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Abstract6

Numerical simulations of a compressible turbulent channel flow with an acoustic
impedance boundary condition are performed to assess how the flow is modi-
fied compared with a channel flow with rigid walls. When the liner resonance
frequency is not too large and the resistance sufficiently small, turbulent statis-
tics deviate from those obtained with rigid walls and surface waves are found
traveling along the liner surface. For small resonance frequencies these waves
are two-dimensional, they have a large wavelength compared to the turbulent
structures and modulate these structures. As a result, they transport momen-
tum toward the impedance wall, causing a drag increase. When the resonance
frequency increases, the waves along the liner surface progressively lose their
spanwise coherence while their streamwise wavelength decreases to get close to
the flow typical length scales, which may also result in a drag increase when the
resistance is sufficiently small. In the cases in which the surface waves are two-
dimensional, a connection is established between them and the unstable modes
computed by using a linear stability analysis. Given the streamwise periodicity
of the channel, a temporal stability analysis is performed rather than a spatial
analysis, the latter being more frequently encountered in acoustic mode compu-
tations. This temporal analysis shows that the unstable mode in the vicinity of
an acoustic liner arises from the A-branch of wall modes.
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1. Introduction10

Perforate acoustic liners are an important technology to absorb sound in11

ducts such as turbofan engines or to suppress combustion instabilities. In12

many practical situations, the liners are subject to high velocity flows and13

turbulence, and much research has been devoted to the effect of a grazing flow14

on the liner impedance. It is for example well known that the resistance tends15

to increase linearly with the grazing flow speed whereas the reactance tends to16

decrease [1, 2, 3] as a result of the interaction between the acoustic and vortical17
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modes in the holes of the perforated face sheet. Conversely, the liner may18

modify the flow and turbulence in its vicinity, compared with a rigid wall. An19

effect of this is a drag increase [4], especially for large liner porosity. Another20

effect is the flow instability observed in the vicinity of a low resistance liner [5].21

22

Several numerical simulations in flow ducts with liners have been performed23

in connection with this topic. The objective of many simulations has been24

to study sound propagation in lined ducts with a known base flow using25

the linearized Euler or Navier-Stokes equations. A difficulty is then to26

impose a well-posed impedance boundary condition, especially in time-domain27

solvers [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. These simulations neglect28

both the effect of the grazing flow on the impedance and the effect of the29

impedance on the flow. Other simulations are based on the full nonlinear30

Navier-Stokes equations and the flow is computed together with the acoustic31

field [17, 18, 19, 20, 21, 22]. Among these simulations, some include the liner32

back cavity and the face sheet perforations [17, 18, 19, 20] so as to include33

all possible flow-acoustics interactions. Others use an impedance boundary34

condition with a given impedance [21, 22, 23], which means that the effect35

of the flow on the impedance is no part of the computation. Jimenez et36

al (2001) compute a turbulent incompressible channel flow above a purely37

resistive porous surface [23]. They observed modified turbulent statistics over38

the surface compared with a rigid wall, and part of this change was associated39

with spanwise coherent structures moving along the wall. This observation was40

partly confirmed by a linear stability analysis, unstable modes being present for41

low values of the resistance. The porous surface being a purely resistive one,42

resonance mechanisms typically encountered in acoustic liners were not present43

in this investigation. Olivetti et al. (2015) [21] compute the sound propagation44

in a lined pipe, a simple model for a nozzle, in order to suppress resonant modes45

in the duct which have a strong impact on the noise produced by the jet out of46

the nozzle. Scalo et al. (2015) [22] study the turbulent flow in a compressible47

periodic channel flow with an impedance boundary condition and describe how48

the structure of turbulence is modified as the liner resistance decreases. They49

set the resonance frequency of the liner so that it corresponds to some typical50

time scale of the flow. As a result the liner resonance frequency is rather high,51

and larger than typical frequencies encountered in aeroacoustic applications.52

Compared with Scalo et al. (2015) smaller resonance frequencies will be53

considered in the present work. More specifically the resonance frequency and54

other liner parameters are close to those used in the experiments in Marx et55

al (2010) in which an instability was observed, and for which related linear56

stability analyses were performed in Marx and Aurégan (2010,2013) [24, 25].57

Apart from sound damping in ducts, there is a growing interest in passive58

methods for aeroacoustics and flow control [26], and a better knowledge of the59

behavior of the flow in the vicinity of non-rigid wall is useful in general.60

61

This paper makes a new contribution to the investigation of turbulent chan-62

nel flows with acoustic liners (limited to locally reacting, perforate-like liners).63
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Numerical Implicit Large Eddy Simulations (ILES) of compressible turbulent64

channel flows are performed to study what changes in the flow may result from65

using an impedance boundary condition, in comparison with a rigid wall bound-66

ary condition. For some liner parameters, surface waves are computed and their67

effect on drag is evidenced. A temporal stability analysis complements the simu-68

lations and is a useful counterpart to the more classical spatial stability analysis69

for these waves. The numerical model is presented in Section 2, including the70

impedance boundary condition, taken to be of the mass-spring-damper type.71

The different configurations and the corresponding flow statistics are presented72

in section 3. In particular, the effect of the impedance resonance frequency and73

resistance on the structures of turbulence is investigated. The surface waves74

are described in Section 4. In Section 5 it is shown how they can increase the75

drag on the liner surface. The temporal linear stability analysis is conducted in76

Section 6. Finally conclusions are given in Section 7.77

2. Numerical model78

In this section, we introduce the equations of our problem, then present79

quickly the numerical methods to solve these equations, and finally introduce80

the model for the impedance boundary condition as well as its numerical imple-81

mentation.82

2.1. The equations83

Simulations of channel flows that are periodic in the stream-wise and span-84

wise directions are performed. The bottom and upper wall are either rigid or85

modeled as an impedance, with a fixed wall temperature (see Section 2.3 for86

the boundary conditions). The compressible Navier-Stokes equations are imple-87

mented in the particular characteristics-like form presented by Sesterhenn [27]88

which has also been used in [28] for the direct numerical simulation of com-89

pressible channel flows. The Cartesian coordinates are denoted by x, y, z (or90

by x1, x2, x3) for the stream-wise, wall-normal and span-wise directions. The91

non-dimensional equations are given by:92

∂u

∂t
= −

(
1

2
(X+ −X−) + Y u + Zu

)
+

1

Re

1

ρ

∂τ1j
∂xj

+ F (1)

∂v

∂t
= −

(
Xv +

1

2
(Y + − Y −) + Zv

)
+

1

Re

1

ρ

∂τ2j
∂xj

(2)

∂w

∂t
= −

(
Xw + Y w +

1

2
(Z+ − Z−)

)
+

1

Re

1

ρ

∂τ3j
∂xj

(3)

∂s

∂t
= −(Xs + Y s + Zs) +

(γ − 1)

γ

1

Re

1

p

(
Φ +

1

Pr
∇ · (Kt∇T )

)
(4)

∂p

∂t
= −ρc

2

[
(X+ +X−) + (Y + + Y −) + (Z+ + Z−)

]
+

1

Re
(γ − 1)

[
Φ +

1

Pr
∇ · (Kt∇T )

] (5)
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where the velocity components along the x, y, and z-directions are denoted by93

u, v, w (or u1, u2, u3), p is the pressure, ρ the density, s the entropy. c is the94

sound speed given by c2 = γp/ρ, where γ=1.4 is the ratio of specific heats. The95

quantities X±, Y ±, Z± are the rates of change of the amplitude of the acoustic96

waves ; Xs, Y s, Zs are related to the entropy wave, and Y u, Zu, Xv, Zv, Xw,97

Y w are related to the vorticity wave. They are given by the following relations:98

X± = (u± c)
(

1

ρc

∂p

∂x
± ∂u

∂x

)
(6)

99

Y ± = (v ± c)
(

1

ρc

∂p

∂y
± ∂v

∂y

)
(7)

100

Z± = (w ± c)
(

1

ρc

∂p

∂z
± ∂w

∂z

)
(8)

101

Y u = v
∂u

∂y
Zu = w

∂u

∂z
Xv = u

∂v

∂x
(9)

102

Zv = w
∂v

∂z
Xw = u

∂w

∂x
Y w = v

∂w

∂y
(10)

103

Xs = u
∂s

∂x
Y s = v

∂s

∂y
Zs = w

∂s

∂z
(11)

The viscous stress tensor is:

τij = µ (∂ui/∂xj + ∂uj/∂xi) +

(
κ− 2

3
µ

)
(∂uk/∂xk) δij

and Φ = τij(∂ui/∂xj) is the viscous dissipation. In addition the state equation104

is p = ((γ − 1)/γ)ρT and the thermodynamic relation reads ρ = p1/γe−s. The105

dependence of µ on T is given by the power law: µ = T 0.7.106

107

The equations above are normalized using the following reference scales108

for a channel flow (in the following the tilde ·̃ indicates a dimensional quan-109

tity): the speed of sound c̃w at wall temperature T̃w (imposed since an110

isothermal wall boundary conditions is used), the viscosity µ̃w and thermal111

conductivity K̃t,w at the wall temperature, the half-height of the channel112

H̃, the bulk density ρ̃b to be defined below, and the adiabatic specific heat113

c̃p=γr̃/(γ − 1) with r̃ the gas constant. The thermal conductivity is related to114

the viscosity through the Prandtl number, Pr = µ̃w c̃p/K̃t,w, and Pr=0.7. The115

Reynolds number resulting from the previous normalization is Re = H̃ρ̃bc̃w/µ̃w.116

117
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The bulk density used for normalization is defined by ρ̃b =< ρ̃ >xyz, where
< · >xyz denotes the mean over all spatial directions. The bulk velocity is
defined by ũb =< ρ̃ũ >xyz /ρ̃b. As no mass can escape the channel ρ̃b is constant,
and in normalized form ρb=1. The normalized velocity ub is also forced to keep
a constant value, which is ensured by changing dynamically the uniform force
F appearing in Eq. (1), as done by [29]. Note that due to normalization, ub=M
where M = ũb/c̃w is the Mach number based on the bulk velocity and the
sound speed at the wall. A non-dimensional number commonly used to specify
the operating point of a turbulent channel flow is the bulk Reynolds number
defined by:

Reb =
ρ̃bH̃ũb
µ̃w

(12)

In the following we will prescribe Reb andM, from which the Reynolds number118

appearing in the equations can be derived using Re = Reb/M.119

Another Reynolds number, to which Reb may be related by an empirical
relationship, is the friction Reynolds number defined by:

Reτ = ρ̃wH̃ũτ/µ̃w (13)

where ρ̃w is the mean density at the wall, and the friction velocity defined as120

