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Introduction

Balancedness for words or subshifts is a measure of disorder that provides strong convergence properties for frequencies of letters and words. In ergodic terms, balancedness can be interpreted as an optimal speed of convergence of Birkhoff sums toward frequencies of words. In combinatorial terms, given a finite alphabet A, a word u ∈ A Z is said to be balanced on the finite word v ∈ A * if there exists a constant C v such that for every pair (w, w ) of factors of u of the same length, the difference between the number of occurrences of v in each word w and w differs by at most C v , that is, ||w| v -|w | v | ≤ C v , for |w| = |w |, where the notation |w| v stands the number of occurrences of v, and |w|, for its length.

The study of balancedness belongs to the general domain of aperiodic order (see e.g. [BG13]), and is considered for words as well as for tilings and Delone sets in the context of quasicrystals. The notion of balancedness first occurred under the form of 1-balance for letters for infinite words defined over a two-letter alphabet1 in the seminal papers by Morse and Hedlund [START_REF] Morse | Symbolic dynamics[END_REF][START_REF] Morse | Symbolic dynamics II. Sturmian trajectories[END_REF] who layed the ground for the study of symbolic dynamics and Sturmian words. The infinite words that are 1-balanced over a two-letter alphabet are indeed exactly the Sturmian words.

The notion of balancedness has then been considered for larger size alphabets, for C-balance, with C > 1, and for factors, instead of letters. Words over a higher-size alphabet that are 1balanced have been characterized in [START_REF] Hubert | Suites équilibrées[END_REF] and shown to be closely related to Sturmian words. Moreover, Sturmian words have been proved to be balanced on their factors in [START_REF] Fagnot | Generalized balances in Sturmian words[END_REF]. Note that the number of 1-balanced words of length n is polynomial [START_REF] Lipatov | A classification of binary collections and properties of homogeneity classes[END_REF][START_REF] Mignosi | On the number of factors of Sturmian words[END_REF] while the number of C-balanced words of length n for C > 1 is exponential [START_REF] Lipatov | A classification of binary collections and properties of homogeneity classes[END_REF] and, therefore, being C-balanced is relatively common.

This notion is natural and has thus been widely studied from many viewpoints, for instance in ergodic theory [START_REF] Cassaigne | Imbalances in Arnoux-Rauzy sequences[END_REF][START_REF] Cassaigne | Weak mixing and eigenvalues for Arnoux-Rauzy sequences[END_REF] to prove weak mixing properties, in number theory in connection with Fraenkel's conjecture [START_REF] Fraenkel | Complementing and exactly covering sequences[END_REF][START_REF] Tijdeman | Fraenkel's conjecture for six sequences[END_REF] (see also [START_REF] Tijdeman | Fraenkel's conjecture for six sequences[END_REF] and the survey on balanced words [START_REF] Vuillon | Balanced words[END_REF]), or else, in operations research, for optimal routing and scheduling; see e.g. [AGH00, [START_REF] Brauner | The maximum deviation just-in-time scheduling problem[END_REF][START_REF] Brauner | Small deviations, JIT sequencing and symmetric case of Fraenkel's conjecture[END_REF][START_REF] Tijdeman | The chairman assignment problem[END_REF]. Balancedness is also closely related to symbolic discrepancy, as investigated in [START_REF] Adamczewski | Balances for fixed points of primitive substitutions[END_REF][START_REF] Adamczewski | Symbolic discrepancy and self-similar dynamics[END_REF].

In the multidimensional framework, balancedness has been considered both for multidimensional words [START_REF] Berthé | Balance properties of multi-dimensional words[END_REF] and for tilings [START_REF] Sadun | Finitely balanced sequences and plasticity of 1-dimensional tilings[END_REF]. This notion has to be compared with homogeneity (related to 0-balance) such as introduced by M. Nivat in [START_REF] Nivat | Sous-ensembles homogènes de Z 2 et pavages du plan[END_REF]. A binary two-dimensional word U in {0, 1} Z 2 is k-homogeneous for a finite subset F if, whatever the position of the window F in U , exactly k ones appear in the window. M. Nivat proved in [START_REF] Nivat | Sous-ensembles homogènes de Z 2 et pavages du plan[END_REF] that a two-dimensional word is 1-homogeneous for a window F if and only if F tiles the plane; recall that this latter property has been been characterized in [START_REF] Beauquier | On translating one polyomino to tile the plane[END_REF]. Providing measures of order for words or tilings has constantly been in M. Nivat's research interests; let us quote e.g. the paper [START_REF] Brlek | On the palindromic complexity of infinite words[END_REF] which has opened the way to the study of palindromic defect and complexity, or else, Nivat's conjecture which states that if a two-dimensional word admits at most mn rectangular factors of size (m, n), then it admits at least one direction of periodicity. This elegant and apparently simple conjecture has been formulated by M. Nivat in 1997 during an invited talk at ICALP and has lead to various approaches and numerous results. See for instance [CK15, [START_REF] Kari | Nivat's conjecture and pattern complexity in algebraic subshifts[END_REF][START_REF] Kari | An algebraic geometric approach to multidimensional words[END_REF] for further references and examples of the latests developments on this conjecture.

In the case of primitive substitutions, if balancedness is known to be closely related to the eigenvalues of the substitution matrix (see [START_REF] Adamczewski | Balances for fixed points of primitive substitutions[END_REF][START_REF] Adamczewski | Symbolic discrepancy and self-similar dynamics[END_REF] and Section 2.3), it is not completely characterized in purely linear terms (see Remark 2.5). Note that there is an important literature devoted to the measure of imbalances, considered as deviations for Birkhoff sums, for substitutions acting on words or, in the higher-dimensional framework, for tiling substitutions. See in particular [START_REF] Bressaud | Deviation of ergodic averages for substitution dynamical systems with eigenvalues of modulus 1[END_REF][START_REF] Paquette | Birkhoff sum fluctuations in substitution dynamical systems[END_REF] where Central Limit Theorems are considered for deviations of ergodic sums for substitution subshifts. In [START_REF] Bufetov | Limit theorems for self-similar tilings[END_REF], deviation of ergodic averages for R d -actions by translation associated with self-similar tilings are also investigated with new phenomena due to the dimension; this is the so-called boundary effects expressed in terms of the eigenvalues of the underlying substitution matrix. See also [START_REF] Sadun | Exact regularity and the cohomology of tiling spaces[END_REF] based on the use of cohomology for tiling spaces. Similarly, a criterion for balancedness for S-adic words (obtained by iterating several substitutions and not only one) is given in [START_REF] Berthé | Beyond substitutive dynamical systems: S-adic expansions[END_REF]Theorem 5.8] in terms of convergence of products of matrices; see [START_REF] Delecroix | Balancedness of Arnoux-Rauzy and Brun words[END_REF] for an example of application for Brun substitutions. We discuss further S-adic examples in Section 3.3.

In this paper, we study balancedness for some families of words of low factor complexity2 , not only for letters, but also for factors. We focus on two families of words, namely dendric words in Section 3 and fixed points of primitive substitutions having rational frequencies in Section 4. Dendric words are also called tree words (see e.g. [BDFD + 15b, BDFD + 15c, BDFD + 15d, BDFD + 15a, BDD + 17]). These two families behave in different ways with respect to balancedness. Frequencies of factors of dendric words are irrational [BDD + 17] and balancedness for letters is equivalent to balancedness for factors (Theorem 1.1). In the case of substitutions, the example of the Thue-Morse substitution (handled in Corollary 4.10) illustrates the fact that one can have balancedness on letters and imbalances on factors. Our approach does not rely on linear algebra and on the substitution matrix, or, in the dendric case, on the underlying Sadic expansion, and it allows us to prove balancedness results for specific factors, which cannot be reached by the linear results based the substitution matrix. We exploit ideas issued from topological dynamics (and in particular, the notion of coboundary) for the study of balancedness of fixed points of primitive substitutions words with rational frequencies in Section 4 and, conversely, we use balancedness to deduce spectral properties in Section 3, which uses purely combinatorial methods. Our main results are the following.

Theorem 1.1 Let (X, T ) be a minimal dendric subshift. Then (X, T ) is balanced on letters if and only if it is balanced on factors. In particular, if (X, T ) is balanced, then all the frequencies of factors are additive topological eigenvalues and all cylinders are bounded remainder sets.

Theorem 1.2 Let σ be a primitive substitution over the alphabet A. Let v in the language of σ having rational frequency µ v and write µ v = p v /q v in irreducible form. We assume that the associated subshift (X σ , T ) is balanced on v.

1. For all a ∈ A and for all return word w to a, q v divides |σ n (w)| for n large enough. In particular, if aa ∈ L 2 (X σ ), then q v divides |σ n (a)| for all n large enough.

2. Let a ∈ A and suppose that there exist b, c ∈ A such that bac ∈ L 3 (X σ ) and bc ∈ L 2 (X σ ).

Then q v divides |σ n (a)| for n large enough.

We briefly describe the contents of this paper. Basic definitions are recalled in Section 2. In particular, we stress the relations between balances and discrepancy in Section 2.2, we recall balancedness results for substitutions in Section 2.3, and highlight the connections with coboundaries and spectral eigenvalues in Section 2.4. The approach of Section 3 is combinatorial and applies to a wide family of infinite words and subshifts, namely the family of dendric words. The case of Arnoux-Rauzy words is discussed in Section 3.3. In Section 4, a topological dynamics approach is developed for infinite words for which frequencies do exist and are rational, based on the existence of coboundaries taking rational values. Some examples are discussed in Section 4.3.

