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Summary
A newBoundary ElementMethod (BEM) formulation has been developed for the computation of
3D eddy currents in bothmagnetic and conductive regions. Themodifiedmagnetic vector poten-
tial A∗ in the active regions and the reduced magnetic scalar potential ϕ in the air are used
as unknown variables. The formulation is limited to low-frequency magneto-harmonic problems
associated to linear, homogeneous, isotropic and simply-connected regions. In such a configura-
tion, it leads to accurate resultswith a reducednumberof degrees of freedom locatedona surface
mesh delimiting the air/material interface.
KEYWORDS:
Boundary element method, 3D eddy current, quasi-statics, modified magnetic vector potential,
reducedmagnetic scalar potential

1 INTRODUCTION
At low frequencies, the quasi-static approximation enables the simplification ofMaxwell equations by neglecting the current displacement term. In
this context, the Boundary ElementMethod (BEM) has been used for a long time to solve 3D eddy currents problems.The advantage of this method
is obvious since it requires only the discretization of the surface between the conductive material and the air region. With BEM, the number of
elements of the mesh is much smaller compared to the FE (Finite Elements)-like methods and the dimension of the problem is strongly reduced.
The counterpart is its limitation to linear, homogeneous and isotropic materials and the getting of fully dense matrix systems. Since the begin-
ning of the 90’s, many formulations has been developed based on different magnetic and/or electric quantities as degrees of freedom. Rucker 3,
Tsuboi 4 developed formulations based on themagnetic vector potential and the electric scalar potential. Mayergoyz 6, Kalaichelvan 7, Harrington 8
solved the integral equations with equivalent electric current and magnetic charge as unknowns. Stratton 16, Zheng 12, Hiptmair 10 have developed
formulations based on the equivalent electric and magnetic surface currents. In this paper, we present a new BEM formulation with the modi-
fied magnetic vector potentialA∗ and the reduced magnetic scalar potential ϕ as unknowns. Let us notice that this formulation can only handle
problems containing simply connected conductive domains.

2 EDDYCURRENT PROBLEM
Let us consider a both magnetic and conductive region Ω1 delimited by the surface Γ1 with a permeability µ1 and a conductivity σ1. The exciting
magnetic fieldHs is created by an external currentJs flowing in a coil which is located in the free air regionΩ0 as shown in FIGURE1 . Thanks to the
quasi-static assumptionwhere displacement currents are neglected, we canwrite the equations of themagnetic and electric fields in the conductor
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FIGURE 1 Eddy current problem.

as follows: ∇×H = σ1E

∇×E = −jωB
(1)

Themodifiedmagnetic vector potentialA∗ in thematerial is defined by the relations:E = −jωA−∇V = −jωA∗

∇×A∗ = B
(2)

From (1) and (2), the potentialA∗ satisfies the Helmholtz equation:
∇×∇×A∗ + jωσ1µ1A

∗ = 0 (3)
The uniqueness of vector potential is ensured by the gauge∇ · A∗ = 0. Outside the conductor, the magnetic fieldH is irrotational. Therefore, it
can be derived from a reducedmagnetic scalar potentialϕ 9:

H = Hs −∇ϕ (4)
Furthermore, this field is solenoidal in the free regionΩ0 i.e∇ ·H0 = 0, leading to the Laplace equation forϕ:

∆ϕ = 0 (5)
Our problem is to find the solution of the equations (3) and (5) which satisfies at the the boundary conditions on Γ1 :(n×H)1 = (n×H)0

µ1(n ·H)1 = µ0(n ·H)0

(6)

where the index 0 or 1 indicates that a quantity belongs to the domainΩ0 orΩ1 respectively. After some algebras, these conditions are changed into
relations linkingA∗ andϕ on the boundary ofΩ1:n× (∇×A∗) = µ1(n×Hs − n×∇ϕ)

n · (∇×A∗) = µ0(n ·Hs − n · ∇ϕ)
(7)

