the

13



Figure 8: Representation of the fundamental basis volatility V ar (FVft − FVst). Parameters used are
a = 0.01, ε = 0.2, Tr = 250, and t = 25.

Figure 9: Representation of the fundamental basis volatility V ar (FVft − FVst). Parameters used are
a = 0.01, ε = 0.2, Tr = 250, and t = 100.

Figure 10: Representation of the fundamental basis volatility V ar (FVft − FVst). Parameters used
are a = 0.01, ε = 0.2, Tr = 250, and t = 200.
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STF. Based on the same reasoning, one could assume an elasticity of quantities traded per transaction
in the spot market depending on the FTF. Spot and futures markets are linked, and we can imagine
that when there are more trades in the futures market, producers and buyers of the commodity adjust
their orders’ frequency and thus quantities traded. A further extension of this work could be to study
the evolution of these results according to the form of the q function.

6 Existence of an optimal STF and FTF

A policymaker’s objectives in commodity markets are to minimize the fundamental basis volatility
and increase market efficiency in both spot and futures markets. As the futures price is unbiased
(cf. corollary 1), the policymaker focuses on spot market efficiency. We consider here that trade
frequencies are the policymaker’s tools, and thus the policymaker can implement a fixed pricing and
transaction frequency. This section has major issues. At some point, it can question the commodity
futures pricing by limit order book if the optimal trade frequencies are inferior to the actual FTF
where a limit order book pricing operates.

Definition 1. We define a utility function U in the following way:

U : Fs × Ff
U1−→ R+ × R+ U2−→ X R−

(ωs, ωf ) 7−→ (B (st) , V (FVft − FVst)) 7−→ U(B (st) , V (FVft − FVst))
(19)

Hence, we have U (ωs, ωf ) = U2 ◦ U1 (ωs, ωf ), verifying the following two properties:

(i) U2 (0, 0) = 0;

(ii)
∂U2(B(st),V (FVft−FVst))

∂B(st)
< 0, and

∂U2(B(st),V (FVft−FVst))
∂V (FVft−FVst)

< 0.

We assume that a policymaker, to maximize the market efficiency and fundamental basis volatility,
uses the utility function U as defined above. Properties (i) and (ii) above correspond respectively to
the following natural insights:

(i) If the spot price bias and fundamental basis volatility are both null, we assume that U2 takes
its maximal value on R−: 0;

(ii) If either the spot price bias or fundamental basis volatility increases, the policymaker’s utility
decreases.

The policymaker consequently has the following maximization program: maxωs,ωf U (ωs, ωf ) = U

(
|−e|
ωf

∑t
k=1

(
1− ωs

ωf

)k
,
(
a
ωf

)2
(Trωf − t)2 q (ωs)

2 t
(

1− ωs
ωf

)
ωs
ωf

)
s.t. ωf ≥ ωs

(20)

Theorem 5. For e 6= 0, a 6= 0, t < T , and Fs ∩ Ff 6= ∅, a policymaker whose utility function is U has
an optimal solution and an optimal solution by limit:

(i) A policymaker does not have to fix the trade frequencies of both spot and futures markets but
has to synchronize them. This implies an RTF equal to 1 (the subset of optimal solutions is

O =
{

(ωs, ωf ) ∈ (Fs ∩ Ff )2 : ωsωf = 1
}

);

(ii) For any value of ωs except ωs → +∞, a policymaker can allow infinite fragmentation in the
futures contract. This implies an RTF converging to 0 (the subset of optimal solutions by limit
is
Obl =

{
(ωs;ωf ) ∈ Fs × Ff : ωsωf 7→ 0, ωf 7→ +∞

}
).
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Proof. See appendix E

This result implies that independently of the absolute value of both STF and FTF, the synchroniza-
tion of the trade frequencies ensures minimal fundamental basis volatility and minimal spot price bias.

