
HAL Id: hal-02364312
https://hal.science/hal-02364312v2

Submitted on 9 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D eddy currents computation by BEM using the
modified magnetic vector potential and the reduced

magnetic scalar potential
Quang-Anh Phan, Gérard Meunier, Olivier Chadebec, Jean-michel Guichon,

Bertrand Bannwarth

To cite this version:
Quang-Anh Phan, Gérard Meunier, Olivier Chadebec, Jean-michel Guichon, Bertrand Bannwarth.
3D eddy currents computation by BEM using the modified magnetic vector potential and the reduced
magnetic scalar potential. International Journal of Numerical Modelling: Electronic Networks, Devices
and Fields, 2019, 33 (5), �10.1002/jnm.2642�. �hal-02364312v2�

https://hal.science/hal-02364312v2
https://hal.archives-ouvertes.fr


3D Eddy Currents computation by BEM using the modified magnetic
vector potential and the reduced magnetic scalar potential

Quang-Anh Phan,1∗ Gerard Meunier,1 Olivier Chadebec2

Jean-Michel Guichon 3 Bertrand Bannwarth 4

1Univ. Grenoble Alpes, CNRS, Grenoble INP*, G2Elab, 38000 Grenoble, France,
*Institute of Engineering Univ. Grenoble Alpes

Email: quang-anh.phan@g2elab.grenoble-inp.fr

Abstract

A new Boundary Element Method (BEM) formulation has been developed for the computation of 3D eddy currents in
both magnetic and conductive regions. The modified magnetic vector potential A∗ in the active regions and the reduced
magnetic scalar potential ϕ in the air are used as unknown variables. The formulation is limited to low-frequency magneto-
harmonic problems associated to linear, homogeneous, isotropic and simply-connected regions. In such a configuration, it
leads to accurate results with a reduced number of degrees of freedom located on a surface mesh delimiting the air/material
interface.

Keywords - Boundary element method, 3D eddy current, quasi-statics, modified magnetic vector potential, reduced
magnetic scalar potential

1 Introduction
At low frequencies, the quasi-static approximation enables the simplification of Maxwell equations by neglecting the
current displacement term. In this context, the Boundary Element Method (BEM) has been used for a long time to solve
3D eddy currents problems.The advantage of this method is obvious since it requires only the discretization of the surface
between the conductive material and the air region. With BEM, the number of elements of the mesh is much smaller
compared to the FE (Finite Elements)-like methods and the dimension of the problem is strongly reduced. The counterpart
is its limitation to linear, homogeneous and isotropic materials and the getting of fully dense matrix systems. Since the
beginning of the 90’s, many formulations has been developed based on different magnetic and/or electric quantities as
degrees of freedom. Rucker [3], Tsuboi [4] developed formulations based on the magnetic vector potential and the electric
scalar potential. Mayergoyz [6], Kalaichelvan [7], Harrington [8] solved the integral equations with equivalent electric
current and magnetic charge as unknowns. Stratton [16], Zheng [12], Hiptmair [10] have developed formulations based on
the equivalent electric and magnetic surface currents. In this paper, we present a new BEM formulation with the modified
magnetic vector potential A∗ and the reduced magnetic scalar potential ϕ as unknowns. Let us notice that this formulation
can only handle problems containing simply connected conductive domains.

2 Eddy current problem
Let us consider a both magnetic and conductive region Ω1 delimited by the surface Γ1 with a permeability µ1 and a
conductivity σ1. The exciting magnetic field Hs is created by an external current Js flowing in a coil which is located
in the free air region Ω0 as shown in FIGURE 1. Thanks to the quasi-static assumption where displacement currents are
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Figure 1: Eddy current problem.

neglected, we can write the equations of the magnetic and electric fields in the conductor as follows:{
∇×H = σ1E

∇×E = −jωB
(1)

The modified magnetic vector potential A∗ in the material is defined by the relations:{
E = −jωA−∇V = −jωA∗

∇×A∗ = B
(2)

From (1) and (2), the potential A∗ satisfies the Helmholtz equation:

∇×∇×A∗ + jωσ1µ1A
∗ = 0 (3)