Basic definitions

Words and symbolic dynamical systems

Let A be a finite non-empty alphabet of cardinality d. Let us denote by ε the empty word of the free monoid A * , and by A Z the set of bi-infinite words over A. For i ∈ A and for w ∈ A * , |w| i stands for the number of occurrences of the letter i in the word w, and |w| stands for the length of w. The ith letter of w is denoted as w i by labelling indices from 0, i.e., w = w 0 • • • w |w|-1 . A factor of a (finite or infinite) word u is defined as the concatenation of consecutive letters occurring in u. We use the notation w ≺ u for w a factor of u. The set of factors L(u) of an infinite word u is called its language. The factor complexity of the bi-infinite word u counts the number of factors of u a given length. The bi-infinite word u = (u n ) n ∈ A Z is said to be uniformly recurrent if every word occurring in u occurs in an infinite number of positions with bounded gaps, that is, for every factor w, there exists s such that, for every n, w is a factor of u n . . . u n+s-1 . Let u be uniformly recurrent bi-infinite word in A Z . Let v ∈ A * be a factor of u. A word w with wv in L(u) is a return word to v in u if v is a prefix of wv. Symbolic dynamical systems. Let T stand for the shift acting on A Z , that is, T ((u n ) n∈Z ) = (u n+1 ) n∈Z . A subshift (also called a shift) is a couple (X, T ) where X is a closed shift-invariant subset of some A Z . Here the set A Z is equipped with the product topology of the discrete topology on each copy of A. One associates with any bi-infinite word u in A Z the symbolic dynamical system (X u , T ), where the subshift X u ⊂ A Z is defined as

X u = {v ∈ A Z : ∀w ≺ v, w ≺ u}.
A subshift X is said to be minimal if it admits no non-trivial closed and shift-invariant subset. This is equivalent to the fact that every bi-infinite word u in X is uniformly recurrent. If X is a subshift, then its language L(X) is defined as the set of factors of elements of X. For any n ≥ 1, we let denote by L n (X) the set of factors of length n of elements in X.

Substitution dynamical systems.

A substitution σ defined on the alphabet A is a nonerasing morphism of the free monoid A * , i.e., there is no letter in A whose image under σ is the empty word. If there exists a letter a such that σ(a) admits the letter a as a strict prefix, then there exists an infinite word u = σ ω (a) such that σ(u) = u. Moreover, if σ(b) admits the letter b as a strict suffix for some letter b, then there exists a bi-infinite word v = σ ω (b) • σ ω (a) such that σ(v) = v, where the dot is located between the letters of index -1 and 0. Such infinite and bi-infinite words are said to be fixed points of the substitution σ.

Let |A| stand for the cardinality of A. The substitution matrix (or incidence matrix) M σ of σ is the |A| × |A|-matrix whose coefficients are M σ (a, b) = |σ(b)| a . The substitution σ is said to be primitive if there exists a power of M σ which is strictly positive. Given a primitive substitution σ on the finite alphabet A, the symbolic system associated with σ is the pair (X σ , T ), where

X σ := {x ∈ A Z : ∀w ≺ x, ∃a ∈ A, ∃n ∈ N s.t. w ≺ σ n (a)}.
Note that the subshift X σ is generated by any bi-infinite word v such that σ k (v) = v for some positive k, i.e., X σ = X v . The language of σ is defined as L(X σ ). Primitive substitutions are known to be recognizable, i.e., they can be uniquely desubstituted [START_REF] Mossé | Puissances de mots et reconnaissabilité des points fixes d'une substitution[END_REF][START_REF] Mossé | Reconnaissabilité des substitutions et complexité des suites automatiques[END_REF]. More precisely, for any x ∈ X σ , there exists a unique pair (y, k) with y ∈ X σ and 0 ≤ k < |σ(y 0 )| such that x = T k σ(y).

According to Perron-Frobenius' theorem, if a substitution is primitive, then its substitution matrix admits a dominant eigenvalue (it dominates strictly in modulus the other eigenvalues) that is (strictly) positive. It is called its Perron-Frobenius eigenvalue, or else its expansion factor. Pisot substitutions are primitive substitutions such that the dominant Perron-Frobenius eigenvalue of their substitution matrix is a Pisot number, that is, an algebraic integer whose conjugates lie strictly inside the unit disk. Note that Pisot irreducible substitutions, that is, Pisot substitutions for which the characteristic polynomial of their substitution matrix is irreducible, are conjectured to have pure discrete spectrum in the measure-theoretic sense. This is called the Pisot substitution conjecture (see e.g. the survey [ABB + 15]).

Frequencies and invariant measures. Let u be an bi-infinite word in A Z . The frequency µ v of a finite word v ∈ A * is defined as the limit, when n tends toward infinity, if it exists, of the number of occurrences of

v in u -n • • • u -1 u 0 u 1 • • • u n-1 divided by 2n + 1, i.e., µ v = lim n→+∞ |u -n • • • u 0 • • • u n | v 2n + 1 .
Assume that the frequencies of the factors of u all exist. The infinite word u is said to have uniform frequencies if, for every factor v of u, the convergence toward µ v of

|u k •••u k+2n |v 2n+1
is uniform in k, when n tends to infinity.

Let (X, T ) be a subshift with X ⊂ A Z . A probability measure µ on X is said T -invariant if µ(T -1 A) = µ(A) for every measurable set A ⊂ X. The subshift (X, T ) is uniquely ergodic if there exists a unique shift-invariant probability measure on X. The subshift (X, T ) is uniquely ergodic if and only if every bi-infinite word u in X has uniform factor frequencies. In that case, one recovers the frequency

µ v of a factor v = v 0 • • • v n as µ v = µ([v]
), where the cylinder

[v] := {u ∈ X; u 0 . . . u n = v}.
For more on invariant measures and ergodicity, we refer to [START_REF] Queffélec | Substitution dynamical systems-spectral analysis[END_REF] and [START_REF] Berthé | Combinatorics, automata and number theory[END_REF]Chap. 7]. We also recall that the substitutive subshift X σ determined by a primitive substitution σ is uniquely ergodic and minimal (see e.g. [START_REF] Queffélec | Substitution dynamical systems-spectral analysis[END_REF]).

Balancedness and discrepancy

A bi-infinite word u ∈ A Z is said to be balanced on the factor v ∈ L(u) if there exists a constant C v such that for every pair (w, w ) of factors of u,

if |w| = |w |, then ||w| v -|w | v | ≤ C v .
It is balanced on letters if it is balanced on each letter in A, it is balanced on factors if it is balanced on all its factors, and lastly, it is balanced on factors of length n if it is balanced on all its factors of length n. Similarly, a subshift (X, T ) with X ⊂ A Z is said to be balanced on the factor v ∈ L(X) if there exists a constant C v such that for all w, w in L(X)

with |w| = |w |, then ||w| v -|w | v | ≤ C v .
The notions of balancedness for letters, words or words of a given length extend similarly to subshifts. Note that in the first papers devoted to balancedness, balance was used to refer to 1-balance for letters (see e.g. [START_REF] Lothaire | Algebraic combinatorics on words[END_REF]).

Proposition 2.1 below (which is a rephrasing of [Ada03, Lemma 23]) states that balancedness is preserved when decreasing the length of factors. It is thus sufficient to prove that balancedness does not hold for some length to derive that it does not hold for all larger lengths. This will be used in the examples of Section 4.3.

Proposition 2.1 [Ada03, Lemma 23] If a bi-infinite word u is balanced on some factor v, then it is balanced on the prefix of v of length |v| -1. If a bi-infinite word u or a subshift (X, T ) is balanced on factors of length n + 1, then it is balanced on factors of length n.

Proof. Let u ∈ A Z . For every n, we consider an alphabet A n and a bijection θ n : A n → L n (u). The word u (n) := θ n (u), defined over the alphabet A n , codes factors of length n according to the bijection θ n in the same order as in u with overlaps and without repetition. The map θ n •π n •θ -1 n+1 is a morphism from the monoid A * n+1 to A * n+1 that maps letters to letters: it maps the coding of a block of length n+1 to the coding of its prefix of length n. The word u (n) is thus the image by a letter-to-letter substitution of the word u (n+1) ; indeed u

(n) = θ n • π n • θ -1 n+1 (u (n+1)
). We conclude by noticing that the action of a letter-to-letter substitution preserves balancedness. 

= (σ 2 ) ω (0) • (σ 2 ) ω (0) are • • • 0110100110010110 • 0110100110010110 • • • coded by the central letters of u (2) • • • bdcbcabdcabcbdca • bdcbcabdcabcbdcb • • • Discrepancy. Let u ∈ A Z be a bi-infinite word and assume that each factor v ∈ L(u) admits a frequency µ v in u. The discrepancy ∆ v (u) of u with respect to v is defined as ∆ v (u) = sup n∈N ||u -n • • • u 0 . . . u n | v -(2n + 1)µ v |.
The quantity ∆ v (u) is considered e.g. in [START_REF] Adamczewski | Balances for fixed points of primitive substitutions[END_REF][START_REF] Adamczewski | Symbolic discrepancy and self-similar dynamics[END_REF]. One easily checks that u is balanced on the factor v if and only if its discrepancy ∆ v (u) is finite. We also say that the cylinder [v] is a bounded remainder set. It is closely related with the balance function B n (u)

B n (u) = max w,w ∈Ln(u) max a∈A ||w| a -|w | a |.
These definitions extend to any subshift (X, T ) in a straightforward way.