ũτ =
√
τ̃w/ρ̃w is computed from the mean wall shear stress τ̃w = µ̃w(∂Ũ/∂ỹ)w,121

where Ũ represents the time-averaged streamwise velocity. Classically the vis-122

cous length scale is defined by l̃τ = µ̃w/(ρ̃wũτ ). Quantities scaled with l̃τ and123

ũτ are indicated with a superscript + in the following.124

2.2. Numerical schemes125

With the characteristic formulation (1-5) it would be possible to use upwind126

schemes [30] in the characteristic directions to introduce some dissipation and127

stabilize the computation as in [27] and this is indeed what used to be done128

in this code. In the present work, centered schemes have been prefered as the129

dissipation is tuned more easily by managing it with the second order derivative.130

The equations are discretized in a collocated manner and the first derivatives131

are computed with a 6th order compact scheme (scheme (2.1.7) in [31]) for132

the central points. For the grid point next to the boundary a centered 4th133

order compact scheme is used (scheme (2.1.6) in [31] with α=1/4), while at134

the boundary a 3rd order compact upwind scheme is used (scheme (4.1.3)135

in [31] with α=2). Since the centered scheme is non-dissipative, the extra136

dissipation needed to stabilize the computations or serve for ILES is introduced137

through the diffusive terms with the second-order derivative [32, 33, 34](rather138

than with the convective terms using the first-order derivative if upwind139

schemes were used). Specifically the second derivative is a 6th order compact140

scheme with a 3-9 stencil (Eq. (8) in [34]) for which some coefficients can be141

freely adjusted to impose the level of dissipation. More details can be found142

in Sebastian et al. [35]. Finally, the time-advancement relies on a classical143

fourth-order four-step Runge-Kutta method.144

145
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2.3. Impedance boundary condition146

2.3.1. Rigid wall boundary condition147

For a rigid isothermal wall with u=v=w=0 and T=Tw the boundary con-
ditions to apply have been given by Lechner et al. [28]. At the bottom wall
for example, Y − is a known characteristic flux coming from the interior of the
domain, and the reflected characteristic flux Y + should be calculated. The situ-
ation is reversed at the top wall. Lechner et al. give [28] (adapted to the present
notation/normalization):

Y + = Y −+2
1

Re

1

ρ

∂τ2j
∂xj

(bottom wall) Y − = Y +−2
1

Re

1

ρ

∂τ2j
∂xj

(top wall)

(14)
The isothermal boundary condition is obtained by replacing the pressure and
entropy equations at the wall with:

∂p

∂t
= − p

2c
(Y + + Y −) (15)

∂s

∂t
=
γ − 1

γ

1

2c

(
Y + + Y −

)
(16)

This now needs to be extended to non-rigid walls.148

149

2.3.2. Mass Spring Damper boundary condition150

Generally speaking, an impedance boundary condition is a relation between151

p and v at a given position at the wall. The impedance (or its inverse, the admit-152

tance) is a quantity defined in the frequency domain. Its use in a time-domain153

solver requires that the impedance be transformed into an impulse response in154

the time-domain, which is done by an inverse Laplace transform. This is not155

straightforward, since impedance laws that would appear to be satisfying in the156

frequency domain may actually not satisfy certain desirable physical properties,157

which can show up in the time domain in the form of instabilities [36]. These158

properties are: passivity, causality, and reality, as explained by Rienstra (2006)159

[10]. In particular, when an impedance has been measured at some given real160

frequencies, a special care should be exercised when performing the complex161

continuation of the data so that all the above properties are verified.162

Several methods have been proposed to comply with these requirements. Tam163

and Auriault (1996) [6] have introduced a mass-spring-damper (MSD) equation164

as a simple liner model that accounts for one resonance frequency. It is directly165

formulated as a second order equation in v in the time domain, with the p166

derivative acting as a source (see Eq. (17) below). This equation is solved with167

the same integration method as the other governing equations, that is, with168

the same time accuracy. The Laplace transform of this equation provides the169

admittance of the system, which is also of second order. This admittance has170

been shown to be causal, passive, and real by Rienstra [10] as long as physical171
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(positive) values of the parameters are used. Fung and Ju (2000) have advo-172

cated the use of the reflection coefficient in place of the impedance/admittance173

as well as the use of a convolution integral instead of a differential equation174

[37]. Hence, they also consider the MSD surface, but compute the impulse re-175

sponse corresponding to the reflection coefficient of this type of surface. The176

cost of computing the integral is reduced by the use of recursive convolution [36].177

Recursive convolution has also been used in conjunction with impedance or ad-178

mittance by Reymen et al [38]. Finally, broadband models of the impedance179

often rely on partial fraction expansion of either admittance/impedance [40, 39]180

or reflection coefficient[36] into first and second order systems, each of which181

satisfies the required properties. The impulse response of these systems can182

then be plugged into a convolution integral, computed recursively. Recursive183

convolution involves an integral that is often discretized with a second order184

method, which reduces the order in time of the code. However, by differentiat-185

ing this integral it is possible to obtain auxiliary differential equations (ADE),186

the convolution integral being then obtained from the solutions to the ADE.187

The advantage is that the ADE are integrated with the same method as the188

governing equations, and Dragna et al (2015) have shown that the order in time189

of the code is then maintained [41].190

In the present study, the characteristics of the liner are inspired from refer-
ence [5] in which an instability occurs around the resonance frequency. Hence,
the physics of the interaction of the turbulent flow with a single resonance
frequency (corresponding normally to absorption of sound) is of interest here,
which justifies the choice of a simple mass-spring-damper model. As discussed
above, several implementations are possible. Scalo et al (2015) used the reflec-
tion coefficient of the MSD wall together with a convolution integral [22], as
recommended by Fung and Ju [36]. Their method was extendend in [44, 42],
also for use with the Navier-Stokes equations. An inconvenient is that the order
of the time integration method decreases (even if it could possibly be fixed by
using ADE). In the present work, in order to retain the order of time integra-
tion, the implementation of the differential equation has been privileged. At a
bottom wall the MSD model in its differential equation form reads:

M
d2v

dt2
+Kv +R

dv

dt
= −dp

dt
(bottom wall) (17)

where R is the resistance, M is the mass, and K is the spring constant. These191

quantities are normalized with ρ̃bc̃w, ρ̃bH̃, and ρ̃bc̃
2
w/H̃, respectively . This192
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equation can be recast into a first-order system1:193

dv

dt
= Q (18)

dQ

dt
=

1

M

[
−dp

dt
−RQ−Kv

]
(19)

This system was first solved by Tam and Auriault for use with the linearized194

Euler equations [6], and the resolution involved a ghost point for pressure. A195

direct implementation has apparently been used by Olivetti et al [21] for solving196

the Navier-Stokes in a turbulent channel flow. By direct implementation it is197

meant that Eq. (18) replaces the momentum equation in the direction perpen-198

dicular to the wall, at the grid point located on the wall. Olivetti et al mention199

a stability issue in some cases, but it is not clear whether it is a numerical or200

a physical one. We have also used successfully such a direct implementation201

before in a linearized Euler code (see Marx (2015) [14]), and in the linearized202

Navier-Stokes equations or the nonlinear disturbance equations. However, one203

of the boundary scheme was only second order to improve stability. Gabard204

and Brambley [13], and Brambley and Gabard [15] had a stability issue when205

using a direct implementation in the linearized Euler equations and used a206

characteristic formulation to stabilize their scheme. In this formulation, the207

ingoing acoustic wave is written as a function of the incoming one, which in208

spirit is similar to dealing with the reflection coefficient, as in Fung and Ju [36].209

Here, since our solver is written in characteristic form, and motivated by the210

observation of Gabard and Brambley [13], the method of characteristics will be211

used to impose the MSD boundary condition for the Navier-Stokes equations.212

With this formulation we have not encountered stability issues.213

In addition, at the wall one still has to enforce the non-slip boundary conditions214

u=0 and w=0, as well as the isothermal wall condition T=Tw. All together,215

these are four conditions that need to be imposed in the characteristic formula-216

tion. Moreover, four characteristic quantities need to be computed at the wall:217

Y +, Y −, Y u, Y s.218

219

First note that due to the boundary condition u=0, one has: X+ = 1
ρ
∂p
∂x and

X− = − 1
ρ
∂p
∂x , leading to X+ +X−=0 at the wall. One has also Xs=Xv=Xw=0

at the wall. Due to the boundary condition w=0, one has similarly: Z+ +
Z−=Zs=Zv=Zw=0 at the wall. Accounting for these relations, and since one
also has to satisfy ∂u/∂t=0 at the wall, Y u can fixed from Eq. (1). In the same
fashion Y w will be fixed in Eq. (3) to satisfy ∂w/∂t=0. One has:

Y u = −1

2
(X+ −X−) +

1

Re

1

ρ

∂τ1j
∂xj

1Refering to the discussion above, it is obvious that this set of equations is connected to
the two ADE which would be used for computing the convolution integral for a second order
system, although it is outside our scope to establish precisely this connection.
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Y w = −1

2
(Z+ − Z−) +

1

Re

1

ρ

∂τ3j
∂xj

To obtain the reflected wave Y + at the bottom wall from the incident wave
Y − one injects Eq. (18) into Eq. (2) to obtain:

Y + = Y − + 2

(
1

Re

1

ρ

∂τ2j
∂xj

−Q
)

(bottom wall) (20)

For a rigid wall, the same relation holds with Q=0, this is Eq. (14). Equa-220

tion (20) is the Navier-Stokes equivalent of the equation preceding Eq. (2.8) in221

Gabard and Brambley [13].222

223

Finally, the isothermal character of the wall needs to be enforced, which
imposes:

∂s

∂t
= − (γ − 1)

γ

1

p

∂p

∂t
(isothermal wall) (21)

Knowing Y ± it is easy to compute ∂p/∂t and to deduce directly ∂s/∂t from
this relation. Alternatively, in order to draw a parallel with the rigid wall case
presented by Lechner et al. [28] we may further inject Eq. (5) and Eq. (4) in the
latter equation to obtain:

Y s =
−1

2c
(γ − 1)(Y + + Y −) +

γ − 1

p

1

Re

[
Φ +

1

Pr
∇ · (K∇T )

]
(22)

∂p

∂t
= − p

2c
(Y + + Y −) + pY s (23)

∂s

∂t
=
γ − 1

γ

1

2c

(
Y + + Y −

)
− γ − 1

γ
Y s (24)

where Y s 6=0 arises from v 6=0 for an impedance wall. For a rigid wall, one has224

Y s=0 and these equations become equivalent to Eqs (15-16).225

226

2.3.3. Numerical validation227

The implementation of the MSD boundary condition is validated against228

the reference solution of Zheng and Zhuang [9] for the reflection of an initial229

Gaussian pressure pulse by a plane MSD wall. To remain in the linear inviscid230

regime in which the analytical solution has been derived, the amplitude of the231

pulse is small, and the thermo-viscous terms are all neglected (the solver is232

then a Euler equations solver).233

The computational domain is a square box with (x,y,z) ∈ [-50 50] × [0 100] ×234

[-50 50]. The bottom MSD wall is at y=0, and on the other boundaries non-235

reflecting boundary conditions are used. The MSD characteristics, pulse size,236

and pulse-wall distance are the same as those used by Zheng and Zhuang [9].237

Hence, we have: R=0.2; M=2.0938; K=0.4758, and the initial pressure (mean238

+ pulse) is given by: p(x,y,z,t=0) = 1
γ + pae

− ln(2)/25(x2+(y−30)2+z2), where239

9



the amplitude pa=1e-8 is small. A regular mesh size is used in all directions,240

with ∆x=∆y=∆z. Equal numbers of grid points are used in all directions,241

Nx=Ny=Nz. Figure 1 shows a comparison between the computed pressure242

and the analytical solution along the x-axis at t=30, obtained for ∆t=0.5 and243

Nx=101. A very good agreement is observed. A convergence study has been

-50 0 50

0

2

4

6

10-10

(a) Numerical
Theoretical, Zheng and Zhuang

101 102 103
10-16

10-14

10-12

slope -4

(b)

101 102 103
10-16

10-14

10-12

10-10

slope -4

(c)

Figure 1: (a) Numerical vs theoretical pressure on the x-axis at time t=30 during Gaussian
pulse reflection at an impedance wall. (b) Error (symbols) vs number of points in one direction
for a fixed value of ∆t=0.01. (c) Error (symbols) vs number of points in one direction for a
fixed value of CFL=0.5.