Remark 10. If ωs = ωf , there is no uncertainty on the stock dynamic and no unexpected elements
on the basis (cf. equation 5; E (s̃t+1|Φt) = st+1 ∀ t). With synchronized transactions and rational
expectations, the basis is always equal to its fundamental value.

This result implies that the links between a spot market and a futures market of a commodity
responding to our framework prevent the STF and the FTF from being disconnected in order to
achieve market efficiency and minimal fundamental basis volatility. Only more fragmentation on the
futures market (i.e., an increase in the FTF) can lead to an increasing spot price bias and increasing
fundamental basis volatility (cf. section 5), except if the fragmentation is relatively infinite. There
are no optimal values for the STF and FTF, but there are co-dependent conditions.

Theorem 6. For e 6= 0, a 6= 0, and t < T , a policymaker whose utility function is U has optimal
solutions by limit relying on the following market characteristic:

(i) For −ε > −1
2 , there is no conditional optimal solution different from unconditional optimal

solutions to the policymaker’s utility maximization program given in theorem 5;

(ii) For −ε < −1
2 , the policymaker’s utility is maximized by limit for all values in the following

subset: O
ε> 1

2
bl =

{
(ωs, ωf ) ∈ Fs × Ff : ωsωf 7→ 1, ωs 7→ +∞, ωf 7→ +∞

}
;

(iii) For −ε = −1
2 , there is no conditional optimal solution different from unconditional optimal

solutions of the policymaker’s utility maximization program given in theorem 5.

Proof. See appendix F

There is also a subset of optimal values by limit for the policymaker that is conditional to market
characteristics (value of ε). The analytical proof of this result is presented in theorem 6. If −ε ≥ −1

2 ,
there is no conditional optimal solution different from the unconditional optimal solutions of the pol-
icymaker’s utility maximization program. However, if −ε < −1

2 , the optimal solution by limit for the
policymaker can be to implement the centralization of orders by brokers and reduce transaction costs
as much as possible in the spot market such that ωs

ωf
→ 1 and ωf → +∞ independently of the FTF

(the RTF is converging to 1). However, despite the possibility of having high elasticity, implementing
a market structure such that ωs → +∞ is impossible since there are structural transaction costs. We
can qualify this conditional subset of optimal solutions as a limit case.

7 Conclusion

This work has major implications. It shows that commodity futures pricing by limit order book
is not an efficient policy regarding the two objectives when fragmentation in the futures market is
not infinite. Although previous empirical studies argued that fragmentation allows for better market
efficiency, their finding does not necessarily contradict our results (depending on the initial RTF).
Our results recommend the implementation of a fixing price operating at the same frequency as the
trade of the commodity in the associated spot market. Indeed, a relatively infinite fragmentation in
futures market, the only other optimal solution independent from the market characteristics, seems
compromised. This can also be understood as an arbitrage between liquidity in the futures market
and achievement of the two objectives; We showed in section 5 that proportional increase in both
frequencies could lead to increasing fundamental basis volatility according to the value of ε. A way to
improve liquidity and market efficiency of the spot market could be a regulation of the spot market
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structure to facilitate the transactions in this market, in order to allow an increase in the absolute
value of ε. To conclude, the simultaneous determination of spot and futures prices is optimal and
independent from the market characteristics. We are aware that this model presents some limits.
Some extensions of this work could be made depending on the form of the q function as well as
in the implementation of several commodities (or other markets in general). Finally, we could also
integrate the possibility of speculation in the spot market, such that trade in the spot market would
not necessarily imply commodity consumption.
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A Proof of theorem 1

Proof. Using equation 8, we have

s(1)′ = s0 + 1{1} (1′)
[
I]0′,0] + e

ωf

]
s(2)′ = s1 + 1{2} (2′)

[
I]1′,1] + e

ωf

]
s(2)′ = s0 + 1{1} (1′)

[
I]0′,0] + e

ωf

]
+ 1{2} (2′)

