
HAL Id: hal-02364193
https://hal.science/hal-02364193

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Multi-objective cooperative scheduling: An application
on smart grids

Khouloud Salameh, Richard Chbeir, Haritza Camblong

To cite this version:
Khouloud Salameh, Richard Chbeir, Haritza Camblong. Multi-objective cooperative scheduling:
An application on smart grids. Applied Computing and Informatics, 2019, 15 (1), pp.67-79.
�10.1016/j.aci.2017.10.005�. �hal-02364193�

https://hal.science/hal-02364193
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Multi-objective Cooperative Scheduling: An Application on

Smart Grids

Khouloud Salameh1,2, Richard Chbeir1, Haritza Camblong2

1 University of Pau and Adour Countries, 64600 Anglet, France

email: {khouloud.salameh, richard.chbeir}@univ-pau.fr 

2 University of Basque Country, Donostia 20018, Spain

email: aritza.camblong@ehu.eus

© 2017 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2210832717302788
Manuscript_4090dbf4691d37e1ccb352701eb413cf

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2210832717302788
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2210832717302788

Multi-objective Cooperative Scheduling: An
Application on Smart Grids

No Author Given

No Institute Given

Abstract. As the size of the Smart Grids (SG) grows, the economic
significance of power generation, consumption and storage scheduling
becomes more and more apparent. A proper scheduling for electricity
generation, consumption and storage will also ensure the reliability of
the SG and extend the operational lives of its constituent units. Be-
sides, it can achieve economical and ecological benefits for the SG. In
this work, we propose a multi-objective cooperative scheduling consist-
ing of two main modules: 1) the Preference-based Compromise Builder
and 2) the Multi-objective Scheduler. The Preference-based Compro-
mise Builder aims at generating the best balance or what we call ‘the
compromise’ between the preferences or associations of the sellers and
the buyers that must exchange power simultaneously. Once done, the
Multi-objective Scheduler aims at proposing a power schedule for the
associations, in order to achieve three-dimensional benefits: economical
by reducing the electricity costs, ecological by minimizing the toxic gas
emissions, and operational by reducing the peak load of the SG and its
components, and by increasing their comfort. Conducted experiments
showed that the proposed algorithms provide convincing results.

Keywords: Multi-objective optimization, Smart Grid, Scheduling

1 Introduction

The Information and Communication technologies (ICT) represent unprece-
dented opportunities to move the power systems into a new era of reliability
and efficiency that will contribute to operational, economical and ecological im-
provements. During this transition period, it is important to implement adequate
techniques allowing to ensure that the benefits envisioned from the SG become a
reality. Commonly considered as a key mechanism towards a more efficient and
cost effective SG, the Demand-Side Management or DSM [6, 14] refers to the
planning and implementation of the utility companies’ programs1 designed to
directly or indirectly influence the consumer consumption in the aim of reduc-
ing the system peak load and electricity costs. DSM techniques can be mainly
gathered in two main categories: the load shifting [11] and the energy efficiency
and conservation [2] programs.

1 A utility company is a company that engages in the generation and the distribution
of electricity for sale generally in a regulated market.

In our study, we focus on the load shifting, and more specifically on the
power scheduling, since it has been observed that it is easier to motivate users
to reschedule their needs rather than asking them to reduce their consumption
[11]. Several approaches have been provided in the literature to address the
power scheduling problem [10, 17, 13, 1, 5, 15]. However, and to the best of our
knowledge, none of the them fully addresses the following challenges:

– Operational Challenges: Several limitations can be mentioned regarding
the operational aspect:
1. The consumer discomfort: while the consumers are enjoying their

reduced electricity bills when shifting their consumption from on-peak
to off-peak periods, they might risk discomfort related to the delay time
of receiving their desired power.

2. The local peaks: while trying to reduce the whole SG peak load, it is
essential to consider the individual SG components’ peak loads as well.
This would conduct to increase the reliability of the components and
decrease the local failure risks.

3. The consumption wise: the current shifting programs [10, 17, 13, 5]
provide consumption scheduling without considering the production nor
the storage scheduling (with the exception of few approaches [1, 15])
which negatively impact their efficiency in shaping the peak load, reduc-
ing the electricity bills and minimizing the gas emissions effects.

