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Abstract

This paper is devoted to the decomposition of vectors into sampled complex exponentials;
or, equivalently, to the information over discrete measures captured in a finite sequence of
their Fourier coefficients. We study existence, uniqueness, and cardinality properties, as well
as computational aspects of estimation using convex semidefinite programs. We then explore
optimal transport between measures, of which only a finite sequence of Fourier coefficients
is known.

keywords: atomic norm, infinite dictionary, truncated moment problem, trigonometric mo-
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1 Introduction

Mathematical analysis aims at understanding complex objects by expressing them in terms of
elementary objects, the atoms. The discrete Fourier transform is a typical example, which allows
us to express a vector of size N as a unique linear combination of N orthogonal atoms, which
are the sampled complex exponentials of frequencies the multiples of 1/N . This framework is
restrictive, however, and one may want to remove the constraint that the frequencies lie on this
discrete grid. The modern paradigm of signal processing integrates the idea that a signal can
be represented in a dictionary containing much more than N atoms, by choosing, among the
multitude of possible representations offered by the redundancy, the simplest one [1]. Here,
we study the representation of vectors as linear combinations of sampled complex exponentials,
without any constraint on the frequencies. Thus, the dictionary contains the continuous infinity
of sampled complex exponentials, with frequencies in [0, 1).

We define the unit circle T = {z ∈ C : |z | = 1} of the complex plane C. For every z ∈ C,
arg(z) ∈ [0, 2π ) is the argument of z, such that z = |z |e j arg(z), where j =

√
−1. We endow T

with the distance d : (z1, z2) 7→ min
(
|arg(z1) − arg(z2)|/(2π ), 1 − |arg(z1) − arg(z2)|/(2π )

)
.

1



Let M ≥ 1 be an integer. We define the real Hilbert space

V =
{
v = (vm)Mm=−M ∈ C

2M+1 : (∀m) v−m = v∗
m

}
, (1)

where ·∗ indicates complex conjugation, endowed with the usual inner product

〈v,v ′〉 =
M∑

m=−M
vmv

′∗
m = v0v

′
0 + 2 Re

( M∑

m=1

vmv
′∗
m

)
∈ R. (2)

We consider the infinite family A=
(
a(z)

)
z∈T of elements of V , defined by

a(z)m = z−m = e− jm arg(z)
, m = −M, . . . ,M . (3)

We call A the dictionary and its elements a(z), which are sampled complex exponentials, the
atoms [2–7]. The frequency of a(z) is defined as arg(z)/(2π ) ∈ [0, 1).

In the following, v is an arbitrary nonzero element of V .
We focus on the decomposition of v into atoms. For this, we need a parameterization of A;

that is, a way to expressv as a linear combination of atoms. SinceAcontains a non-denumerable
infinity of atoms, it is natural to work with finite signed Borel measures on T , the set of which
is denoted by M. So, the analysis of v consists in determining a measure µ ∈ M, such that

vm =

∫

T

z−mdµ(z) =
∫ 1

0
e− j2πf mdµ(e j2πf ), m = −M, . . . ,M . (4)

Thus, the vm are trigonometric moments, or Fourier coefficients, of µ. Therefore, we write

v = Fµ (5)

if the relation in (4) is satisfied, and we say that µ explains v .
So, one can view the problem as the identification of a measure from a truncated sequence

of its trigonometric moments, the so-called truncated moment problem [8]. If one finds µ from
v = (vm)Mm=−M , one can calculate all its moments (vm)m∈Z and so extrapolatev , hence the term
super-resolution [9–11]: one recovers high-frequency information of µ, given only low-frequency
information. The two “mathematical” and “signal processing” views of the problem consist in
reasoning in terms of measures with moments v , or in terms of decompositions of v into atoms
(viewing µ as the spectrum ofv), respectively; this is just a matter of defining which are the time
and frequency domains. We can note that the more general setting of the recovery of a measure
or a spline function from linear measurements has been considered in the literature [12, 13],
with several recent contributions to this topic [14–16]. In a nutshell, regularizing an inverse
problem with a convex function yields solutions that are convex combinations of a small number
of atoms, which depend on the geometry of the regularizer level sets. In this paper, we focus on
the specific properties of recovering a measure, when the measurements are Fourier coefficients.

In this study, we are interested in atomic decompositions of v; that is, we look at questions
of existence, uniqueness, number of atoms, and more generally at the information contained in
v . Equivalently, we look at what can be said about a discrete measure given a finite number
of its Fourier coefficients. We do not consider approximation, which consists in estimating a
simple approximate atomic decomposition of v , e.g. when v is corrupted by noise; there is a
vast literature on approximation, see [17–22] and references therein.
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The paper is organized as follows: In Sections 2–5, we review the properties of atomic de-
compositions, the close relationship between positive semidefinite Toeplitz matrices and them,
and the Prony method to extract the parameters from a mixture of atoms. Many results, known
but scattered in the literature or unpublished because they are straightforward, are stated as
remarks. In Section 6, we establish a precise characterization of the existence and uniqueness
of a measure explaining v with minimal total variation norm. We explain how to determine
this minimal measure numerically, by a two-step procedure: first solving a convex semidefinite
program, for which we propose an iterative algorithm in Section 7; and then applying Prony’s
estimation method. In Section 8, we exhibit a new construction of an atomic decomposition ofv
with 2M atoms, uniformly located on T . This construction plays an important role in Section 9,
where the minimal atomic decomposition of a mixture of two atoms with opposite amplitudes is
characterized. Finally, in Section 10, we define new functionals to do optimal transport between
two elements of V , by doing optimal transport of the atoms composing them. Equivalently, we
perform optimal transport of measures, given only a finite number of their Fourier coefficients.

2 Atomic decompositions and atomic norm

We will see that we can reason with discrete measures only; that is, express v with a finite
number of atoms. So, by anticipation, we call an atomic decomposition of v , the parameters
K ∈ N\{0}, zk ∈ T all distinct, ck ∈ R\{0}, such that

v =

K∑

k=1

cka(zk ). (6)

If v has such an atomic decomposition, the measure µ =
∑K
k=1 ckδzk explains v , where δz is the

Dirac measure located in z ∈ T .

Remark 1. The dimension of V is 2M +1. The rank of A, which is the largest number of linearly
independent atoms, is 2M + 1 as well. Indeed, the invertibility of the Vandermonde matrices



1 e− jω1 · · · e− j(2M+1)ω1

...
...

...
...

1 e− jω2M+1 · · · e− j(2M+1)ω2M+1



, (7)

for every set {ω1, . . . ,ω2M+1} of distinct elements of [0, 2π ), implies the invertibility of the
matrices 

e jMω1 · · · e jω1 1 e− jω1 · · · e− jMω1

...
...

...
...

...
...

...

e jMω2M+1 · · · e jω2M+1 1 e− jω2M+1 · · · e− jMω2M+1



, (8)

which yields the given value of the rank.
So, every family

(
a(z1), . . . , a(z2M+1)

)
of 2M + 1 distinct atoms is a basis of V , i.e. is linearly

independent and spans V by linear combinations with real weights.

Remark 2. The invertibility of Vandermonde matrices also implies that the spark of A, which is
the smallest number of linearly dependent atoms [4], is 2M + 2; Ahas full spark [23].
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A direct consequence is the following [4, Theorem 3]: if v has two different atomic decom-
positions, they involve at least spark(A) = 2M + 2 different atoms.