[
I]1′,1] + e

ωf

]
Hence, we express s(t−1)′ according to s0 as follows:

s(t−1)′ = s0 +

(t−1)′∑
k=1

1{k}
(
k′
) [
I](k−1)′,k−1] +

e

ωf

]
(21)

We express the dynamic of st according to s0 using equations 8 and 21:

st = s0 +
t∑

k=1

1{k}
(
k′
) [
I](k−1)′,k−1] +

e

ωf

]
Then, its average value is

E (st) = E
(
s0 +

∑t
k=1 1{k} (k′)

[
I](k−1)′,k−1] + e

ωf

])
=

= s0 +
∑t

k=1E
(
1{k} (k′)

[
I](k−1)′,k−1] + e

ωf

])
= s0 +

∑t
k=1E

(
1{k} (k′)

)
E
(
I](k−1)′,k−1] + e

ωf

)
= s0 + ωs

ωf
e
ωf

∑t
k=1

(
k − 1− E

(
(k − 1)′

)
+ 1
)

E (st) = s0 + ωs
ωf

e
ωf

∑t
k=1

(
k − E

(
(k − 1)′

))
We compute the average spot fundamental value at time t:

E (FVst) = E
(
s0 + I]0,t]

)
= s0 + e

ωf
t

We have the following expression of the bias:

B (st) =
∣∣∣s0 + ωs

ωf
e
ωf

[∑t
k=1

(
k − E

[
(k − 1)′

])]
− s0 − e

ωf
t
∣∣∣

B (st) =
∣∣∣ eωf ωsωf ∑t

k=1

(
k − ωf

ωs
− E

[
(k − 1)′

])∣∣∣ (22)

Focusing on the t′ variable, we have Pr (t′ = k) = ωs
ωf

(
1− ωs

ωf

)t−k
∀ k ∈ [1; t] and Pr (t′ = 0) =(

1− ωs
ωf

)t
. Hence, we compute

E (t′) =
∑t

k=0 kPr (t′ = k) =
∑t

k=1 k
ωs
ωf

(
1− ωs

ωf

)t−k
E (t′) = − ωs

ωf

(
1− ωs

ωf

)t+1∑t
k=0−k

(
1− ωs

ωf

)−k−1
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Let z =
(

1− ωs
ωf

)
, 0 ≤ z < 1. For a fixed t, we have

∑t
k=0−kz−k−1 =

∑t
k=0

d
[
(z−1)

k
]

dz =
d
[∑t

k=0 (z−1)
k
]

dz =
d
[∑t

k=0 (z−1)
k
]

dz

=
d

[
(z−1)

0 1−(z−1)
t+1

1−z−1

]
dz = (t+1)z−t−tz−(t+1)−1

(z−1)2

Then, we have

E (t′) = − ωs
ωf

(
1− ωs

ωf

)t+1 (t+1)

(
1− ωs

ωf

)−t
−t
(
1− ωs

ωf

)−(t+1)

−1(
ωs
ωf

)2

=
−(t+1)

(
1− ωs

ωf

)
+t+

(
1− ωs

ωf

)t+1

(
ωs
ωf

) =
−t−1+t ωs

ωf
+ ωs
ωf

+t+

(
1− ωs

ωf

)t+1

(
ωs
ωf

)

E (t′) = t+
−1+ ωs

ωf
+

(
1− ωs

ωf

)t+1

(
ωs
ωf

) = t−
(

1− ωs
ωf

) 1−
(
1− ωs

ωf

)t
1−
(
1− ωs

ωf

)
This can be rewritten as follows:

E
(
t′
)

= t−
t∑

k=1

(
1− ωs

ωf

)k
(23)

Remark 11. The D.R.V t′ can be decomposed into two parts. First, t is the maximal value of t′

(since t′l t). The second part is stochastic and can be assimilated to a truncated geometric law with t
experiences – maximum – starting from t in backwardation and ending to 0. Hence, its mean is equal
to its maximal value minus the average delay for having a synchronized transaction looking backward
in number of transactions on the futures market.