Balancedness and substitutions

We now consider the special case of substitutions. We follow here [START_REF] Queffélec | Substitution dynamical systems-spectral analysis[END_REF]. Let σ be a primitive substitution. Letter frequencies for a primitive substitution σ are known to be provided by the normalized positive eigenvector (whose sum of coordinates equal 1) associated with the Perron-Frobenius eigenvalue of the substitution matrix M σ . We call it the renormalized Perron-Frobenius eigenvector. In other words, the frequency µ a of the letter a is the ath entry of this vector. Similarly, frequencies of factors in L(X σ ) (not only letters) are known to be provided by eigenvectors of a matrix, namely the two-letter substitution matrix that is associated with σ as follows. This construction relies on the coding by k-letter blocks described in the proof of Proposition 2.1. Two-letter factor substitutions. Given a substitution σ, consider the finite set L 2 (X σ ) as an alphabet and define the two-letter factor substitution σ 2 on L 2 (X σ ) as follows (it is also called induced substitution in [BG13]): for every

u = ab ∈ L 2 (X σ ), σ 2 (u) is the word over the alphabet L 2 (X σ ) made of the first |σ(a)| factors of length 2 in σ(u). For instance, if ab ∈ L 2 (X) with σ(a) = a 0 • • • a r , σ(b) = b 0 • • • b s , then σ 2 (ab) = (a 0 a 1 )(a 1 a 2 ) • • • (a r-1 a r )(a r b 0 ).
We recall from [Que10, Lemma 5.3-5.4] that if the substitution σ is primitive, then σ 2 is also primitive, and σ 2 has the same Perron-Frobenius eigenvalue as σ. Frequencies of factors of length 2 are provided by the renormalized Perron-Frobenius eigenvector of M σ 2 .

One then checks that the substitution σ 2 admits a bi-infinite fixed point that is composed by all the factors of length 2 of v without repetition and in the same order as in v.

Example 2.3 We continue Example 2.2 and consider the Thue-Morse substitution σ T M defined over {0, 1} as σ T M : 0 → 01 and σ T M : 1 → 10. One has L 2 (σ T M ) = {00, 01, 10, 11}. One has e.g. σ(00) = 0101 and σ 2 (00) = (01)(10). One thus checks that σ

(2) (a) = bc, σ (2) (b) = bd, σ (2) (c) = ca, σ (2) (d) = cb, by setting a = 00, b = 01, c = 10, d = 11.
Observe that the image of 0 by σ 2 begins and ends with 0. We thus can consider the bi-infinite word (σ 2 ) ω (0) • (σ 2 ) ω (0). Similarly, the image of b by σ 2 2 begins with b, the image of a by σ 2 2 ends with a, and we can consider the bi-infinite word (σ 2

2 ) ∞ (a)•(σ 2 2 ) ∞ (b). Note that powers of the substitution σ generate the same subshift as σ. The central letters of the two-sided word (σ 2 ) ω (0) • (σ 2 ) ω (0) are

• • • 0110100110010110 • 0110 1001 1001 0110 • • • whose coding is provided by the central letters of the two-sided word (σ 2 2 ) ω (a) • (σ 2 2 ) ω (b) • • • bdcb cabd cabc bdca • bdcb cabd cabc bdcb • • •
The eigenvalues of M σ are 2 and 0, and the eigenvalues of M σ 2 are 0, 1, -1 and 2.

We can similarly define a notion of higher-order factor substitution σ k with respect to factors of length k. From M σ to M σ 2 , eigenvalues of modulus 1 can be added, such as illustrated by the example of the Thue-Morse substitution (see Example 2.3). One crucial property is that the set of eigenvalues of M σ 2 is a subset of the spectrum of M σ k for k ≥ 2; only the eigenvalue 0 is added, according to [Que10, Corollary 5.5]. Moreover, we can compute the frequency of any factor thanks to M σ and M σ 2 . Roughly, given a factor, it occurs in the image by some power σ n of σ of either a letter or of a factor of length 2. It thus can be determined by the normalized Perron-Frobenius eigenvectors of M σ and M σ 2 . As a consequence, balances for factors can be described in terms of the spectrum of the substitution matrices M σ and M σ 2 , which even provide estimates on the symbolic discrepancy and on the balance function B n (u) [START_REF] Adamczewski | Balances for fixed points of primitive substitutions[END_REF][START_REF] Adamczewski | Symbolic discrepancy and self-similar dynamics[END_REF].

Theorem 2.4 ([Ada03, Ada04]) Let σ be a primitive substitution. If σ (resp. σ 2 ) is a Pisot substitution, then the subshift X σ is balanced on letters (resp. on factors). Conversely, if X σ is balanced on letters (resp. on factors), then the Perron-Frobenius eigenvalue of M σ (resp. M σ 2 ) is the unique eigenvalue of M σ (resp. M σ 2 ) that is larger than 1 in modulus, and all possible eigenvalues of modulus one of M σ (resp. M σ 2 ) are roots of unity.

Remark 2.5 In the case where the matrix M σ admits a root of unity as an eigenvalue, we cannot decide whether balancedness holds or not, just by inspecting the matrix M σ . An example of a primitive and aperiodic substitution σ that is balanced on factors is given in Example 2.6 having 1 as an eigenvalue (aperiodic means that X σ contains no periodic word). Note also that a substitution can be balanced on letters but unbalanced on factors if there exists an eigenvalue of modulus 1 that occurs in the spectrum of M σ 2 . This is the case of the Thue-Morse substitution (see Example 2.3 and Corollary 4.10). We also derive from Theorem 2.4 that primitive Pisot substitutions have finite discrepancy with respect to letters.

Example 2.6 This example has been communicated by J. Cassaigne and M. Minervino. We consider the substitution σ over the alphabet {1, 2, 3} defined by σ : 1 → 121, 2 → 32, 3 → 321. Its spectrum is {1, 3± √ 5 2 } and it is balanced on factors. This thus provides an example of a substitution that admits in the spectrum of its matrix the eigenvalue 1 and that is balanced on factors. Indeed, consider the Sturmian substitution τ : 3 → 30, 0 → 300. The subshift (X σ , T ) is deduced from the Sturmian shift (X τ , T ) (which is balanced on factors by [START_REF] Fagnot | Generalized balances in Sturmian words[END_REF]) by applying the substitution ϕ : 0 → 21, 3 → 3, which preserves balancedness.

Coboundaries and topological eiganvalues

We now recall a convenient topological interpretation of the notion of balancedness in terms of coboundaries and topological eigenvalues.

Let (X, T ) be a topological dynamical system, that is, T is a homeomorphism acting on the compact space X. Consider e.g. (X σ , T ) for some primitive substitution σ or some subshift (X, T ). Recall that it is said to be minimal if every non-empty closed T -invariant subset of X is equal to X. We let denote by C(X, R) the additive group of continuous maps from X to R and by C(X, Z) the additive group of continuous maps from X to Z. For every g ∈ C(X, R), we define the coboundary of g by

∂g = g • T -g. (1) 
The map g → ∂g is an endomorphism of C(X, R). When an element f belongs to ∂C(X, R), we say that f is a coboundary. Two functions f, g are said to be cohomologous if f -g is a coboundary. For any non-negative integer n, f (n) stands for the map in C(X, R) defined for any x ∈ X as

f (n) (x) := f (x) + f • T (x) + • • • + f • T j (x) + • • • + f • T n-1 (x).
The family of maps (f n ) n∈N is called the cocycle of f . The following theorem states that being a boundary means having a bounded cocycle.

Theorem 2.7 (Gotshalk-Hedlund's Theorem [START_REF] Gottschalk | Topological dynamics[END_REF]) Let (X, T ) be a minimal topological dynamical system. The map f ∈ C(X, R) is a coboundary if and only in there exists x 0 ∈ X such that the sequence (f (n) (x 0 )) n∈N is bounded.

Let (X, T ) be a topological dynamical system, where T is an homeomorphism. A non-zero complex-valued continuous in C(X) is an eigenfunction for (X, T ) if there exists λ ∈ C such that ∀x ∈ X, f (T x) = λf (x). The eigenvalues corresponding to those eigenfunctions are called the continuous eigenvalues of (X, T ). If θ is such that e 2iπθ is an eigenvalue, θ is said to be an additive topological eigenvalue. As a direct consequence of Theorem 2.7, we now can reformulate balancedness in spectral terms.

Proposition 2.8 Let (X, T ) be a minimal and uniquely ergodic subshift and let µ stand for its invariant measure. Given a factor v ∈ L X , define

f v = χ [v] -µ([v]) ∈ C(X, R), (2) 
where χ [v] stands for the characteristic function of the cylinder [v]. Then, (X, T ) is balanced on the factor v if and only if the map f v is a coboundary. If σ is balanced on the factor v, then µ[v] is an additive topological eigenvalue of (X, T ).

Proof. We assume that X is balanced on the factor v. By Theorem 2.7, there exists g such that

f v = g • T -g. Note that e 2iπχ [v] (u) = 1 for any u ∈ X. This yields exp 2iπg•T = exp 2iπµv exp 2iπg .
Hence exp 2iπg is a topological eigenfunction associated with the additive topological eigenvalue µ v .

We will also need the following statement in Section 4.

Proposition 2.9 Let (X, T ) be a minimal topological dynamical system. If f ∈ C(X, Z) is a coboundary, then it is the coboundary of some h ∈ C(X, Z).