Therefore, if v has an atomic decomposition with 1 ≤ K ≤ M atoms, there is no other
atomic decomposition of v with less or as many atoms. Moreover, we will see in Section 4 that
it is easy to find this decomposition. It is in the case where v does not have a decomposition
with 1 ≤ K ≤ M atoms, a property which is easy to test, that it is very difficult to find the
decomposition of v with the smallest number of atoms (this number being at most 2M, see
Remark 13).

Remark 3. There is an infinity of atomic decompositions of v with at most 2M + 1 atoms.
Indeed, according to Remark 1, given 2M + 1 arbitrary distinct atoms, one can express v as a
linear combination of them, with real weights ck , obtained by solving a linear system. Moreover,
ifv has a decomposition with more than 2M+1 atoms, one can re-express all the atoms in terms
of a subset of size 2M + 1 of them, to obtain a decomposition of v with at most 2M + 1 atoms.
Other said, there is an infinity of discrete measures, made of at most 2M + 1 Dirac measures,
explaining v .

Remark 4. We can exhibit the “classical” uniform atomic decomposition1

v =

2M+1∑

k=1

cka(e j2πk/(2M+1)), (9)

where the sequence (ck )2M+1k=1
is simply the inverse discrete Fourier transform of v:

ck =
1

2M + 1

M∑

m=−M
vme j2πkm/(2M+1)

, k = 1, . . . , 2M + 1. (10)

However, in most applications, v is a mixture of unknown atoms, which must be identified,
with frequencies living in the continuum [0, 1). Enforcing the frequencies to lie on the grid of the
multiples of 1/(2M +1), or actually on any predetermined finite set of atoms, yields undesirable
effects: the reconstruction or approximation of the estimated signal is not parsimonious, with
spurious oscillations; this is called spectral leakage, basis mismatch, or gridding error [24–26].
This phenomenon is somewhat attenuated by taking a finer and finer grid, while in doing so,
with more and more coherent atoms, the estimation problems become increasingly badly condi-
tioned and numerically unstable. This justifies to place ourselves in a continuous framework, as
we do in this study, instead of in a discrete framework with a finite, even if redundant, dictionary
of predetermined atoms [4,27,28]. Thus, we are interested in finding, among the infinite mul-
titude of possible atomic decompositions of v , the “simplest” ones, with respect to some notion
of parsimony. Finding the atomic decomposition with the smallest number of atoms is a very
difficult nonconvex problem. That is why we focus on its convex relaxation and consider the
form of optimality defined in the following.

We define the atomic norm of v as

‖v ‖a := inf
{
‖µ‖TV : µ ∈ M, v = Fµ

}
, (11)

1Strictly speaking, we should remove from this sum the indices k , for which ck = 0.
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where ‖ · ‖TV is the total variation norm of a measure (not to be confused with the total variation
of an image [29]). In that respect, let us recall the following property [30]: every measure
µ ∈ M has a unique Jordan decomposition (µ+, µ−) of two finite positive measures µ+ and µ−,
such that µ = µ+ − µ−, satisfying the following optimality property: for every pair of positive
measures (ν+,ν−) with µ = ν+ − ν−, then ν+ ≥ µ+ and ν− ≥ µ−. Hence, we can define
‖µ‖TV = µ+(T) + µ−(T).

As easily checked, the atomic norm is indeed a norm on V .
We call aminimal atomic decompositionofv , an atomic decomposition ofv , such that

∑K
k=1 |ck | =

‖v ‖a.
Remark 5. The atomic norm is defined in several papers [5–7] as

‖v ‖a = inf
{
t ≥ 0 : v ∈ t conv(A∪ −A)

}
, (12)

where conv denotes the convex hull, which, since V is of dimension 2M + 1, is the set of convex
combinations of 2M + 1 signed atoms. Therefore, we can equivalently write (12) as

‖v ‖a = inf
{ K∑

k=1

|ck | : v =

K∑

k=1

cka(zk ), for some

K ≤ 2M + 1, distinct zk ∈ T, ck ∈ R\{0}
}
. (13)

We will see in Proposition 2 that these two definitions (11) and (12)–(13) coincide, and that
the infimum in (11), (12), (13) is attained; that is, it is a minimum. In other words, a minimal
atomic decomposition of v exists.

3 Relation to Toeplitz matrices

In order to characterize more precisely the atomic norm and the atomic decompositions of v
minimizing it, we introduce the linear operator T, which maps v to the Hermitian Toeplitz
matrix

T(v) :=



v0 v1 · · · vM
v−1 v0 · · · vM−1
...

...
. . .

...

v−M v−M+1 · · · v0



. (14)

We can note that T defines a bijection between V and the set of (M + 1) × (M + 1) Hermi-
tian Toeplitz matrices, thereafter denoted by T(V). So, we will talk equally about an atomic
decomposition of v or of T(v).

T(v) is said to be indefinite if it is neither positive semidefinite nor negative semidefinite;
that is, if it has at least one positive and one negative eigenvalues. T(v) is said to be singular if
it is not invertible; that is, if it has at least one eigenvalue equal to zero.

We remark that, for every z ∈ T ,

T(a(z)) =



1 z−1 · · · z−M

z 1 · · · z−M+1

...
...

. . .
...

zM zM−1 · · · 1



=



1
z
...

zM



[1 z−1 · · · z−M ]

(15)
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is positive semidefinite and of rank 1.

Remark 6. If v has an atomic decomposition v =
∑K
k=1 cka(zk ) with 1 ≤ K ≤ M + 1 atoms, the

rank of T(v) is K . Indeed,

T(v) =



1 · · · 1
z1 · · · zK
...

...
...

zM1 · · · zM
K



×


c1 0
. . .

0 cK



×


1 z−11 · · · z−M1
...
...

...
...

1 z−1K · · · z−MK



(16)

and the rank of AHBA, where A is a matrix with full column rank and ·H denotes the Hermitian
transpose, is equal to the rank of B [31, Lemma 1].

As we see, the rank of T(v) will play an important role in the analysis. At this stage, one
can wonder if the converse of the last property is true; that is, if there always exists an atomic
decomposition of v with K = rank(T(v)) atoms. Unfortunately, this is not the case, as we will
see in Section 4.

Remark 7. One can think that if v has an atomic decomposition with M + 1 < K ≤ 2M + 1
atoms, the rank of T(v) is M + 1. This is not true in general and we can construct examples
where the rank is as low as 2M + 2 − K . Indeed, if

∑2M+2
k=1 cka(zk ) = 0 (given distinct zk , such

ck , 0 exist, since the a(zk ) are linearly dependent), then for every M + 1 < K ≤ 2M + 1,
v =

∑K
k=1 cka(zk ) =

∑2M+2
k=K+1(−ck )a(zk ), and there are two different atomic decompositions of

v , the second one having less atoms. The rank of T(v) is then 2M + 2 − K .

Remark 8. The trace of T(v), which is also the sum of its eigenvalues, is equal to (M + 1)v0. So,
it is equal to (M + 1)µ(T), for every measure µ explaining v , and to (M + 1)∑K

k=1 ck , for every
atomic decomposition of v .