244

performed by varying Nx (with Ny=Nz=Nx) for a small ∆t=0.01 and is shown245

in Fig. 1(b). The order observed is about 4. It is not unusual to observe for246

the global order the order of the boundary scheme plus 1 [43]. As discussed247

earlier, one advantage of implementing directly Eq. (18-19) is that the order of248

the integration scheme should be preserved. This is now verified. The order249

of the Runge-Kutta method is 4. Since the spatial order has been found to250

be about 4, the truncation error is expected to be O(∆t4,∆x4). Hence, by251

keeping CFL=∆t/∆x constant, we should observe a global order O(∆x4). This252

is indeed verified to be the case in Fig. 1(c).253

254
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3. Mean flow statistics above the liner255

In this section the statistics of a compressible turbulent flow in a channel256

having an impedance boundary condition at the bottom wall and a rigid upper257

wall are considered. The different test cases for which simulations (ILES)258

have been carried out are summarized in Table 1. Of particular interest is

Table 1: Impedance wall simulation test cases

Case M R ωres ξ ωflow Rebot
τ Retop

τ ∆cbot
f % ∆ctop

f %

AC01 0.3 0.23 0.185 0.109 1.84 1031 476 575 44
AC02 0.3 0.23 0.367 0.109 1.84 642 434 162 20
AC03 0.3 0.23 0.738 0.109 1.84 523 411 74 7
AC04 0.3 0.23 1.479 0.109 1.84 453 399 31 1
AC05 0.3 0.23 2.960 0.109 1.84 397 392 0 -3
AC06 0.3 0.23 5.887 0.109 1.84 390 386 -3 -5
AC09 0.4 0.10 2.961 0.045 2.51 514 413 66 7
AC11 0.3 0.60 0.185 0.284 1.84 396 390 1 -2
AC12 0.3 1.00 0.185 0.474 1.84 393 391 -1 -2
AC13 0.3 0.3 0.185 0.142 1.84 854 461 367 36
AC14 0.3 0.4 0.185 0.190 1.84 626 434 151 21
AC15 0.3 0.5 0.185 0.237 1.84 440 399 24 1

259

the dependence of the flow on the resonance frequency of the liner and on its260

resistance. Several Mach numbers have been used, but all of them remain small.261

The resonance angular frequency of the material is defined as ωres =
√
K/M262

(with a slight abuse of language, since strictly speaking this should be called263

the natural frequency). The liner may be characterized alternatively by the264

values of R, M , and K, or by the values of R, ωres, and the damping ratio265

ξ = R/(2ωresM). The latter quantities are provided in the table.266

267

Recently, Scalo et al. [22] performed channel flow simulations with impedance268

walls, with Mach numbers up toM=0.5 and resistance ranging from R=0.01-1.269

In addition, they tuned the resonance frequency of the liner so that it matches270

the typical angular frequency of the flow, defined to be: ωflow=2πM. This271

frequency is typically high and much larger than the acoustic frequency that272

would be found in aeroengines. In the present work ωres is first taken to be273

smaller than ωflow for case AC01 and is progressively increased in the cases274

AC02-AC06, while keeping Reb,M, and R constant. The resistance is increased275

in cases AC11-AC12. Case AC09 corresponds to the smallest resistance used in276

this work and to a high resonance frequency.277

The baseline frequency and resistance for case AC01 correspond to that278

for which an instability has been measured experimentally by Marx et al. [5],279

and the MSD characteristics are chosen to fit the impedance of the liner in280

the vicinity of the resonance frequency. The fit is the same as the one used281
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in Marx [45]. In dimensional units, this fit provides: R̃=94.4 kg m−2s−1;282

M̃=0.0685 kg m−2; and K̃=2.71 106 kg m−2 s−2. The resonance frequency283

is thus f̃res = ω̃res/(2π) ∼ 1 kHz, which corresponds to a realistic value for a284

liner. The normalized resistance R ∼ 0.23 has a rather low value (lower than285

what would be found in practice in most aero-engines). In the experiments of286

Marx et al. [5], the half-height of the rectangular channel was H̃=0.01m and287

this value is used here to compute normalized numbers. In the experiment288

the friction Reynolds number upstream of the liner was Reτ ∼ 3000, which is289

costly to compute at the moment, even with a ILES. The simulations are thus290

performed at Reb=6900, which corresponds to a smaller value of the friction291

Reynolds number, Reτ=395. In the following we will compare the results of the292

present simulations with the direct numerical simulations of an incompressible293

channel flow with rigid walls at Reτ=395 made by Moser et al. [46] (hereafter294

referred to as M395).295

296

Case AC01 was performed in a computational domain of size Lx×Ly×Lz =297

6πH×2H×πH (using a number of grid points Nx×Ny×Nz = 351×201×125).298

The domain size was chosen by running simulations on small domains to obtain299

the approximate wavelength of the structures in the direction of the flow.300

Then the domain length was increased to about two and then about three301

wavelengths to verify that the wavelength and flow statistics were stable. The302

independence of the statistics on the spanwise direction was then verified.303

The same procedure was followed for case AC02, leading to a domain size of304

3πH × 2H × πH, and this grid was then used for other cases for which the305

wavelength is smaller. For all the cases, we choose the grid resolution ∆x+=20306

and ∆z+=10, with wall units based on the conventional channel at Reτ=395.307

In the wall-normal direction, for case AC01, ∆y+ varies between 0.25 at the308

walls and 10 in the channel center, for case AC02 it varies between 0.5 and 10,309

whereas for the other cases ∆y+ varies between 1 and 10. A grid convergence310

study is provided in Appendix A.311

312

3.1. Effect of the liner resistance R313

The effect of liner resistance is first investigated. Olivetti et al. (2015)314

performed the simulation of a pipe flow with a liner having a resistance larger315

than 1 and reported that the turbulence statistics are not much modified by316

the liner, compared with a rigid wall [21]. Scalo et al. performed a series317

of simulations for resistance varying between 0.01 and 1 [22]. They observed318

important changes in the flow statistics for a low resistance value. The effect319

of resistance is presently investigated for 6 different values of the resistance:320

R = 0.23 (case AC01); R = 0.3 (case AC13); R = 0.4 (case AC14); R = 0.5321

(case AC15); R=0.6 (case AC11); and R=1 (case AC12). The mean velocity322

profile and the rms of the axial velocity are plotted in Fig. 2. Also plotted is323

the M395 case for rigid walls. In this figure, and at several occasions in the324

following, with a slight but unambiguous abuse of notation, y represents the325

distance to the wall. For example, y is used rather than y + 1 for the bottom326
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Figure 2: (a) Mean velocity profile and (b) rms of the streamwise velocity for varying resistance
of the liner. Values of the resistance are R = 0.23 (AC01); R = 0.3 (AC13); R = 0.4 (AC14);
R = 0.5 (AC15); R=0.6 (AC11); R=1 (AC12). In subplot (a), the straight dotted line indicates
the log law, and the other dotted line the viscous sublayer (law of the wall).

lined wall located at y=-1. It is clear that for the lower resistance, R ≤ 0.5,327

there are important changes in the flow statistics compared with the rigid wall,328

with at the lowest resistance a lower and broader peak of urms and a quasi-329

disappearance of the mean flow logarithmic region (it would be interesting to330

know if this remains true at higher values of the Reynolds number). The law331

of the wall is not followed either. For R = 0.6 and 1, the statistics are very332

close to the rigid wall channel statistics. This is in line with the findings in333

references [21, 22]. Hence, in the following we will focus on the configurations334

corresponding to a small resistance.335

3.2. Effect of the resonance frequency ωres336

In this section we analyze the influence of the resonance frequency of337

the liner on wall turbulence in comparison with rigid wall turbulence. Cases338

AC01-AC06 are considered, which correspond to a constant value of Reb and339

M, and a given low resistance value R=0.23. The resonance frequency varies340

between ωres=0.184 and ωres=5.887. The typical frequency of the flow is341

ωflow=2πM=1.84.342

343

The mean velocity profile for the different cases is shown in Fig. 3. For344

low resonance frequency (cases AC01-AC04), the mean profile departs from345

the reference profile M395 and the law-of-the-wall is not valid anymore. The346

flow speed is smaller in the vicinity of the bottom impedance wall and due to347

flow-rate conservation and the top wall being rigid, the flow speed is larger in348

the upper half of the channel. For the high resonance frequency cases, AC05349

and AC06, the mean velocity profile follows the reference curve M395 for the350

rigid channel. Hence, for resonance frequencies somewhat higher than the flow351
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Figure 3: Mean velocity profile for varying resonance frequency of the liner as a function of
the distance to the lined wall, scaled with (a) outer units c and H; (b) wall units uτ and lτ .
In (b) the straight dotted line indicates the log law, and the other dotted line the viscous
sublayer (law of the wall).