Proof. We recall the proof of [START_REF] Host | Dimension groups and substitution dynamical systems[END_REF][START_REF] Durand | Dimension groups[END_REF]. Let T = R/Z be the one-dimensional torus and π : R → T the canonical projection. Let ∂ denote the coboundary map defined on C(X, T) in the same way as in (1). Note first that if γ ∈ C(X, T) and ∂γ = 0, then γ is constant. Indeed, let c ∈ T and set Y = γ -1 ({c}). The subset Y is closed since γ is continuous and it is T -invariant since ∂γ = 0. The system being minimal, if Y is nonempty, it is necessarily the whole space X. Suppose f ∈ C(X, Z) is the coboundary of g ∈ C(X, R). Then, g • T (x) -g(x) ∈ Z for all x ∈ X. This implies that ∂(π • g) = 0 and then there exists c ∈ T such that π • g(x) = c for all x ∈ X.

Let c be any element in π -1 ({c}) and define h(x) := g(x) -c. Since π • h = 0, h ∈ C(X, Z), and it is clear that ∂h = ∂g = f .

Balancedness of dendric words

Dendric subshifts are minimal subshifts defined with respect to combinatorial properties of their language expressed in terms of extension graphs, such as recalled in Section 3.1. Elements of dendric subshifts are also called tree words (see e.g. [BDFD + 15b, BDFD + 15c, BDFD + 15d, BDFD + 15a, BDD + 17]). We use the terminology dendric subshifts in order to avoid any ambiguity with respect to the notion of tree shift that refers to shifts defined on trees (see e.g. [START_REF] Aubrun | Tree-shifts of finite type[END_REF]). We consider balancedness for dendric subshifts in Section 3.2 and prove Theorem 1.1. This class of subshifts encompasses subshifts generated by interval exchanges, as well as Sturmian and Arnoux-Rauzy subshifts discussed in Section 3.3. They have linear factor complexity.

Dendric subshifts

Extension graphs are bipartite graphs that describe the left and right extensions of factors and dendric subshifts are such that all their extension graphs are trees. More precisely, let (X, T ) be a subshift on the alphabet A. For w ∈ L(X), we let denote as

L(w) = {a ∈ A | aw ∈ L(X)}, R(w) = {a ∈ A | wa ∈ L(X)}, E(w) = {(a, b) ∈ A × A | awb ∈ L(X)}.
For a word w ∈ F , we consider the undirected bipartite graph E(w), called its extension graph, defined as follows: its set of vertices is the disjoint union of L(w) and R(w) and its edges are the pairs (a, b) ∈ E(w). For an illustration, see Example 3.1 below. A minimal subshift (X, T ) is a dendric subshift if, for every word w ∈ L(X), the graph E(w) is a tree.

Example 3.1 Let σ F be the Fibonacci substitution defined over {0, 1} by σ F : 0 → 01, 1 → 0. The extension graphs of the empty word and of the letters a and b are depicted in Figure 1.

E(ε) 0 1 0 1 E(0) 1 1 0 1 E(1) 0 0
Figure 1: The extension graphs of ε (on the left), 0 (on the center) and 1 (on the right) are trees.

Balancedness for dendric subshifts

The main result of this section is Theorem 1.1, whose proof relies on Lemmas 3.2 and 3.3 stated and proved below.

Lemma 3.2 Let T be a finite tree, with a bipartition X and Y of its set of vertices, with Card(X), Card(Y ) ≥ 2. Let E stand for its set of edges. For all x ∈ X, y ∈ Y , define

Y x := {y ∈ Y : (x, y) ∈ E} X y := {x ∈ X : (x, y) ∈ E}.
Let (G, +) be an abelian group and H a subgroup of G. Suppose that there exists a function g : X ∪ Y ∪ E → G satisfying the following conditions:

(1) g(X ∪ Y ) ⊆ H;

(2) for all x ∈ X, g(x) = y∈Yx g(x, y), and for all y ∈ Y , g(y) = x∈Xy g(x, y).

Then, for all (x, y) ∈ E, g(x, y) ∈ H.

Proof. Observe first that Conditions (1) and (2) imply that the image under g of any edge connected to a leaf belongs to H. We proceed by induction on k := max{Card(X), Card(Y )} and we first assume k = 2. Such as illustrated in Figure 2, there is only one possibility for the graph T (modulo a relabeling of the vertices), since T is connected and has no cycles, which is

X = {x 1 , x 2 }, Y = {y 1 , y 2 }, E = {(x 1 , y 1 ), (x 2 , y 1 ), (x 2 , y 2 )}. x 1 x 2 y 1 y 2 Figure 2: The tree T when k = 2.
Both g(x 1 , y 1 ) and g(x 2 , y 2 ) are in H because x 1 and y 2 are leaves. By Condition (2), one has g(x 2 ) = g(x 2 , y 1 ) + g(x 2 , y 2 ), and then g(x 2 , y 1 ) = g(x 2 ) -g(x 2 , y 2 ). Since g(x 2 ) ∈ H by Condition (1) and H is a group, then g(x 2 , y 1 ) ∈ H.

We now assume k > 2 and that the induction hypothesis holds for k -1. Suppose also wlog that Card(X) ≥ Card(Y ). Note that in this case there exists a leaf in X. Indeed, if all vertices in X have degree at least 2, then

Card(E) = x∈X deg(x) ≥ 2 Card(X)
because T is a bipartite graph. On the other hand, since T is a tree,

Card(E) = Card(X) + Card(Y ) -1 < Card(X) + Card(Y ) ≤ 2 Card(X)
which yields the desired contradiction. The same argument shows that if X and Y have the same cardinality, then both X and Y have at least one leaf. We distinguish two cases, namely Card(X) > Card(Y ) and Card(X) = Card(Y ).

We first assume that Card(X) > Card(Y ). Take a leaf in X, and call it x 0 . Consider the graph T obtained from T by removing the vertex x 0 and the edge (x 0 , y 0 ), where y 0 is the only vertex in Y connected with x 0 . This new graph is also a tree, with bipartition of vertices X = X -{x 0 }, Y = Y , and set of edges

E = E -{(x 0 , y 0 )}. Since Card( X) = k -1 and Card( Y ) = Card(Y ), then max{Card( X), Card( Y )} = k -1.
We define g in X ∪ Y ∪ E as follows. On ( X ∪ Y ∪ E) -{y 0 }, g = g; on y 0 , define g(y 0 ) = g(y 0 ) -g(x 0 , y 0 ). Let us verify that g satisfies Conditions (1) and (2) with respect to T .

(1) If x ∈ X, g(x) = g(x) ∈ H. If y ∈ Y and y = y 0 , g(y) = g(y) ∈ H. If y = y 0 , then g(y 0 ) = g(y 0 ) -g(x 0 , y 0 ), but both g(y 0 ) and g(x 0 , y 0 ) are in H, since g satisfies Conditions (1) and (2), and x 0 is a leaf. Therefore, the image under g of any vertex of T is in H.

(2) We need a more precise notation here. For a vertex x ∈ X, we define Y T x := {y ∈ Y : (x, y) ∈ E} and Y T

x := {y ∈ Y : (x, y) ∈ E}. If x ∈ X, then Y T x = Y T x , and for all y ∈ Y T x , g(x, y) = g(x, y). Therefore,

g(x) = g(x) = y∈Y T x g(x, y) = y∈Y T x g(x, y).
We use analogously the notation X T y and X T y for a vertex y ∈ Y . Let be y ∈ Y . If y = y 0 , then X T y = X T y and for all x ∈ X T y , g(x, y) = g(x, y). Hence,

g(y) = g(y) = x∈X T y g(x, y) = x∈X T y g(x, y).
Finally, if y ∈ Y and y = y 0 , then X T y = X T y ∪ {x 0 }. We thus have g(y) = g(y 0 ) -g(x 0 , y 0 ) = -g(x 0 , y 0 ) + x∈X T y g(x, y) = -g(x 0 , y 0 ) + g(x 0 , y 0 ) + x∈X T y g(x, y) = x∈X T y g(x, y), which ends the proof of the fact that g satisfies Conditions (1) and (2). Hence, by induction, for all (x, y) ∈ E, g(x, y) ∈ H. But in E one has g = g, which implies that for all (x, y) ∈ E, g(x, y) ∈ H. Since x 0 is a leaf in X, g(x 0 , y 0 ) ∈ H, and then for all (x, y) ∈ E, g(x, y) ∈ H. This ends the case Card(X) > Card(Y ).

We now assume that Card(X) = Card(Y ). Then, both X and Y have at least one leaf; let us call them x 0 and y 0 , respectively. Let x y 0 and y x 0 denote the only vertices connected with x 0 and y 0 , respectively. It is not difficult to see that y 0 = y x 0 and x 0 = x y 0 , since T is connected and has no cycles.

Consider the graph T obtained from T by removing the vertices x 0 and y 0 , and the edges (x 0 , y x 0 ) and (x y 0 , y 0 ). This new graph is again a tree, with bipartition of vertices X = X -{x 0 }, Y = Y -{y 0 }, and set of edges E = E -{(x 0 , y x 0 ), (x y 0 , x 0 )}. Since Card( X) = k -1 and Card( Y ) = k -1, then max{Card( X), Card( Y )} = k -1.

On the new set X ∪ Y ∪ E, define the function g as follows. On ( X ∪ Y ∪ E) -{x y 0 , y x 0 }, g = g; on x y 0 , define g(x y 0 ) = g(x y 0 ) -g(x y 0 , y 0 ), and on y x 0 , g(y x 0 ) = g(y x 0 ) -g(x 0 , y x 0 ).