3 BOUNDARY INTEGRAL EQUATION
Using the vector Green’s identity proposed in 1, an integral equation for themodified vector potential in the conductive region is obtained :∫

Ω1

[(∇ ·A∗)∇G+ A∗∆G+G(∇×∇×A∗)]dΩ =

∮
Γ1

[(n ·A∗) · ∇G+ (n×A∗)×∇G+ (n×∇×A∗)G]dΓ (8)

wheren is outward unit normal vector to the boundary Γ1 of the regionΩ1 . The Green functionG used in this integral equation is a solution of the
equation:

∆GP (P,Q)− jωµ1σ1G(P,Q) + δ(P,Q) = 0 (9)
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where Q is the integration point and P is the observation point. δ denotes a Dirac pulse occurring at P. For 3D problems, the complex kernel G is
expressed by:

G =
1

4πr
e−(1+j)kr (10)

where k =
√
ωµ1σ1

2
and r = PQ. Replacing∆G1 in (8) by (9) and by noticing that∇·A∗ = 0 andn ·A∗ = 0 , we get the integral boundary equation

of modified vector potential as follows:
h1A

∗ = −
∮
Γ1

[(n×A∗)×∇G+ (n×∇×A∗)G]dΓ (11)

where the value of the coefficient h1 depends on point position Pwhere the integral expression is written.
h1 = 0 if P is outsideΩ1

h1 = 1 if P is insideΩ1

h1 = Ω
4π
if P is on the boundary surface Γ1, Ω being the solid angle spanning Γ1 from the observation point P (Ω = 2π if the surface is regular).

Applying the scalar Green’s theorem to the scalar potentialϕwith the Green’s functionG0 = 1
r
, we get:∫

Ω0

[(ϕ∆G0 −G0∆ϕ)] dΩ =

∮
Γ1

[(n · ∇G0)ϕ− (n · ∇ϕ)G0] dΓ (12)

whereG0 = 1
r
is the fundamental solution of the Laplace equation andwhich satisfies:∆G0P (P,Q) + δ (P,Q) = 0. Applying this relation to the left

side of the above equation, we finally get the boundary integral equation ofϕ :
h0ϕ =

∮
Γ1

[(n · ∇G0)ϕ− (n · ∇ϕ)G0] dΓ (13)

where
h0 = 0 if P is outsideΩ0

h0 = 1 if P is insideΩ0

h0 = Ω
4π
if P is on boundary surface Γ1. The integral boundary equations system is obtained as follows:

h1A
∗ = −

∮
Γ1

[(n×A∗)×∇G + (n×∇×A∗) G]dΓ

h0ϕ =
∮
Γ1

[(n · ∇G0)ϕ− (n · ∇ϕ) G0]dΓ
(14)

Both terms (n×∇×A∗) and (n.∇ϕ) can be developed based on the boundary conditions in (7). Finally, we get the BEM formulationA∗ − ϕ:
−µ1

∮
Γ1

(n×Hs) G1dΓ = h1A
∗ +

∮
Γ1

(n×A∗)×∇G1dΓ− µ1

∮
Γ1

(n×∇ϕ) G1dΓ

−
∮
Γ1

(n ·Hs) G0dΓ = h0ϕ−
∮
Γ1

(n · ∇G0)ϕdΓ− 1
µ0

∮
Γ1

n · (∇×A∗) G0dΓ
(15)

The resolution of this system of equations leads only toA∗ and ϕ on the boundary. Some additional computations has to be done to determine
several quantities in the volume domain. Using the equation ofA∗ in (14) with the coefficient h1 = 1, the eddy current density inside the conductor
is computed as follows :

J = jωσ1

∮
Γ1

[(n×A∗)×∇G1 + (n×∇×A∗)G1]dΓ (16)

In order to obtain the total magnetic field in the air, we need to compute the gradient ofϕ in (4). It is obtained by applying gradient operator to (13):
∇ϕ =

∮
Γ1

[∇ (n · ∇G0)ϕ− (n · ∇ϕ)∇G0] dΓ (17)