frequency, the MSD wall behaves as a rigid wall, even at low resistance.352

353

Figure 4 presents the rms of stream-wise velocity, rms of wall normal veloc-354

ity, Reynolds stress, and rms of streamwise vorticity. Unless specified otherwise,355

all quantities are non-dimensionalised using the wall-variables from the bottom356

impedance wall. For higher resonance frequencies (AC05-AC06) the turbulent357

statistics do not differ significantly from the ones for the rigid channel M395,358

which is the same behavior as for the mean velocity profiles. For the low fre-359

quency cases (AC01-AC04) noticeable differences are seen in the profiles of all360

quantities compared to the rigid wall channel M395. A broader peak in urms361

is seen in the buffer layer (as has been already noticed in Fig. 2(b) for AC01),362

and it occurs at a different location. This peak results from turbulence produc-363

tion, meaning the turbulence production is strongly affected by a low resonance364

frequency acoustic liner. Figure 4(c) shows that large values of the Reynolds365

stress are found close to wall for cases AC01-AC04, which indicates an increased366

momentum transfer in the turbulent flow throughout the channel. This transfer367

increases the drag as we will see below (see Section 5). In addition, a drop in368

ωxrms is observed in Fig. 4(d) for these cases, and a similar drop of the other369

components of the vorticity (not shown here) is observed. It is well known that370

there exists a near-wall turbulence regeneration mechanism involving streaks371

and stream-wise vortices. This classical mechanism is highly disturbed for cases372

AC01 and AC02, the flow dynamics being strongly affected by the acoustic373

liner and the nonvanishing wall normal velocity at its surface. The value vwrms374

of vrms at the wall does not vanish for a liner and decreases when ωres increases,375

as seen in Fig. 4(b) (see also Table 2). We find that vwrms is roughly inversely376

proportional to the resonance frequency. For large resonance frequencies (cases377

AC05-AC06), vwrms → 0, the liner behaves nearly as a rigid wall, and the statis-378
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Figure 4: Profiles of (a) rms streamwise velocity; (b)rms wall-normal velocity; (c) Reynolds
stress and (d) rms stream-wise vorticity for varying resonance frequency of impedance bound-
ary condition.

tics of turbulence are close to those for a rigid wall, even for low value of the379

liner resistance.380

4. Existence of a wave along the liner381

In the previous section, it has been shown that for a liner with a resistance382

sufficiently small and a resonance frequency not too large, the statistics of tur-383

bulence differ from that of a turbulent channel flow with rigid walls. It is shown384

in this section that this is due to (or accompanied with) the presence of waves385

along the impedance surface. To evidence these waves the velocity spectra in386

the stream-wise direction are considered in Fig. 5. The axial wavenumber is387

denoted by kx. The spectra are obtained at a position y=0.015 close to the388

impedance wall. The effect of the acoustic liner on the stream-wise spectra is389

clearly observed, as energy piles up at the resonance frequency, which leads to390

a partial modification of the turbulent energy cascade. For cases AC01-AC05391
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Figure 5: Velocity spectra of (a) streamwise velocity; (b) wall normal velocity; (c) spanwise
velocity, versus the wavenumber kx, at a location close to the wall (y=0.015), for several
resonance frequencies (cases AC01-AC06).

we observe spikes in Euu and Evv, whose wave-number corresponds to the res-392

onance frequency of the material (see Fig. 5a). We also find harmonics for393

case AC01. For cases AC03-AC04, we observe spikes in Eww. Spectra for case394

AC06 are in good agreement with the spectra for a rigid wall (case M395). The395

angular frequency of the waves, ωwave, has been computed from the peak of the396

Fourier transform of the wall-normal velocity measured at a point belonging to397

the liner surface. It is reported in Table 2. Overall, the observed frequency398

corresponds to the resonance frequency of the liner. For low values of ωres, the399

convection speed for the surface wave, cwave, is such that cwave/ub ≈ 0.6. In400

order to assess if the vertical movement at the lined wall can perturb wall tur-401

bulence, the vertical displacement amplitude at the lined surface is estimated402

from da = vwrms/ωwave. In wall units it becomes d+
a = daReτ , where the fric-403

tion Reynolds number for a rigid wall is used here (Reτ=395). For case AC01,404

d+
a is more than 50, which means that the vertical displacement from the wall405

goes well beyond the turbulence production region well known to be located at406

y+=15. For case AC02, d+
a is also large. This explains why turbulence is so407

affected by the liner in these cases. As the resonance frequency increases the408
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Table 2: Characteristics of the wave along the liner: ωwave, kx, and cwave are the measured
angular frequency, axial wavenumber, and phase speed of the wave along the impedance wall,
while vwrms is the rms of the wall-normal velocity computed at the impedance wall. The
quantity d+a is the estimated vertical amplitude of the displacement of a point on the lined
surface, in wall units.

AC01 AC02 AC03 AC04 AC05 AC06
ωres 0.185 0.370 0.739 1.48 2.96 5.92

ωwave 0.185 0.380 0.78 1.5 3.0 5.1
kx 1 2 3 12.3 20.3 20.3

cwave/ub 0.61 0.62 0.42 0.41 0.49 0.87
vwrms 0.024 0.0094 0.0068 0.0047 0.0016 0.0005
d+
a 51 10 3.5 1.2 0.21 0.039

value of the vertical displacement decreases. For cases AC05 and AC06, the409

displacement is less than d+
a =1, and y+ = 1 is often taken to be the first grid410

point position off the wall in large eddy simulations. Hence, for these two cases411

the wall displacement is too small to modify turbulence and turbulent statistics412

are similar to the rigid wall channel (M395), as observed above.413

Some flow visualizations are now presented to illustrate the presence of414

the wave and show its effect on the flow. Instantaneous visualizations of the415

turbulent structures for the bottom half of the channel is shown in Fig. 6, where416

flow direction is from left to right. Among the displayed quantities is a slice417

of the wall-normal velocity component close to the wall (red color for blowing418

with v out of wall, and blue color for suction with v into wall). Also shown419

are iso-contours of Q2 events (ejections) and Q4 events (sweeps), colored with420

wall-normal location (darker shade close to wall and lighter away from the wall,421

blue (red) shade is used for Q2 (Q4) events). Iso-contours of the Q-criterion422

are finally colored in yellow to show the near-wall turbulent structures.423

For the low resonance frequency case AC01, a large scale two-dimensional424

(2D) wave is clearly visible which propagates in the streamwise direction,425

with alternating blowing and suction regions. This wave strongly modifies426

and modulates the flow: structures (in yellow) are mainly present in the427

blowing regions and are absent in suction regions, leading to an inhomogeneous428

distribution of turbulent structures. In addition we do not see the near-wall429

streaks which are characteristic of the rigid wall turbulence, being an essential430

ingredient of its regeneration cycle. Q2 ejections are logically found in the431

blowing region (v out of wall), since the fluid is pushed away from the wall432

there, and Q4 sweeps are found in the suction regions (v into wall).433

For the higher resonance frequency case AC04, waves of v at the impedance434

wall are observed, which are not 2D anymore and undulations are present in435

the spanwise direction. The Q2 and Q4 events are rooted in the impedance436

wall but tend to merge farther away from the wall where their scale become437

larger than the wavelength. This indicates an interaction between the flow438
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Figure 6: Instantaneous visualization of turbulent structures for the cases: (a) AC01, (b)
AC04 and (c) AC09. Several quantities are shown: a colormap of v at the wall (light blue is
for negative v corresponding to flow into the wall, light red is for v positive corresponding to
flow out of the wall); iso-contours of Q2+=-4, shown in blue and corresponding to ejection
events; isocontours Q4+=-4 shown in red and corresponding to sweep events; isocontours of
Q-criterion Q+=3 in yellow color.

and wave when ωflow ≈ ωres. Unlike the flow for case AC01, the flow for case439

AC04 is densely populated with near wall turbulent structures. For cases with440

higher ωres > ωflow (not shown here) we observe near-wall turbulent structures441

similar to rigid wall turbulence. This may not be the case if the resistance is442

smaller than for our baseline configuration AC01-AC06. For example, Fig. 6(c)443

corresponds to case AC09, where ωres is large (but not much larger than ωflow)444

and where the resistance is very small (R=0.1). In that case there is a large445

interaction between the small scales in the flow and the liner, leading to small446

spanwise rollers. Parameters for case AC09 are close to those used by Scalo et447

al. [22], and these authors observed very similar patterns along their impedance448

surface.449
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450

A slice of the instantaneous fluctuations of stream-wise velocity at wall451

distance y=0.03, and slices of wall-normal velocity and pressure at the wall are452

shown in Fig. 7. The computational domain being larger for case AC01, only a453

half of it is shown in the streamwise direction. For the low resonance frequency

Figure 7: Slices of instantaneous fluctuations of u+ (left) at wall distance y=0.03, and of
v+ (center) and p/Ruτ (right) at the impedance wall for the cases AC01, AC02, AC04, and
AC06. Blue (red) color corresponds to negative (positive) values, and the considered range is
−6 ≤ u+ ≤ 6, −1 ≤ v+ ≤ 1 and −6 ≤ p/Ruτ ≤ 6 for all cases.

454

cases AC01 and AC02, waves are seen for all three variables. The waves are455

2D with a phase difference of π between stream-wise and wall-normal velocity.456

As ωres increases the wave progressively becomes less 2D. This is clearly seen457

in case AC04 (v component). For the high resonance frequency case AC06,458

elongated streaks are found close to the wall (left plot for u+), which is the459

feature of rigid wall flows. No pressure wave is observed.460

461

Hence, for a low resonance frequency, a wave is present along the liner sur-
face. This wave has a rather two dimensional character which is lost as the
resonance frequency increases and the wave length approaches the typical size
of the structures in the flow. Phase averaging is now performed in order to ob-
tain the spatial distribution of the wave. Phase averaging allows distinguishing
between the effect of the wave and that of random turbulence. Phase averaging
relies on the following triple decomposition [47] for any quantity a:

a = a+ a′ = a+ ã+ a′′ (25)

where a is the Reynolds average, ã is the contribution from the wave, and a′′ is462

the contribution from turbulence (note that depending on the context a tilde˜̇is463

used either for a dimensional quantity or for a wave component). The extraction464

of the wave is based on phase averaging: ã(φ) =< a >φ where < · >φ is the465
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phase average, that is, the average over all the available samples corresponding466

to the same phase φ, with 0 ≤ φ < 2π. When the wave results from some467

periodic external triggering, the phase reference for phase-averaging is provided468

by this external trigger. Here the wave is self excited and we cannot rely on469

such external reference. However, in cases where the wave is two-dimensional470

its normal component v at the impedance wall is not noisy (see Figs. 6 and 7)471

and sinusoidal; the phase of v at the wall is thus taken as the phase reference.472

The procedure used to extract the wave (amplitude and phase angle) is thus473

the following:474

1) For any flow field, average v at the wall in the span-wise direction to obtain475

a periodic 1D wave of v in the flow direction. This is legitimate as long as the476

wave is 2D; 2) Define several phases within a period (in the present case we use477

12 bins); 3) For any component (u,v,...) assign a phase bin to any streamwise478

position. This phase bin is simply taken to be that of the 1D wave of v which479

serves as a phase reference; 4) Compute the phase averaged components at each480

phase, by averaging the samples corresponding to the same phase bin; 5) Sub-481

tract the global mean to obtain wave profiles at each phase; 6) Compute the482

amplitude and phase angle of the waves using the wave profiles at each phase.483

Several instantaneous flow fields are used for this process. The random compo-484

nents a′′ can then be obtained by subtracting the global mean a and the phase485

average ã from instantaneous fields. 2D surface waves which go all the way up to486

the channel center are obtained at low values of ωres. Hence, we limit ourselves487

to cases AC01-AC03 for the phase averaging. Satisfactory 2D surface waves are488

observed for cases AC01 and AC02. However we do not expect entirely trust-489

worthy results from AC03 where the 2D character is partially lost.490

The amplitude of the phase-averaged stream-wise and wall-normal velocity, de-491

noted respectively by |û(y)| and |v̂(y)|, are shown in Fig. 8. The stream-wise
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|û|/c

y

 

 

(a) AC01
AC02
AC03

jv̂j=c
0 0.02 0.04 0.06

y

-1

-0.5

0

0.5

1
(b)

Figure 8: Amplitude of the wave along the liner: (a) stream-wise velocity component; (b)
wall-normal velocity component.