Following the same strategy as in the case Card(X) > Card(Y ), one can see that g satisfies Conditions (1) and (2) in T , and since max{Card( X), Card( Y )} = k -1, we conclude by induction that for any edge (x, y) ∈ E, g(x, y) belongs to H, which implies that g(x, y) ∈ H. Since x 0 and y 0 are leaves in X and Y , g(x 0 , y x 0 ), g(x y 0 , y 0 ) ∈ H. We conclude that for all (x, y) ∈ E, g(x, y) ∈ H. Lemma 3.3 Let (X, T ) be a minimal dendric subshift. Let H be the following subset of C(X, Z):

H =    a∈A k∈Ka α(a, k)χ T k ([a]) : K a ⊆ Z, |K a | < ∞, α(a, k) ∈ Z    ,
where χ A denotes the characteristic function of the set A, for all A ⊆ X. Then, for all v ∈ L(X), the characteristic function χ [v] belongs to H.

Proof. One first easily checks that H is a subgroup. We now proceed by induction on the length of v. The claim is clearly true if |v| = 1, that is, when v is a letter of A, by setting K a = {0} and α(a, k) = 1 if a = v, 0 otherwise. Now suppose that for all u ∈ L(X) with |u| ≤ n, one has χ [u] ∈ H. Let v be a word of length n + 1. We write

v = v 0 • • • v n and define v = v 1 • • • v n , v = v 0 • • • v n-1 , v = v 1 • • • v n .
We analyze separately three cases depending on the right/left extensions of v and v , namely l( v) = 1, r(v ) = 1, and then, finally, l( v) ≥ 2 and r(v ) ≥ 2, with this latter case being handled thanks to Lemma 3.2.

• Suppose first that l( v) = 1. The only left extension of v is v 0 , and thus, for all x ∈ X, χ

[v] (x) = χ [ v] (T x).
By induction hypothesis we have that χ [ v] belongs to H, so we obtain that for all x ∈ X, χ

[v] (x) = a∈A k∈Ka α(a, k)χ T k-1 ([a]) (x).
Defining K a := {k -1 : k ∈ K a } for all a ∈ A, and β(a, k) = α(a, k + 1) for all k ∈ K a , we conclude that for all x ∈ X,

χ [v] (x) = a∈A k∈K a β(a, k)χ T k ([a]) ,
and then χ [v] belongs to H.

• Now suppose that r(v ) = 1. The only right extension of v is v n , and thus, for all x ∈ X, χ

[v] (x) = χ [v ] (x)
. We conclude by applying the induction hypothesis.

• Finally, we assume l( v) ≥ 2 and r(v ) ≥ 2. Let E(v) be the extension graph of v (as defined in Section 3.1). It is a tree dby definition, and each of the sets in its bipartition of vertices has cardinality at least two. Similarly, let b ∈ R(v) and x ∈ X. One has

Define g : L(v) ∪ R(v) ∪ E(v) → G as follows. For a ∈ L(v), g(a) = χ [av] , for b ∈ R(v), g(b) = χ T -1 [vb] ,
χ T -1 [vb] (x) = χ [vb] (T x) = a∈L(v),(a,b)∈E(v) χ [avb] (x).
We conclude that for all b ∈ R(v), g(b) = a∈L(v),(a,b)∈E(v) g(a, b). We now can apply Lemma 3.2 which yields that tor any biextension avb of v, χ [avb] ∈ H. In particular, since

(v 0 , v n ) ∈ E(v), then χ [v] ∈ H.
Proof. [Proof of Theorem 1.1] We assume that the dendric subshift (X, T ) is balanced on the letters. Let v ∈ L(X). Let C be a constant of balancedness for the letters. Let n be a positive integer and let u, w be two factors of L X of length n -1 with n -1 > |v|. Pick a bi-infinite word x ∈ X such that u = x [i,i+n) and w = x [j,j+n) for some indices i, j ∈ Z. We have

||u| v -|w| v | = i+n-1-|v| l=i χ [v] (T l x) - j+n-1-|v| l=j χ [v] (T l y) .
Now, according to Lemma 3.3, for all a ∈ A, let K a a finite subset of Z such that, for all k ∈ K a , there exists α(a, k) ∈ Z verifying

χ [v] = a∈A k∈Ka α(a, k)χ T k ([a]) .
Then, Lastly, the result on additive topological eigenvalues comes from Theorem 2.7.

||u| v -|w| v | = i+n-1-|v| l=i a∈A k∈Ka α(a, k)χ T k [a] (T l x) - j+n-1-|v| l=j a∈A k∈Ka α(a, k)χ T k [a] (T l x) = a∈A k∈Ka α(a, k)   i+n-1-|v| l=i χ T k [a] (T l x) - j+n-1-|v| l=j χ T k [a] (T l x)   ≤ a∈A k∈Ka |α(a, k)| i+n-1-|v| l=i χ T k [a] (T l x) - j+n-1-|v| l=j χ T k [a] (T l x) = a∈A k∈Ka |α(a, k)| i+n-1-|v| l=i χ [a] (T l (T -k x)) - j+n-1-|v| l=j χ [a] (T l (T -k x)) = a∈A k∈Ka |α(a, k)| • ||(T -k x) [i,i+n-|v|) | a -|(T -k x) [j,j+n-|v|) | a |.

Examples

Sturmian words, Arnoux-Rauzy words (introduced in [AR91] and also called episturmian words), and codings of regular interval exchanges are typical examples of dendric words (see [BDFD + 15a]). See also as an interesting family of dendric words, the words produced the Cassaigne-Selmer multidimensional continued fraction algorithm [START_REF] Cassaigne | A set of sequences of complexity 2n + 1[END_REF]. Note that dendric words have factor complexity (d -1)n + 1 when defined over an alphabet of cardinality d (see [BDFD + 15a]). We recall that the factor complexity of a bi-infinite word u counts the number of factors of u a given length.

Recall that Sturmian words are known to be 1-balanced on letters [START_REF] Lothaire | Algebraic combinatorics on words[END_REF]. They are also known to be balanced on factors [START_REF] Fagnot | Generalized balances in Sturmian words[END_REF]. Note that we also recover this property as a direct consequence of Theorem 1.1. It was believed that Arnoux-Rauzy words would be 2-balanced on letters, as generalizations of Sturmian words. But there exist Arnoux-Rauzy words that are not balanced on letters, such as proved in [START_REF] Cassaigne | Imbalances in Arnoux-Rauzy sequences[END_REF], see also [START_REF] Cassaigne | Weak mixing and eigenvalues for Arnoux-Rauzy sequences[END_REF].

More precisely, Arnoux-Rauzy words are uniformly recurrent dendric words that can be expressed as S-adic words as follows. Let A = {1, 2, . . . , d}. We define the set S AR of substitutions defined as S AR = {σ i : i ∈ A}, with σ i : i → i, j → ji for j ∈ A \ {i} . A bi-infinite word u ∈ A Z is an Arnoux-Rauzy word if its language coincides with the language of a word of the form lim n→∞ σ i 0 σ i 1 • • • σ in (1), where the sequence i = (i n ) n≥0 ∈ A N is such that every letter in A occurs infinitely often in i = (i n ) n≥0 . In this latter case, the infinite word u is uniformly recurrent and we can associate with it a two-sided subshift (X i , T ) which contains all the biinfinite words having the same language as u. Furthermore, such a sequence i = (i n ) n≥0 ∈ A N is uniquely defined for a given u. For any given Arnoux-Rauzy word, the sequence i = (i n ) n≥0 is called the S AR -directive word of u. All the Arnoux-Rauzy words that belong to the dynamical system (X i , T ) have the same S AR -directive word. An Arnoux-Rauzy substitution is a finite product of substitutions in S AR . The following statement is derived from Theorem 1.1.

Corollary 3.4 Let σ be a primitive Arnoux-Rauzy substitution. Then, (X σ , T ) is balanced on factors.

Let (X i , T ) be an Arnoux-Rauzy subshift on a three-letter alphabet with S AR -directive sequence i = (i n ) n≥0 . If there exists some constant h such that we do not have

i n = i n+1 = • • • = i n+h for any n ≥ 0, then (X i , T ) is balanced on factors.
In both cases, frequencies of factors are additive topological eigenvalues and cylinders are bounded remainder sets.

Proof. Arnoux-Rauzy substitutions are known to be Pisot [START_REF] Arnoux | Pisot substitutions and Rauzy fractals[END_REF][START_REF] Avila | Some monoids of Pisot matrices[END_REF] and thus to generate Arnoux-Rauzy words that are balanced on letters by Theorem 2.4, and consequently on factors by Theorem 1.1. The condition of the second statement is proved in [START_REF] Berthé | Balance properties of Arnoux-Rauzy words[END_REF] to imply that (X i , T ) is (2h+1)-balanced on letters. We again conclude thanks to Theorem 1.1.

It is proved in [START_REF] Berthé | Geometry, dynamics, and arithmetic of S-adic shifts[END_REF] that on a three-letter alphabet, a.e. Arnoux-Rauzy subshift is balanced on letters and has pure discrete spectrum in the measure-theoretic sense, that is, it is measurably conjugate to a translation on the torus T 2 . Here almost everywhere (a.e.) refers to some invariant measure; as an example of such a measure, consider the measure of maximal entropy for the suspension flow of the Rauzy gasket constructed in [START_REF] Avila | Diffusion for chaotic plane sections of 3-periodic surfaces[END_REF] (see also [START_REF] Avila | On the Hausdorff dimension of the Rauzy gasket[END_REF]). As an application of Theorem 1.1, we deduce that in case of pure discrete spectrum, all cylinders provide bounded remainder sets for the underlying toral translation and that for a.e. Arnoux-Rauzy subshift, frequencies of factors are additive topological eigenvalues.

