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ABSTRACT

In this paper we address the problem of solving ill-posed inverse problems in
imaging where the prior is a neural generative model. Specifically we consider
the decoupled case where the prior is trained once and can be reused for many
different log-concave degradation models without retraining. Whereas previous
MAP-based approaches to this problem lead to highly non-convex optimization
algorithms, our approach computes the joint (space-latent) MAP that naturally
leads to alternate optimization algorithms and to the use of a stochastic encoder
to accelerate computations. The resulting technique is called JPMAP because it
performs Joint Posterior Maximization using an Autoencoding Prior. We show
theoretical and experimental evidence that the proposed objective function is quite
close to bi-convex. Indeed it satisfies a weak bi-convexity property which is
sufficient to guarantee that our optimization scheme converges to a stationary point.
Experimental results also show the higher quality of the solutions obtained by our
JPMAP approach with respect to other non-convex MAP approaches which more
often get stuck in spurious local optima.
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1 INTRODUCTION AND RELATED WORK

General inverse problems in imaging consist in estimating a clean image x ∈ Rn from noisy, degraded
measurements y ∈ Rm. In many cases the degradation model is known and its conditional density

pY |X (y |x) ∝ e−F (x,y)

is log-concave with respect to x. To illustrate this, let us consider the case where the negative
log-conditional is quadratic with respect to x

F (x,y) =
1

2σ2
‖Ax− y‖2. (1)

This boils down to a linear degradation model that takes into account degradations such as, white
Gaussian noise, blur, and missing pixels. When the degradation operator A is non-invertible or
ill-conditioned, or when the noise level σ is high, obtaining a good estimate of x requires prior
knowledge on the image, given by pX (x) ∝ e−G(x). Variational and Bayesian methods in imaging
are extensively used to derive MMSE or MAP estimators,

x̂MAP = arg max
x

pX|Y (x |y) = arg min
x

{F (x,y) +G(x)} (2)

based on explicit priors like total variation (Chambolle, 2004; Louchet and Moisan, 2013; Pereyra,
2016; Rudin et al., 1992), or learning-based priors like patch-based Gaussian mixture models (Teodoro
et al., 2018; Zoran and Weiss, 2011).

Neural network regression. Since neural networks (NN) showed their superiority in image classi-
fication tasks (Krizhevsky et al., 2012) researchers started to look for ways to use this tool to solve
inverse problems too. The most straightforward attempts employed neural networks as regressors
to learn a risk minimizing mapping y 7→ x from many examples (xi,yi) either agnostically (Dong
et al., 2014; Gao et al., 2019; Gharbi et al., 2016; Schwartz et al., 2018; Zhang et al., 2017a, 2018) or
including the degradation model in the network architecture via unrolled optimization techniques
(Chen and Pock, 2017; Diamond et al., 2017; Gilton et al., 2019; Gregor and LeCun, 2010).

Implicitly decoupled priors. The main drawback of neural networks regression is that they require
to retrain the neural network each time a single parameter of the degradation model changes. To
avoid the need for retraining, another family of approaches seek to decouple the NN-based learned
image prior from the degradation model. A popular approach within this methodology are plug &
play methods. Instead of directly learning the log-prior − log pX (x) = G(x) + C, these methods
seek to learn an approximation of its gradient ∇G (Bigdeli and Zwicker, 2017; Bigdeli et al., 2017)
or proximal operator proxG (Chan et al., 2017; Meinhardt et al., 2017; Ryu et al., 2019; Zhang
et al., 2017b), by replacing it by a denoising NN. Then, these approximations are used in an iterative
optimization algorithm to find the corresponding MAP estimator in equation (2).

Explicitly decoupled priors. Plug & play approaches became very popular because of their conve-
nience but obtaining convergence guarantees under realistic conditions is quite challenging. Indeed,
the actual prior is unknown, and the existence of a density whose proximal operator is well approxi-
mated by a neural denoiser is most often not guaranteed (Reehorst and Schniter, 2018), unless the
denoiser is retrained with specific constraints (Gupta et al., 2018; Ryu et al., 2019; Shah and Hegde,
2018). In our experience these inconsistencies may result in sub-optimal solutions that introduce
undesirable artifacts. It is tempting to use neural networks to learn an explicit prior for images.
For instance one could use a generative adversarial network (GAN) to learn a generative model
for X = G(Z) with Z ∼ N(0, I) a latent variable. Nevertheless, current attempts (Bora et al.,
2017) to use such a generative model as a prior to estimate x̂MAP in (2) lead to a highly non-convex
optimization problem. Indeed, the posterior writes

pX|Y (x |y) =

∫
pY |X (y |x) pX|Z (x | z) pZ (z) dz

= pY |X (y |x)

∫
pX|Z (x | z) pZ (z) dz

= pY |X (y |x) pZ
(
G−1(x)

)
,
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where the last equality follows from pX|Z (x | z) = δ(x−G(z)). Therefore,

x̂MAP = arg max
x

pX|Y (x |y)

= G

(
arg max

z

{
pY |X (y |G(z)) pZ (z)

})
= G

(
arg min

z

{
F (G(z),y) +

1

2
‖z‖2

})
.