Replacing the value of equation 23 in 22, we obtain the following expression of the bias:

B (st) =

∣∣∣∣ eωf ωsωf ∑t
k=1

(
k − ωf

ωs
−
[
k − 1−

∑k−1
j=1

(
1− ωs

ωf

)j])∣∣∣∣
=

∣∣∣∣ eωf ωsωf ∑t
k=1

(
1− ωf

ωs
+
∑k−1

j=1

(
1− ωs

ωf

)j)∣∣∣∣
=

∣∣∣∣−eωf ∑t
k=1

(
1− ωs

ωf
− ωs

ωf

∑k−1
j=1

(
1− ωs

ωf

)j)∣∣∣∣
=

∣∣∣∣∣∣−eωf ∑t
k=1

1− ωs
ωf
− ωs

ωf

(
1− ωs

ωf

) 1−
(
1− ωs

ωf

)k−1

1−
(
1− ωs

ωf

)
∣∣∣∣∣∣

=

∣∣∣∣−eωf ∑t
k=1

(
1− ωs

ωf
−
(

1− ωs
ωf

)[
1−

(
1− ωs

ωf

)k−1])∣∣∣∣
B (st) = |−e|

ωf

∑t
k=1

(
1− ωs

ωf

)k
For e 6= 0 and ωs 6= ωf , B (st) > 0. Hence, the spot price is biased, and SM cannot be an efficient
market.

19



B Proof of theorem 2

Proof. First, we compute V ar (Qt) and show that it depends on parameters ωs and ωf .

V ar (Qt) = V ar
(
Q0 − q (ωs)

∑t
k=1 1{t} (t′)

)
= q (ωs)

2 V ar
(∑t

k=1 1{t} (t′)
)

= q (ωs)
2∑t

k=1 V ar
(
1{t} (t′)

)
V ar (Qt) = q (ωs)

2∑t
k=1

(
1− ωs

ωf

)
ωs
ωf

= q (ωs)
2 t
(

1− ωs
ωf

)
ωs
ωf

The expression of V ar (Qt) depends on ωs and ωf , which proves the first assertion. Then, we compute
the fundamental variance of the spread between the futures price and spot price. We show that it also
depends on parameters ωs and ωf .

V (FVft − FVst) = V ar (CYt) = V ar
(
a
ωf

(T − t) (Qop −Qt)
)

V (FVft − FVst) =
(
a
ωf

)2
((Trωf )− t)2 V ar (Qop −Qt) =

(
a
ωf

)2
((Trωf )− t)2 V ar (Qt)

Knowing the value of V ar (Qt) from the first assertion’s proof above, we obtain the expression of
equation 14.

For a 6= 0, t < T , and ωs 6= ωf , V (FVft − FVst) > 0.
The expression of V (FVft − FVst) depends on ωs and ωf , which proves the second assertion.

C Proof of theorem 3

Proof. To prove the first assertion, we calculate the derivation of the spot price bias according to ωs,
and we show that it is negative. Using equation A we have

∂B(st)
∂ωs

=
∂

[
|−e|
ωf

∑t
k=1

(
1− ωs

ωf

)k]
∂ωs

∂B(st)
∂ωs

= |−e|
ωf

[∑t
k=1 k

(
−1
ωf

)(
1− ωs

ωf

)k−1]
< 0

Hence, first assertion is proved.
To prove the second assertion, we calculate the derivation of the spot price bias according to ωf ,