Balancedness for substitutions with rational frequencies

Trough this section, σ will be a primitive substitution on the alphabet A and (X σ , T ) the minimal, uniquely ergodic subshift generated by σ. Let µ denote the unique invariant probability measure on X σ . We first introduce a suitable partition in towers for substitutions in Section 4.1, we then provide criteria for producing imbalances in Section 4.2, and lastly, we discuss several examples in Section 4.3.

Two-letter towers

Let (X, T ) be a subshift. A partition in towers of (X, T ) is a partition of the space X of the form

P = {T j B i : 1 ≤ i ≤ m, 0 ≤ j < h i }
where the B i 's are clopen sets (i.e., closed and open sets) and non-empty. The number m is the number of towers of P. For all 1 ≤ i ≤ m, the subset {T j B i : 0 ≤ j < h i } is called the i-th tower of P; h i is its height and B i its base. For an illustration, see Figure 3. We recall below a classical description of the subshift (X σ , T ) in terms of Kakutani-Rohlin partitions provided by the substitution σ which will play a crucial role in the following (in particular for Proposition 4.6). We provide the proof of the following folklore result for the sake of self-containedness. An illustration of the partition P n defined below is provided in Figure 4. Lemma 4.1 Let σ be a primitive substitution. For all n ∈ N, define

P n = {T j σ n ([ab]) : ab ∈ L 2 (X), 0 ≤ j < |σ n (a)|}.
(3)

The sequence (P n ) n∈N is a nested sequence of partitions in towers of (X σ , T ), i.e., for all n ∈ N, P n+1 is finer than

P n and n,ab∈L 2 (X) σ n ([ab]) ⊂ n,ab∈L 2 (X) σ n+1 ([ab]).
Proof. First we show that for all n ≥ 1, P n covers X σ . We fix n ≥ 1 and let x ∈ X σ . By definition of X σ , for all ≥ 1, there exist N ≥ 1 and a ∈ A such that3 x [-, ) ≺ σ N (a). For large enough, one has N > n, and then x [-, ) ≺ σ n (w) for some w ∈ L(X σ ). This implies that there exist 0 ≤ j < |w| and 0 ≤ k, k ≤ max a∈A {|σ n (a)|} such that x [-+k, -k ) = σ n (w j ). Since |w| → ∞ as → ∞, a Cantor diagonal argument provides a word y ∈ X and an integer k with 0 ≤ k < |σ n (y 0 )| such that x = T k σ n (y). Setting ab = y 0 y 1 , we have that ab ∈ L 2 (X σ ) and x ∈ T k σ n ([ab]).

We now prove that P n is a partition. Suppose that there exist ab, cd

∈ L 2 (X σ ), 0 ≤ j < |σ n (a)| and 0 ≤ k < |σ n (c)| such that x ∈ T j σ n ([ab]) ∩ T k σ n ([cd]). Then, x = T j σ n (y 1 ) = T k σ n (y 2 ), where y 1 ∈ [ab], y 2 ∈ [cd]
. By recognizability (we use the fact that σ is primitive), j = k and ac = bd, so in fact

T j σ n ([ab]) = T k σ n ([cd]).
Finally, let us show that P n+1 is finer than P n . Let T k σ n+1 ([ab]) be an atom of P n+1 , and let x belong to it. There exists y ∈ [ab] such that x = T k σ n+1 (y), and therefore x belongs also to T k σ n ([cd]), where c = σ(y) 0 , d = σ(y) 1 . By definition of P n+1 , one has 0

≤ k < |σ n+1 (a)|. If 0 ≤ k < |σ n (σ(a) 0 )| = |σ n (c)|, then T k σ n ([cd]
) is an atom of P n and we conclude that

T k σ n+1 ([ab]) is contained in an atom of P n . If |σ n (σ(a) 0 )| ≤ k < |σ n+1 (a)|, then there is a unique 1 ≤ j < |σ(a)| such that |σ n (σ(a) [0,j) )| ≤ k < |σ n (σ(a) [0,j+1) )|. Define m = |σ n (σ(y) [0,j) )|.
We know that T m σ n (σ(y)) = σ n T j (σ(y)), so we conclude that

x = T k σ n σ(y) = T k-m σ n T j σ(y) ∈ T k-m σ n ([σ(y) j σ(y) j+1 ]). Since 0 ≤ k -m < |σ n (σ(y) j )| and σ(y) j σ(y) j+1 ∈ L 2 (X σ ), the subset T k-m σ n ([σ(y) j σ(y) j+1 ]
) is an atom of P n , so we conclude again that T k σ n+1 ([ab]) is contained in an atom of P n .

Remark 4.2 Note that we could have used a very similar proof to show that the sequence of partitions (Q n ) n∈N with

Q n = {T j σ n ([a]) : a ∈ A, 0 ≤ j < |σ n (a)|}
is a nested sequence of partitions in towers of (X, T ), see e.g. [DHS99, Proposition 14]. However, we are not able to ensure that for every factor v ∈ L(X), the function

f v = χ [v] -µ[v] ∈ C(X, R),
as defined in Lemma 2.8, will be constant in the atoms of Q n for n large enough. Indeed, for all n ≥ 1, the last level of any tower of Q n determines only the first letter of its elements, unless we put some additional condition on σ, like being proper (see [START_REF] Durand | Substitutional dynamical systems, Bratteli diagrams and dimension groups[END_REF]) for details). We will see in Section 4.2 that strategies to provide imbalancedness criteria relies on the fact that for any factor v we can always find a positive integer n such that f v is constant in the atoms of P n .

B 1 T B 1 T h 1 -1 B 1 B i T B i T j B i T h i -1 B i B m T B m T hm-1 B m 1 i m • • • • • • . . . . . . . . .

T T

Figure 3: A partition in towers.

σ n ([ab]) T σ n ([ab]) T |σ n (a)|-1 σ n ([ab]) σ n ([bc]) T σ n ([bc]) T j σ n ([bc]) T |σ n (b)|-1 σ n ([bc]) σ n ([cd]) T σ n ([cd]) T |σ n (c)|-1 σ n ([cd]) ab bc cd • • • • • • . . . . . . . . .

T T

Figure 4: Partition P n for a primitive substitution σ. The last levels are mapped by T on some atoms of the basis by injectivity. Note that the elements of a same last level are not necessarily mapped to the same atom of the basis.

Example 4.3 (Thue-Morse) We continue Example 2.3. Let σ T M be the Thue-Morse substitution on {0, 1} given by σ T M : 0 → 01, 1 → 10. Let (P n ) n≥1 the sequence of partitions in towers defined in (3). Each P n has four towers with 2 n levels. Two elements in the same atom of P n share at least their first 2 n + 1 letters. The partition P 1 is depicted in Figure 5.

⊆ [0101] ⊆ [101]
[0110]

[110]

[1001]

[001] We end this section with the following lemma which provides a convenient expression for the entry (ab, cd) of the two-block matrix M σ 2 . Lemma 4.4 Let σ be a primitive substitution. Then, for all ab, cd ∈ L 2 (X σ ), and for all n ≥ 1,

⊆ [1010] ⊆ [010]
t M σ 2 (ab, cd) = Card{0 ≤ k < |σ n+1 (a)| : T k σ n+1 ([ab]) ⊆ σ n ([cd])}. ( 4 
)
Remark 4.5 Lemma 4.4 means that the matrix M σ 2 contains all the information for describing the transition from P n to P n+1 , for all n. This corresponds to apply σ once. It follows easily by induction that for all r ≥ 0, M r σ 2 rcodes the transition from P n to P n+r and we have

( t M 2 ) r (ab, cd) = Card{0 ≤ k < |σ n+r (a)| : T k σ n+r ([ab]) ⊆ σ n ([cd])}.
Proof. Let ab, cd ∈ L 2 (X σ ). We fix n ≥ 1. We recall that σ 2 (ab) j stands for the jth letter of σ 2 (ab) on the alphabet L 2 (X σ ), with the first letter being indexed by 0. By definition, one has

t M σ 2 (ab, cd) = Card{0 ≤ j < |σ(a)| : σ 2 (ab) j = cd} = Card{0 ≤ j < |σ(a)| : T j σ([ab]) ⊆ [cd]}.
We thus want to show that

Card{0 ≤ j < |σ(a)| : T j σ([ab]) ⊆ [cd]} = Card{0 ≤ k < |σ n+1 (a)| : T k σ n+1 ([ab]) ⊆ σ n ([cd])}.
Suppose there exists 0

≤ j < |σ(a)| such that T j σ([ab]) ⊆ [cd]. If j = 0, σ([ab]) ⊆ [cd] and therefore σ n+1 ([ab]) ⊆ σ n ([cd]) (k = 0). If 1 ≤ j < |σ(a)|, set k = |σ n (σ(a) [0,j) )|. One has k < |σ n+1 (a)|. Now take x ∈ [ab]. We have T k σ n (σ(x)) = σ n T j (σ(x))
. By hypothesis, T j (σ(x)) ∈ [cd], and then T k σ n+1 (x) ∈ σ n ([cd]). Note also that by definition the k associated to a given j is unique, so we conclude that

Card{0 ≤ j < |σ(a)| : T j σ([ab]) ⊆ [cd]} ≥ Card{0 ≤ k < |σ n+1 (a)| : T k σ n+1 ([ab]) ⊆ σ n ([cd])}.
Conversely, suppose that there exists 0

≤ k < |σ n+1 (a)| such that T k σ n+1 ([ab]) is included in σ n ([cd]). Let x ∈ [ab] and let y = T k σ n+1 (x).
We first assume 0 ≤ k < 

T j σ([ab]) ⊆ [cd]} ≤ Card{0 ≤ k < |σ n+1 (a)| : T k σ n+1 ([ab]) ⊆ σ n ([cd])}.