The uniqueness of vector potential is ensured by the gauge ∇ ·A∗ = 0. Outside the conductor, the magnetic field H is
irrotational. Therefore, it can be derived from a reduced magnetic scalar potential ϕ [9]:

H = Hs −∇ϕ (4)

Furthermore, this field is solenoidal in the free region Ω0 i.e ∇ ·H0 = 0, leading to the Laplace equation for ϕ:

∆ϕ = 0 (5)

Our problem is to find the solution of the equations (3) and (5) which satisfies at the the boundary conditions on Γ1 :{
(n×H)1 = (n×H)0

µ1(n ·H)1 = µ0(n ·H)0

(6)

where the index 0 or 1 indicates that a quantity belongs to the domain Ω0 or Ω1 respectively. After some algebras, these
conditions are changed into relations linking A∗ and ϕ on the boundary of Ω1:{

n× (∇×A∗) = µ1(n×Hs − n×∇ϕ)

n · (∇×A∗) = µ0(n ·Hs − n · ∇ϕ)
(7)
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3 Boundary integral equation
Using the vector Green’s identity proposed in [1], an integral equation for the modified vector potential in the conductive
region is obtained :∫

Ω1

[(∇ ·A∗)∇G+A∗∆G+G(∇×∇×A∗)]dΩ =

∮
Γ1

[(n ·A∗) · ∇G+ (n×A∗)×∇G+ (n×∇×A∗)G]dΓ (8)

where n is outward unit normal vector to the boundary Γ1 of the region Ω1 . The Green function G used in this integral
equation is a solution of the equation:

∆GP (P,Q)− jωµ1σ1G(P,Q) + δ(P,Q) = 0 (9)

where Q is the integration point and P is the observation point. δ denotes a Dirac pulse occurring at P . For 3D problems,
the complex kernel G is expressed by:

G =
1

4πr
e−(1+j)kr (10)

where k =
√

ωµ1σ1

2 and r = PQ. Replacing ∆G1 in (8) by (9) and by noticing that ∇ ·A∗ = 0 and n ·A∗ = 0 , we get
the integral boundary equation of modified vector potential as follows:

h1A
∗ = −

∮
Γ1

[(n×A∗)×∇G+ (n×∇×A∗)G]dΓ (11)

where the value of the coefficient h1 depends on point position P where the integral expression is written.
h1 = 0 if P is outside Ω1

h1 = 1 if P is inside Ω1

h1 = Ω
4ß if P is on the boundary surface Γ1, Ω being the solid angle spanning Γ1 from the observation point P (Ω = 2π if

the surface is regular). Applying the scalar Green’s theorem to the scalar potential ϕ with the Green’s function G0 = 1
r ,

we get: ∫
Ω0

[(ϕ∆G0 −G0∆ϕ)] dΩ =

∮
Γ1

[(n · ∇G0)ϕ− (n · ∇ϕ)G0] dΓ (12)

where G0 = 1
r is the fundamental solution of the Laplace equation and which satisfies: ∆G0P (P,Q) + δ (P,Q) = 0.

Applying this relation to the left side of the above equation, we finally get the boundary integral equation of ϕ :

h0ϕ =

∮
Γ1

[(n · ∇G0)ϕ− (n · ∇ϕ)G0] dΓ (13)

where
h0 = 0 if P is outside Ω0

h0 = 1 if P is inside Ω0

h0 = Ω
4ß if P is on boundary surface Γ1. The integral boundary equations system is obtained as follows:

h1A
∗ = −

∮
Γ1

[(n×A∗)×∇G+ (n×∇×A∗)G]dΓ

h0ϕ =
∮
Γ1

[(n · ∇G0)ϕ− (n · ∇ϕ)G0]dΓ
(14)

Both terms (n×∇×A∗) and (n.∇ϕ) can be developed based on the boundary conditions in (7). Finally, we get the BEM
formulation A∗ − ϕ:

−µ1

∮
Γ1

(n×Hs)G1dΓ = h1A
∗ +

∮
Γ1

(n×A∗)×∇G1dΓ− µ1

∮
Γ1

(n×∇ϕ)G1dΓ

−
∮
Γ1

(n ·Hs)G0dΓ = h0ϕ−
∮
Γ1

(n · ∇G0)ϕdΓ− 1
µ0

∮
Γ1

n · (∇×A∗)G0dΓ
(15)
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The resolution of this system of equations leads only to A∗ and ϕ on the boundary. Some additional computations has
to be done to determine several quantities in the volume domain. Using the equation of A∗ in (14) with the coefficient
h1 = 1, the eddy current density inside the conductor is computed as follows :

J = jωσ1

∮
Γ1

[(n×A∗)×∇G1 + (n×∇×A∗)G1]dΓ (16)

In order to obtain the total magnetic field in the air, we need to compute the gradient of ϕ in (4). It is obtained by applying
gradient operator to (13):

∇ϕ =

∮
Γ1

[∇ (n · ∇G0)ϕ− (n · ∇ϕ)∇G0] dΓ (17)

Magnetic field H in the air can also be calculated with the integral equation boundary written for H0 as proposed in [11]
[12]:

H0 = Hs +

∮
Γ1

(n×Hs)×∇G0dΓ +

∮
Γ1

n · (∇×A∗)∇G0dΓ−
∮
Γ1

(n×∇ϕ)×∇G0dΓ (18)

To determine the Joule losses, Poynting theorem can be used since it can be applied directly to the Γ1 surface. After some
algebras, an expression for the losses is get:

Ploss =
1

2
Re

∮
Γ1

(n×H1) · Ẽ1dΓ

 = Re

−jω
2

∮
Γ1

(n×Hs − n×∇ϕ) · Ã∗dΓ

 (19)

where Ẽ1 and Ã∗ denotes the complex conjugate of electric field E1 and A∗ respectively.

4 Formulation with different regions problem

Figure 2: Problem with conductive electrical regions.

The A∗ − ϕ BEM formulation can be applied to problems with different material regions. Let us consider quite
different problems composed of two regions. In the case as in FIGURE 2 where all materials are conductive, we have
(n ·A∗) = 0 on its boundary. Thus, the integral equations for A∗ on Γ = Γ1 ∪Γ2 may be written in the form of (11). We
get the following system of equations:

−
∮
Γ

µ(n×Hs)GdΓ = hA∗ +
∮
Γ

(n×A∗)×∇GdΓ− µ
∮
Γ

(n×∇ϕ)GdΓ

−
∮
Γ

(n ·Hs)G0dΓ = h0ϕ−
∮
Γ

(
ϕ(n · ∇G0) + 1

µ0
n · (∇×A∗)G0

)
dΓ

(20)

where the permeability µ and complex kernel G have values that depend on the characteristics of a domain of integration
to be Γ1 or Γ2. The expression of G is (10) with the appropriate coefficient k.
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Figure 3: Problem with electrical and magnetic regions.

In the case of a problem as in FIGURE 3, a non-vanishing term (n ·A∗) appears in the surface integral equation for A∗

on Γ2. In such a situation, we propose an extension version for the A∗ − ϕ formulation. The surface integral equation in
H [11] [12] for Ω2 will be used instead of the equation in A∗:

h2H = −
∮
Γ2

(n ·H)∇G0dΓ−
∮
Γ2

(n×H)×∇G0dΓ (21)

Using the continuity of the magnetic field across the boundary Γ2, we obtain:

− n ·
∮
Γ2

(n×Hs)×∇G0dΓ = h2(n ·H) + n ·
∮
Γ2

(n ·H)∇G0dΓ− n ·
∮
Γ2

(n×∇ϕ)×∇G0dΓ (22)

The integral equation for magnetic region Ω2 is composed by two scalar variables (n.H) and ϕ. Combining it with the
equation of A∗ for region Ω1 and ϕ for the air region, we obtain a new system of equations:

−
∮
Γ1

µ1(n×Hs)GdΓ = h1A
∗ +

∮
Γ1

(n×A∗)×∇GdΓ− µ1

∮
Γ1

(n×∇ϕ)GdΓ

−
∮
Γ

(n ·Hs)G0dΓ = h0ϕ−
∮
Γ

ϕ(n · ∇G0)dΓ−
∮
Γ1

1
µ0
n · (∇×A∗)G0dΓ−

∮
Γ2

µ2

µ0
(n ·H)G0dΓ

−n ·
∮
Γ2

(n×Hs)×∇G0dΓ = h2(n ·H) + n ·
∮
Γ2

(n ·H)∇G0dΓ− n ·
∮
Γ2

(n×∇ϕ)×∇G0dΓ

(23)

5 Numerical implementation
The surface Γ is discretized by first order plane elements. Edge shape functions and a nodal shape functions are used to
interpolate the A∗ and ϕ respectively. 