and we study its sign. Using equation A we have

∂B(st)
∂ωf

=
∂

[
|−e|
ωf

∑t
k=1

(
1− ωs

ωf

)k]
∂ωf

= | −e |
∂

[
1
ωf

∑t
k=1

(
1− ωs

ωf

)k]
∂ωf

= | −e |
[
− 1
ωf 2
∑t

k=1

(
1− ωs

ωf

)k
+ 1

ωf

∑t
k=1 k

(
1− ωs

ωf

)k−1
ωs
ωf 2

]
= |−e|

ωf 2

[
−
∑t

k=1

(
1− ωs

ωf

)k
+
∑t

k=1 k
(
ωs
ωf

)(
1− ωs

ωf

)k−1]
= |−e|

ωf 2

−(1− ωs
ωf

) 1−
(
1− ωs

ωf

)t
1−
(
1− ωs

ωf

) +

ωs
ωf


(
1−(t+1)

(
1− ωs

ωf

)t)(
1−
(
1− ωs

ωf

))
+

((
1− ωs

ωf

)
−
(
1− ωs

ωf

)t+1
)

(
1−
(
1− ωs

ωf

))2




= |−e|
ωfωs

[
−
((

1− ωs
ωf

)
−
(

1− ωs
ωf

)t+1
)

+

(
1− (t+ 1)

(
1− ωs

ωf

)t)(
ωs
ωf

)
+

((
1− ωs

ωf

)
−
(

1− ωs
ωf

)t+1
)]

∂B(st)
∂ωf

= |−e|
ωf 2

[
1− (t+ 1)

(
1− ωs

ωf

)t]

(24)
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Equation 24 is strictly negative if and only if

1− (t+ 1)
(

1− ωs
ωf

)t
< 0

⇔ 1 < (t+ 1)
(

1− ωs
ωf

)t
⇔ ωs

ωf
< 1−

(
1
t+1

) 1
t

Let h be a function such that

h : [1;Tr × ωf ] ⊂ N → R

t 7→ h (t) = 1−
(

1
t+1

) 1
t (25)

It is easy to prove that h is a C1 class function. Then,

dh(t)
dt = −

(
− 1
t2

) (
1
t+1

) 1
t
−1 −1×1

(t+1)2
= − 1

t2(t+1)2

(
1
t+1

) 1−t
t
< 0. The maximal value of h is h (1) = 1

2 . The

minimal value of h is then lim
t→Tr×ωf→∞

h (t) = 1− 00 = 0. This proves the second assertion.

To prove the last assertion, we compute the total derivation of spot price bias and study its sign.
A proportional increase of the frequencies implies that the RTF is unchanged such that ωs+dωs

ωf+dωf
=

ωs
ωf
⇔ ωf (ωs + dωs) = ωs (ωf + dωf )⇔ dωf =

ωfdωs
ωs

. This gives

d (B (st)) = ∂(B(st))
∂ωs

dωs + ∂(B(st))
∂ωf

dωf

= |−e|
ωf

[∑t
k=1 k

(
−1
ωf

)(
1− ωs

ωf

)k−1]
dωs

+ |−e|
ωf 2

[
−
∑t

k=1

(
1− ωs

ωf

)k
+
∑t

k=1 k
(
ωs
ωf

)(
1− ωs

ωf

)k−1] ωf
ωs
dωs

= |−e|
ωf 2

dωs

[
−
∑t

k=1 k
(

1− ωs
ωf

)k−1
− ωf

ωs

∑t
k=1

(
1− ωs

ωf

)k
+
∑t

k=1 k
(

1− ωs
ωf

)k−1]
d (B (st)) = − |−e|ωsωf

dωs
∑t

k=1

(
1− ωs

ωf

)k
< 0

This proves the last assertion.