(3)

Convergence guarantees for this problem are of course extremely difficult to establish, and our
experimental results in Section 3 on the CSGM approach by Bora et al. (2017) confirm this.

A possible workaround to avoid minimization over z could consist in learning an encoder network
E (inverse of G) to directly minimize over x. This does not help either because an intractable term
appears when we develop

pX (x) = pZ (E(x)) det

((
∂E

∂x

)T (
∂E

∂x

))1/2

δG(E(x))=x(x)

via the push-forward measure.

Proposed method: Joint MAPx,z . In order to overcome the limitations of the previous approach,
in this work we show that the numerical solution of the explicitly decoupled approach is greatly
simplified when we introduce two modifications:

• Given the noisy, degraded observation y, we maximize the joint posterior density
pX,Z|Y (x, z |y) instead of the usual posterior pX|Y (x |y);
• We use both a (deterministic or stochastic) generator and a stochastic encoder.

In addition, we show that for a particular choice of the stochastic decoder the maximization of the
joint log-posterior becomes a bi-concave optimization problem or approximately so. And in that case,
an extension of standard bi-convex optimization results (Gorski et al., 2007) show that the algorithm
converges to a stationary point that is a partially global optimum.

The remainder of this paper is organized as follows. In Section 2 we derive a model for the joint
conditional posterior distribution of space and latent variables x and z, given the observation y.
This model makes use of a generative model, more precisely a VAE with Gaussian decoder. We
then propose an alternate optimization scheme to maximize for the joint posterior model, and state
convergence guarantees. Section 3 presents first a set of experiments that illustrates the convergence
properties of the optimization scheme. We then test our approach on classical image inverse problems,
and compare its performance with state-of-the-art methods. Concluding remarks are presented in
Section 4.

2 JOINT POSTERIOR MAXIMIZATION WITH AUTOENCODING PRIOR (JPMAP)

2.1 VARIATIONAL AUTOENCODERS AS IMAGE PRIORS

In this work we construct an image prior based on a variant of the variational autoencoder (Kingma
and Welling, 2013) (VAE). Like GANs and other generative models, VAEs allow to obtain samples
from an unknown distribution pX by taking samples of a latent variable Z with known distribution
N (0, I), and feeding these samples through a learned generator network. For VAEs the generator (or
decoder) network with parameters θ can be deterministic or stochastic and it learns

pX|Z (x | z) = pθ(x|z),

whereas the stochastic encoder network with parameters φ, approximates
pZ|X (z |x) ≈ qφ(z|x).

Given a VAE we could plug in the approximate prior

pX (x) =
pθ(x|z) pZ (z)

pZ|X (z |x)
≈ pθ(x|z) pZ (z)

qφ(z|x)
(4)
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in (2) to obtain the corresponding MAP estimator, but this leads to a numerically difficult problem
to solve. Instead, we propose to maximize the joint posterior pX,Z|Y (x, z |y) over (x, z) which is
equivalent to minimize

J1(x, z) := − log pX,Z|Y (x, z |y) = − log pY |X,Z (y |x, z) pθ(x | z)pZ (z) (5)

= F (x,y) +Hθ(x, z) +
1

2
‖z‖2. (6)

Note that the first term is quadratic in x (assuming (1)), the third term is quadratic in z and all the
difficulty lies in the coupling term Hθ(x, z) = − log pθ(x | z). For Gaussian decoders (Kingma and
Welling, 2013), the latter can be written as

Hθ(x, z) =
1

2

(
n log(2π) + log det Σθ(z) + ‖Σ−1/2θ (z)(x− µθ(z))‖2

)
. (7)

which is also convex in x. Hence, minimization with respect to x takes the convenient closed form:

arg min
x

J1(x, z) =
(
ATA+ σ2Σ−1θ (z)

)−1 (
ATy + σ2Σ−1θ (z)µθ(z)

)
. (8)

Unfortunately the coupling term H and hence J1 is a priori non-convex in z. As a consequence the
z-minimization problem

arg min
z

J1(x, z) (9)

is a priori more difficult. However, for Gaussian encoders, VAEs provide an approximate expression
for this coupling term which is quadratic in z. Indeed, given the equivalence

pθ(x | z) pZ (z) = pX,Z (x, z) = pZ|X (z |x) pX (x) ≈ qφ(z |x) pX (x)

we have that
Hθ(x, z) +

1

2
‖z‖2 ≈ Kφ(x, z)− log pX (x) . (10)

where Kφ(x, z) = − log qφ(z |x). Therefore, this new coupling term becomes

Kφ(x, z) = − logN (z;µφ(x),Σφ(x)) (11)