A∗ =
∑
i

wiA
∗
i

ϕ =
∑
i

αiϕi
(24)

The Galerkin’s approach is used with the edge shape functions wi and the nodal shape functions αi as projection functions
for the equation of A∗ and ϕ respectively. Coefficients h0 and h1 are both set to 0.5. We finally obtain a linear matrix
system which has to be solved: [

M11 M12

M21 M22

]{
A∗

ϕ

}
=

{
N1

N2

}
(25)
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where
M11

ij = 0.5

∮
Γ

wiwjdΓ +

∮
Γ

wi

∮
Γ

(n×wj)×∇GdΓdΓ

M12
ij = −µ

∮
Γ

wi

∮
Γ

(n×∇αj)GdΓdΓ

M21
ij = − 1

µ0

∮
Γ

αi

∮
Γ

n · (∇×wj)G0dΓdΓ

M22
ij = 0.5

∮
Γ

αiαjdΓ−
∮
Γ

αi

∮
Γ

(n · ∇G0)αjdΓdΓ

N1
i = −µ

∮
Γ

wi

∮
Γ

(n×Hs)GdΓdΓ

N2
i = −

∮
Γ

αi

∮
Γ

(n ·Hs)G0dΓdΓ

For the system (23), in addition to the approximations of A∗ and ϕ in (24), the new scalar variable (n.H) has to be added
which is approximated by a nodal shape functions.

n ·H =
∑
i

αihi (26)

The matrix obtained by applying the Galerkin method is as follows: M11 M12 0
M21 M22 M23

0 M32 M33

 A∗

ϕ
h

 =

 N1

N2

N3

 (27)

where
M11

ij = 0.5

∮
Γ1

wiwjdΓ +

∮
Γ1

wi

∮
Γ1

(n×wj)×∇GdΓdΓ

M12
ij = −µ1

∮
Γ1

wi

∮
Γ1

(n×∇αj)GdΓdΓ

M21
ij = − 1

µ0

∮
Γ

αi

∮
Γ1

n · (∇×wj)G0dΓdΓ

M22
ij = 0.5

∮
Γ

αiαjdΓ−
∮
Γ

αi

∮
Γ

(n · ∇G0)αjdΓdΓ

M23
ij = −µ2

µ0

∮
Γ

αi

∮
Γ2

αjG0dΓdΓ

M32
ij = 0.5

∮
Γ2

αiαjdΓ−
∮
Γ2

n · αi
∮
Γ2

(n · ∇G0)αjdΓdΓ

M33
ij = −

∮
Γ2

n · αi
∮
Γ2

(n×∇αj)×∇G0dΓdΓ

N1
i = −µ1

∮
Γ1

wi

∮
Γ1

(n×Hs)GdΓdΓ

N2
i = −

∮
Γ

αi

∮
Γ

(n ·Hs)G0dΓdΓ

N3
i = −

∮
Γ2

n · αi
∮
Γ2

(n×Hs)×∇G0dΓdΓ

In order to accurately compute the integrals dealing with singular kernel G0 and its gradients, we can use the analytical
expressions proposed by Graglia in [13] for a mesh composed of triangular elements. To perform the calculations related
to G, the kernel is split in two parts such as: G = G0 +G1.

G1 =
e−(1+j)kr − 1

4πr
(28)

G1 and its gradient tend toward finite limits when r approaches zero as follows:

lim
r→0

(G1) = −
√
πfµ1σ1

4π
− j
√
πfµ1σ1

4π
; lim
r→0

(∇G1) = j
fµ1σ1

4
(29)

Thus, the integrals related to G1 can be simply computed by shifting Gauss point locations for the sources and the targets.
Thus, the problem of singular integrals computation for G has been transferred to G0 which has an analytical expression.