D Proof of theorem 4

Proof. To prove the first assertion, we calculate the derivation of the fundamental basis volatility
according to ωs, and we study its sign. Using equation 14 we have

∂V (FVft−FVst)
∂ωs

=
∂

[(
a
ωf

)2

((Trωf)−t)
2
q(ωs)

2t

(
1− ωs

ωf

)
ωs
ωf

]
∂ωs

=
(
a
ωf

)2
((Trωf )− t)2 t 1

ωf

∂

[
q(ωs)

2ωs− q(ωs)
2ωs

2

ωf

]
∂ωs

=
(
a
ωf

)2
((Trωf )− t)2 t 1

ωf

[
q (ωs)

2 + 2ωsq (ωs)
dq(ωs)
dωs

− 1
ωf

(
2ωsq (ωs)

2 + 2ωs
2q (ωs)

dq(ωs)
qωs

)]
∂V (FVft−FVst)

∂ωs
=

(
a
ωf

)2
((Trωf )− t)2 trq (ωs)×[

q (ωs)
[
1− 2 ωsωf

]
+ 2ωs

dq(ωs)
dωs

[
1− ωs

ωf

]]
(26)

Equation 26 is strictly negative if and only if

q (ωs)
[
1− 2 ωsωf

]
+ 2ωs

dq(ωs)
dωs

[
1− ωs

ωf

]
< 0

⇔ q (ωs)
[
ωf−2ωs
ωf

]
< −2ωs

dq(ωs)
dωs

[
ωf−ωs
ωf

]
⇔

[
ωf−2ωs
ωf

] [
ωf

2(ωf−ωs)

]
< −

ωs
dq(ωs)
dωs

q(ωs)

⇔ −ε < − ωf−2ωs
2(ωf−ωs)

(27)
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This condition is always verified when
ωf−2ωs

2(ωf−ωs)
< 0 ⇔ ωs

ωf
> 1

2 . Otherwise, the relation expressed in

equation 27 must be verified. This proves the first assertion.
To prove the second assertion, we derive the fundamental basis volatility regarding ωf and study

its sign.

∂V (FVft−FVst)
∂ωf

=
∂

[(
a
ωf

)2

((Trωf)−t)
2
q(ωs)

2t

(
1− ωs

ωf

)
ωs
ωf

]
∂ωf

= a2q (ωs)
2 tωs

∂

[
1

ωf
2 ((Trωf)−t)

2
(
1− ωs

ωf

)
1
ωf

]
∂ωf

= a2q (ωs)
2 tωs

∂

[
((Trωf)−t)

2
(
ωf−ωs
ωf

4

)]
∂ωf

= a2q (ωs)
2 tωs

[
2Tr ((Trωf )− t)

(
ωf−ωs
ωf 4

)
+ ((Trωf )− t)2

(
4ωs−3ωf
ωf 5

)]
∂V (FVft−FVst)

∂ωf
= a2q (ωs)

2 tωs ((Trωf )− t)
[
2Tr

(
ωf−ωs
ωf 4

)
+ ((Trωf )− t)

(
4ωs−3ωf
ωf 5

)]

(28)

This term is strictly negative if and only if

2Tr

(
ωf−ωs
ωf 4

)
+ ((Trωf )− t)

(
4ωs−3ωf
ωf 5

)
< 0

⇔ 2Tr

(
ωf−ωs
ωf 4

)
< − ((Trωf )− t)

(
4ωs−3ωf
ωf 5

)
⇔ Trωf

(Trωf)−t
< −

(
4ωs−3ωf
ωf 4

)(
ωf

4

2(ωf−ωs)

)
⇔ Trωf

Trωf−t < 1 +
ωf−2ωs

2(ωf−ωs)

⇔ − t
Trωf−t > − ωf−2ωs

2(ωf−ωs)

(29)

For t ∈ [0;Tr × ωf − 1] ⊂ N, t
Trωf−t ≥ 0. Then, this condition is never verified for

ωf − 2ωs
2 (ωf − ωs)

< 0⇔ ωs
ωf

>
1

2
(30)

For a 6= 0, t < T , and ωs 6= ωf ,
∂V (FVft−FVst)