– Economical Challenges: Knowing that the electricity price relies on the
demand and supply over a specific period [9], an adequate scheduling is
expected to shift loads during periods of high market prices (peak hours)
and consequently minimize the electricity costs.

– Ecological Challenges: A significant power production from pollutant en-
ergy sources leads to a significant toxic gas emissions. Hence, it is essential to
provide a power production scheduling allowing to reduce the bad emissions
and effects on the environment by reducing the simultaneous toxic power
production.

To address the aforementioned challenges, we introduce here MOCSF , a
‘Multi-Objective Cooperative Scheduling Framework’ designed for the power
scheduling in the SG. MOCSF aims at scheduling a set of couples, each con-
sisting of a seller and buyer, working together in a mutual spirit so to ensure
a better reduction of the economical, operational and ecological costs and im-
pacts within the SG. In addition, our approach presents several advantages over
existing approaches, namely:

1. It provides a scheduling coverage able to consider all of the power consump-
tion, production and storage entities of the SG,

2. It considers multiple energy sources (unlike existing approaches [10, 17, 13,
1, 5, 15] that studied the interaction of the consumers with only one energy
source),

3. It takes into account the SG components’ preferences unlike current ap-
proaches [17, 1, 15] that consider them partially.

The rest of this paper is organized as follows. Section 2 provides details about
existing power scheduling techniques and their drawbacks regarding aforemen-
tioned challenges. Section 3 details the ‘MOCSF’ modules. An illustrative ex-
ample is provided after each step to ease the understanding of each module. In
Section 4, the experiments conducted to validate our approach and the main
results obtained are presented. Section 5 concludes the paper.

2 Related work

Many approaches have been proposed in the literature to solve the power schedul-
ing problem. Current approaches can be categorized into two main groups [7]:
semi-automatic schedulers [10, 17, 5] and automatic schedulers [15, 13, 1] sched-
ulers. In the semi-automatic schedulers, the consumers inject their desired pref-
erences (e.g., desired temperature, appliances start time preferences, etc.) during
the scheduling, contrary to the automatic schedulers where there is no human
intervention. In our work, we will be focusing on six scheduling approaches,
that vary in their scheduler, optimization problem type, appliances types and
objectives.

2.1 Semi-automatic Schedulers

In [10], the authors developed a distributed power consumption scheduling al-
gorithm aiming at reducing the electricity bills and balancing the total power
demand when multiple consumers share a single energy source. To do so, the au-
thors formulated a game-theory technique, where the players are the consumers
and the strategies are their corresponding power consumption schedules (rep-
resented as vectors). The objective function of each consumer n when choosing
the strategy xn is defined as follows:

Min

H∑
h=1

Ch(
∑
n∈N

∑
a∈An

xhn,a) (1)

Where Ch is the cost function, assumed to be strictly convex for each h ∈ H,
andd H = 24. xhn,a is the schedule of the appliance a, owned by the player n, at
hour h. The pseudo-code of the distributed algorithm proposed is provided in
cf. Algorithm 1.

For each player n ∈ N , the power consumption scheduling is generated ran-
domly. The intuition behind this choice is that the authors considered that, at
the beginning, a player n has no prior information about others players. Then,
a loop is executed until the algorithm converges. Within the loop, the objective
function is resolved using an IPM algorithm [3], resulting a new schedule for each
player. The same process is repeated until there is no new announced schedule
for all the players. Simulations results showed that the proposed distributed
algorithm can reduce the electricity bills and the peak of average ratio.

Algorithm 1: Executed by each consumer n ∈ N
1 Randomly initialize xn and x−n
2 repeat
3 At random time instances Do
4 Solve the objective function using IPM
5 if xn changes compared to current schedule then
6 Update xn according to the new schedule
7 Broadcast a control message to annouce ln to the other consumers

8 if a control message is received then
9 Update ln accordingly

10 until no new schedule is announced

In [17], the authors developed a meta-heuristic scheduling algorithm, aiming
at reducing the dissatisfaction and the energy cost of a set of homes in a district,
and the variance of the grid. To do so, the authors divided the home appliances
into two categories: power-shiftable and time-shiftable appliances. The objective
function is formulated as follows:

Min

T∑
t=1

S∑
j=1

[Iij(t) ∗ Uij(t) + α ∗ (γ(t) ∗
S∑
j=1

Pij(t))

+β ∗ (

T∑
t=1

S∑
j=1

∗Pij(t)− 1/|T | ∗
N∑
i=1

T∑
t=1

S∑
j=1

Pij(t))
2]

(2)

Where T is the set of time interval, N is the set of households, S is the set
of electric appliances, Iij(t) is a binary variable denoting the working status of
the appliance j in the household i at time t, Uij(t) is the dissatisfaction caused
by operating the appliance i in the household i at time t, γ(t) is the electricity
sale price at time t, and Pij(t) is the working power of the appliance j in the
household i at time t.

The dissatisfaction function Uij(t) represents the difference between the de-
sired temperature and the actual indoor temperature for the space heater at
time t, and the difference between the desired hot water temperature and the
actual hot water temperature for the water heater at time t.

The authors used the Cooperative Particle Swarm Optimization (CPSO) (cf.
Figure 1) to find the optimal scheduling of the appliances. Experimental results
showed the positive impact of the households coordination in decreasing the
peak loads and reducing the power costs.

In [5], the authors developed a power consumption scheduling aiming at
reducing the electricity bills of the consumers with a minimum impact on their
consumption preferences. The authors considered that the scheduler needs to
determine the consumption vector Xi = [xi,1, xi,1, ..., xi,H] for each unit i in the
determined zone horizon H, where H consists of M segments comprised of m
time intervals, i.e., H = M ∗m. Then, a shrinking horizon optimization problem
[4] has been defined as follows:

Fig. 1. CPSO Configuration and Operation

S(j)(H) =

jm∑
h=jm−m+1

S(th) +

jm∑
h=jm+1

Ŝ(th) (3)

Where S(j)(H) is the total electricity cost in the jth optimization step,∑jm
h=jm−m+1 S(th) is the energy cost for m intervals in the jth time segment

based on actual electricity prices, and
∑jm
h=jm+1 Ŝ(th) is the estimated energy

cost based on the forecasted electricity prices for subsequent time intervals. Note
that the user preferences are considered by including the time intervals where
energy scheduling is performed for unit i. Without giving details about the ob-
tained results, the authors assume that the proposed model can minimize the
electricity consumption costs while including the consumers’ preferences.

2.2 Automatic Schedulers

In [13], the authors formulated an optimization model for households power
scheduling, aiming at reducing the electricity costs and the peak load of the
grid. To do so, the authors integrated the incentive and inconvenience concepts.
The incentive is offered to the users during peak times to encourage them to
reduce their consumption, while the inconvenience seeks to reduce the difference
between the baseline and the optimal appliances schedule. The objective function
is defined as follows:

Min

T∑
t=1

I∑
j=1

[Pi(γt ∗ Uopti,t − βt ∗ δ(U
bl
i,t − U

opt
i,t)) ∗∆.t+ (U bli,t − U

opt
i,t)2] (4)

Where Pi is the rated power of the appliance i, Uopti,t is the new on/off status

of the appliance i at time t, U bli,t is the baseline on/off status of the appliance

i at time t, I = 10, T = 144, δ(U bli,t − Uopti,t) = 1 if (U bli,t − Uopti,t) > 0 and

δ(U bli,t − U
opt
i,t) = 0 if (U bli,t − U

opt
i,t) < 0. The formulated model is solved using

the MINLP algorithm, which utilizes the Mixed Integer Programming (MIP)
[16] and the Non-Linear Programming (NLP) [3]. Simulations results showed
that using this model, the consumers realized 25% of electricity cost reduction.
Noting that this percentage is affected by several factors, such as the number of
shiftable appliances and the prices of the on-peak and off-peak times.

In [15], the authors developed a power storage scheduling algorithm aiming
at managing the storage in the grid in a way of saving energy and reducing the
reliance on the non-renewable energy sources. To do so, the authors formulated a
game-theorist technique, where the players are the consumers and the strategies
are their storage schedule vectors. The objective function of each player i when
choosing the strategy si is defined as follows:

Pi(si, s−i)

H∑
h=1

(shi + lhi) (5)

Where si is the storage schedule vector of all the players expect i, Pi(si, s−i) is
the power price determined using a continuous and supply curve, and lhi is the
amount of power required by the player i at time h. The Nash equilibrium of the
game correspond to the storage schedule si that minimizes the global generator
costs given by

∑h=1
H

∫ qh
0
bh(x)dx, where bh() is the supply curve and qh is the

the total amount of power traded by all the players at time h. Simulation results
showed that it is possible to realize an electricity bill saving of 13% per consumer
with a storage capacity of 4KW .