492

velocity component of the wave is larger close to the wall, and the maximum493
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decreases as the resonance frequency increases. For the wall-normal velocity494

component, the peak amplitude is obtained away from the wall, and also de-495

creases when ωres increases. Some characteristics of the wave (wavelength, phase496

speed) were given in Table 2. The shapes in Fig. 8 are reminiscent of the wave497

measured and modeled by Marx and Aurégan [25] (see their Fig. 14 where nor-498

malized eigenfunctions for u and v are given). However, in the present case499

the wave is not in its linear regime. More details are given in Section 6. The500

eigenfunctions given here also resemble those obtained by Jimenez et al [23]501

for a pure resistance (actually these authors replace their resistive wall by a502

controlled wall actuation to perform a phase average process similar to the one503

performed here).504

5. Drag increase505

In this section it is shown that the modifications in the flow induced by the506

liner are associated with an increase in the drag, compared with the channel507

with rigid walls. The friction at the wall is classically measured by Reτ defined508

in Eq. (13). This is given in Table 1 for both the bottom impedance wall and the509

top rigid wall. Other useful quantities are the drag coefficient and the change510

in drag coefficient in percent computed as follows:511

cf =
2τw
ρwu2

b

(26)

∆cf% =
cf − cref

f

cref
f

× 100 (27)

The change in drag is computed with respect to the conventional channel512

flow M395, cref
f being the drag coefficient for case M395. Thus, a positive513

value indicates a drag larger than the drag in a channel flow with rigid walls.514

∆cf% is indicated in Table 1 for both walls. Table 1 shows that the friction515

at the impedance wall is more important than for the rigid channel in the516

cases for which the flow modifications are important. This is the case for low517

resistance and a not too large resonance frequency, that is for cases AC01-AC03,518

AC13-AC15, and case AC09. For three of these cases a flow visualization has519

been shown in Fig. 6. For case AC01 the drag is increased by as much as 575%.520

521

The connection between the wave along the liner and the drag increase is522

now discussed. Using the phase-averaging process introduced in the previous523

section, it is possible to compute the drag increase at each phase of the wave.524

This is shown in Fig. 9(c).525

The phase averaged wall-normal velocity at the impedance wall, which is526

used as reference for phase averaging, is also presented in the figure. Phases527

Φ=0 (and 2π) correspond to blowing (v out of wall) and phase Φ=π to suction528

(v into wall). We see that during suction we have an important increase in529

drag, with ∆cf% multiplied by a factor 22 for case AC01 for Φ = π, due to a530

strong impingement of the flow at the wall. Averaged over a period the drag531

21



0

1000

2000

0 /2 3 /2 2

Figure 9: Phase-averaged drag increase in percent (for reference, the vertical component of
the wave at the wall is also indicated in the bottom of the plot).

increase is 575% (Table 1). Remember from Fig. 6 that for case AC01 no532

turbulent structures are present in suction regions. Hence, the drag increase is533

not due to the effect of turbulence, but rather to the effect of the wave, which534

brings in high speed flow to the wall. Figure 9c also shows that there is a small535

drag reduction (∆cf% < 0) during blowing for cases AC01 and AC02.536

537

We now consider the total Reynolds stress u′v′. Using the triple decompo-538

sition, this can be decomposed into several contributions:539

u′v′ = (ũ+ u′′)(ṽ + v′′) (28)

= ũṽ + u′′v′′ + ũv′′ + u′′ṽ

The 3 contributions are those from the wave, from the turbulence, and from540

cross terms. In the original triple decomposition [47] these cross terms are541

null because the wave and the turbulence are supposed to be uncorrelated,542

but such an assumption cannot be made a priori in the present case when the543

wave can modulate the turbulence. Nevertheless, it has been verified that the544

contribution of these terms is very small. The contributions for the other two545

terms are shown for case AC01 in Fig. 10. Wall units based on the bottom546

impedance wall are used for the scaling, therefore the peak values close to547

the top rigid wall have a small magnitude. Close to the impedance wall, the548

major contribution to the Reynolds stress comes from ũṽ, whereas away from549

the wall it comes from u′′v′′. Hence, close to the wall an increased momentum550

transfer is due to the wave, and since ũṽ is negative, momentum is transferred551

to the wall, which contributes to increasing the drag. This is in agreement with552

the drag increase being correlated with the wave, as observed above in Fig. 9(c).553

554

It is interesting to draw a parallel between the wave created here sponta-555

neously in the vicinity of the liner and the waves that are sometimes imposed556
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Figure 10: Contributions to the Reynolds stress u′v′, scaled with uτ and ρw from the bottom
impedance wall. Case AC01.

using blowing and suction (or some related forcing) in flow control [48, 49, 50].557

In flow control it is well known that the surface waves resulting from blow-558

ing/suction should generally have a negative phase speed to obtain a drag559

reduction. For example Mamori and Fukagata [49] performed simulations of a560

channel flow with a wave-like wall-normal body-force. For upstream traveling561

waves (having a propagation speed smaller than the bulk velocity) they find a562

drag reduction of up to 40%. They reported the presence of span-wise rollers563

which produces positive u′v′ close to wall and contribute to reducing the drag.564

Here in Fig. 10 we find the opposite behavior since the wave has a positive565

phase speed and ũṽ is negative, leading to a drag increase. In our case the wave566

is formed spontaneously by the interaction between the flow and the boundary567

condition, thus it is not a controlled configuration. Hœpffner and Fukagata [50]568

study wall actuation, such as wall deformation or wall blowing and suction.569

They argue that both actuation can be characterized as pumping and this570

pumping is strongly connected to drag reduction. Here the drag increases as a571

result of the phase between the ũ and ṽ components of the wave, and this also572

corresponds to some pumping by the wave. The acoustic liners produce a wave573

with a phase speed in the flow direction and a magnitude of the order of ub and574

it is unlikely that they can be used for passive drag reduction. Nevertheless, a575

slight drag decrease is reported for some cases in Table 1.576

577

6. Stability analysis578

In this section it is shown that the wave observed above the liner can be579

connected to an unstable surface wave. In the literature there has been several580

investigations of the surface wave modes in flow duct acoustics [51, 52, 53, 54,581

45, 25]. All these investigations have been done in a spatial frame of work, in582

which the (real) mode frequency is given and the (complex) mode wavenumber583
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is computed. This is the traditional way of computing a wavenumber spectrum584

in acoustics. In the present case, since the computational domain is periodic in585

the flow direction, a temporal analysis is more relevant: the (real) wavenumber586

kx is given, and the spectrum of the (complex) angular frequency ω = ωr + iωi587

is computed. Temporal analyses have been performed by Jimenez et al [23] for588

a purely resistive surface, by Tilton and Cortelezzi [55] for a model of porous589

surface, and by Rahbari and Scalo [57], again for a purely resistive surface.590

Also, it should be mentioned that global stability analyses have been performed591

recently by Pascal et al [56] and Rahbari and Scalo [58].592

Both the linearized Euler or Navier-Stokes equations, possibly comple-593

mented with a turbulent eddy viscosity model, are encountered for modal594

analysis. Normally, an unstable surface mode is found by using an inviscid595

model, and including the dissipative phenomena provides a better estimation596

of its characteristics [25]. In the present work, the two-dimensional linearized597

Navier-Stokes equations for compressible perturbations are employed. Given598

the low Mach number used in the numerical simulations, the shear base flow599

U0(y) for the linearization is almost incompressible, and the mean density and600

temperature are uniform. The equations are given in Eqs. (B.1-B.5) presented601

in Appendix B, where the same normalization (see Section 2.1) as for the602

numerical simulation is used. These equations are discretized in the wall603

normal direction in the same way as in Ref. [25], which leads to the eigenvalue604

matrix problem in Eq. (B.6). The MSD boundary condition at the bottom605

wall at y=-1 is easily included in this eigenvalue problem, see Eq. (B.16-B.17).606

The top wall at y=1 is rigid. The solution of Eq. (B.6) relies on standard607

librairies [25], and provides for each value of the wavenumber kx an eigenvalue608

spectrum ω. The solver has been validated against spatial solvers that have609

themselves been extensively validated [25].610

In the following, the spectrum of standard canonical flows are first considered611

briefly to show how a MSD wall can lead to instability before the method is612

applied to the numerical simulation.613

614

6.1. Instability due to MSD615

A parabolic mean flow U0(y) = Uc(1 − y2) for a channel with rigid walls
is first considered, where Uc=0.1 is the velocity at the center of the channel
(which is related to the Mach number M = 2Uc/3 given the normalization
with the speed of sound). For a Reynolds number based on the center velocity
of Rec=2000 (Reb=2/3Rec) and kx=1 this flow is known to be stable in the
incompressible regime [59], which is confirmed by the spectrum of the phase
speed C = ω/kx = Cr + iCi presented in Fig. 11(a). Indeed, all eigenvalue have
Ci < 0 (that is, also ωi < 0), meaning the flow is stable. Acoustic modes are
indicated by square symbols. The inviscid limit for these modes in a uniform
flow of Mach number M is given by:

ω = kxM±
√
k2
x +

(nπ
2

)2

∀n = 0, 1, 2, · · · (29)

24



−50 0 50
−0.5

−0.4

−0.3

−0.2

−0.1

Cr/Uc

C
i/
U
c

(a)

0.2 0.4 0.6 0.8

−0.8

−0.4

0

A P

S

Cr/Uc

C
i/
U
c

(b)

Figure 11: Complex phase speed spectrum (+) for a parabolic flow with rigid walls and kx=1,
Rec=2000. (a) Full spectrum. Symbols (�) indicate the acoustic modes; The vertical dotted
lines are at Cr/Uc = 1+1/Uc and Cr/Uc = 1−1/Uc. (b) Zoom in on the non-acoustic modes.
Symbols (◦) are some reference values obtained for an incompressible flow.