=
1

2

(
k log(2π) + log detΣφ(x) + ‖Σ−1/2φ (x)(z − µφ(x))‖2

)
, (12)

which is quadratic in z. This provides an approximate expression for the energy (5) that we want to
minimize, namely

J2(x, z) := F (x,y) +Kφ(x, z)− log pX (x) ≈ J1(x, z). (13)

This approximate functional is quadratic in z, and minimization with respect to this variable yields

arg min
z

J2(x, z) = µφ(x). (14)

2.2 ALTERNATE JOINT POSTERIOR MAXIMIZATION

The previous observations suggest to adopt alternate scheme to minimize − log pX,Z|Y (x, z |y) in
order to solve the inverse problem. We begin our presentation by assuming that the approximation
of J1 by J2 is exact; then we propose an adaptation for the non-exact case and we explore its
convergence properties.

To begin with we shall consider the following (strong) assumption:

Assumption 1. The approximation in (13) is exact, i.e. J1 = J2.

Under this assumption, the objective function is biconvex and alternate minimization takes the simple
and fast form depicted in Algorithm 1, which can be shown to converge to a partial optimum, as
stated in Proposition 1 below. Note that the minimization in step 2 of Algorithm 1 does not require
the knowledge of the unknown term − log pX (x) in Equation (13) since it does not depend on z.

Proposition 1 (Convergence of Algorithm 1). Under Assumption 1 we have that :
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Algorithm 1 Joint posterior maximization - exact case
Require: Measurements y, Autoencoder parameters θ, φ, Initial condition x0

Ensure: x̂, ẑ = arg maxx,z pX,Z|Y (x, z |y)
1: for n := 0 to maxiter do
2: zn+1 := arg minz J2(xn, z) // Quadratic problem in (8)
3: xn+1 := arg minx J1(x, zn+1) // Quadratic problem in (14)
4: end for
5: return xn+1, zn+1

1. The sequence {J1(xn, zn)} generated by Algorithm 1 converges monotonically when n→
∞. The sequence {(xn, zn)} has at least one accumulation point.

2. All accumulation points are partial optima of J1 and they all have the same function value.

If in addition J1 is differentiable then:

3. The set of all accumulation points are stationary points of J1 and they form a connected,
compact set.

The proof of this proposition is given in Appendix A, and follows the same arguments as in (Aguer-
rebere et al., 2017; Gorski et al., 2007). Note that the third part requires that J1 be differentiable,
which is the case if we use a differentiable activation function like the Exponential Linear Unit
(ELU) (Clevert et al., 2016) with α = 1, instead of the more common ReLU activation function.

When the autoencoder approximation in (13) is not exact (Assumption 1), the algorithm needs
some additional steps to ensure that the energy we want to minimize, namely J1, actually decreases.
Nevertheless, the approximation provided by J2 is still very useful since it provides a fast and accurate
heuristic to initialize the minimization of J1. This method is presented in Algorithm 2.

Algorithm 2 Joint posterior maximization - approximate case
Require: Measurements y, Autoencoder parameters θ, φ, Initial conditions x0, z0
Ensure: x̂, ẑ = arg maxx,z pX,Z|Y (x, z |y)

1: for n := 0 to maxiter do
2: z0 := grad descentz J1(xn, z), starting from z = zn
3: z1 := arg minz J2(xn, z) // Quadratic problem
4: z2 := grad descentz J1(xn, z), starting from z = z1

5: zn+1 := arg minz∈{z0,z1,z2} J1(xn, z)

6: xn+1 := arg minx J1(x, zn+1) // Quadratic problem
7: end for
8: return xn+1, zn+1

Algorithm 2 provides also a useful tool for diagnostics. Indeed, the comparison of the evaluation of
J1(xn, z) in z0, z1, z2 performed in step 5 permits to assess the evolution of the approximation of
J1 by J2.

Our experiments with Algorithm 2 (Section 3.2) show that during the first few iterations (where the
approximation provided by J2 is good enough) z2 reaches convergence faster than z0. After a critical
number of iterations the opposite is true (the initialization provided by the previous iteration is better
than the J2 approximation, and z0 converges faster).

These observations suggest that a faster execution, with the same convergence properties, can be
achieved by the variant in Algorithm 3.

The fastest alternative is equivalent to Algorithm 1 as long as the approximate energy minimization
decreases the actual energy. When this is not the case it will take a slower route similar to Algorithm 2.