∂ωf
> 0 when ωs

ωf
> 1

2 . Otherwise, the relation expressed

in equation 29 must be verified. This proves the second assertion.
To prove the third assertion, we compute the total derivation of the fundamental basis volatility

considering a proportional increase of the two frequencies.
Using equations 26, 28, and the variation of ωf explained with the variation of ωs computed above,

we get:

dV (FVft − FVst) =
∂V ar(FVft−FVst)

∂ωs
dωs +

∂V ar(FVft−FVst)
∂ωf

dωf

=
(
a
ωf

)2
(T − t)2 t 1

ωf
q (ωs)×[

q (ωs)
[
1− 2 ωsωf

]
+ 2ωs

dq(ωs)
dωs

[
1− ωs

ωf

]]
dωs

+a2q (ωs)
2 tωs (T − t)×[

2Tr

(
ωf−ωs
ωf 4

)
+ (T − t)

(
4ωs−3ωf
ωf 5

)]
ωf
ωs
dωs

= a2 (Tr − tr)2 t 1
ωf
q (ωs)

2
[
1− 2 ωsωf + 2 ωs

q(ωs)
dq(ωs)
dωs

[
1− ωs

ωf

]]
dωs

+a2q (ωs)
2 tωf (Tr − tr)2

ωf
ωf 3[

2 Tr
(Tr−tr)

(
ωf−ωs
ωf

)
+ (T−t)

(Tr−tr)

(
4ωs−3ωf
ωf 2

)]
dωs

= a2 (Tr − tr)2 t
ωf
q (ωs)

2 dωs

[
1− 2 ωsωf + 2 ωs

q(ωs)
dq(ωs)
dωs

(
1− ωs

ωf

)
+2 Tr

(Tr−tr)

(
1− ωs

ωf

)
+ 4 ωsωf − 3

]
dV (FVft − FVst) = a2 (Tr − tr)2 trq (ωs)

2 2
(

1− ωs
ωf

)
dωs

[
ωs
q(ωs)

dq(ωs)
dωs

+ Tr
(Tr−tr) − 1

]

(31)
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Equation 31 is strictly negative if and only if

−1 + ωs
q(ωs)

dq(ωs)
dωs

+ Tr
(Tr−tr) < 0

⇔ −ε < 1− Tr
(Tr−tr)

⇔ −ε < − t

(Trωf−t)

This proves the third assertion.

E Proof of Theorem 5

Proof. The maximal value of the utility function is 0. According to properties (i) and (ii) of U ,
the maximal value of U is reached if and only if B (st) = V (FVft − FVst) = 0 (or B (st) → 0 and
V (FVft − FVst) → 0). From theorems 1 and 2 as well as remarks 1 and 3, the only frequencies

allowing B (st) = V (FVft − FVst) = 0 are given by the subset O =
{

(ωs, ωf ) ∈ (Fs ∩ Ff )2 : ωsωf = 1
}

.

This proves the first assertion.
For e 6= 0, a 6= 0, t < T , and ωs 6= ωf , we have B (st) > 0 and V (FVft − FVst) > 0. We look for

optimal solutions by limit for the two arguments. This gives the following conditions for the second
argument: (

a
ωf

)2
(Trωf − t)2 q (ωs)

2 t ωsωf

(
1− ωs

ωf

)
= 0

⇔ q (ωs)
2 ωs
ωf 3

(Trωf − t)2 = 0

⇔ (ω−εs )
2 ωs
ωf 3

(Trωf − t)2 = 0

⇔ ωs
1
2−ε

ωf
3
2

(Trωf − t) = 0

(32)

As lim
ωs
ωf
→ 0

ωf → +∞

ωs
1
2−ε

ωf
3
2

(Trωf − t) = 0, a subset of optimal solutions by limit can exist. This subset

is Obl =
{

(ωs;ωf ) ∈ Fs × Ff : ωsωf 7→ 0, ωf 7→ +∞
}

, and it is independent of the value of ε.