Remark 9. Let n+(T(v)) and n−(T(v)) be the number of positive and negative eigenvalues of
T(v), respectively. Then every atomic decomposition v =

∑K
k=1 cka(zk ) has at least n+(T(v))

positive ck and at least n−(T(v)) negative ck .
As we see, decomposition into exponentials is intimately related to the spectral properties of

Hermitian Toeplitz matrices.

4 Prony’s estimation method

The following estimation method, already known by G. R. de Prony in the 18th century [32],
allows us to know, in a simple way, whether v has an atomic decomposition with K ≤ M atoms,
and if so, to find the corresponding parameters. We outline the method in this section, see
[33–35] for more details.

First, let us suppose that there exists a decomposition v =
∑K

k=1 cka(zk ) with 1 ≤ K ≤ M.

We define the annihilating polynomial H(z) = ∑K
k=0 hkz

k :=
∏K

k=1(z − zk ). This polynomial
owes its name to the fact that it cancels the sequence v by convolution [36,37]:

K∑

k=0

hkvm−k =
K∑

k=0

hk

K∑

l=1

clz
k−m
l =

K∑

l=1

clz
−m
l H(zl ) = 0,

m = −M + K, . . . ,M . (17)
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Let us form the rectangular Toeplitz matrix of size (2M + 1 − K) × (K + 1),

RK (v) :=



vM−K · · · vM
vM−K−1 · · · vM−1
...

. . .
...

v−M · · · v−M+K



. (18)

Then, the equations (17) can be rewritten as

RK (v)[hK · · · h0]T = [0 · · · 0]T. (19)

Thus, the vector [hK · · · h0]T is in the kernel of RK (v). More precisely, RK (v) is of rank K and
its kernel, of dimension 1, is spanned by [hK · · · h0]T.

Now, we consider the converse of these properties. Let K be the rank of T(v), with K ≤ M

(if T(v) is positive definite, see Remark 11, whereas if T(v) is of full rank and is not positive
definite, the method cannot be applied to find an atomic decomposition of v). Let us form the
matrix RK (v) as in (18). It is of rank K as well. Let [hK · · · h0]T be the unique, up to a constant,
nonzero vector in the kernel of RK (v). For a numerically robust estimation, we compute the
singular value decomposition of RK (v) and we take [hK · · · h0]T as the right singular vector
corresponding to the smallest singular value. Then, we compute the roots zk of the polynomial
H(z) := ∑K

k=0 hkz
k . If we find K distinct roots belonging to T , then v has an atomic decomposi-

tion v =
∑K

k=1 cka(zk ), where the amplitudes ck are obtained by solving the least-squares linear
system

QHQ[c1 · · · cK ]T = QH[v−M · · · vM ]T, (20)

where Q :=



z−M1 · · · z−M
K

...
...

...

zM1 · · · zM
K



. (21)

In the other cases, v does not have an atomic decomposition with at mostM atoms.
Note that the annihilating polynomial can have less than K nonzero roots. For instance, for

v = (2, 1, 1, 1, 1, 1, 2),

T(v) =



1 1 1 2
1 1 1 1
1 1 1 1
2 1 1 1



(22)

is of rank K = 3, so RK (v) = T(v) and the annihilating polynomial is H(z) = z(z − 1), which has
only one nonzero root.

In the case where H(z) has K distinct nonzero roots zk , but not all in T , we can write vm =∑K
k=1 ckz

−m
k

, but this amounts to decomposing v into other objects than the atoms of A. This is

linked to the fact that the Hermitian Toeplitz matrices of rank 1 are of the form T((z−M , . . . , zM )),
but for an arbitrary z ∈ C\{0}, not necessarily in T .

We will see in the following that if T(v) is positive semidefinite, Prony’s method always yields
K distinct roots in T . If T(v) is indefinite, the key for decomposingv will consist in splitting T(v)
into the sum of two positive semidefinite and negative semidefinite Toeplitz matrices.
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5 Case of positive decompositions

For every measure µ explaining v , ‖µ‖TV ≥ µ+(T) ≥ µ+(T) − µ−(T) = v0, so we always have
‖v ‖a ≥ v0. Moreover, if a positive measure µ explains v , we have ‖µ‖TV = µ(T) = v0, so that
the infimum in (11) is attained for this measure, with ‖v ‖a = ‖µ‖TV = v0. So, it is interesting
to address, in the first place, the case where v is explained by a positive measure.

Remark 10. If a discrete measure
∑K
k=1 ckδzk explains v , with 1 ≤ K ≤ M + 1 and ck > 0,

then T(v) is positive semidefinite and of rank K . Indeed, ∀z ∈ T , T(a(z)) is positive semidefinite
and the set of positive semidefinite matrices is a closed convex cone. More precisely, for every
vector x ∈ C

M+1, xHT(v)x =
∫
T
xHT(a(z))x dµ(z) =

∫
T
|∑M+1

m=1 z
1−mxm |2 dµ(z) ≥ 0. Moreover,

we have seen in Remark 6 that T(v) is of rank exactly K .

A major result, which implies the converse of the property in Remark 10, dates back to the
work of Carathéodory [38,39]. It can be formulated as follows:

Carathéodory’s Theorem. T(v) is positive and of rank K , with 1 ≤ K ≤ M + 1, if and only if
there exist distinct elements zk ∈ T and positive reals ck , such that v =

∑K
k=1 cka(zk ). Moreover, if

K ≤ M, the discrete measure
∑K
k=1 ckδzk is the unique positive measure explaining v .

Thus, if T(v) is positive semidefinite, a positive discrete measure µ =
∑K

k=1 ckδzk , with

K ≤ M+1, explainsv , and we have ‖µ‖TV =
∑K
k=1 ck = v0 = ‖v ‖a. In other words, the Theorem

states the existence of a minimal atomic decomposition of v , if T(v) is positive semidefinite.
Moreover, according to Remark 2, there exists no decomposition of v with less atoms, so the
obtained atomic decomposition is doubly optimal.

Remark 11. If T(v) is positive definite, with rank K = M + 1, there exists an infinity of minimal
atomic decompositions of v with M + 1 atoms. We can construct all of them as follows [40,
Remark 2.1]: we choose zM+1 ∈ T and we set

cM+1 :=
(
[1 z−1M+1 · · · z−MM+1]T(v)−1[1 zM+1 · · · zMM+1]T

)−1
. (23)

Then cM+1 > 0 and

T
(
v − cM+1a(zM+1)

)
= T(v) − [1 zM+1 · · · zMM+1]T[1 z−1M+1 · · · z−MM+1] (24)

is positive semidefinite of rank M. Carathéodory’s Theorem applied to this residual yields v −
cM+1a(zM+1) =

∑M
k=1 cka(zk ). All in all, we end up with the positive minimal atomic decompo-

sition v =
∑M+1

k=1 cka(zk ).
For instance, for v = (0, . . . , 0, 1, 0, . . . , 0), i.e. T(v) = Id, the identity matrix, we get the

atomic decompositions, for every φ ∈ [0, 2π ),

v =
1

M + 1

M+1∑

k=1

a
(
e j(2πk+φ)/(M+1))

. (25)

Remark 12. There is a complete proof of Carathéodory’s Theorem by Curto and Fialkow [8,
section 6]. Given Remarks 10 and 11, there only remains to prove that, if T(v) is positive
semidefinite of rank 1 ≤ K ≤ M, then a positive measure explaining v exists, is unique,
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and is concentrated at K points of T . The difficult part, which is not detailed here, is to
show the existence. The rest of the proof is simple: we consider the annihilating polynomial
H(z) = ∑K

k=0 hkz
k
=

∏K
k=1(z − zk ) defined in Section 4 and we define the vector of sizeM + 1,

h̃ = [hK · · · h0 0 · · · 0]T. Let µ ∈ M be a positive measure explaining v . We have

0 = h̃HT(v)h̃ =
∑

0≤k ,l ≤K
h∗khlvk−l =

∫

T

∑

0≤k ,l ≤K
h∗khlz

l−kdµ(z) (26)

=

∫

T

|H(z)|2dµ(z).