Algorithm 2 is still quite fast when J2 provides a sufficiently good approximation. Even if we cannot
give a precise definition of what sufficiently good means, the sample comparison of Kφ and Hθ as
functions of z, displayed in Figure 1(c), shows that the approximation is fair enough in the sense
that it preserves the global structure of J2. The same behavior was observed for a large number of
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Algorithm 3 Joint posterior maximization - approximate case (faster version)
Require: Measurements y, Autoencoder parameters θ, φ, Initial conditions x0, z0, iterations nmin <

nmax

Ensure: x̂, ẑ = arg maxx,z pX,Z|Y (x, z |y)
1: for n := 0 to nmax do
2: z1 := arg minz J2(xn, z) // Quadratic problem
3: z0 := zn
4: z∗ := arg minz∈{z0,z1} J1(xn, z)

5: if J1(xn, z
1) > J1(xn, zn) or n > nmin then

6: zn+1 := grad descentz J1(xn, z), starting from z = z∗

7: else
8: zn+1 := z1 // Faster alternative while J2 is good enough
9: end if

10: xn+1 := arg minx J1(x, zn+1) // Quadratic problem
11: end for
12: return xn+1, zn+1

random tests. In particular, these simulations show that for every tested x, the function z 7→ J1(x, z)
exhibits a unique global minimizer. This justifies the following assumption (which is nevertheless
much weaker than the previous Assumption 1):
Assumption 2.
(A) The z-minimization algorithm grad descentz J1(x, z) converges to a global minimizer of z 7→
J1(x, z), when initialized at z1 = arg minz J2(x, z) or at any z such that J1(x, z) ≤ J1(x, z1).

(B) The map z 7→ J1(x, z) has a single global minimizer.

Under this assumption we have the following result for Algorithm 2:
Proposition 2 (Convergence of Algorithms 2 and 3). Under Assumption 2A we have that:

1. The sequence {J1(xn, zn)} generated by Algorithms 2 and 3 converges monotonically when
n→∞
The sequence {(xn, zn)} has at least one accumulation point.

2. All accumulation points are partial optima of J1 and they all have the same function value.

If in addition J1 is continuously differentiable and Assumption 2B holds, then:

3. All accumulation points are stationary points of J1.

The proof of this proposition is detailed in the appendix. The first two parts are similar to the proof of
Proposition 1, but the last part uses a different argument. Indeed we cannot use (Gorski et al., 2007,
Thm 4.9), because we do not assume here that J1 is bi-convex.

3 EXPERIMENTAL RESULTS

3.1 AUTOENCODER AND DATASET

In order to test our joint prior maximization model we first train a Variational Autoencoder like in
(Kingma and Welling, 2013) on the training data of MNIST handwritten digits (Lecun et al., 1998).

The stochastic encoder takes as input an image x of 24× 24 = 784 pixels and produces as an output
the mean and (diagonal) covariance matrix of the Gaussian distribution qφ(z|x), where the latent
variable z has dimension 12. The architecture of the encoder is composed of 4 fully connected layers
with ELU activations (to preserve continuous differentiability). The sizes of the layers are as follows:

784→ 500→ 500→ (12 + 12).

Note that the output is of size 12 + 12 in order to encode the mean and diagonal covariance matrix,
both of size 12.
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(a) Reconstruction examples (b) Random samples (c) encoder approximation

Figure 1: Visualisation of the trained VAE on MNIST. (a) Reconstruction examples, i.e. µθ(µφ(x))
for 100 samples of x from the test set. (b) Random samples, i.e. µθ(z) for 100 random samples z ∼
N (0, Id). (c) Encoder approximation: Contour plots of − log pθ(x|z) + 1

2‖z‖
2 and − log qφ(z|x)

for a fixed x and for a random 2D subspace in the z domain (the plot shows ±2Σ
1/2
φ around µφ).

Observe the relatively small gap between the true posterior pθ(z|x) and its variational approximation
qφ(z|x). This figure shows some evidence of partial z-convexity of J1 around the minimum of J2,
but it does not show how far is z1 from z2.

The stochastic decoder takes as an input the latent variable z and outputs the mean and covariance
matrix of the Gaussian distribution pθ(x|z). Following (Dai and Wipf, 2019) we chose here an
isotropic covariance Σθ(z) = γI where γ > 0 is trained, but independent of z. This choice
simplifies the minimization problem (9), because the term det Σθ(z) (being constant) has no effect
on the z-minimization.
The architecture of the decoder is also composed of 4 fully connected layers with ELU activations (to
preserve continuous differentiability). The sizes of the layers are as follows:

12→ 500→ 500→ 784.

Note that the covariance matrix is constant, so it does not augment the size of the output layer which
is still 784 = 24× 24 pixels.

We train this architecture using TensorFlow1 with batch size 64 and Adam algorithm for 400 epochs
with learning rate 0.0001 (halving every 150 epochs) and rest of the parameters as default.

The subjective quality of the trained VAE is illustrated in Figure 1, including reconstruction examples
(Figure 1(a)) and random samples (Figure 1(b)). Figure 1(c) shows that the encoder approximation
qφ(z|x) of the true posterior pθ(z|x) is not perfect but is quite tight. It also shows that the true
posterior pθ(z|x) is pretty close to log-concave near the maximum of qφ(z|x).

3.2 EMPIRICAL VALIDATION OF ASSUMPTION 2

As we have shown in Section 2, our simplest Algorithm 1 is only guaranteed to converge when the
encoder approximation is exact thus ensuring bi-convexity of J1 = J2.