Similar to [13], the authors in [1] proposed an energy storage and loads
scheduling algorithms aiming at reducing the electricity costs and the peak load
hours. In this study, the electricity load analysis is done by grouping the day
periods into three time zones each representing a cluster. Each cluster represents
the loads expected to be launched during a given period. The cost required to
satisfy the power needs of a given cluster j, consisting of K appliances is given
by:

Cj =

K∑
m=1

∑
h∈Tj

{(Eh,m +Bch,m −Bdh,m) ∗ rh} (6)

Where Eh,m is the power purchased from the utility grid by a consumer m to
meet its electrical appliances’ power needs at period h, Bch,m and Bdh,m are the

charging and discharging power profiles of the consumer m for the same period
h, and rh is the market power price at a period h. An optimal load and storage
scheduling should satisfy the consumers’ requirements at the lowest cost in each
period without harming the grid stability. To do so, the objective function has
been defined as follows:

Min

3∑
j=1

(Cj) (7)

Here, linear programming was applied in resolving the optimization problem.
Simulation results showed a 20% of peak load reduction and a 17% of costs
savings.

2.3 Discussion

Table 1) shows a comparison between the existing DSM approaches highlighting
their strengths and drawbacks with respect to the aforementioned challenges.
On can observe the following:

Table 1. Comparing existing DSM approaches

Scheduling Coverage Satisfaction Multiple Energy Sources Restricted Goal

Rad et al. [10] Partial - - Partial

Koukam et al. [17] Partial Partial - Partial

Ditiro et al. [13] Partial + - Partial

Peruknishnen et al. [15] Partial Partial - Partial

Christopher et al. [1] Partial - - Partial

Amin et al. [5] Partial + - Partial

Our Approach + + + +

– Scheduling coverage: All the existing DSM approaches [10, 17, 13, 1, 5, 15]
focused only on the power consumption scheduling, with the exception of
[1, 15] that addressed the storage scheduling as well. However, none of them
covers the power production scheduling.

– Consumer satisfaction: Few approaches [1, 15, 17] took into account the
consumers’ satisfaction. In [17], the consumers’ comfort is ensured by reduc-
ing the gap between the desired and the actual hot water, and between the
desired and the actual indoor temperature. However, in [1], [15], the satis-
faction is measured by the delay time between the desired start time and
the real operation of its household appliances. Contrariwise to [10], [13, 5],
where this aspect was completely absent.

– Multiple energy sources: To the best of our knowledge, all the DSM
approaches [10], [17, 13, 1, 5, 15] target the interaction of the consumers while
assuming having only one utility grid and consequently one energy source.

– Restricted goal: Another limitation of all the existing approaches is that
they do not cope with the three objectives (operational, ecological, and eco-
nomical) of a successful DSM. In almost all the approaches [10], [17, 13, 1,
5, 15], the goal was mainly to reduce the electricity costs (economical as-
pect). In [10, 17], the peak load reduction (operational aspect) is addressed
aiming at reducing the peak hours in the power grid. However, none of the
approaches considers the gas emission reduction (ecological aspect).

All these limitations lead us to develop a new DSM cooperative model, al-
lowing the scheduling of the power production, consumption and storage while
considering the three-objective aspect of the DSM and the components’ prefer-
ences.

3 Multi-objective Cooperative Scheduling

In this section, we detail our ‘Multi-Objective Cooperative Scheduling Frame-
work’ or MOCSF aiming at reducing electricity bills, peak loads and environ-
mental bad effects, while enhancing the comfort of the SG components. In order
to conceive a cooperative environment, MOCSF takes as input a set of couples,
or what we call : seller-to-buyer associations, each consisting of a seller and buyer
having mutual benefits in working together, with their desired schedules reflect-
ing their operational preferences in terms of: start time, end time and power
quantity (to sell or to buy). The main reason behind this choice relies on the
fact that we do not want to schedule the sellers and the buyers randomly but we
rather want to maintain the power exchange between the sellers and the buyers
having the biggest interest in working together (the interest can be expressed via
an objective function that takes into account the ecological, economical and op-
erational parameters). Several approaches have been proposed in the literature
to provide appropriate associations [12].