Therefore, µ is a discrete measure concentrated at the roots zk of H(z) belonging to T . Since
µ cannot be made of less than K Diracs measures (else the rank of T(v) would be less than K ,
according to Remark 10), all the zk , k = 1, . . . ,K , are in T . Finally, the unique coefficients ck
such that v =

∑K
k=1 cka(zk ), defined in (20), are positive, according to Remark 9. �

Corollary 1. If a positive measure, which is not a discrete measure concentrated in at most M
points, explains v , then T(v) is of rankM + 1. This is specific to the positive case, see Remark 7
for the general case.

Corollary 2. An atom cannot be expressed as a linear combination of other atoms with positive
coefficients. So, the atoms are the extremal points of the convex hull of A.

6 General case

Remark 13. In the previous section, we have seen that if T(v) is positive semidefinite, v has
a decomposition with at most M + 1 atoms. The analysis is of course the same when T(v) is
negative semidefinite. So, let us direct our attention to the case where T(v) is indefinite. We
have seen in Remark 3 that there are atomic decompositions of v with 2M + 1 atoms. We
can now improve this bound and construct decompositions of v with at most 2M atoms. We
will see in Proposition 3 one such decomposition. Another construction is the following. Let
i− < 0 be the smallest eigenvalue of T(v). T(v) − i−Id is positive semidefinite and singular, so
by Carathéodory’s Theorem, it can be decomposed into at mostM atoms. As in Remark 11, we
can decompose i−Id intoM +1 atoms, one of which being an atom of T(v)− i−Id. By combining
them, T(v) = (T(v) − i−Id) + i−Id can indeed be decomposed into at most 2M atoms.

Remark 14. The bound above of 2M atoms is optimal: it is possible that v has a decomposition
with 2M atoms and not less. We can give the example [41, Example 3.4], for M = 2, of

v = (3, 1, 1, 1, 3) = 3

2
a(1) − 1

2
a(j) + 1

2
a(−1) − 1

2
a(−j), (27)

for which it is shown that no decomposition with less than four atoms exists [41].

We now focus on minimal atomic decompositions of v . For this purpose, let us consider the
three equivalent formulations of the same convex optimization problem, where tr denotes the

9



trace, < 0 denotes positive semidefiniteness, and V := T(v) :

V + := argmin
X

tr(X ) s.t. X ∈ T(V) and X < 0

and X −V < 0, (28)

≡ V + := argmin
X

1
M+1

(
tr(X ) + tr(X −V )

)
(29)

s.t. X ∈ T(V) and X < 0 and X −V < 0,

≡ V + := T(v+) , where v+ := argmin
x ∈V

(2x0 −v0)

s.t. T(x) < 0 and T(x −v) < 0. (30)

Proposition 1. The solutionV + of the problem (28) exists and is unique. Accordingly, let us define
V − := V + − V . Moreover, if V is positive semidefinite, V + = V and V −

= 0; if V is negative
semidefinite,V + = 0 and V −

= −V ; else, V + and V − are singular.

Proof: the case where V is positive semidefinite or negative semidefinite is obvious, so let us
suppose that V is indefinite. We first remark that the feasible set of the problem (28) is not
empty: let i− < 0 be the smallest eigenvalue of V ; X = V − i−Id is positive semidefinite,
Hermitian and Toeplitz, as well as X −V .

Then the trace defines a norm for the positive semidefinite matrices, and, as a consequence
of the Weierstrass theorem [42, Theorem 1.28], a norm attains its minimum on a closed set in
finite dimension, so a solution V + exists.

Let V + be a solution of (28). Set V − := V + −V . Suppose that V + is positive definite. Then
there exists 0 < a < 1, such that X := V + − aV − is positive semidefinite. Moreover, X ∈ T(V)
and X − V = (1 − a)V − is positive semidefinite. But tr(X ) < tr(V +), which contradicts the
optimality of V +. Hence,V + is singular. By the same reasoning,V − is singular as well.

Let us finally show that the solution of (28) is unique. Let X1 and X2 be two solutions.
Then X = (X1 + X2)/2 is a solution as well, so X is singular. By Carathéodory’s Theorem, X
has an atomic decomposition

∑K
k=1 cka(zk ), where 1 ≤ K ≤ M is the rank of X . Let us define

the annihilating polynomial H(z) = ∑K
k=0 hkz

k :=
∏K

k=1(z − zk ) and the vector of size M + 1,

h̃ = [hK · · · h0 0 · · · 0]T. We have h̃HXh̃ = 0, so h̃HX1h̃ + h̃
HX2h̃ = 0, and since X1 and X2

are positive semidefinite, h̃HX1h̃ = h̃HX2h̃ = 0. As in (26), this implies that the positive atomic
decompositions of X1 and X2 are of the form

∑K
k=1 c1,ka(zk ) and

∑K
k=1 c2,ka(zk ), respectively,

for some c1,k ≥ 0 and c2,k ≥ 0. By the same reasoning, X1 − V and X2 − V have atomic
decompositions of same support, of the form

∑K ′

k=1 c
′
1,k

a(z′
k
) and ∑K ′

k=1 c
′
2,k

a(z′
k
), respectively,

with 1 ≤ K ′ ≤ M, some z′
k
∈ T all distinct and different from the zk , and some c ′

1,k
≥ 0 and

c ′
2,k

≥ 0. Therefore,v =
∑K

k=1 c1,ka(zk )−
∑K ′

k=1 c
′
1,k

a(z′
k
) = ∑K

k=1 c2,ka(zk )−
∑K ′

k=1 c
′
2,k

a(z′
k
). By

subtraction,
∑K

k=1(c1,k −c2,k )a(zk )+
∑K ′

k=1(c ′2,k −c ′
1,k

)a(z′
k
) = 0V , the zero sequence of V . Since

the atoms are linearly independent, for every k, c1,k = c2,k and c ′
1,k
= c ′

2,k
. Hence, X1 = X2

and the solution, call it V +, is unique. �

Consequently, to everyV ∈ T(V), we can assign a unique pair (V +,V −) of Hermitian Toeplitz
positive semidefinite matrices, with V + solution of (28) and V −

= V + −V . By analogy with the

10



Jordan decomposition of measures, we call (V +,V −) the Jordan decomposition ofV . Equivalently,
to every v ∈ V , we can assign a unique pair (v+,v−) ∈ V

2, with v+ solution of (30) and
v−
= v+ − v . We call (v+,v−) the Jordan decomposition of v .