In practice an exact autoencoder approximation is difficult to achieve, and in particular the VAE
trained in the previous section has a small gap between J1 and J2. To consider this case we proposed
Algorithms 2 and 3 which are guaranteed to converge under weaker quasi-bi-convex conditions stated
in Assumption 2.

In this section we experimentally check that the VAE we trained in the previous section actually
verifies such conditions. We do so by selecting a random x0 from MNIST test set and by comput-
ing z∗(z0) := grad descentz J1(x0, z) with different initial values z0. These experiments were
performed using the Adam minimization algorithm with learning rate equal to 0.01.

Figures 2(a) and 2(c) show that z∗(z0) reaches the global optimum for initializations z0 chosen
under far less restrictive conditions than those required by Assumption 2(A). Indeed from 200

1Code reused from https://github.com/daib13/TwoStageVAE (Dai and Wipf, 2019)
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(a) Energy evolution, initializing with N (0, I). (b) Distance to the optimum at each iteration of (a).

(c) Energy evolution, initializing with qφ(z|x0). (d) Distance to the optimum at each iteration of (c).

Figure 2: Experimental validation of Assumption 2: We take x0 from the test set of MNIST
and minimize J1(x0, z) with respect to z using gradient descent from different initializations
z0. The blue thick curve represents the trajectory if we initialize at the encoder approximation
z1 = arg minz J2(x0, z) = µφ(x0). (a) and (c): Plots of the energy iterates J1(x0, zk). (b) and (d):
`2 distances of each trajectory with respect to the global optimum z∗. (a) and (b): Evolution of Adam
on 200 random Gaussian initializations. (c) and (d): Initializing with random samples taken from the
posterior approximation qφ(z|x0) given by the encoder. Conclusion: Observe that all initializations
z0 such that J1(x0, z0) ≤ J1(x0, z

1) do converge to a unique global minimizer, and so do many
other initializations.
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random initializations z0 ∼ N (0, I), 195 reach the same global minimum, whereas 5 get stuck at
a higher energy value. However these 5 initial values have energy values J1(x0, z0)� J1(x0, z

1)
far larger than those of the encoder initialization z1 = µφ(x0), and are thus never chosen by
Algorithms 2 and 3.

This experiment validates Assumption 2(A). In addition, it shows that we cannot assume z-convexity:
The presence of plateaux in the trajectories of many random initializations as well as the fact that a
few initializations do not lead to the global minimum indicates that J1 may not be everywhere convex
with respect to z. However it still satisfies the weaker Assumption 2(A) which is sufficient to prove
convergence in Theorem 2.

In Figures 2(b) and 2(d) we display the distances of each trajectory (except for the 5 outliers) to the
global optimum z∗ (taken as the median over all initializations z0 of the final iterates z∗(z0)); note
that this optimum is always reached, which proves that z 7→ J1(x0, z) has unique global minimizer.

3.3 IMAGE RESTORATION EXPERIMENTS

Choice of x0: In the previous section, our validation experiments used a random x0 from the data
set as initialization. When dealing with an image restoration problem, Algorithms 2 and 3 require
an initial value of x0 to be chosen. In all experiments we choose this initial value as the simplest
possible inversion algorithm, namely the regularized pseudo-inverse of the degradation matrix:

x0 = A†y = (ATA+ εId)−1AT y.

Choice of nmin: After a few runs of Algorithm 2 we find that in most cases, during the first two or
three iterations z1 decreases the energy with respect to the previous iteration. But after at most five
iterations the autoencoder approximation is no longer good enough and we need to perform gradient
descent on z in order to further decrease the energy. Based on these findings we set nmin = 5 in
Algorithm 3 for all experiments.

Figure 3 displays some selected results of compressed sensing and inpainting experiments on MNIST
using the proposed approach. Figure 3(a) shows an inpainting experiment with 80% of missing pixels
and Gaussian white noise with σ = 2/255. Figure 3(b) shows a compressed sensing experiment with
m = 100 random measurements and Gaussian white noise with σ = 2/255. For comparison we
provide also the result of another decoupled approach proposed by Bora et al. (2017) with λ = 0.1 as
suggested in the paper, which uses the same generative model to compute the MAP estimator as in
Equation (2), but does not make use of the encoder.2

As we can see in Figure 3, the proposed method significantly outperforms CSGM. There are still some
failure cases (see last column in Figure 3(b)). However, in the vast majority of cases our alternate
minimization scheme does not get stuck in local optima, as CSGM does.

4 CONCLUSIONS AND FUTURE WORK

In this work we presented a new framework to solve convex inverse problems with priors learned
in the latent space via variational autoencoders. Unlike similar approaches like CSGM (Bora et al.,
2017) which learns the prior based on generative models, our approach is based on a generalization
of alternate convex search to quasi-biconvex functionals. This quasi-biconvexity is the result of
considering the joint posterior distribution of latent and image spaces. As a result, the proposed
approach provides stronger convergence guarantees. Experiments on inpainting and compressed
sensing confirm this, since our approach gets stuck much less often in spurious local minima than
CSGM, which is simply based on gradient descent of a highly non-convex functional. This leads to
restored images which are significantly better in terms of MSE.