Focusing on the first argument gives the following:

|−e|
ωf

∑t
k=1

(
1− ωs

ωf

)k−1
= 0

⇔ 1
ωf

∑t
k=1

(
1− ωs

ωf

)k−1
= 0

⇔ 1
ωf

(
1− ωs

ωf

)
(
1− ωs

ωf

) 1−
(
1− ωs

ωf

)t−1+1

1−
(
1− ωs

ωf

) = 0

⇔ 1
ωs

(
1−

(
1− ωs

ωf

)t)
= 0

(33)

We study the limit of the left term of equation 33 within the subset Obl. It gives:

lim
ωs
ωf
→ 0

ωf → +∞

1
ωs

= 1
ωs

lim
ωs
ωf
→ 0

ωf → +∞

ωs
ωf

= 0⇒ lim
ωs
ωf
→ 0

ωf → +∞

1−
(

1− ωs
ωf

)t
= 0

By product lim
ωs
ωf
→ 0

ωf → +∞

1
ωs

(
1−

(
1− ωs

ωf

)t)
= 0
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Hence, Obl is also a subset of optimal solutions by limit to the first argument of U . It is consequently
the subset of all optimal solutions by limit independent from market characteristics (ε value). This
proves the second assertion of the theorem.

F Proof of theorem 6

Proof. We use the proof of theorem 5 to identify the other optimal and quasi-optimal trade frequencies.
For e 6= 0, a 6= 0, t < T , and ωs 6= ωf , we have B (st) > 0 and V (FVft − FVst) > 0.
Equation 32 gives the conditions for the second argument to be equal to 0.

If 1
2 − ε > 0 ⇔ −ε > −1

2 , no ωs exists that satisfies equation 32. However, the subset O
ε< 1

2
bl ={

(ωs, ωf ) ∈ Fs × Ff : ωsωf 7→ 0+ with ωs 7→ 0+
}

gives optimal solutions by limit for the second argu-

ment of the utility function U . This subset, conditional to the values of ε, is such that

O
ε< 1

2
bl ⊂ Obl

Hence, there are no other optimal solutions by limit for the second argument in the case of−ε > −1
2 .

This proves the first assertion.

If 1
2 − ε < 0⇔ −ε < −1

2 , there exists no ωs satisfying equation 32. However,

O
ε> 1

2
bl =

{
(ωs, ωf ) ∈ Fs × Ff : ωsωf 7→ 1, ωs 7→ +∞, ωf 7→ +∞

}
gives optimal solutions by limit for the

second argument of the utility function U .

Equation 33 gives the condition for the first argument of the utility function U .

We study the limit of the left term of equation 33 within the subset O
ε> 1

2
bl . We get:

lim
ωs
ωf
→ 1

ωf → +∞

1
ωs

= 0

lim
ωs
ωf
→ 1

ωf → +∞

ωs
ωf

= 1⇒ lim
ωs
ωf
→ 1

ωf → +∞

1−
(

1− ωs
ωf

)t
= 1

By product lim
ωs
ωf
→ 1

ωf → +∞

1
ωs

(
1−

(
1− ωs

ωf

)t)
= 0

O
ε> 1

2
bl allows to verify equation 33. Hence, O

ε> 1
2

bl is a subset of optimal solutions by limit which
maximizes U . This subset is such that

O
ε> 1

2
bl ∩Obl = ∅

This proves the second assertion.

If 1
2 − ε = 0 ⇔ −ε = −1

2 , there is no ωs satisfying equation 32. However, the subset O
ε= 1

2
bl ={

(ωs;ωf ) ∈ Fs × Ff : ωsωf 7→ 0, ωf 7→ +∞
}

gives optimal solutions by limit for the second argument of

the utility function U . However, this subset is such that

O
ε= 1

2
bl = Obl

Hence, there are no other optimal solutions by limit in the case of −ε = −1
2 . This proves the third

assertion.
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