Proposition 2.
(i) The problem

minimize
µ ∈M

‖µ‖TV s.t. vm =

∫

T

z−mdµ(z), m = −M, . . . ,M, (31)

has a solution, concentrated at a finite number K ≤ 2M of points of T , i.e. of the form µ⋆ =∑K
k=1 ckδzk , for distinctzk ∈ T and nonzero reals ck . Equivalently, a minimal atomic decomposition

v =
∑K
k=1 cka(zk ) exists. We obtain the parameters zk and ck by combining those of v+ and v−;

that is v+ =
∑K+

k=1 cka(zk ) and v−
=

∑K++K−

k=K++1(−ck )a(zk ), where K = K+ + K−, K+ := rank(V +),
K− := rank(V −), V := T(v). The existence of these two atomic decompositions is guaranteed by
Carathéodory’s Theorem, since V + < 0 and V −

< 0. Thus,

‖v ‖a = ‖µ⋆‖TV =
K∑

k=1

|ck | = 1
M+1

(
tr(V +) + tr(V −)

)
= v+0 +v

−
0 = 2v+0 − v0. (32)

(ii) The solution µ⋆ exhibited in (i) is the unique solution of the problem (31) if and only if T(v)
is neither positive definite, nor negative definite. More precisely, if T(v) is neither positive definite,
nor negative definite, the measure µ⋆ =

∑K
k=1 ckδzk exhibited in (i) is the unique solution of the

problem (31). Then we have 0 ≤ K+ ≤ M and 0 ≤ K− ≤ M. On the contrary, if T(v) is
positive definite (resp. negative definite), there is an infinity of measures, necessarily positive (resp.
negative), solution of (31), among which an infinity of discrete measures concentrated at exactly
K = M + 1 points of T ; we can construct them explicitly, according to Remark 11.

Proof: (i) let µ ∈ M, with Jordan decomposition (µ+, µ−), explaining v . Let (x+,x−) ∈ V
2, such

that µ+ explains x+ and µ− explains x−. We have x+ −x− = v and ‖µ‖TV = x+0 +x
−
0 = 2x+0 −v0.

Since x+ is feasible for the problem (30), the solution v+ of which exists and is unique, µ is a
solution of (31) if and only if x+ = v+ (and x− = v−). The rest of the statement follows.
(ii) Suppose thatV = T(v) is neither positive definite nor negative definite. ThenV + andV − are
singular, according to Proposition 1, so K+ = rank(V +) ≤ M and K−

= rank(V −) ≤ M. Let µ be
a solution of (30). µ+ and µ− explain v+ and v−, respectively, as shown above. But according to
Carathéodory’s Theorem, such positive measures are unique. So, the construction in (i) yields
the unique solution. �

So, we have shown that the infimum is attained in (11), (12), (13). Thus, it is licit to
replace the infimum by a minimum in these definitions of the atomic norm. In addition, we can
strengthen the constraint K ≤ 2M + 1 to K ≤ 2M in (13).

Finally, we can write, for every v ∈ V ,

‖v ‖a = min
X

(
2

M+1 tr(X ) −v0
)

s.t. X ∈ T(V)

and X < 0 and X − T(v) < 0. (33)

We can note that this semidefinite characterization of the atomic norm was given in [43, eq.
12], without any proof.
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If we go back to the problem of finding a decomposition of v with the smallest number of
atoms, it amounts to:

minimize
X

(
rank(X ) + rank(X −V )

)
s.t. X ∈ T(V)

and X < 0 and X −V < 0. (34)

Such nonconvex problems of rank minimization are notoriously difficult, and atomic norm min-
imization is a convex and efficient alternative.

Given an atomic decomposition v =
∑K
k=1 cka(zk ), we define its separation D({zk }) :=

mink,l d(zk , zl ), as the minimal distance between its atoms. A remarkable result by Candès
and Fernandez-Granda [9] is the following: ifv has an atomic decomposition with large enough
separation, then it is both the minimal atomic decomposition ofv and the atomic decomposition
of v with the fewest atoms; that is, the solutions of (29) and (34) are the same and correspond
to this decomposition. A sufficient condition for this is D({zk }) ≥ 1.87/M (and M ≥ 128) [9].
This condition was further strengthened to D({zk }) ≥ 1.26/M (and M ≥ 1000) [44]. Some
authors conjecture that D({zk }) ≥ 1/M is a sufficient condition [22], see also [45]. Note that
every minimal atomic decomposition has a distance d(zk , zl ) ≥ 1/(2M) between two atoms, if
ck is positive and cl is negative [22, Corollary 2]. Of course, these sufficient conditions imply
that the number of atoms is K ≤ M, and we have seen that in that case, Prony’s method yields
this optimal decomposition directly. But we cannot hope for a stable method to recover atomic
decompositions with K ≥ M + 1 atoms, characterized by 2K ≥ 2M + 2 real parameters, from
v , characterized by 2M + 1 real degrees of freedom. More importantly, the fact that separated
enough atomic decompositions are represented by solutions of convex optimization problems,
opens the door to their robust approximate estimation by convex minimization, from inexact or
noisy coefficients ym ≈ vm . For instance, given y ∈ V , we can

minimize
x ∈V

‖y − x ‖22 + λ‖x ‖a, (35)

≡ minimize
(x+,x−)∈V2

‖y − x+ + x−‖22 + λ(x+0 + x−0 )

s.t. T(x+) < 0 and T(x−) < 0, (36)

for some regularization parameter λ > 0. Approximation goes beyond the scope of this paper
and we refer to [46] and [47] for some results on the topic.

Remark 15. Ameasure µ ∈ M is said to be identifiable if, given its sequence of Fourier coefficients
v = (vm)Mm=−M , it is the unique solution of the problem (31). That is, an identifiable measure
can be perfectly recovered from v = Fµ. If T(v) is indefinite, we have seen above that well
separated measures are identifiable, but this is only a sufficient condition: there are measures
which are not well separated but are identifiable. The picture is different if we restrict ourselves
to positive measures; as a consequence of Proposition 2, we have the property: a positive measure
is identifiable if and only if it is concentrated at K ≤ M points of T . It is remarkable that all the
information about a positive discrete measure concentrated in at most M points is encoded in
its coefficients (vm)Mm=1 (since v0 can be recovered as the opposite of the smallest eigenvalue
of T((v∗

M , . . . ,v
∗
1, 0,v1, . . . ,vM )) ), characterized by the critical number 2M of real degrees of

freedom, without any constraint.
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7 Numerical resolution of (30)

Since the equivalent problems (28) and (30) are semidefinite programs, many efficient algorith-
mic strategies exist to solve them to an arbitrary precision. It is beyond the scope of this paper
to compare them. We present a first order iterative algorithm, which is simple to implement and
turns out to be fast. It is an instance of the overrelaxed version [48,49] of the Chambolle–Pock
algorithm [50]. The algorithm is the following, where T∗ is the adjoint operator of T and P40
denotes the projection onto the convex cone of negative semidefinite matrices, by computing the
eigendecomposition and setting the positive eigenvalues to zero.