The present paper provides a first proof of concept of our framework, on a very simple dataset
(MNIST) with a very simple VAE. More experiments are needed to:

• Verify that the framework preserves its qualitative advantages on more high-dimensional
datasets (like CelebA, Fashion MNIST, etc.), and a larger selection of inverse problems.

2Since Bora et al. (2017) does not provide code, we implemented our own version of their algorithm and
utilize the same trained VAE as encoder φ for both algorithms.
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(a) Results on inpainting. (b) Results on compressed sensing. (c) MSE comparison with CSGM.

Figure 3: Experimental results on MNIST. Comparison with CSGM algorithm (Bora et al., 2017). (a)
Some selected results from the inpainting experiment with m = 100 (12.8%) known pixels. From top
to bottom: original image x∗, corrupted image x̃, restored by (Bora et al., 2017), restored image x̂
by our framework (with Gaussian decoder) and the reconstruction of the original image by the VAE
µθ(µφ(x∗)) which can be seen as the best possible reconstruction if we use this model. (b) Same
as (a) in a compressed sensing experiment with m = 100 (12.8%) random measurements (without
showing the second row). (c) MSE mean of the reconstruction of 20 images for the compressed
sensing experiment, varying the number of measurements m. Conclusion: Our algorithm performs
consistently better than CSGM. In addition our algorithm gets less often stuck in spurious local
minima.

• Improve the quality of the prior model by using more elaborate variations of variational
autoencoders which mix the VAE framework with normalizing flows (Dai and Wipf, 2019),
adversarial training (Pu et al., 2017a,b; Zhang et al., 2019), or BiGANs (Donahue and
Simonyan, 2019).

All variations of the VAE framework cited above have the potential to improve the quality of
our generative model, and to reduce the gap between J1 and J2. In particular, the adversarially
symmetric VAE (Pu et al., 2017a,b) proves that when learning reaches convergence the autoencoder
approximation is exact, meaning that Assumption 2 would become true.

When compared to other decoupled plug & play approaches that solve inverse problems using NN-
based priors, our approach is constrained in different ways:
(a) In a certain sense our approach is less constrained than existing decoupled approaches since we do
not require to retrain the NN-based denoiser to enforce any particular property to ensure convergence:
Ryu et al. (2019) requires the denoiser’s residual operator to be non-expansive, and Gupta et al.
(2018) and Shah and Hegde (2018) require the denoiser to act as a projector. The effect of these
modifications to the denoiser on the quality of the underlying image prior has never been studied
in detail and chances are that such constraints degrade it. Our method only requires a variational
autoencoder without any further constraints, and the quality and expressiveness of this prior can be
easily checked by sampling and reconstruction experiments. Checking the quality of the prior is a
much more difficult task for Gupta et al. (2018), Ryu et al. (2019), and Shah and Hegde (2018) which
rely on an implicit prior, and do not provide a generative model.
(b) On the other hand our method is more constrained in the sense that it relies on a generative model
of a fixed size. Even if the generator and encoder are both convolutional neural networks, training and
testing the same model on images of different sizes is a priori not possible because the latent space
has a fixed dimension and a fixed distribution. As a future work we plan to explore different ways to
address this limitation. The most straightforward way is to use our model to learn a prior of image
patches of a fixed size and stitch this model via aggregation schemes like in EPLL (Zoran and Weiss,
2011) to obtain a global prior model for images of any size. Alternatively we can use hierarchical
generative models like in (Karras et al., 2017) or resizable ones like in (Bergmann et al., 2017), and
adapt our framework accordingly.
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A CONVERGENCE PROOFS

Gorski et al. (2007) establishes a general result on the simple alternate convex search (ACS) algorithm
which consist in iterating the wollowing two steps:

• x-minimization i.e. xn+1 = arg minx J1(x, zn) (i.e. solve problem (8))

• z-minimization i.e. zn+1 = arg minz J1(xn+1, z) (i.e. solve problem (9))

until convergence for any continuous functional J1 which is either bi-convex or which allows to solve
both partial minimization subproblems exactly.

Under certain conditions, Algorithms 1, 2, and 3 are actually implementations of the ACS algorithm,
and the general result stated in (Gorski et al., 2007, Theorem 4.9) holds.

In the sequel we state the general theorem and then we verify the validity of the different hypotheses.

Theorem 1 (Convergence of ACS). Let X ⊆ Rn and Z ⊆ Rm be closed sets and J1 : X × Z → R
be continuous. Let the optimization problems (8) and (9) be solvable.

1. If the sequence {(xn, zn)}n∈N generated by ACS is contained in a compact set then the
sequence has at least one accumulation point.