For the rest of our paper, we will be using the following example: Let us
consider an SG consisting of 9 components having the power generation (g),
demand (d) and storage (s) as shown in Table A.1. After classifying the SG
components, they will be put into three main categories: the sellers willing to
sell their power surplus (nR1 → nR+

1 , nR4 → nR+
2 , nR6 → nR+

3 , nR8 → nR+
4),

the buyers willing to buy their power needs (nR2 → nR−1 , nR3 → nR−2 , nR5 →
nR−3 , nR9 → nR−4), and the self-satisfied components (nR5 → nR0

1) (c.f. Table
A.2.).

After applying a clustering algorithm aiming at gathering the SG compo-
nents having mutual interests in working together based on the minimization
of an objective function that takes into account the ecological, economical and
operational costs, the result is a set of couples or seller-to-buyer associations as
follows:

Association 1 : (nR+
1 ,nR−3) - nR+

1 should sell nR−3 a quantity of 14 kW
Association 2 : (nR+

1 ,nR−1) - nR+
1 should sell nR−1 a quantity of 3 kW

Association 3 : (nR+
4 ,nR−1) - nR+

4 should sell nR−1 a quantity of 1 kW
Association 4 : (nR+

4 ,nR−2) - nR+
4 should sell nR−2 a quantity of 2 kW

As shown in Figure 2, MOCSF consists of two main modules: Preference-

Fig. 2. Multi-objective Cooperative Scheduling Framework

based compromise builder and Multi-objective Scheduler detailed in
what follows.

3.1 Preference-based compromise builder

As mentioned before, the input of this module is a set of seller-to-buyer associ-
ations, each composed of a seller and a buyer. Note that, each seller or buyer
might belong to one or several associations. While sellers and buyers of the same
association have to exchange power, each one of them has its own preferences to
be respected so to establish a successful cooperative SG. Hence, the first step
towards each association scheduling is to find the best balance or what we call
the compromise, between the preferences of the related seller and buyer. Let us
consider the first association (nR+

1 , nR−3) of the illustrative example. nR+
1 and

nR−3 should be scheduled together, however nR+
1 may have several preferences

that are different from nR−3 ’s: for instance, this latter prefers to buy power at
7:00 am, while nR+

1 prefers to sell its surplus at 8:00 am. Hence, our goal is

to find the trade-off between the sellers and the buyers preferences. The prob-
lem becomes more and more complicated when each seller and buyer exchanges
power with several components (since each can belong to several associations).
For instance, nR+

1 belongs to another association as well, (nR+
1 , nR−1), where

nR−1 prefers also to buy power at 7:00 am. Hence, our module should propose
an optimal distribution of the sellers’ available power at each time t, in that it
can meet its preferences and the buyers preferences, as well. Note that, for pri-
vacy reasons, a component has no prior information with whom he will exchange
power, he can only precise the quantity he needs to sell or buy at each time t.

Before detailing the process, we present first some definitions used in our
study. Each component nR2, coud be a seller nR+ or a buyer nR− having
respectively power surplus and power need.

Definition 1 (Schedule [S]) A schedule S consists of the power exchanged
vector sR = [s1R, s

2
R, ..., s

T
R], where stR denotes the corresponding power quantity

(in KW) that an entity R is willing to exchange, at a time t over a period T �

Definition 2 [PurchaseGraph [PG]] A PurchaseGraph PG is an oriented
graph (V , E, S, EV) consisting of representing power scheduling of vertices vi
and associations eji where each vertice vi ∈ V = {nR+} ∪ {nR−} represents a

component, each edge eji connects a seller vi ∈ {nR+} to a buyer vj ∈ {nR−}
with the total power quantity in EV exchanged between them, and each vertice
vi or edge eji is associated to one desired schedule, denoted sinit ∈ S, and one
operational schedule sop ∈ S. The desired schedule designates the component op-
erational preferences expressing its willing power quantity to exchange at each
time t within a period T. The operational schedule designates the proposed sched-
ule (provided by our algorithm). Note that, ∀ nR ∈ {PGk} ⇒ nR /∈ {PG6=k}.
To simplify in what follows,

– e.nR+ designates the edge seller,
– e.nR− designates the edge buyer,
– e.EV designates the edge total power quantity,
– sinitnR designates the component desired schedule,
– sopnR designates the component operational schedule,
– sinite designates the edge desired schedule, and
– sope designates the edge operational schedule.