Some criteria for detecting imbalancedness

For any n ≥ 1, let R n (X σ ) (resp. Z n (X σ )) be the set of maps from L n (X σ ) to R (resp. to Z) and let β be the map defined as

β : R 1 (Xσ) → R 2 (X σ ), f → (βf )(ab) = f (b) -f (a) for all ab ∈ L 2 (Xσ).
Our strategy works as follows. We consider the map

f v = χ [v] -µ([v]) = χ [v]
-µ v such as defined in (2). We will use the fact that the map f v is constant in the atoms of the two-letter partition P n (defined in (3)) for n large enough, and associate with f v a map φ v,n ∈ R 2 (X σ ), thus defined on L 2 (X σ ). Proposition 4.6 first provides a convenient necessary condition on such a map, namely, it is proved to belong to β(R 1 (X σ )). This condition is translated in symbolic terms in Proposition 4.7, and then exploited in Theorem 1.2. Indeed, knowing that a map belongs to β(R 1 (X σ )) implies several convenient restrictions, for instance its coordinate on each factor of the form aa is equal to 0. The proof of Proposition 4.6 below closely follows the approach developed in [START_REF] Host | Dimension groups and substitution dynamical systems[END_REF][START_REF] Host | Substitution subshifts and Bratteli diagrams[END_REF][START_REF] Durand | Dimension groups[END_REF]. Corollary 4.10 illustrates how powerful this simple formulation can be.

Proposition 4.6 Let σ be a primitive substitution. Let f ∈ C(X σ , Z) such that there exists k ∈ N for which f is constant in the atoms of P k . For all n ≥ k, define φ n ∈ R L 2 (Xσ) by

φ n (ab) = |σ n (a)|-1 j=0 f | T j σ n ([ab]) ∀ab ∈ L 2 (X σ ).
(5)

Let d = |L 2 (X σ )|. If f is a coboundary, then φ n ∈ β(R 1 (X σ )) for all n ≥ k + d.
Proof. Let f ∈ C(X σ , Z) such that there exists k ∈ N for which f is constant in the atoms of P k . Suppose that f is a coboundary, that is, there exists g ∈ C(X σ , R) such that f = g • T -g. By Proposition 2.9, g ∈ C(X σ , Z), and then it is locally constant. We claim that there exists ≥ k + d such that for all ab ∈ L 2 (X σ ), g is constant on the set σ ([ab]). Indeed, let i be a positive integer such that for all x ∈ X σ , g depends only on x [-i,i] . Such an integer exists since g is locally constant. Take large enough so that ≥ k + d and min{|σ (a)| : a ∈ A} > i. Since f is constant on the atoms of P k , so is it on those of P . Let ab ∈ L 2 (X σ ) and y, z ∈ σ ([ab]). Since g(x) depends only on x [-i,i] , g • T i (x) depends on x [0,2i] . Since y, z ∈ σ ([ab]) and |σ (a)|, |σ (b)| > i, y and z share the same 2i first coordinates and thus g • T i (y) = g • T i (z). On the other hand, for all 0 ≤ j < |σ (a)|, T j (y) and T j (z) are in the same atom of P , so in particular for all 0 ≤ j < i, T j (y) and T j (z) are in the same atom of P . Since f is constant on the atoms of P , we obtain that f (i) (y) = f (i) (z), by recalling that

f (i) (x) stand for f (x) + f • T (x) + • • • + f • T j (x) + • • • + f • T i-1 (x)
. Finally, note that for all x ∈ X σ and for all s ∈ N, g(x) = g • T s (x) -f (s) (x), which implies that g(y) = g(z), which ends the proof of the claim, that is, g is constant on each atom of the basis.

We thus can define a map ψ ∈ Z 2 (X σ ) as ψ(ab

) = g(x) for x ∈ σ ([ab]). Then, if x ∈ σ ([ab]) and T |σ (a)| (x) ∈ σ ([bc]), we have ψ(bc) -ψ(ab) = g • T |σ (a)| (x) -g(x) = f (|σ (a)|) (x) = φ (ab). (6) 
Let n ≥ k + d. We now want to prove that by multiplying φ n by a suitable power of M σ 2 yields an element of β(R 1 (X σ )). We recall that given a d × d-matrix M , its eventual range R M and its eventual kernel K M are respectively

R M = k≥1 M k R d , K M = k≥1 ker(M k ). Note that R d = R m ⊕ K M , R M = M d R d and K M = ker(M d ).
First observe that φ n ∈ R Mσ 2 . Indeed, by following Remark 4.5, one can show that

φ n = M n-k σ 2 φ k ∈ M n-k σ 2 R L 2 (Xσ) ,
and since n -k ≥ d and R Mσ 2 = M d σ 2 R d , we conclude that φ n ∈ R Mσ 2 . Again thanks to Remark 4.5, and by assuming ≥ n, we obtain that, for every abc ∈ L 3 (X σ ),

ψ(bc) -ψ(ab) = (M -n σ 2 φ n )(ab).
Choose m large enough so that |σ m (a)| ≥ 2 for every a ∈ A, and define θ

∈ Z 1 (X σ ) by θ(a) = ψ(a 1 a 2 ) for a ∈ A if σ m (a) = a 1 • • • a r . If ab ∈ L 2 (X σ ) with σ m (a) = a 1 • • • a r and σ m (b) = b 1 • • • b s , we obtain (M -n+m σ 2 φ n )(ab) = (M -n σ 2 φ n )(a 1 a 2 ) + • • • + (M -n σ 2 φ n )(a r b 1 ) = ψ(b 1 b 2 ) -ψ(a 1 a 2 ) = θ(b) -θ(a) = (βθ)(ab),
and it follows that M -n+m

σ 2 φ n belongs to β(Z 1 (X σ )). It remains to prove that φ n ∈ β(R 1 (X σ )). In particular, M -n+m σ 2 φ n ∈ β(R 1 (X σ )). Choosing m large enough, we can assume that M -n+m σ 2 φ n ∈ R Mσ 2 . Since the subspace β(R 1 (X σ )) is invariant under M σ 2 and M σ 2 is an automorphism of R Mσ 2 , we obtain that M -n+m σ 2 : R Mσ 2 ∩ β(R 1 (X σ )) → R Mσ 2 ∩ β(R 1 (X σ )) is a bijection. Therefore, there exists a unique ϕ ∈ R Mσ 2 ∩ β(R 1 (X σ )) such that M -n+m σ 2 φ n = M -n+m σ 2 ϕ, and then φ n = (φ n -ϕ) + ϕ belongs to K Mσ 2 + R Mσ 2 ∩ β(R 1 (X σ )). Finally, recall that R d = R Mσ 2 ⊕K Mσ 2 and that φ n ∈ R Mσ 2 , which implies that φ n -ϕ = 0 and φ n ∈ R Mσ 2 ∩β(R 1 (X σ )) ⊆ β(R 1 (X σ )).
We now translate the precedent proposition in terms of balancedness for substitutive symbolic systems having rational frequencies. Proposition 4.7 Let σ be a primitive substitution. Let v ∈ L σ having a rational frequency µ v and f

v = χ [v] -µ v ∈ C(X σ , R).
There exists k ∈ N be such that f v is constant in the atoms of the two-letter partition P k . If (X σ , T ) is balanced on v, then φ v,b ∈ β(R 1 (X)) for all n ≥ k + d, where d = Card L 2 (X) and φ v,n is defined as in (5), i.e.,

φ v,n (ab) = |σ n (a)|-1 j=0 f v | T j σ n ([ab]) ∀ab ∈ L 2 (X σ ).
Proof. We write µ v = p v /q v in irreducible form. For all n ≥ 0, the two-letter partition P n (as defined in (3)) verifies that all elements in any atom of P n share at least their L n + 1 letters, where L n = min{|σ n (a)| : a ∈ A}. Therefore, for k large enough, f v (and consequently q v • f v ) is constant in the atoms of P k . By Lemma 2.8, since (X σ , T ) is balanced in v, f v is a coboundary, and then so is

q v • f v . By Proposition 4.6, q v • φ n ∈ β(R 1 (X)) for all n ≥ k + d, and consequently φ n ∈ β(R 1 (X)) for all n ≥ k + d.
We now derive from Proposition 4.7 necessary conditions for balancedness. Let (X, T ) be a minimal symbolic system on the alphabet A and let a ∈ A. We recall that a word w with wa ∈ L(X) is a return word to the letter a if a is a prefix of wa.

Lemma 4.8 Let (X, T ) be a minimal symbolic system defined on the alphabet A, a ∈ A and w

= w 0 • • • w |w|-1 a return word to a. If φ ∈ β(R 1 (X)), then φ(w |w|-1 a) + |w|-1 i=1 φ(w i-1 w i ) = 0. Proof. One has w 0 w 1 , w 1 w 2 , • • • , w |w|-2 w |w|-1 , w |w|-1 a ∈ L 2 (X).
The result follows directly from the definition of return words and from the fact that there exists ϕ ∈ R 1 (X) such that φ = βϕ.