6 Numerical example

6.1 TEST MODEL 1
Let us consider a conductive-magnetic sphere of 10mm radius excited by a uniform magnetic field Bs = (0, 0, 1)T .
The conductivity and permeability of the sphere are σ = 5.5E7 S/m and µ = 10 respectively. In this test, we focus
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on the calculation of Joule losses. With the proposed formulation, the losses are calculated by the expression (19) and
will be compared to the losses obtained by other methods such as FEM, BEM-FEM [14] or SIBC (Surface Impedance
Boudary Condition) [17]. A volume mesh and a surface mesh with the same discretion of the surface will be used. A
surface mesh with 2058 triangle elements is used for BEM and SIBC formulations while a volume mesh with 21231
tetrahedron elements is used for the others methods involving FEM. The size of each mesh elements is about 1.25mm.
The comparison in terms of Joule losses is shown in TABLE 1 with the analytical solution proposed by Morisue [2]
considered as the reference value.

Frequency (Hz) Skin depth (mm)
Error (%)

A∗ − ϕ BEM BEM-FEM SIBC FEM

10 6.79 0.88 1.06 86.17 0.04
100 2.15 0.33 0.77 0.37 1.32
1000 0.68 0.18 13.37 2.64 12.6
10000 0.21 0.51 24.83 1.54 46.94
100000 0.07 0.40 75.96 0.75 82.46

Table 1: Relative errors of Joule losses for different methods.

The accuracy of methods FEM and SIBC is strongly influenced by the volume mesh of the conductive region. The
increase of the frequency making the skin depth decrease, the volume mesh would need to be refined in the context of
FEM. The mesh being fixed, the accuracy becomes less good when the frequency increases with the BEM-FEM approach.
The SIBC is well known to be relevant at high frequency because the air-conductor interface is approached by a semi-
infinite plane. This is why its accuracy increases with the increase of the frequency. The BEM results (all relative errors
being less than 1%) shows that the accuracy of the method is very good on a large frequency spectrum compared to others
approach. The low sensitivity of BEM to the skin depth is certainly one of its main advantage.

6.2 TEST MODEL 2

Figure 4: The model proposed by IEEJ.

In order to validate our formulation for the multi-region problem (23), the problem proposed by IEE of Japan [14]
is considered. The geometry of the problem is described in FIGURE 4. The conductivity of the two aluminum plates
is 3.215E7(S/m). The ferrite magnetic region has a relative linear permeability of 3000. The excitation coil is fed by
an alternating current 1000A, 50Hz. A comparisons of magnetic field computed on a line located in the air region by
BEM and BEM-FEM method is shown in FIGURE 5. For BEM formulation, 2800 quadrangle ared used in the surface
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Figure 5: The magnetic flux density.

meshes while BEM-FEM is based on a volume mesh for the material of 27860 hexahedrons. For the Joule losses, one
more simulation was performed by FEM with an adapted mesh. The calculated results are shown in TABLE 2. In terms
of memory requirements, the space required for FE method is about 5 times larger than that required for the proposed
formulation. Theses results demonstrates the efficiency of the BEM in the context of more complicated geometry.

A∗ − ϕ BEM BEM-FEM A− φ FEM

Joule losses (W) 2.794 2.792 2.784

Difference (%) - 0.071 0.358

Table 2: The relative error of Joule losses.

7 Conclusions
In this paper, we have presented a new BEM formulation based on the modified magnetic vector potential and the reduced
magnetic scalar potential to calculate the eddy current. Since this formulation contains only one vector quantity and a
single scalar quantity, the size of the matrix to be solved is not large. In addition, the accuracy of the method is less
sensitive to the skin depth of the problem than with others methods where the mesh have to be adapted. Thus, in the case
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of small skin depth, the method does not lead to an explosion of memory and computing time caused by a very large
number of mesh elements. The second test showed that the formulation can be also applied to problems with multi-regions
and more complex geometry. However, the proposed formulation being based on reduced scalar magnetic potential in air,
it is not appropriate to model problems containing non-simply connected conductive domains.