Magnetic fieldH in the air can also be calculated with the integral equation boundary written forH0 as proposed in 11 12:
H0 = Hs +

∮
Γ1

(n×Hs)×∇G0dΓ +

∮
Γ1

n · (∇×A∗)∇G0dΓ−
∮
Γ1

(n×∇ϕ)×∇G0dΓ (18)

To determine the Joule losses, Poynting theorem can be used since it can be applied directly to the Γ1 surface. After some algebras, an expression
for the losses is get:

Ploss =
1

2
Re

∮
Γ1

(n×H1) · Ẽ1dΓ

 = Re

− jω
2

∮
Γ1

(n×Hs − n×∇ϕ) · Ã∗dΓ

 (19)

where Ẽ1 and Ã∗ denotes the complex conjugate of electric fieldE1 andA∗ respectively.
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4 FORMULATIONWITHDIFFERENTREGIONS PROBLEM

FIGURE 2 Problemwith conductive electrical regions. FIGURE 3 Problemwith electrical andmagnetic regions.

TheA∗ − ϕ BEM formulation can be applied to problems with different material regions. Let us consider quite different problems composed of
two regions. In the case as in FIGURE 2 where all materials are conductive, we have (n ·A∗) = 0 on its boundary. Thus, the integral equations for
A∗ on Γ = Γ1 ∪ Γ2 may bewritten in the form of (11).We get the following system of equations:

−
∮
Γ

µ(n×Hs)GdΓ = hA∗ +
∮
Γ

(n×A∗)×∇GdΓ− µ
∮
Γ

(n×∇ϕ)GdΓ

−
∮
Γ

(n ·Hs)G0dΓ = h0ϕ−
∮
Γ

(
ϕ(n · ∇G0) + 1

µ0
n · (∇×A∗)G0

)
dΓ

(20)

where the permeabilityµ and complex kernelG have values that depend on the characteristics of a domain of integration to be Γ1 or Γ2. The expres-
sion ofG is (10) with the appropriate coefficient k.
In the case of a problemas in FIGURE3 , a non-vanishing term (n ·A∗) appears in the surface integral equation forA∗ onΓ2. In such a situation,we
propose an extension version for theA∗−ϕ formulation. The surface integral equation inH 11 12 forΩ2 will be used instead of the equation inA∗:

h2H = −
∮
Γ2

(n ·H)∇G0dΓ−
∮
Γ2

(n×H)×∇G0dΓ (21)

Using the continuity of themagnetic field across the boundary Γ2, we obtain:
−n ·

∮
Γ2

(n×Hs)×∇G0dΓ = h2(n ·H) + n ·
∮
Γ2

(n ·H)∇G0dΓ− n ·
∮
Γ2

(n×∇ϕ)×∇G0dΓ (22)

The integral equation for magnetic regionΩ2 is composed by two scalar variables (n.H) andϕ. Combining it with the equation ofA∗ for regionΩ1

andϕ for the air region, we obtain a new system of equations:

−
∮
Γ1

µ1(n×Hs)GdΓ = h1A
∗ +

∮
Γ1

(n×A∗)×∇GdΓ− µ1

∮
Γ1

(n×∇ϕ)GdΓ

−
∮
Γ

(n ·Hs)G0dΓ = h0ϕ−
∮
Γ

ϕ(n · ∇G0)dΓ−
∮
Γ1

1
µ0

n · (∇×A∗)G0dΓ−
∮
Γ2

µ2
µ0

(n ·H)G0dΓ

−n ·
∮
Γ2

(n×Hs)×∇G0dΓ = h2(n ·H) + n ·
∮
Γ2

(n ·H)∇G0dΓ− n ·
∮
Γ2

(n×∇ϕ)×∇G0dΓ

(23)

5 NUMERICAL IMPLEMENTATION
The surface Γ is discretized by first order plane elements. Edge shape functions and a nodal shape functions are used to interpolate theA∗ and ϕ
respectively. 