We now can prove Theorem 1.2. Proof. By Proposition 4.7, φ v,n ∈ β(R 1 (X σ )) for n large enough. For any ab ∈ L 2 (X σ )

φ n (ab) = α ab 1 - p v q v -(|σ n (a)| -α ab ) • p v q v , (7) 
where

α ab = Card{0 ≤ j < |σ n (a)| : T j σ n ([ab]) ⊆ [v]},
that is, α ab is the number of levels in the ab-tower of P n in which all elements begin with the word v. Using Lemma 4.8 and (7), we obtain

0 = α w |w|-1 a (q v -p v ) -(|σ n (w |w|-1 )| -α w |w|-1 a ) • p v + |w|-1 i=1 α w i-1 w i (q v -p v ) -(|σ n (w i-1 )| -α w i-1 w i ) • p v which implies q v   α w |w|-1 a + |w|-1 i=1 α w i-1 w i   = p v   |σ n (w |w|-1 )| + |w|-1 i=1 |σ n (w i-1 )|   = p v |σ n (w)|.
The integers p v and q v being coprime, either

  α w |w|-1 a + |w|-1 i=1 α w i-1 w i   = 0
or q v divides |σ n (w)|. Since |σ n (w)| = 0, we conclude that q v divides |σ n (w)|, which ends the proof of the first assertion. We now prove the second assertion of Theorem 1.2. Let a ∈ A and assume that there exist b, c such that bac belongs to L 3 (X σ ) and bc ∈ L 2 (X σ ). Since φ v,n ∈ β(R 1 (X σ )) and ba, ac, bc ∈ L 2 (X σ ), one has φ n (ba) + φ n (ac) = φ n (bc), that is,

0 = α ba (q v -p v ) -p v (|σ n (b)| -α ba ) + α ac (q v -p v ) -p v (|σ n (a)| -α ac ) -α bc (q v -p v ) + p v (|σ n (b)| -α bc ) = (α ba + α ac -α bc )q v -p v |σ n (a)|.
The integers p v and q v being coprime, either α ba + α ac -α bc = 0 or q v divides |σ n (a)|. Here again α ba + α ac -α bc = 0, since |σ n (a)| = 0, hence q v divides |σ n (a)|.

Remark 4.9 Note that Proposition 4.7 gives us the smallest n for which the conclusions of both parts of Theorem 1.2 are always true. It corresponds to n = k + d and thus it can be determined in an effective way. See example 4.12 for an application.

As a consequence of the precedent theorem, we have the following corollary about the Thue-Morse substitution.

Corollary 4.10 (Thue-Morse substitution) Let σ T M be the Thue-Morse substitution on {0, 1} given by σ T M : 0 → 01, 1 → 10. The subshift (X σ T M , T ) is balanced on letters but it is unbalanced on any factor of length , with ≥ 2.

Proof. From [Dek92, Theorem1], we know that the frequency µ v of a factor v of length ≥ 2 verifies µ v = 1 6 2 -m or µ v = 1 3 2 -m , where m is such that 2 m < ≤ 2 m+1 . Frequencies are then rational, p v = 1, and q v ∈ {3 • 2 m+1 , 3 • 2 m }. Note that 00 belongs to L 2 (X σ T M ). We then apply the first condition of Theorem 1.2.

We also deduce from Theorem 1.2 the following.

Corollary 4.11 Let σ be primitive substitution of constant length over the alphabet A of cardinality d such that its substitution matrix is symmetric and d is coprime with , or does not divide n , for n large enough. We assume furthermore that there exists a letter a and a return word w to a such that d is coprime with |w|. Then, (X σ , T ) is not balanced on letters.

Proof. The substitution matrix M σ admits as left eigenvector (and thus as right eigenvector) associated with the eingenvalue the vector with coordinates all equal to 1. One thus has µ a = 1/d for all a and we apply the first part of Theorem 1.2.

Examples

Example 4.12 (Chacon substitution) The primitive Chacon substitution σ C is defined over the alphabet {1, 2, 3} by σ C : 1 → 1123, 2 → 23, 3 → 123. The spectrum of M σ C is {3, 1, 0}. We cannot apply directly Theorem 2.4. The letter frequency vector is (1/3, 1/3, 1/3) and then q 1 = q 2 = q 3 = 3. One has 11 ∈ L 2 (X σ C ), and then, for every a ∈ {1, 2, 3}, if the system is balanced on a, 3 divides |σ n C (1)| for all n ≥ k + d (see Proposition 4.7 for notation). In this case, it is enough to take k = 1 and we know that d = 5, so that 3 divides |σ 6 C (1)|. But |σ 6

C (1)| = 1093, which is not divisible by 3. We conclude that (X σ C , T ) is niether balanced on letters, nor balanced on factors of a given size, by Proposition 2.1.

Example 4.13 (Toeplitz substitution) The Toeplitz substitution, also called Period doubling substitution, is defined over {0, 1} as σ T : 0 → 01, 1 → 00. The spectrum of M σ T is {2, -1}. We cannot apply directly Theorem 2.4. The frequencies of letters are 1/3 and 2/3 and then q 0 = q 1 = 3. One has 00 ∈ L 2 (X σ C ), so if the system is balanced on a ∈ {0, 1}, 3 divides |σ n T (0)| for all n large enough. Since for all n ≥ 1, |σ n T (0)| = 2 n , which is not divisible by 3, (X σ T , T ) is neither balanced on letters, by applying the first condition of Theorem 1.2, nor balanced on factors of a given size, by Proposition 2.1.

Example 4.14 Consider the substitution σ : 0 → 11, 1 → 21, 2 → 10. The spectrum of M σ is {2, -1/2( √ 3i + 1), 1/2( √ 3i -1)}. Once again, we cannot apply directly Theorem 2.4. The frequencies of letters are (1/7, 4/7, 2/7) and 11 is in its language. We apply the first condition of Theorem 1.2 to deduce that (X σ T , T ) is not balanced.

Example 4.15 Consider the substitution σ : 0 → 010, 1 → 102, 2 → 201. The spectrum of M σ is {3, 1, 0}. The letter frequency vector is (1/2, 1/3, 1/6) and then q 0 = 2, q 1 = 3, q 2 = 6. Note that in this case, no double factor of the form aa appears in L(X σ ). However, it is not difficult to see that w = 01 is a return word to 0, so if the system is balanced on some a ∈ {0, 1, 2}, q a divides |σ n (w)| = 3 n+1 for all n large enough. This shows that the system is not balanced on the letters 0 and 2, since neither 2 nor 6 divide 3 n+1 , but we reach no contradiction for q 1 = 3: hence, we are not able to decide with this method wether the system is balanced on the letter 1 or not. However one can check that it is balanced on 1 by recognizability and by using the fact that the image of every letter contains 1.

Example 4.16 Consider the substitution σ : 0 → 001, 1 → 101. The spectrum of its substitution matrix is {1, 3}. The frequencies of its letters are µ 0 = µ 1 = 1/2 and 00 is a factor. We deduce from Corollary 4.11 that it is not balanced on letters.

Example 2. 2

 2 We consider the Thue-Morse substitution σ T M defined over {0, 1} as σ T M : 0 → 01, 1 → 10. One has L 2 (σ T M ) = {00, 01, 10, 11}. Let a = 00, b = 01, c = 10, d = 11. The central letters of the two-sided word u

  and for (a, b) ∈ E(v), g(a, b) = χ [avb] . Condition (1) of Lemma 3.2 holds by induction hypothesis. Let us check that (2) holds. Let a ∈ L(v). One has χ [av] = b∈R(v),(a,b)∈E(v) χ [avb] (x) and thus g(a) = b∈R(v),(a,b)∈E(v) g(a, b).

  Note that (T -k x) [i,i+n-|v|) and (T -k y) [j,j+n-|v|) are two factors of length n -1 -|v| belonging to L(X), and then by balancedness on the letters, for all a ∈ A||(T -k x) [i,i+n-|v|) | a -|(T -k y) [j,j+n-|v|) | a | ≤ C.We obtain that ||u| v -|w| v | ≤ |A|KC, where K = max a∈A k∈Ka |α(a, k)| , which ends the proof of the balancedness on v.

Figure 5 :

 5 Figure 5: Partition P 1 for the Thue-Morse substitution.

  |σ n (σ(a) 0 )|. By hypothesis, there exists z ∈ [cd] such that y = σ n (z). By recognizability, k = 0 and σ(x) = z, and thus σ(x) ∈ [cd]. We conclude that σ([ab]) ⊆ [cd]. Now we assume that |σ n (σ(a) 0 )| ≤ k < |σ n+1 (a)|. There exists a unique j with 1 ≤ j < |σ(a)| such that |σ n (σ(a) [0,j) )| ≤ k < |σ n (σ(a) [0,j+1) )|. Let m = |σ n (σ(a) [0,j) )|. One has T m σ n (σ(x)) = σ n T j (σ(x)), and thus y = T k σ n (σ(x)) = T k-m σ n (T j σ(x)). On the other hand, y = T k σ n+1 (x) ∈ σ n ([cd]), and then, there exists z ∈ [cd] such that y = σ n (z). One has 0 ≤ k -m < |σ n (σ(a) j )|. By recognizability, k -m = 0 and T j σ(x) = z ∈ [cd]. We conclude that T j σ([ab]) ⊆ [cd]. Since the j associated to a given k is unique, we conclude that Card{0 ≤ j < |σ(a)| :

A binary infinite words is said 1-balanced if the differences between numbers of occurrences of a given letter in factors of the same length is bounded by 1.

Factor complexity counts the number of factors of a given size.

We recall that the notation u ≺ v stands for u being a factor of v.
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