Two vertical lines indicate the speed Uc − cw = Uc − 1 and Uc + cw = Uc + 1,616

which are the propagation speeds of the upstream and downstream plane sound617

waves. The modes located outside the region comprised within the two vertical618

lines are all non-plane acoustic modes. Figure 11(b) presents a zoom in of the619

region within the two vertical lines. This region consists of non-acoutic modes.620

It classically displays a Y-shaped spectrum with 3 branches denoted A, P,621

and S. The A-branch modes are often designated as wall modes because their622

eigenfunctions are maximal close to the walls. The P modes are designated623

as center modes, since their eigenfunctions reach their maxima close to the624

channel center. Some reference values for an incompressible flow (given in625

the appendix A.7 of reference [59]) are added to the plot: for the low Mach626

number value Uc=0.1 taken here the agreement between the present results627

and the reference value is already quite good (the agreement can be reached628

at any order of accuracy by lowering compressibility by reducing the value of Uc).629

630

The effect of the MSD boundary condition on stability is now evidenced.631

The particular mode shown by an arrow in Fig. 11(b) belongs to the A-branch632

for rigid walls and corresponds to C/Uc ∼0.31-0.020i and ω ∼0.031-0.0020i.633

The bottom wall of the channel is now changed from rigid to MSD, and the634

MSD resonance frequency is taken to match the frequency of that particular635

mode, with ωres =
√
K/M ∼0.031. The resistance is given an arbitrary small636

value, R=0.0001, all other parameters being unchanged. The corresponding637

spectrum is shown in Fig. 12(a). A new mode, indicated by an arrow, stands638

just above the original particular mode chosen. This new mode has a small639

positive value Ci ∼ 0.00002, indicating that the flow is now unstable, other640

modes remaining approximately the same. By modifying the resonance641
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Figure 12: (a) Complex phase speed spectrum (+) for a parabolic flow with a top rigid wall
and a MSD bottom wall tuned to resonance frequency 0.031. kx=1, Rec=2000. The reference
values for the incompressible flows with rigid wall are still indicated (◦). (b) Comparison of
the spectra obtained for a Uc(1 − y8) profile with a top rigid wall and: (◦) a bottom rigid
wall; (+) a bottom MSD wall tuned at the correct resonance frequency. kx=1, Rec=2000.

frequency of the MSD wall, we have observed that it is possible to render642

unstable any mode of the A-branch and many modes of the P-branch. However,643

the modes with the highest growth rate are those with a lower value of Cr.644

Hence, a MSD wall can prompt some modes to become unstable, particularly645

those of the A-branch. Unstable modes above liners are often called surface646

waves due their fast decrease away from the wall. This is in agreement with647

these modes arising from the A-branch of wall modes. Tilton and Cortelezzi648

[55] for a porous surface, and Rahbari and Scalo [57] for a purely resistive649

surface, observed that two modes may be unstable due to the channel walls not650

being rigid, one symmetric, and one anti-symmetric. The mode obtained here651

for a resonant material is very similar in nature to their symmetric mode (as652

a result of only the bottom wall being non-rigid in the present study). Hence,653

qualitatively, purely resistive, porous, and resonant surfaces all give birth to654

the same type of instability.655

656

A mean flow with a steeper profile U0(y) = Uc(1 − y8) (let us call it657

”turbulent like”) is now considered, again with kx=1, Rec=2000. The spectrum658

for rigid walls is shown with ◦ symbols in Fig. 12(b). Overall, compared with659

the parabolic profile, the spectrum is shifted toward higher phase velocities.660

All eigenvalues are found in the bottom half plane, indicating that the flow is661

stable. The spectrum obtained by replacing the bottom rigid wall by a MSD662

wall is shown with + symbols in Fig. 12(b). The resonance frequency is tuned663

to the frequency of the leftmost mode of the rigid wall case (corresponding to664

ωr ∼0.04, or Cr/Uc ∼0.4). With a MSD bottom wall, a slightly unstable mode665

(indicated with an arrow) is appearing on top of the leftmost stable mode. All666
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other modes are unchanged. This is the same behaviour as for the parabolic667

profile. Only the modes pertaining to the A-branch could be destabilized in668

that way. The normalized norm of the streamwise velocity eigenfunction is669

given in Fig. 13 for both the parabolic and eigth-power velocity profiles. For

−1 −0.5 0 0.5 1
0

0.5

1

y

|û
(y
)|

Figure 13: Streamwise velocity eigenfunction (normalized to have unit maximum) for the
unstable mode for: the parabolic mean velocity profile with U0(y) = Uc(1 − y2);
the steeper profile U0(y) = Uc(1 − y8). kx=1, Rec=2000. The bottom wall at y=-1 is of the
MSD type.

670

the parabolic flow, the maxima close to the rigid and MSD walls are about671

the same. For the steeper profile, the peakedness of the eigenfunction close672

to the MSD wall is more pronounced and resembles the shape of a surface mode.673

674

In this subsection, the major ingredients for the temporal stability of a675

channel flow with a bottom MSD wall have been given. If the MSD wall is676

tuned to the frequency of the modes of the A-branch, these modes can be677

destabilized. The destabilization is more effective for the modes located on678

the left of the A-branch. This is also where the classical Tollmien-Schlichting679

(TS) unstable wave can be found at higher Reynolds numbers. There is thus680

some similarity between this TS wave and the present liner-due surface mode,681

although the latter can exist even without viscosity. Note that Jimenez et682

al [23] argue that for a fully permeable surface (purely resistive with zero683

resistance), the mode is connected to a Kelvin-Helmholtz instability.684

685

6.2. Comparison with the numerical simulations686

The waves observed in the numerical simulations and reported in Section 4687

for cases AC01-AC03 are 2D waves, and we now try to explain their presence by688

the same type of 2D stability analysis as in the previous subsection. These waves689

are non-linearly saturated waves not really prone to a linear stability analysis.690

To circumvent this limitation the following method that has been employed:691

the configurations AC01, AC02, and AC03 were run with a bottom rigid wall692

rather than a MSD wall until a statistically stationary turbulent channel flow is693

observed. Then at some instant chosen as the origin of time, t = 0, the bottom694

rigid wall is suddenly replaced by a MSD wall. Due to the flow being unstable,695

an instability develops in the numerical simulation in the vicinity of the bottom696
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wall and for some time it should be linear.697

The base flow U0(y) for the stability analysis should be close to be the actual698

mean velocity profile of the turbulent channel flow with rigid walls at Reb=6900699

(Reτ=395), which is the profile when the MSD wall is set up at t=0. The700

numerically calculated profile could be used but it is more convenient to use701

an analytical velocity profile that matches this mean flow. In particular this702

avoids the need for interpolation, and facilitates grid convergence study. As in703

reference [25] (see Eqs (3-4) therein), the Cess mean velocity profile is used for704

that purpose. It is indeed verified in Fig. 14 that it is a very good approximation705

to the computed mean flow. However, since the unstable mode is known to be706

sensitive to the velocity profile, results obtained with the actual mean velocity707

profile (interpolated on the Chebyshev grid) will also be presented in some places708

(Table 3, Fig. 17(b)).
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Figure 14: Comparison of the mean velocity profile obtained numerically (dashed line) with
rigid walls and the analytical Cess profile (plain line). (a) in outer units; (b) in wall units
(w = y + 1 represents the distance to the bottom wall).

709

The time evolution of the amplitude of the dominant spectral component710

(spectral refers to Fourier transform in the x-direction) of the wall-normal ve-711

locity v on the bottom MSD wall is shown in Fig. 15(a), for case AC02. The712

value of the streamwise wavenumber kx corresponding to this maximal spec-713

tral amplitude is given in Fig. 15(b). Before saturation starts at time t ∼150714

the amplitude corresponds to a constant value of kx=3.55 and exhibits an ex-715

ponential growth typical of an instability. At later times, saturation leads to716

a final state that is the same as described in Section 4, and the wavenumber717

corresponding to the final state (kx ∼2 in Fig. 15(b), see also Table 2) differs718

from the wavenumber for the initial instability (kx=3.55). The characteristics719

of this instability (wavenumber, angular frequency, growth rate) are computed720

for t <150 and compared to those predicted by the stability analysis. The char-721

acteristics of the wave extracted from the numerical simulations is compared722
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Figure 15: For case AC02: (a) Time evolution of the spectral component of the wall-normal
velocity at the impedance wall having the largest amplitude (the straight dashed line with
symbols is a fit to the initial exponential growth); (b) Streamwise wavenumber of the spectral
component having the largest amplitude; (c) Normalized phase speed spectrum (+) result-
ing from a linear stability analysis performed for kx=3.55. The triangle is the phase speed
computed from the numerical simulation.

to that of the stability analysis in Table 3. For the numerical simulation the723

characteristics are the one of the observed wave. For the stability analysis, a724

search of the most unstable mode has been done, and the reported value of kx725

is the one for which the largest value of ωi is obtained. The stability analysis726

has been performed for the Cess mean velocity profile and the numerical mean727

velocity profile. The latter is computed for rigid walls, just before the bottom728

MSD wall is introduced at t = 0. The characteristics predicted by both profiles729

are reasonably close, and if not perfect, the agreement with the numerical sim-730

ulation is satisfactory. For example, for case AC02 the wavenumber kx and the731

growth rate ωi agree rather well. In any case the value of ωr is slightly larger732

than the angular resonance frequency of the liner, ωres =
√
K/M . Figure 15(b)733

shows the spectrum predicted by the stability analysis, for case AC02. It bears734

many similarities with that for the canonical eigth-power velocity flow consid-735

ered above. In particular, the unstable mode indicated by an arrow stands on736

the left side of the A-branch. The mode calculated from the numerical simula-737

tion is indicated with a triangle symbol. The eigenfunctions for the streamwise738

and wall normal velocities for case AC02 are compared in Figs 16(a) and 16(b),739

respectively. Both are normalized with the value of the wall normal velocity740

eigenfunction at the wall.741

If the values are not exactly the same, especially for û, the general trends742

are similar. The eigenfunctions for the saturated state obtained at large times743

(which were already included in Fig. 8) are also shown. Obviously the satu-744

rated state will differ in many respects of the initial instability leading to this745

state. Nevertheless, some similarities exist between the eigenfunction in the two746
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Table 3: Comparison between the characteristics of the instability wave observed in the nu-
merical simulation during the growth period and the characteristics of the most amplified wave
predicted by the linear stability analysis. For the stability analysis, either the Cess velocity
profile or the numerical profile have been used.