A∗ =
∑

i
wiA

∗
i

ϕ =
∑

i
αiϕi

(24)
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The Galerkin’s approach is used with the edge shape functionswi and the nodal shape functions αi as projection functions for the equation ofA∗
andϕ respectively. Coefficients h0 and h1 are both set to 0.5. We finally obtain a linear matrix systemwhich has to be solved:[

M11 M12

M21 M22

]{
A∗

ϕ

}
=

{
N1

N2

}
(25)

where
M11

ij = 0.5

∮
Γ

wiwjdΓ +

∮
Γ

wi

∮
Γ

(
n×wj

)
×∇GdΓdΓ

M12
ij = −µ

∮
Γ

wi

∮
Γ

(
n×∇αj

)
GdΓdΓ

M21
ij = −

1

µ0

∮
Γ

αi

∮
Γ

n ·
(
∇×wj

)
G0dΓdΓ

M22
ij = 0.5

∮
Γ

αiαjdΓ−
∮
Γ

αi

∮
Γ

(n · ∇G0)αjdΓdΓ

N1
i = −µ

∮
Γ

wi

∮
Γ

(n×Hs) GdΓdΓ

N2
i = −

∮
Γ

αi

∮
Γ

(n ·Hs) G0dΓdΓ

For the system (23), in addition to the approximations ofA∗ andϕ in (24), the new scalar variable (n.H) has to be added which is approximated by
a nodal shape functions.

n ·H =
∑
i

αihi (26)
Thematrix obtained by applying the Galerkin method is as follows:

M11 M12 0

M21 M22 M23

0 M32 M33




A∗

ϕ

h

 =


N1

N2

N3

 (27)

where
M11

ij = 0.5

∮
Γ1

wiwjdΓ +

∮
Γ1

wi

∮
Γ1

(
n×wj

)
×∇GdΓdΓ

M12
ij = −µ1

∮
Γ1

wi

∮
Γ1

(
n×∇αj

)
GdΓdΓ

M21
ij = −

1

µ0

∮
Γ

αi

∮
Γ1

n ·
(
∇×wj

)
G0dΓdΓ

M22
ij = 0.5

∮
Γ

αiαjdΓ−
∮
Γ

αi

∮
Γ

(n · ∇G0)αjdΓdΓ

M23
ij = −

µ2

µ0

∮
Γ

αi

∮
Γ2

αjG0dΓdΓ

M32
ij = 0.5

∮
Γ2

αiαjdΓ−
∮
Γ2

n · αi

∮
Γ2

(n · ∇G0)αjdΓdΓ

M33
ij = −

∮
Γ2

n · αi

∮
Γ2

(
n×∇αj

)
×∇G0dΓdΓ

N1
i = −µ1

∮
Γ1

wi

∮
Γ1

(n×Hs) GdΓdΓ

N2
i = −

∮
Γ

αi

∮
Γ

(n ·Hs) G0dΓdΓ

N3
i = −

∮
Γ2

n · αi

∮
Γ2

(n×Hs)×∇G0dΓdΓ

In order to accurately compute the integrals dealing with singular kernel G0 and its gradients, we can use the analytical expressions proposed by
Graglia in 13 for a mesh composed of triangular elements. To perform the calculations related to G, the kernel is split in two parts such as: G =

G0 + G1.
G1 =

e−(1+j)kr − 1

4πr
(28)

G1 and its gradient tend toward finite limits when r approaches zero as follows:
lim
r→0

(G1) = −
√
πfµ1σ1

4π
− j
√
πfµ1σ1

4π
; lim
r→0

(∇G1) = j
fµ1σ1

4
(29)

Thus, the integrals related to G1 can be simply computed by shifting Gauss point locations for the sources and the targets. Thus, the problem of
singular integrals computation forG has been transferred toG0 which has an analytical expression.