Algorithm 1. Input: v ∈ V . Output: estimate x (i) of v+, the solution of (30). Choose the
proximal parameter τ > 0 and the relaxation parameter ρ ∈ [1, 2). Choose the initial estimate

x (0) ∈ V of v+. Set σ := 1/τ/(2‖T‖2) = 1/τ/(2M + 2). Set U (0)
1 := U

(0)
2 := T(0V ), the zero

matrix. Set V := T(v). Then iterate, for i = 0, 1, . . .
������������

1. x̃ (i+1) := x (i) − τT∗(U (i)
1 +U

(i)
2 ) − τ (1, 0, . . . , 0),

2. Ũ
(i+1)
1 := P40

(
U

(i)
1 + σT(2x̃ (i+1) − x (i))

)
,

3. Ũ
(i+1)
2 := P40

(
U

(i)
2 − σV + σT(2x̃ (i+1) − x (i))

)
,

4. (x (i+1),U (i+1)
1 ,U

(i+1)
2 ) := ρ(x̃ (i+1), Ũ (i+1)

1 , Ũ
(i+1)
2 )

+ (1 − ρ)(x (i),U (i)
1 ,U

(i)
2 ).

The algorithm converges to the solution v+ of (30) [48, Theorem 5.3]. Moreover, the num-

ber of positive eigenvalues of U (i)
1 + σT(2x̃ (i+1) − x (i)) and U

(i)
2 − σV + σT(2x̃ (i+1) − x (i)) are

robust estimates of K+ = rank(V +) and K−
= rank(V −), the number of positive and negative

atoms in the minimal atomic decomposition of v , respectively. The complexity of every iteration
is dominated by the computation of two eigendecompositions, so the algorithm has complexity
O(M3) per iteration. In practice, we initialize the algorithm with the positive part of the decom-
position given in Proposition 3; that is, given the parameters {zk }, {ck } of this decomposition,
we set x (0) =

∑2M
k=1 max(ck , 0)a(zk ). So, x (0) is feasible for the problem (30); that is, T(x (0)) < 0

and T(x (0) −v) < 0.
We can note that the overrelaxed Chambolle–Pock algorithm can also be used to solve (36).

An alternative way to compute the atomic norm ofv is to solve the semidefinite program [6,
7,9]

minimize
q∈C4M+1 s.t. q−m=q∗m , t ∈R

1
2 (q0 + t)

s.t.



v−M

T(q) ...

vM
vM · · · v−M t



< 0, (37)

the optimal value of which is equal to ‖v ‖a. Since the constraint in (37) implies T(q) < 0,
Carathéodory’s Theorem is applicable and Prony’s method applied to T(q) allows us to recover
the parameters zk of the minimal atomic decomposition ofv . It is easy to show that at optimality,
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t = q0 = ‖v ‖a, so that it is better, for faster convergence, to remove the unnecessary variable t
and to consider the problem

minimize
q∈C4M+1 s.t. q−m=q∗m

q0

s.t.



v−M

T(q) ...

vM
vM · · · v−M q0



< 0. (38)

A typical algorithm to solve (37) or (38) needs one eigendecomposition per iteration, instead of
two with the proposed Algorithm 1, but it involves a matrix twice larger. Since the complexity
of the eigendecomposition scales with the cube of the matrix size, we expect Algorithm 1 to be
faster. We leave for future work a numerical comparison of different formulations and algorithms
to compute the atomic norm of v .

8 Uniform decomposition with at most 2M atoms

In this section, we present a new construction of a uniform atomic decomposition of v , with at
most 2M atoms.

Proposition 3. There exists an atomic decomposition ofv , with at most 2M atoms located uniformly
on T , with an explicit form:

v =

2M∑

k=1

cka(zk ), (39)

where zk := e j(2πk/(2M)−ϕ ) and ϕ := arg(vM )/M (40)

(if vM = 0, every ϕ is suitable), and the ck are obtained by inverse discrete Fourier transform from
the sequence (vme− jmϕ )M−1

m=−M :

ck :=
1

2M

M−1∑

m=−M
(vme− jmϕ )e j2πmk/(2M)

, k = 1, . . . , 2M . (41)

Proof: we first remark that the ck in (41) are real, since v−me− j(−m)ϕ
= (vme− jmϕ )∗ and this

value is real form = 0 andm = −M. Then it is sufficient to notice that

vme− jmϕ
=

2M∑

k=1

cke
− j2πmk/(2M)

, m = −M, . . . ,M − 1. (42)

So (we check that the formula is also valid form = M),

vm =

2M∑

k=1

cke
− jm(2πk/(2M)−ϕ )

, m = −M, . . . ,M . � (43)
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Note that the number of atoms in the proposition is at most 2M, and not exactly 2M, because
some ck can be zero in (39) and (41).

In terms of extrapolation of v = (vm)Mm=−M to the infinite sequence (vm)m∈Z of Fourier

coefficients of µ =
∑2M

k=1 ckδe j(2πk/(2M )−ϕ) , we get

vm = e j(m−[m])ϕv[m], m ∈ Z, (44)

where [m] = rem(m + M, 2M) − M and rem(n,N ) ∈ {0, . . . ,N − 1} is the remainder of the
Euclidean division of n ∈ Z by N .

Remark 16. Duval and Peyré showed that there exists a measure with separation 1/(2M), which
is not identifiable, by exhibiting δe− j2π /(2M ) +δe0 −δe j2π /(2M ) and proving that it is not the solution
of (31) [22, Corollary 1]. According to Proposition 3, measures with separation 1/(2M), which
are not identifiable, are the rule rather than the exception. Indeed, every v ∈ V is explained by
the measure with separation 1/(2M) constructed in Proposition 3, and there is no reason that
this measure has minimal total variation norm, in general.

Now, let us consider the case where v is made of a single atom: v = ca(z), for some c > 0
and z ∈ T (the case c < 0 is addressed the same way). T(v) is positive definite, of rank 1, so
the analysis of Section 5 shows that v = ca(z) is the unique positive atomic decomposition of v
and the unique minimal atomic decomposition of v . Moreover, this single-atom decomposition
coincides with the one of Proposition 3: the ck in (41) are all zero, except ck0 = c for k0 =
{2M if ω = 0, 2M(ϕ + ω)/(2π ) else}, where ω = arg(z). Indeed, if ω > 0, ϕ = arg(e− jMω )/M,
so ϕ = −ω + 2πk0/(2M) for some even k0 ∈ {2, 4, . . . , 2M}. Since the sequence (vme− jmϕ

=

ce− j2πmk0/(2M))M−1
m=−M is a sampled complex exponential of frequency multiple of 1/(2M), its

inverse discrete Fourier transforms gives ck all equal to zero, except ck0 = c.
After this simple case of a single atom, we direct our attention to the case of two atoms with

opposite amplitudes, in the next section.

9 Case of 2 atoms with opposite amplitudes

Let us now consider that v is the sum of two atoms with opposite amplitudes. So, let z1 and z2
be two distinct elements of T and let c be a positive real. We set

v = ca(z1) − ca(z2). (45)

Set ω1 := arg(z1), ω2 := arg(z2). Then we have

vm = ce
− jmω1 − ce− jmω2 , m = −M, . . . ,M . (46)

We introduce the 2π -periodic function

ϒ : ω ∈ R 7→
sin

(
ω(2M + 1)/2

)
+ sin

(
ω(2M − 1)/2

)

4M sin(ω/2) (47)

=

1

4M
e− jMω

+

1

2M

M−1∑

m=−M+1
e jmω

+

1

4M
e jMω

, (48)
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Figure 1: Plot of the function ϒ(ω), defined in (47), for different values of M.

extended by continuity to ϒ(0) = 1. Note that ϒ(2πk/(2M)) = 0 for every k = 1, . . . , 2M − 1.
The function ϒ is plotted in Figure 1 for the first values of M.