References and Notes
1. Unz H. Scalar-vector analog of Green’s theorem. IRE Transactions on Antennas and Propagation. 1958;6(3):300-300.

doi:10.1109/TAP.1958.1144586

2. Morisue T, Fukumi M. 3-D eddy current calculations using the magnetic vector potential. IEEE Transactions on Mag-
netics. 1988;24(1):106-109. doi:10.1109/20.43867

3. Rucker WM, Richter KR. A BEM code for 3-D eddy current calculations. IEEE Transactions on Magnetics.
1990;26(2):462-465. doi:10.1109/20.106353

4. Tsuboi H, Tanaka M. Three-dimensional eddy current analysis by the boundary element method using vector potential.
IEEE Transactions on Magnetics. 1990;26(2):454-457. doi:10.1109/20.106351

5. Misaki T, Tsuboi H. Computaton of 3-dimensional Eddy current problems by using boundary element method. IEEE
Transactions on Magnetics. 1985;21(6):2227-2230. doi:10.1109/TMAG.1985.1064200

6. Mayergoyz I. Boundary integral equations of minimum order for the calculation of three-dimensional eddy current
problems. IEEE Transactions on Magnetics. 1982;18(2):536-539. doi:10.1109/TMAG.1982.1061855

7. Kalaichelvan S, Lavers JD. On the implementation of a boundary element method for 3-D multiply connected EM field
problems. IEEE Transactions on Magnetics. 1988;24(1):569-572. doi:10.1109/20.43975

8. Harrington RF. Formulation of Boundary Integral Equations by the Equivalent Source Method. In: Brebbia CA, Ingber
MS, eds. Boundary Element Technology VII. Dordrecht: Springer Netherlands; 1992:293-303

9. Schmidlin G, Fischer U, Andjelic Z, Schwab C. Preconditioning of the second kind boundary integral equations
for 3D eddy current problems. International Journal for Numerical Methods in Engineering. 2001;51(9):1009-1031.
doi:10.1002/nme.187

10. Hiptmair R. Boundary Element Methods for Eddy Current Computation. In: Schanz M, Steinbach O, eds. Bound-
ary Element Analysis. Vol 29. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007:213-248. doi:10.1007/978-3-540-
47533-0-9

11. Ishibashi K. A least residual approach for 3-D eddy current analysis by BEM. IEEE Transactions on Magnetics.
1993;29(2):1512-1515. doi:10.1109/20.250690

12. Zheng D. Three-dimensional eddy current analysis by the boundary element method. IEEE Transactions on Magnet-
ics. 1997;33(2):1354-1357. doi:10.1109/20.582507

13. Graglia RD. On the numerical integration of the linear shape functions times the 3-D Green’s function or its gradient
on a plane triangle. IEEE Transactions on Antennas and Propagation. 1993;41(10):1448-1455. doi:10.1109/8.247786

14. S. Wakao and T. Onuki, ”Electromagnetic field computations by the hybrid FE-BE method using edge elements,” in
IEEE Transactions on Magnetics, vol. 29, no. 2, pp. 1487-1490, March 1993. doi: 10.1109/20.250684

15. T. Onuki and S. Wakao, ”Novel boundary element analysis for 3-D eddy current problems,” in IEEE Transactions on
Magnetics, vol. 29, no. 2, pp. 1520-1523, March 1993. doi: 10.1109/20.250692

16. Stratton JA, Chu LJ. Diffraction Theory of Electromagnetic Waves.; 1939.

17. Z. De Greve, J. Siau, G. Meunier, J. Guichon and O. Chadebec, ”A Mixed Surface Volume Integral Formulation for
the Modeling of High-Frequency Coreless Inductors,” in IEEE Transactions on Magnetics, vol. 52, no. 3, pp. 1-4, March
2016, Art no. 7208904. doi: 10.1109/TMAG.2015.2497004

9


	Introduction
	Eddy current problem
	Boundary integral equation
	Formulation with different regions problem
	Numerical implementation
	Numerical example
	TEST MODEL 1
	TEST MODEL 2

	Conclusions