�

Definition 3 [Satisfaction [S(e,W)]]. The satisfaction of an edge e is defined
according to the operational, economical, and ecological satisfactions of its ver-
tices (its connected seller and buyer). It considers the sellers and buyers’ comfort
(operational), the power peak load (operational), the electricity bills (economi-
cal) and the environmental impacts (ecological). Although it can be defined using
different aggregation functions (e.g., maximum, average, etc.), we adopted the

2 Self-satisfied components are not included here

weighted sum function to combine the different objective aspects costs, allowing
the user to tune the weight of each criterion. Formally:

S(e,W) = W.wop × Sop(e) +W.weco × Seco(e) +W.wecolo × Secolo(e) (8)

where:

– Sop(e) represents the operational satisfaction of e,
– Seco(e) represents the economic satisfaction of e,
– Secolo(e) represents the ecological satisfaction of e, and
– W is a set of three weights, denoted as :≺ wop, weco, wecolo �, wop + weco +
wecolo = 1 and (wop, weco, wecolo) ≥ 0

�

Thus, the satisfaction of a PG consisting of M edges is defined as follows:

S(PG,W) =

M∑
i=0

S(ei,W) (9)

Similarly, the satisfaction of an SG consisting of N number of PG is defined as
follows:

S(SG,W) =

N∑
i=0

S(PGi,W) (10)

Note that, in our study, we are aiming to minimize the operational, ecological
and economical dissatisfactions (Dis) as follows:

Dis(e,W) =
1

1 + S(e,W)
∈ [0, 1]

Dis(PG,W) =
1

1 + S(PG,W)
∈ [0, 1]

Dis(SG,W) =
1

1 + S(SG,W)
∈ [0, 1]

(11)

where, the lower is the dissatisfaction (tends to 0), the higher is the satisfaction.

Definition 4 (Operational Satisfaction [Sop]) The operational satisfaction
of an edge e, denoted Sop(e,W), is defined as:

Sop(e,W) = W.wα × Comfort(e) +W.wβ × V ariance(e) +W.wγ × V ariance(PG)
(12)

where W is a set of three weights, denoted as :≺ wα, wβ , wγ �, wα+wβ+wγ = 1
and (wα, wβ , wγ) ≥ 0, and PG is the PurchaseGraph to which e belongs. �

Thus, the operational satisfaction of a PG consisting of M edges is defined
as follows:

Sop(PG,W) =

M∑
i=0

Sop(ei,W) (13)

Similarly, the operational satisfaction of an MG consisting of N number of PG
is defined as follows:

Sop(SG,W) =

N∑
i=0

Sop(PGi,W) (14)

Note that, the operational dissatisfactions (Disop) is defined as follows:

Disop(e,W) =
1

1 + Sop(e,W)
∈ [0, 1]

Disop(PG,W) =
1

1 + Sop(PG,W)
∈ [0, 1]

Disop(SG,W) =
1

1 + Sop(SG,W)
∈ [0, 1]

(15)

where, the lower is the operational dissatisfaction (tends to 0), the higher is the
operational satisfaction.

Definition 5 (Comfort [Comfort(e)]) The comfort of an edge e, is the wait-
ing time penalization of its vertices, defined as:

Comfort(e) =

T∑
t=1

Avg(e.nR+.Op.Penalty × |sope [t]− sinite.nR+ [t]|

+e.nR−.Op.Penalty × |sope [t]− sinite.nR− [t]|)

(16)

where Penalty is the waiting time penalty of the seller nR+ and the buyer nR−,
|sope [t] − sinite.nR+ [t]| is the difference between the initial desired schedule and the
real operation of the seller nR+, and |sope [t]− sinite.nR− [t]| is the difference between
the initial desired schedule and the real operation of the buyer nR−. �

Note that, the penalty is a positive weighting factor, which represents the waiting
time flexibility of the component. If the penalty is zero, this means that the com-
ponent does not penalize the delay between its desired and operational schedule.
The highest is the penalty, the most the component is delay time constraining.