Proposition 4. In the present case of two atoms with opposite amplitudes, the decomposition of
Proposition 3 can be rewritten as (up to a circular permutation on the indices):

v =

2M∑

k=1

cka(e jωk ), (49)

where ωk =
2πk

2M
− 2π

4M
+

ω1 + ω2

2
, (50)

ck = cϒ

(
2πk

2M
− 2π

4M
+

ω2 −ω1

2

)
− cϒ

(
2πk

2M
− 2π

4M
+

ω1 − ω2

2

)
. (51)

Proof: By combining (46), (41) and the fact that v−Me jMϕ
= vMe− jMϕ ∈ R, we obtain

ck = cϒ
( 2πk
2M − ϕ − ω1

)
− cϒ

( 2πk
2M − ϕ − ω2

)
. (52)

Moreover, we have ϕ = arg(e− jMω1 + e− j(Mω2+π ))/M, so ϕ = −(ω1 + ω2)/2 + 2π/(4M) +
2πk0/(2M), for some k0 ∈ Z. �

An example is illustrated in Figure 2. In Figure 3, we show the behavior of the atomic norm
of v , as a function of d(z1, z2). We observe, without proof, that if this distance is larger than or
equal to 1/(2M), the measure δz1 − δz2 is identifiable.

10 Optimal transport controlled in Fourier domain

Building upon the analysis in the previous section, we now focus on optimal transport between
two measures, given only finite sequences of their Fourier coefficients. Optimal transport of
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Figure 2: The two measures µ♯ = δe j2π 0.51 − δe j2π 0.54, in red, and µ⋆ =
∑2M

k=1 ckδzk given
by Propositions 3 and 4, in blue, for M = 10, have the same sequence of Fourier coeffi-
cients v = (vm)Mm=−M . These two measures have total variation norm ‖µ♯ ‖TV = 2 and

‖µ⋆‖TV =
∑2M
k=1 |ck | ≈ 1.6, respectively. Numerical minimization of the atomic norm of v yields

the minimal atomic decomposition v =
∑2M

k=1 cka(zk ), so ‖v ‖a = ‖µ⋆‖TV and µ⋆ is the measure
of minimal total variation norm explaining v .

measures [51, 52] has grown significantly in recent years, due to a wide range of applications,
from image processing [53] to speech processing [54].

Given a nonnegative cost function f on T
2, the optimal transport cost Tf (µ, µ ′) between two

positive measures µ and µ ′ ofM2, with same mass µ(T) = µ ′(T), is the infimum, over all positive
measures ν on T

2 with marginals µ and µ ′ on the first and second factors, respectively, of the
cost

∫
T2 f (z, z′)dν(z, z′) [51,55].

Let us extend this definition to signed measures. We define the optimal transport cost Tf
between a pair of signed measures (µ, µ ′) ∈ M

2 with same mass as the infimum, over all finite
signed Borel measures ν on T

2 with marginals µ and µ ′, of
∫
T2 f (z, z′)d|ν |(z, z′), where |ν | =

ν+ + ν−. This definition, however, is meaningful only for concave costs, since it vanishes for
convex costs: if the cost is concave, i.e. f = ϕ ◦ d for some increasing and concave function ϕ

with ϕ(0) = 0, then Tf (µ, µ ′) = Tf (µ+ + µ ′−, µ ′+ + µ−).
Some classical cost functions f are the following. First, if we consider the binary distance

f (z, z′) = {0 if z = z′, 1 else}, then Tf (µ, µ ′) is equal to the scaled Radon distance dR(µ, µ ′)
defined as

dR(µ, µ ′) = 1
2 ‖µ − µ ′‖TV, (53)

for every µ and µ ′ in Mwith same mass. Second, if f = d , for positive measures µ and µ ′ with
same mass, then Tf becomes the Wasserstein-1 distance, denoted by dW1. Since f is a concave
function of d , Tf can be extended to signed measures, not only positive ones. Finally, if f = d2,
for positive measures with same mass, the square root of Tf is theWasserstein-2 distance denoted
by dW2. We are not able to extend this functional to signed measures, however.
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Figure 3: Value of the total variation norm ‖µ♯ ‖TV = {0 if z1 = z2, 2 else}, in red, and ‖µ⋆‖TV =∑2M
k=1 |ck |, in blue, as a function of d(z1, z2), forM = 10, where the two measures µ♯ = δz1 − δz2

and µ⋆ =
∑2M
k=1 ckδzk given by Proposition 4, have the same sequence of Fourier coefficientsv =

(vm)Mm=−M . In black, the atomic norm of v . We observe that when d(z1, z2) < 1/(2M), µ⋆ is the
measure of minimal total variation norm explainingv , so ‖v ‖a = ‖µ⋆‖TV = 2 sin

(
πMd(z1, z2)

)
.

Else, when d(z1, z2) ≥ 1/(2M), µ♯ is the measure of minimal total variation norm explaining v ,
so ‖v ‖a = ‖µ♯ ‖TV = 2.

Since we want to do optimal transport betweenmeasures, given only finite sequences of their
Fourier coefficients, we now introduce the atomic transport cost, denoted by Ta,f , associated
to any nonnegative cost function f on T

2. We restrict ourselves to the concave case; that is,
f = ϕ ◦ d for some increasing and concave function ϕ with ϕ(0) = 0. So, for every (v,v ′) ∈ V

2

with v0 = v
′
0,

Ta,f (v,v ′) := min
{
Tf (µ, µ ′) : (µ, µ ′) ∈ M

2
, Fµ = v, Fµ ′ = v ′}

. (54)

The difficulty is of course to exhibit computable expressions of the atomic transport cost.

In the simple case of the binary distance f (z, z′) = {0 if z = z′, 1 else}, we call the atomic
transport cost the atomic Radon distance, denoted da0, and we have, for every (v,v ′) ∈ V

2 with
v0 = v

′
0,

da0(v,v ′) := min
{
dR(µ, µ ′) : (µ, µ ′) ∈ M

2
, Fµ = v, Fµ ′ = v ′} (55)

= min
{
1
2 ‖µ − µ ′‖TV : (µ, µ ′) ∈ M

2
, Fµ = v, Fµ ′ = v ′} (56)

= min
{
1
2 ‖η‖TV : η ∈ M, Fη = v − v ′} (57)

=
1
2 ‖v −v ′‖a. (58)

This distance, which is convex with respect to the pair (v,v ′), allows us to quantify whether v
and v ′ are different. Its precision naturally depends onM. We show in Figure 4 the value of da0
taken at a pair of atoms, as a function of the distance of their frequencies, which is explained by
the analysis carried out in Section 9.
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Figure 4: Value of the atomic Radon distance da0
(
a(z1), a(z2)

)
as a function of d(z1, z2), in black,

with M = 10. We observe that if d(z1, z2) < 1/(2M), da0
(
a(z1), a(z2)

)
= sin

(
πMd(z1, z2)

)
.

However, if d(z1, z2) ≥ 1/(2M), da0
(
a(z1), a(z2)

)
= 1, which is the expected value, namely the

Radon distance between δz1 and δz2 .