6 NUMERICAL EXAMPLE
6.1 TESTMODEL 1
Let us consider a conductive-magnetic sphere of 10mm radius excited by a uniformmagnetic fieldBs = (0, 0, 1)T. The conductivity and permeabil-
ity of the sphere areσ = 5.5E7 S/m andµ = 10 respectively. In this test, we focus on the calculation of Joule losses.With the proposed formulation,
the losses are calculated by the expression (19) and will be compared to the losses obtained by other methods such as FEM, BEM-FEM 14 or SIBC
(Surface Impedance Boudary Condition) 17. A volumemesh and a surfacemeshwith the same discretion of the surface will be used. A surfacemesh
with 2058 triangle elements is used for BEM and SIBC formulations while a volume mesh with 21231 tetrahedron elements is used for the others
methods involving FEM. The size of each mesh elements is about 1.25mm. The comparison in terms of Joule losses is shown in TABLE 1 with the
analytical solution proposed byMorisue 2 considered as the reference value.
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Frequency (Hz) Skin depth (mm)
Error (%)

A∗ − ϕBEM BEM-FEM SIBC FEM
10 6.79 0.88 1.06 86.17 0.04
100 2.15 0.33 0.77 0.37 1.32
1000 0.68 0.18 13.37 2.64 12.6
10000 0.21 0.51 24.83 1.54 46.94
100000 0.07 0.40 75.96 0.75 82.46

TABLE 1 Relative errors of Joule losses for different methods.

TheaccuracyofmethodsFEMandSIBC is strongly influencedby thevolumemeshof the conductive region. The increaseof the frequencymaking
the skin depth decrease, the volume mesh would need to be refined in the context of FEM. The mesh being fixed, the accuracy becomes less good
when the frequency increases with the BEM-FEM approach. The SIBC is well known to be relevant at high frequency because the air-conductor
interface is approached by a semi-infinite plane. This is why its accuracy increases with the increase of the frequency. The BEM results (all relative
errors being less than 1%) shows that the accuracy of the method is very good on a large frequency spectrum compared to others approach. The
low sensitivity of BEM to the skin depth is certainly one of its main advantage.

6.2 TESTMODEL 2

FIGURE 4 Themodel proposed by IEEJ.

In order to validateour formulation for themulti-regionproblem (23), theproblemproposedby IEEof Japan 14 is considered. Thegeometryof the
problem is described in FIGURE 4 . The conductivity of the two aluminum plates is 3.215E7(S/m). The ferrite magnetic region has a relative linear
permeability of 3000. The excitation coil is fed by an alternating current 1000A, 50Hz. A comparisons of magnetic field computed on a line located
in the air region by BEM and BEM-FEM method is shown in FIGURE 5 . For BEM formulation, 2800 quadrangle ared used in the surface meshes
while BEM-FEM is based on a volume mesh for the material of 27860 hexahedrons. For the Joule losses, one more simulation was performed by
FEMwith an adapted mesh. The calculated results are shown in TABLE 2 . In terms of memory requirements, the space required for FE method is
about 5 times larger than that required for the proposed formulation. Theses results demonstrates the efficiency of the BEM in the context ofmore
complicated geometry.
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FIGURE 5 Themagnetic flux density.

A∗ − ϕBEM BEM-FEM A− φ FEM
Joule losses (W) 2.794 2.792 2.784
Difference (%) - 0.071 0.358

TABLE 2 The relative error of Joule losses.

7 CONCLUSIONS
In this paper,wehavepresented a newBEMformulation basedon themodifiedmagnetic vector potential and the reducedmagnetic scalar potential
to calculate the eddy current. Since this formulation contains only one vector quantity and a single scalar quantity, the size of thematrix to be solved
is not large. In addition, the accuracy of the method is less sensitive to the skin depth of the problem than with others methods where the mesh
have to be adapted. Thus, in the case of small skin depth, themethod does not lead to an explosion of memory and computing time caused by a very
large number ofmesh elements. The second test showed that the formulation can be also applied to problemswithmulti-regions andmore complex
geometry. However, the proposed formulation being based on reduced scalar magnetic potential in air, it is not appropriate to model problems
containing non-simply connected conductive domains.
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