Definition 6 (Variance e [V ariance(e)]) The variance of an edge e, denoted
V ariance(e) is the peak load ratio of its vertices, defined as:

V ariance(e) =

T∑
t=1

(
sope [t]−

∑T
t=1 s

op
e [t]

|T |

)2

(17)

�

Note that, the variance is a positive value reflecting the power load dispersion all
along T. The highest is the variance, the higher are the peak loads probabilities.

Definition 7 (Variance PG [V ariancePG)]) The variance of a PG, denoted
V ariance(PG) is the peak load ratio of its edges, defined as:

V ariance(PG) =

T∑
t=0

(
M∑
i=0

Sope [t]−
∑T
t=0

∑M
i=0 S

op
e [t]

|T |

)2

(18)

where M is the number of e in PG �

Definition 8 (Variance SG [V ariance(SG)]) The variance of an MG, de-
noted V ariance(SG) is the peak load ratio of the PGs forming the SG, defined
as:

V ariance(SG) =

T∑
t=1

N∑
j=1

(
M∑
i=1

PGj .s
op
ei [t]−

∑T
t=1

∑M
i=1 PGj .s

op
ei [t]

|T |

)2

(19)

where N is the number of PG in SG and M is the number of e in PG �

Definition 9 (Economical Satisfaction [Seco]) The economical satisfaction
of an edge e, denoted Seco(e), is defined as:

Seco(e) =

T∑
t=1

Avg(sope [t]×MG.Op.PwrCost[t]

+e.nR+.Op.LaunchCount× (e.nR+.Eco.SUCost+ e.nR+.Eco.SDCost)

+e.nR−.Op.LaunchCount× (e.nR−.Eco.SUCost+ e.nR+.Eco.SDCost))
(20)

where PwrCost[t] is the electricity price at a time t and LaunchCount is the
number of launches of the sellers and buyers belonging to e, during T. Note that,
all these parameters are represented in our OntoMG. �

Similarly,

Diseco(e) =
1

1 + Seco(e)
∈ [0, 1]

Diseco(PG) =
1

1 + Seco(PG)
∈ [0, 1]

Diseco(SG) =
1

1 + Seco(SG)
∈ [0, 1]

(21)

where, the lower is the economical dissatisfaction (tends to 0), the higher is the
economical satisfaction.

Definition 10 (Ecological Satisfaction [Secolo]) The ecological satisfaction
of an edge e, denoted Secolo(e), is defined as:

Secolo(e) =

T∑
t=1

sope [t]× e.nR+.Ecolo.GasEss× SG.Op.GasEssCost (22)

The ecological satisfaction depends on the toxic gas emissions GasEss emitted
during the power production, and the cost GasEssCost per unit of gas emission.
Note that, all these parameters are modeled in our OntoMG ontology. �

Thus, the ecological satisfaction of a PG consisting of M edges is defined as
follows:

Secolo(PG) =

M∑
i=0

Secolo(PG) (23)

Similarly, the ecological satisfaction of an MG consisting of N number of PG is
defined as follows:

Secolo(SG) =

N∑
i=0

SecoloSecolo(SG) (24)

Note that, the ecological dissatisfactions (Disecolo) is defined as follows:

Disecolo(e) =
1

1 + Secolo(e)
∈ [0, 1]

Disecolo(PG) =
1

1 + Secolo(PG)
∈ [0, 1]

Disecolo(SG) =
1

1 + Secolo(SG)
∈ [0, 1]

(25)

where, the lower is the ecological dissatisfaction (tends to 0), the higher is the
ecological satisfaction.

An overview of the Preferences-based Compromise Builder module is shown
in Figure 3 consisting of three main components: 1) Candidate components’
prescheduling, 2) Final components’ prescheduling, and 3) Compromise preschedul-
ing. They are detailed below.