2. In addition suppose that for each accumulation point (x∗, z∗):
either the optimal solution of (8) with z = z∗ is unique
or the optimal solution of (9) with x = x∗ is unique.
Then all accumulation points are partial optima and have the same function value.

3. Furthermore if
(i) J1 is differentiable and bi-convex, and
(ii) for each accumulation point (x∗, z∗) the optimal solutions of both (8) with z = z∗

and (9) with x = x∗ are unique;
then:
(a) the set of accumulation points is a connected compact set, and
(b) all accumulation points in the interior of X × Z are stationary points

Proof. This is the central result in (Gorski et al., 2007), proven in Theorem 4.9 and corollary 4.10.

In the sequel we adopt the common assumption that all neural networks used in this work are
composed of a finite number d of layers, each layer being composed of: (a) a linear operator (e.g.
convolutional or fully connected layer), followed by (b) a non-linear L-Lipschitz component-wise
activation function with 0 < L <∞.

Therefore we have the following property:

Property 1. For any neural network fθ with parameters θ having the structure described above:
There exists a constant Cθ such that ∀u,

‖fθ(u)‖2 ≤ Cθ‖u‖2.

Concerning activation functions we use two kinds:

• continously differentiable activations like ELU, or

• continuous but non-differentiable activations like ReLU

Lemma 1. J1 is continuous. In addition x 7→ J1(x, z) is convex for all z, and the map xmin : z 7→
arg minx J1(x, z) is single-valued. In addition for continuously differentiable activation functions,
J1 is continuously differentiable.

Proof. By construction J1 is a composition of neural networks (which are composed of linear
operators and continuous activations), linear and quadratic operations. Hence J1 is continuous with
respect to both variables, and continuously differentiable if the activation functions are so. In addition
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J1 is quadratic in x for any fixed z. The closed form in equation (8) shows that the mapping xmin is
single-valued. It is also continuous because µθ, Σθ are continuous neural networks.

Lemma 2. J2 is continuous. In addition z 7→ J2(x, z) is convex for all x, and the map zmin : x 7→
arg minz J2(x, z) is single-valued.

Proof. By construction J2 is a composition of neural networks (which are composed of linear
operators and continuous activations), linear and quadratic operations. Hence J1 is continuous with
respect to both variables. In addition J2 is quadratic in z for any fixed x. The closed form in
equation (14) shows that the mapping is single-valued. It is also continuous because µφ, Σφ are
CNNs composed of convolutions and ReLUs, which are continuous functions.

Lemma 3. J1(x, z) is coercive.

Proof. If it was not coercive, then we could find a sequence (xk, zk) → ∞ such that J1(xk, zk)
is bounded. As a consequence all three (non-negative) terms are bounded. In particular ‖zk‖ is
bounded, which means that xk →∞.

From Property 1, µθ(zk) and Σθ(zk) are bounded for bounded zk.

Now since µθ(zk) and Σθ(zk) are bounded and xk → ∞, we conclude that Hθ(xk, zk) → ∞
which contradicts our initial assumption.

As a consequence J1 is coercive.

Lemma 4 (Monotonicity). The sequence generated by Algorithms 2 and 3 is non-increasing. Under
Assumption 1, Algorithm 1 is also non-increasing.

Proof. Under assumption 1, Algorithm 1 is exactly the ACS algorithm which obviously ensures
monotonicity.

Step 6 in Algorithm 2 obviously makes the energy decrease. So does step 5 because

J1(xn, zn+1) ≤ J1(xn, z
0) ≤ J1(xn, zn)

Step 10 in Algorithm 3 ensures that the x-update decreases the energy. Step 5 in Algorithm 3 ensures
that the z-update decreases the energy.

Proof of proposition 1.

1. Compact domain and accumulation points

Theorem 1 applies to closed subsets X and Z whereas our algorithm does not restrict the domain.

This is not a big issue because the monotonicity and coercivity allow to show that the sequence is
actually bounded.

Indeed, by definition of the coercivity (Lemma 3), the level set S = {(x, z) | J(x, z) ≤ J1(x0, z0)}
is bounded. The monotonicity of the sequence (J1(xk, zk)) (Lemma 4) implies that (xk, zk) ∈ S for
any k. Moreover, S is closed, thus compact, since J1 is continuous. The existence of an accumulation
point is straight-forward.

This proves the first part in Proposition 1.

2. Properties of the set of accumulation points.

Since the sequence {(xn, zn)} is bounded, there exist compact sets X0 and Z0 which contain the
entire sequence. Now consider the dilated compact sets

X = {x : ∃e ∈ Rn, ‖e‖ ≤ ε, and (x+ e) ∈ X0}
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Z = {z : ∃e ∈ Rm, ‖e‖ ≤ ε, and (z + e) ∈ Z0}.
Then the sequence {(xn, zn)} and all its accumulation points are all contained in the interior of
X × Z.