Case ωres Numerical Stability Analysis

Simulation Cess profile Numerical profile

=
√
K/M kmax

x ωr ωi kx ωr ωi kx ωr ωi
AC01 0.185 2.3 0.22 0.028 1.65 0.210 0.0282 2.1 0.22 0.030
AC02 0.367 3.3 0.47 0.044 3.55 0.408 0.0445 4 0.41 0.051
AC03 0.738 6.7 0.79 0.073 7.05 0.787 0.0585 7.3 0.79 0.073
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Figure 16: (a) Streamwise velocity eigenfunction. (b) Wall normal velocity eigenfunction.
Case AC02. kx=3.55. Stability analysis; Numerical computation, during the ex-
ponential growth of the instability; Numerical computation, final saturated state.

regimes, which tends to indicate that the dynamics of the wave observed in the747

vicinity of the lined wall in Section 4 is partially governed by a linear instability.748

749

6.3. Link between resistance, growth rate, and observed drag increase750

A critical value of the resistance is expected for a liner, above which there751

should be no instability. Moreover, the drag increase observed in the numerical752

simulations is due to the wave along the liner, and this wave is partly governed753

by a linear instability. Hence, it is also expected that the predicted growth rate754

of the instability and the observed drag increase should be correlated below the755

critical resistance. This is now investigated.756

A linear stability analysis is performed for case AC01 in table 1. The baseline757

resistance for case AC01 is R = 0.23. However, the resistance is here allowed758

to vary from R = 0.01 to R = 0.8 so that its effect can be investigated. The759

growth rate as a function of the wavenumber is shown for the unstable mode760
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in Fig. 17(a), for several values of R. For each R the growth rate is maximal761

for some given wavenumber, as indicated with a filled symbol. The maximal762

growth rate is given as a function of resistance in Fig. 17(b). It is confirmed763

that there exists a critical resistance R = 0.7 above which configuration AC01 is764

stable (configuration AC02 is also shown, and corresponds to a critical resistance765

R = 0.6). It is verified for case AC01 in Fig. 17(b) that using the numerical766

velocity profile in the stability analysis rather than the Cess profile has almost767

no effect on the critical resistance. In addition, the growth rate increases linearly768

as R decreases and saturates as the resistance approaches a zero value. The769

angular frequency of the instability obtained at the wavenumber corresponding770

to maximal growth is given in Fig. 17(c) for both AC01 and AC02 cases. Also771

indicated in this figure is the theoretical resonance frequency for a damped772

oscillator[60], given by
√
K/M − (R/2M)2 (a more precise definition compared773

to ωres =
√
K/M used everywhere else in this paper). The frequency of the774

instability in the presence of flow is classically larger than this theoretical value,775

but follows the same trend. In particular, the frequency of the most amplified776

instability saturates to a value slightly larger than
√
K/M when R → 0. This777

would not be the case for a purely resistive system (such as considered by778

Jimenez et al [23] or Rahbari and Scalo [57]), in which the frequency of the779

most amplified instability (as well as the corresponding wavenumber) would780

increase importantly as R → 0. Finally, the phase speed of the most amplified781

instability is given as a function of resistance in 17(d) for case AC01. The phase782

speed decreases with decreasing R. It would appear that this is opposite to783

the observations by Rahbari and Scalo [57] (see their Fig. 6) that the phase784

velocity increases when R decreases, at a fixed wavenumber. However, even785

for a purely resistive liner, we have verified that the phase velocity decreases786

when R decreases as long as the wavenumber is changed along with R to always787

correspond to maximal growth (if α is fixed instead, we also find that the phase788

speed increases with decreasing R). This means that the qualitative behavior789

of the phase speed is the same for a purely resistive and a MSD liner. For the790

original AC01 case (with R = 0.23), the phase speed in Fig. 17(d) is cr,max/ub ∼791

0.42. This is less than the value cwave/ub = 0.61 reported in Table 2. However,792

this difference is logical, since the latter value corresponds to the saturated state,793

whereas cr,max/ub ∼ 0.42 corresponds to the initial linear instability. Since the794

wavenumber decreases (as shown in Fig. 15(b) for AC02) as the instability795

saturates, and meanwhile the frequency does not change much, the phase speed796

increases during saturation.797

The drag increase obtained in the numerical simulations (as reported in Table 1)798

for cases AC01, AC13, AC14, AC15, AC11, and AC12 (all corresponding to799

baseline configuration AC01 with different values of R) is plotted in Fig. 18.800

The drag increase here corresponds to the saturated state. Below a critical801

resistance, the value of which is between R = 0.5 and R = 0.6, the drag increase802

decreases approximately linearly with increasing resistance, which is in line with803

the predicted growth rate of the linear instability also decreasing linearly with804

resistance (see Fig. 17(b)). Moreover, the critical resistance observed in the805
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Figure 17: (a) Growth rate of the unstable mode versus wavenumber, given by a linear stability
analysis of test case AC01 with several values of the resistance: R = 0.01; R = 0.05;

R = 0.1; R = 0.23; R = 0.3; R = 0.4; R = 0.5; R = 0.6;
R = 0.7; · · · R = 0.8. The maximum growth rate is indicated by filled symbols. (b) Maximum
growth rate of the unstable mode as a function of resistance: the plain line with filled circles
corresponds to case AC01, and the one with open circles to case AC02, both are obtained with
the Cess velocity profile. The dashed line with × symbols corresponds to case AC01 when
the stability analysis is based on the numerical velocity profile. (c) real angular frequency of
the most amplified instability (filled circles for AC01; open circles for AC02; dashed lines for
theoretical resonance frequencies of these MSD systems)(d) Phase speed normalized by bulk
velocity as a function of resistance, for the instability having maximal growth, for baseline
case AC01.

numerical simulations is not too different from the linear stability prediction,806

R = 0.7. This thus confirms the statements made in the beginning of this807

section.808
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Figure 18: Drag increase at the bottom lined wall as a function of resistance, obtained in
the numerical simulations by varying the resistance of baseline case AC01 (the corresponding
cases are AC01, AC13, AC14, AC15, AC11, AC12).

7. Conclusion809

Numerical simulations of a turbulent channel flow with an impedance810

boundary condition have been performed. When the liner resistance is small,811

and when its resonance frequency is not too large compared to a typical fre-812

quency of the flow, the turbulent statistics differ from those for a channel with813

rigid walls. Surface waves are also observed along the liner surface. The waves814

have a large wavelength compared to the turbulent structures. They modulate815

these structures and transport momentum toward the impedance wall, causing816

a drag increase. As the resonance frequency increases these waves progressively817

lose their spanwise coherence while their wavelength decreases to get close818

to the flow typical length scales, which may also results in a drag increase819

when the resistance is sufficiently small, as was also observed by Scalo et al. [22].820

821

At low resonance frequencies the two-dimensional waves have a spatial822

distribution which resembles the waveforms observed in former experiments [5],823

even if the conditions differ (the simulation are periodic in the streamwise824

direction, the Reynolds number in the simulation is lower).825

826

A linear two-dimensional temporal stability analysis has been performed.827

A temporal analysis suits the streamwise periodic configuration of the channel828

flow and offers a new perspective on unstable modes, compared with the more829

widespread spatial analysis of surface modes in acoustics. It has been shown830

that by tuning the resonance frequency of the liner to the frequency of a mode831

pertaining to the A-branch of wall modes, it is possible to destabilize this832

mode. Numerical simulations of a channel flow have been performed where the833

bottom rigid wall is suddenly replaced by an impedance wall. An instability834
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is then observed with characteristics similar to those obtained from a linear835

stability analysis. This instability saturates and leads to a final state of the836

flow which corresponds to a waveform different from the initial instability, but837

not completely different.838

839

The liner was modeled by an impedance boundary condition corresponding840

to a mechanical oscillator. This has first been introduced by Tam and841

Auriault [6] and has been recast here to match the characteristic form of842

the equations used in the solver. It is a simple model that accounts for a843

resonance of the liner. As virtually any other impedance model, it can be844

derived by supposing that the incident acoustic wave has a long wavelength845

compared to the perforations of the face sheet. This model has been used846

as is in the turbulent channel numerical simulations, but some turbulent847

scales may be so small that the model is not valid anymore. Also it is not848

clear how the rugosity due to liner perforations can be accounted for by an849

impedance boundary condition. As a result, the low frequency waves certainly850

correspond to some reality (and have been observed experimentally) but851

the presence of small spanwise rollers at high frequency probably needs to be852

confirmed by experiments or simulations including the full geometry of the liner.853

854

Ongoing work focus on spatial simulations, with a well defined inlet and855

outlet and no periodicity assumption. This is closer to practical situations, and856

also allows introducing a sound wave into the domain. The triggering of the857

surface wave by an incoming wave is indeed important physically. In the present858

paper, the periodic streamwise boundary conditions probably act as means to859

sustain the wave as an incoming wave would do in a spatial simulation.860
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Appendix A. Grid convergence study865

The mesh size requirement in the vicinity of an impedance wall is not as866

well established as for a rigid wall. Hence, in this section we perform a grid867

convergence study to determine the grid requirements for accurate numerical868

simulations with impedance walls. The different configurations studied in this869

appendix are summarized in Table A.4. Four test cases from Table 1 are consid-870

ered (AC01,AC02,AC03,AC05), which are those for which the impedance affect871

the more the flow dynamics. For AC01 and AC02, a 2D traveling surface wave872

is observed in the domain, which strongly interacts with the flow due to blowing873

and suction at the wall. Hence, we perform the grid convergence study mainly874

focused on refinement in the wall-normal direction. For AC03 we observe quasi-875

2D surface waves with ripples in the span-wise direction, therefore we study876
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Table A.4: Test cases for grid convergence analysis using impedance wall boundary condition.