Let us now turn our attention to the 1-Wasserstein distance. When f = d , we call the atomic
transport cost the atomic 1-Wasserstein distance, denoted by da1, defined as follows: for every
(v,v ′) ∈ V

2 with v0 = v
′
0,

da1(v,v ′) := min
{
dW1(µ, µ ′) : (µ, µ ′) ∈ M

2
, Fµ = v, Fµ ′ = v ′}

. (59)

Like for the atomic Radon distance, we can express the atomic 1-Wasserstein distance as a
semidefinite program:

Proposition 5. Let (v,v ′) ∈ V
2 with v0 = v

′
0. Setw =

(
(vm − v ′

m)/(j2πm)
)M
m=−M , withw0 = 0,

and setW = T(w). Then

da1(v,v ′) = min
{
‖η‖TV : η ∈ M, Fη = w with (60)

j2πmwm = vm −v ′
m, m = −M, . . . ,M

}
,

= min
X ,β ∈R

( 2
M+1 tr(X ) + β

)
s.t. X ∈ T(V) (61)

and X < 0 and X −W + βId < 0,

= min
X

( 2
M+1 tr(X ) + i+(W −X )

)
s.t. (62)

X ∈ T(V) and X < 0,

where i+ denotes the largest eigenvalue.

Proof: For every (µ, µ ′) ∈ M
2, it is known that dW1(µ, µ ′) only depends on µ − µ ′ and has the

expression

dW1 = min
α ∈R

1

2π

∫

T

|F (z) − F ′(z) − α |dz, (63)

19



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

d(z
1
,z

2
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 5: Value of the atomic 1-Wasserstein distance da1
(
a(z1), a(z2)

)
as a function of d(z1, z2),

in black, with M = 10. We observe that the atomic 1-Wasserstein distance is equal to d(z1, z2),
in red, except for the largest values, where this distance is underestimated.

where F and F ′ are the cumulative distribution functions of µ and µ ′, respectively [55,56]. Let
α ∈ R and set the function η = F − F ′ − α . Set v = Fµ and v ′

= Fµ ′. Let us interpret η
as a measure in M and set w = Fη. We have the relationship j2πmwm = vm − v ′

m , for every
m = −M, . . . ,M. The expression (60) follows. Then we see that da1(v,v ′) takes a form similar
to the atomic norm ofw, but withw0, or equivalently the real α in (63) or the real β in (61), as
an additional degree of freedom. So, (61) is nothing but the semidefinite characterization (33)
of the atomic norm. Finally, for a fixed X , the real β minimizing β subject to X −W + βId < 0
is the largest eigenvalue ofW −X , so that we can remove this variable. �

In Figure 5, we can see that whenv andv ′ are atoms, da1(v,v ′) closely matches the distance
between their frequencies.

Finally, let us focus on the case of the squared 2-Wasserstein distance d2
W2 = Tf with f = d2.

Since f is not concave with respect to d , the optimal transport cost Tf (µ, µ ′) does not only
depend on µ − µ ′ [55,56]. Moreover, it seems difficult to extend it to a convex functional with
respect to a pair of signed measures. So, we restrict ourselves to the positive case. That is, given
(v,v ′) ∈ V

2 with v0 = v ′
0, T(v) < 0 and T(v) < 0, we define the atomic 2-Wasserstein distance

as

da2(v,v ′) := min
{
dW2(µ, µ ′) : µ and µ ′ are positive measures, (64)

Fµ = v, Fµ ′ = v ′}
.

We can note that this distance is exact for atoms: for every z ∈ T , there is only one positive
measure explaining a(z), which is δz , and there is only one positive measure ν on T

2 having two
Diracs as marginals, which is a Dirac. So, for every (z, z′) ∈ T

2, da2
(
a(z), a(z′)

)2
= d(z, z′)2.

However, there is little hope to express the squared atomic 2-Wasserstein distance as a finite-
dimensional convex program. So, we will propose an approximation of this functional. We
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restrict ourselves to the case where v ′ is fixed and is an atom: v ′
= a(z′) for some z′ ∈ T . We

want to design a function d̃a2,z′ ofv ∈ V , withv0 = 1 and T(v) < 0, whose square approximates
da2(v,v ′)2 = min{

∫
T
d(z, z′)2dµ(z) : µ is a positive measure and Fµ = v}. For this, we mimic

the construction of da1, which is the total variation of a measure whose ‘first derivative’ explains
v − v ′, up to a constant: we define d̃a2,z′(v)2 as the total variation of a measure whose ‘second

derivative’ explains
(
vm − 2v ′

m + (v ′
m)2v∗

m

)M
m=−M ; that is,

d̃a2,z′(v)2 := min
{
η(T) : η is a positive measure, Fη = w,

with −4π 2m2wm = vm − 2v ′
m + (v ′

m)2v∗
m, m = −M, . . . ,M

}
. (65)

It turns out that this function has a closed-form expression: let

w =
(
(vm − 2v ′

m + (v ′
m)2v∗

m)/(−4π 2m2)
)M
m=−M , withw0 = 0, andW = T(w); then

d̃a2,z′(v)2 = i+(−W ). (66)

In Figure 6, we can see that when v = a(z) is an atom, d̃a2,z′(v)2 closely matches the squared
distance d(z, z′)2 between the frequencies.

In Figure 7, we show a toy application of the proposed approximate atomic 2-Wasserstein
distance: we compute the Wasserstein barycenter [57] v ∈ V of two atoms a(z) and a(z′), with
z = ej2π/10, z′ = ej2π/20, M = 10. That is, v minimizes d̃a2,z (v)2 + d̃a2,z′(v)2. The overrelaxed
Chambolle–Pock algorithm is used again to solve this convex optimization problem. The solution
v turns out to be the atom a(ej3π/20), whose frequency is the mean of the frequencies of the two
given atoms. So, we can interpolate between two sampled complex exponentials, by solving a
convex optimization problem, without having to first identify their frequencies. This opens the
door to many signal processing applications.
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Figure 7: In (a) and (b): two atoms a(z) =
(
a(z)m

)M
m=−M and a(z′) =

(
a(z′)m

)M
m=−M , respec-

tively, with z = ej2π/10, z′ = ej2π/20, M = 10; the indexm is in abscissa, the real and imaginary
parts of the values are in ordinate, with black and red colors, respectively. In (c): the atomic
Wasserstein barycenter v ∈ V , which minimizes d̃a2,z (v)2 + d̃a2,z′(v)2; it turns out that v is the
atom a(ej3π/20), whose frequency is the mean of the frequencies of the two given atoms.

11 Conclusion

We studied the properties of decompositions of vectors into complex exponentials and we pro-
posed convex formulations to implement these decompositions. Roughly speaking, the analy-
sis is based on splitting the vectors (and associated Toeplitz matrices) into negative and pos-
itive (semidefinite) parts and applying the powerful characterization of Toeplitz matrices by
Carathéodory to them. Besides, we have introduced functionals to perform optimal transport
between two measures, given only a finite number of their Fourier coefficients. This makes it
possible to deal with measures computationally, without the need to discretize them on a grid of
predefined locations. Further theoretical investigations are needed and the relationship between
the proposed construction and existing spectral transport approaches for audio signal process-
ing [58,59] should be investigated. In future work, the author will apply this framework to the
approximation and reconstruction of signals and images [60–62].
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