Now we can apply Theorem 1 to J1 on the restricted domain X × Z. Indeed, from Assumption 1
we know that J1 = J2, which means that Algorithm 1 is an implementation of ACS. In addition
Lemmas 1 and 2 show that optimization subproblems (8) and (9) are solvable and have unique
solutions.

Therefore all hypotheses of Theorem 1 are met, which shows the second part of Proposition 1.

Proof of proposition 2.

1. Compact domain and accumulation points

First note that Algorithms 2 and 3 (for n > nmin) are particular implementations of ACS on J1.
Therefore the monotonicity of the sequence J1(xn, zn) (Lemma 4) and the coercivity of J1 are
sufficient to show the first part of proposition 2 exactly like in proposition 1. This also shows that the
sequence {(xn, zn)} is bounded.

2. Accumulation points are partial optima

Since the sequence {(xn, zn)} is bounded, there exist compact sets X0 and Z0 which contain the
entire sequence. Now consider the dilated compact sets

X = {x : ∃e ∈ Rn, ‖e‖ ≤ ε, and (x+ e) ∈ X0}

Z = {z : ∃e ∈ Rm, ‖e‖ ≤ ε, and (z + e) ∈ Z0}.
Then the sequence {(xn, zn)} and all its accumulation points are all contained in the interior of
X × Z.

Now we can apply parts 2 and 3 of Theorem 1 to J1 on the restricted domain X × Z.

Indeed, from Lemma 1, the x-minimization subproblem (8) is solvable with unique solution. In
addition from Assumption 2(A), the z-minimization subproblem (9) is solvable and algorithms 2 and
3 provide that solution for each fixed x.

Therefore all hypotheses for part 2 of Theorem 1 are met, which shows that all accumulation points
are partial optima, and they all have the same function value.

3. Accumulation points are stationary points.

Known facts:

1. J1 differentiable: ∇J1(xk, zk) =
(
∂J1
∂x (xk, zk), ∂J1∂z (xk, zk)

)
2. x 7→ J1(x, z) convex:

∀ y, J1(y, z) ≥ J1(x, z) +

〈
∂J1
∂x

(x, z), y − x
〉

Hence a minimizer is a stationary point.

3. Unicity of partial minimizers: in particular, thanks to the convexity of J1 – stationary points
are minimizers

∂J1
∂x

(x∗, ẑ) = 0 =⇒ ∂J1
∂x

(x, ẑ) 6= 0 if x 6= x∗

4. J1 coercive and descent scheme: (xk, zk)k and (xk+1, zk)k are bounded thus have conver-
gent subsequences
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5. Decrease property:

J1(xk, zk) ≥ J1(xk+1, zk) ≥ J1(xk+1, zk+1)

If J1 is lowerbounded,

lim
k→+∞

J1(xk, zk) = lim
k→+∞

J1(xk+1, zk) = lim
k→+∞

J1(xk+1, zk+1)

6. Fermat’s rule:
∂J1
∂x

(xk+1, zk) = 0 and
∂J1
∂z

(xk+1, zk+1) = 0

• Let (x∗, z∗) be an accumulation point of (xk, zk)k. If (xkj+1, zkj+1)j converges to (x∗, z∗),
(xkj )j and (zkj )j are bounded thus have convergent subsequences. So there exists a sequence
{jn}n such that (double extraction of subsequence)

lim
n→+∞

xkjn+1 = x∗ and lim
n→+∞

xkjn = x̂

lim
n→+∞

zkjn+1 = z∗ and lim
n→+∞

zkjn = ẑ

According to Fact 5, J1(x∗, z∗) = J1(x∗, ẑ) = J1(x̂, ẑ).

• Partial minimizers:
∀x, J1(x, zkjn ) ≥ J1(xkjn+1, zkjn )

By taking the limit (since J1 is continuous)

∀x, J1(x, ẑ) ≥ J1(x∗, ẑ)

Thus, x∗ is the unique minimizer of J1(·, ẑ). By unicity of the partial minimizer, x̂ = x∗.

∀ z, J1(xkjn+1, z) ≥ J1(xkjn+1, zkjn+1)

By taking the limit (since J1 is continuous)

∀ z, J1(x∗, z) ≥ J1(x∗, z∗)

Thus, z∗ is the unique minimizer of J1(x∗, ·). By unicity of the partial minimizer (Assump-
tion 2(B)), ẑ = z∗.

• Since J1(·, z∗) is convex, x∗ is the minimizer of J1(·, z∗) iff ∂J1∂x (x∗, z∗) = 0

• If z 7→ J1(x, z) is continuously differentiable, then

lim
n→+∞

∂J1
∂z

(xkjn+1, zkjn+1) =
∂J1
∂z

(x∗, z∗) = 0

• As a consequence,
∇J1(x∗, z∗) = 0

Otherwise said,

If J1(·, z) is convex, J1 is continuouly differentiable and coercive, and if the
partial minimizers are all unique, then any accumulation point of the sequence
(xk, zk)k is a stationary point.
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