Lx × Ly × Lz M R ωres Nx ×Ny ×Nz ∆x+ ∆y+
min ∆z+ ∆cbot

f % ∆ctop
f %

AC01cc 6πh× 2h× πh 0.3 0.23 0.185 351× 151× 125 20 1 10 443 44
AC01c 6πh× 2h× πh 0.3 0.23 0.185 351× 171× 125 20 0.5 10 573 45
AC01 6πh× 2h× πh 0.3 0.23 0.185 351× 201× 125 20 0.25 10 575 44

AC02c 3πh× 2h× πh 0.3 0.23 0.367 185× 151× 125 20 1 10 162 20
AC02 3πh× 2h× πh 0.3 0.23 0.367 185× 171× 125 20 0.5 10 159 18

AC03c 3πh× 2h× πh 0.3 0.23 0.738 185× 151× 125 20 1 10 74 7
AC03 3πh× 2h× πh 0.3 0.23 0.738 91× 151× 61 40 1 20 78 -1
AC05 3πh× 2h× πh 0.3 0.23 2.960 185× 151× 125 20 1 10 0 -3

AC05w 3πh× 2h× 2πh 0.3 0.23 2.960 185× 151× 251 20 1 10 -2 -4
R0.1cc 6h× 2h× 6h 0.5 0.10 3.140 115× 151× 251 20 1 10 161 188
R0.1c 6h× 2h× 6h 0.5 0.10 3.140 115× 171× 251 20 0.5 10 176 176
R0.1 6h× 2h× 6h 0.5 0.10 3.140 115× 201× 251 20 0.25 10 181 181

the grid coarsening in the stream- and span-wise directions. With case AC05877

we check the influence of domain size in the span-wise direction. In addition,878

to validate our computations against the simulations of Scalo et al. [22] (to879

our knowledge, the only published work for which turbulence with impedance880

walls has been documented), a configuration taken from this reference has been881

computed and is referred to as R0.1 in the table. In this configuration, the882

resistance R=0.1 is smaller than generally used in this work, and both top883

and bottom walls are impedance walls, whereas for cases AC01-AC05 only the884

bottom wall is an impedance wall. Also, the Mach number value is larger,885

M=0.5. All in all, configuration R0.1 is not hugely different from the test case886

AC09, except that for the latter only the bottom wall is lined. Our domain887

size for test case R0.1 is the same as Scalo et al [22], and our finer grid verifies888

∆x+ ×∆y+ ×∆z+ = 20× 0.25× 10 (with + units based on Reτ=395). Scalo889

et al grid resolution is ∆x++ × ∆y++ × ∆z++ = 27.7 × 0.6 × 21.6 where ++890

denotes normalization by wall units of the simulation. Converted into + units891

based on Reτ=395 , this gives ∆x+ ×∆y+ ×∆z+ ∼ 17.5× 0.37× 13.5. Hence,892

the resolutions are comparable.893

All simulations share the same value Reb=6900. For an incompressible894

channel flow with rigid walls (a configuration referred to as M395 in the paper)895

at similar Reb and M one would have Reτ=395. For impedance walls it is not896

possible to estimate the friction Reynolds number a priori. Hence, all the grid897

resolution mentioned in Table A.4 are based on the value of Reτ for a rigid wall898

simulation. Similarly ∆cf% computed for the two walls are based on the velocity899

and length scales computed for bottom impedance and top rigid wall separately.900

901

Results of the grid convergence analysis are shown in Fig. A.19, where the902

mean stream-wise velocity, as well as the rms of stream-wise and wall-normal903
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velocity are presented. Results in Fig. A.19 are non-dimensionalised with
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Figure A.19: Grid convergence for impedance wall test cases. In the legend only the the most
well resolved cases (e. g. AC01) are indicated (line+symbols). Cases with medium resolution
(e. g. AC01c) are shown by a dashed line, while cases with the worst resolution (e. g. AC01cc)
are shown by a dash-dotted line, where lines are of the same color as the most well resolved
case. Lines of medium and high resolution are superimposed, only the line corresponding to
the worst resolution stands apart in some cases.

904

wall units of the bottom impedance wall. These results do not depend much905

on the grid resolution, which is therefore deemed to be sufficient in all test906

cases. From this study the grid resolution that is required in the directions907

parallel to the wall is ∆x+=20 and ∆z+=10 (computed with equivalent friction908

Reynolds number Reτ=395 in rigid-wall simulation). In the wall-normal909

direction, a minimal mesh size y+
min=0.25-1 is necessary. These values are910

about the same, or slightly more stringent than required for a rigid wall. In911

particular the smaller the resistance of the MSD wall the smaller y+
min should be.912

913

The profiles for the mean flow, rms of streamwise velocity, and rms of span-914

wise velocity for case R0.1 are compared to the ones obtained by Scalo et al. [22]915

for the same configuration in Fig. A.20, where the rigid wall case M395 is also916

shown. Although an exact agreement with the results of Scalo et al. [22] is not917
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Figure A.20: Comparison between the present simulation and that from Scalo et al. [22] for
case R0.1. (a) Mean velocity; (b) rms of streamwise velocity; (c) rms of wall-normal velocity.
Lines are: presents result; Scalo et al. results; rigid wall case M395.

obtained (their simulation is also a large eddy simulation), both simulations918

provide close results. The difference seen in the mean velocity profile also shows919

up in the drag increase: we computed a larger drag increase (≈180%) for case920

R0.1, whereas Scalo et al. report a value of 148%. Nevertheless, despites these921

differences, it is clear that both simulations show similar changes compared to922

the rigid channel flow.923

Appendix B. Linear stability analysis924

To perform the stability analysis, the linearized two-dimensional Navier-
Stokes equations are considered. For the linearization all variables are splitted as
a sum of a base flow indicated by subscript 0, and a perturbation indicated with a
tilde: ρ(x, y) = ρ0 + ρ̃(x, y, t); u(x, y, t) = U0(y)+ũ(x, y, t); v(x, y, t) = ṽ(x, y, t);
p(x, y, t) = p0 + p̃(x, y, t); T (x, y, t) = T0 + T̃ (x, y, t). The base flow is taken to
be essentially a shear flow with a streamwise component U0(y) that depends on
y. In our simulation, the Mach number is small, as a result no dependence of
the base density ρ0 and temperature T0 upon y is considered. The linearized
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equations for the perturbations are:

∂ρ̃

∂t
+ U0

∂ρ̃

∂x
+

(
∂ũ

∂x
+
∂ṽ

∂y

)
= 0 (B.1)

∂ũ
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∂ũ

∂x
+ ṽ
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+
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=

1

Re
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1

Re

(
µT
3

+
κ

µ

)
∂

∂x

(
∂ũ
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+
∂ṽ

∂y

)
· · ·

+
1

Re

dµT
dy

(
∂ũ
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+
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∂ṽ
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∂ṽ

∂x
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1

Re
µT∆ṽ +

1

Re
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µT
3
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κ

µ

)
∂

∂y

(
∂ũ
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+
∂ṽ
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)
· · ·

− 2

3

1

Re

dµT
dy
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4
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1

Re

dµT
dy

∂ṽ
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∂p̃

∂t
+ U0

∂p̃

∂x
+

(
∂ũ

∂x
+
∂ṽ

∂y

)
=

1

RePr

(
1 +

νtPr

γPrt

)
∆T̃ +

1

γRePrt

dνt
dy

∂T̃

∂y
· · ·

+
(γ − 1)

Re
2

dU0

dy

(
∂ũ

∂y
+
∂ṽ
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)
(B.4)

p̃ =
1

γ
(T̃ + ρ̃) (B.5)

These equations are normalized with the same reference quantities as used925

in the numerical solver (see Section 2.1). Since the temperature is uniform926

here, the speed of sound at the wall is simply the speed of sound anywhere.927

For completeness, a turbulent eddy viscosity µt(y) depending on y has been928

retained. The result obtained with this eddy viscosity were slightly different929

but neither better or worse than the ones presented in the paper which were930

obtained by accounting only for the molecular viscosity. The total viscosity931

(molecular + turbulent) is µT (y) = µ + µt(y). The corresponding dynamic932

viscosity (obtained after division by the uniform ρ0) is νT (y) = ν + νt(y).933

For the results presented in the paper and obtained with the sole molecular934

viscosity, one has: µt(y)=0, νt(y) = 0, νT (y) = ν.935

936

For a temporal stability analysis, modal solutions of the form ũ(y) =
û(y)ei(kxx−ωt) are searched for, where kx is a real wavenumber and ω is
the complex angular frequency. Injecting this solution into Eqs. (B.1-B.5),
discretizing these equations on a y-grid and denoting by D the corresponding
derivation matrix [25] provides the generalized eigenvalue problem:

(A + ωB) Ψ = 0 (B.6)

where:

A =


ikxU0 ikxI D

ikxU0 + A1 U′0 + A2

A3 ikxU0 + A4 D

ikxI + A5 D + A6 ikxU0 A7

− 1
γ
I I − 1

γ
I

 (B.7)
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B =


−iI

−iI

−iI

−iI

 (B.8)

937

A1 =
1

Re

(
4

3
NT + K

)
k2x −

1

Re
(NTD2 + N′TD) (B.9)

A2 = − 1

Re

(
1

3
NT + K

)
ikxD − ikx

Re
N′T (B.10)

A3 = − 1

Re

(
1

3
NT + K

)
ikxD +

2

3Re
ikxN

′
T (B.11)

A4 = − 1

Re

(
4

3
NT + K

)
D2 +

1

Re

(
k2xNT − 4

3
N′TD

)
(B.12)

A5 = −2(γ − 1)

Re
U′0D (B.13)

A6 = −2(γ − 1)

Re
ikxU

′
0 (B.14)

A7 =
1

RePr

(
I +

Pr

γPrt
Nt

)
(k2xI − D2) − 1

γRePrt
N′tD (B.15)

The vector of unknown is Ψ = [R U V P T]t where U for example contains the938

values of û at the grid points.939

U0 and U′0 are matrices containing the velocity and velocity derivative at the grid940

points. NT is the square matrix containing the total viscosity (νT ) at the grid points941

in its diagonal; N′T is the square matrix containing the y-derivative of the total942

viscosity (dνT /dy) in its diagonal; Nt is the square matrix with the turbulent eddy943

viscosity only (νt) in its diagonal; N′t is the square matrix with the y-derivative of944

the turbulent eddy viscosity only (dνt/dy) in its diagonal.945

946

Finally, the implementation of the impedance boundary condition is discussed.947

Contrary to the spatial stability case, in the general case when the impedance Z(ω) is948

a transcendental function of ω it would not be possible to easily insert the impedance949

boundary condition into Eq. (B.6). As the present MSD boundary condition leads to950

an algebraic function of ω, there is no such difficulty. Taking the Fourier transform of951

Eqs. (18-19), one obtains:952

q̃+ ω (iṽ) = 0 ( at y = −1) (B.16)

Kṽ+ ω (−iMq̃ − iRṽ − ip̃) = 0 ( at y = −1) (B.17)

To introduce this into Eq. (B.6), one has to add one unknown q̃ in the vector Ψ, and953

add an extra line in Eq. (B.6) that corresponds to the first equation, Eq. (B.16), in the954

former system. The second equation of the system, Eq. (B.17), replaces the equation955

for ṽ at the bottom wall in Eq. (B.6). Overall the matrices A and B are square of size956

(5N+6)x(5N+6), where N is the number of discretization points in the y-direction.957
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[24] D. Marx, Y. Aurégan, Comparison of experiments with stability analysis predic-1017

tions in a lined flow duct, Proceedings of the 16th AIAA/CEAS Aeroacoustics1018

Conference, AIAA Aviation Forum, 5-9 june 2010, Stockholm, AIAA Paper AIAA1019

2010-3946.1020
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[32] E. Lamballais, V. Fortuné, S. Laizet, Straightforward high-order numerical dis-1037

sipation via the viscous term for direct and large eddy simulation, J. Comput.1038

Phys. 230 (2011) 3270-3275.1039
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