Fig. 3. Preferences-based Compromise Builder Framework

3.1.1 Candidate components’ prescheduling The aim of this module is to
dissociate the desired schedule of each seller/buyer, so as to distribute the power

quantity at each time t (its capacity of selling/buying) between the components
with which, it must exchange, without exceeding nor being inferior to its desired
capacity at time t. The pseudo-code of the candidate components’ prescheduling
is provided in Algorithm 2. Briefly, for each seller/buyer, we retrieve the list
of edges to which the seller/buyer belongs. Then, we generate the list of all
the possible permutations of the retrieved edges (Lines 7-16). For each possible
permutation list of edges at a time t, we verify if the seller/buyer has enough
power to sell/to buy to the buyer/from the seller of the same edge (Line 17).
If there is enough power (Lines 18-20), we fill the schedule with the quantity
to buy/to sell and recall the process by the next seller/buyer. If not, we fill
the schedule with the quantity to buy/sell, reduce the quantity to sell/buy, and
verify the quantity to sell/buy to the next buyer/from the next seller of the next
edge (Lines 21-25).

Algorithm 2: Candidate Components’ Prescheduling
Input: PG[] // Set of PG forming the SG
Output: PG[] // Set of SG components updated with their candidate preschedules

1 S.CS = new int [][] // Initialize a candidate Solution S having a candidate Schedule CS

2 S.e = new Edge [] // Initialize a candidate Solution S having a list of edges e

3 int RPL
4 for int i = 0; i < | SG.PG[] |; i + + // For each PurchaseGraph in the Smart Grid

5 do
6 E[] = GLE(SG.PG[i].e.nR) // Retrieve the list of edges to which the seller/buyer of the edge belongs

7 PE[][] = Permutate(E[]) // Retrieve the possible permutation of the list of edges

8 for each e[] ∈ PE[][] // For each list of permutated lists of edges

9 do
10 S.CS = new int [| e[] |][T] // Initialize a candidate schedule CS for a solution S
11 S.Ce = new Couple [| e[] |] // Initialize a set of edges Ce for a solution S

12 RP [] =
∑T

t=1 Sinit
SG.PG[i].e.nR

[t] // Initialize the remaining production to sell/buy to the desired

selling/buying vector

13 for int j = 0, j < | e[] | , j + + // For each edge in the pemutated list of edges

14 do
15 RPL = e[j].EV // Initialize the remaining production to buy/sell (of the linked component) with

the valued exchanged of the couple

16 for int k = 0; k < T ; k + + // For each time k

17 do
18 if RP [k] >= RPL // If there is sufficient power to sell

19 /buy then
20 S.CS[j][k] = RPL // Fill the schedule with the quantity to buy/sell

21 RPL = 0 // No more power need to buy/sell

22 else
23 S.CS[j][k] = RP [k] // Fill the schedule with the quantity to buy/sell

24 RPL− = RP [k] // Reduce the quantity to buy/sell

25 RP [k]− = S.CS[j][k] // Reduce the quantity to sell/buy

26 SG.PG[i].e.nR.S.Add(S) // Add S as a candidate solution of the seller/buyer

3.1.2 Final components’ prescheduling The aim of this module is to select
the candidate components’ schedules that guarantee that each edge is provided
with its exchanged value (EV) at each time t (e.g., at the end of the day, where t
= 24h). In other words, for each edge, the sum of the power quantity exchanged
between its sellers and the buyers at T, should be equal to their exchanged value
(EV) in the PG. So, the sellers sell all their power surplus and the buyers satisfy
all their needs. The pseudo-code of the final components’ schedules is provided
in Algorithm 3. Briefly, for each candidate schedule of each seller (Lines 2-9)

and for each time t of the day, we calculate the sum of the energy exchanged
of the edges to which the seller/buyer belongs. The schedule is accepted if the
sum is equal to the exchanged value of the edge (Lines 12-13). If the equality is
verified for all the edges, we add the candidate schedule to the final components’
schedules (Lines 13-16).

Algorithm 3: Final Components’ Prescheduling
Input: PG[] // Set of PG forming the SG
Output: PG[] // Set of SG components updated with their final preschedules

1 for int i = 0; i < | SG.PG[] |; i + + // For each PurchaseGraph in the Smart Grid

2 do
3 for each s ∈ SG.PG[i].e.nR.S // For each possible solution of the seller/buyer

4 do
5 bool isAcceptedSolution = true
6 for int j = 0; j < | s.CS[0][] | ; j + + // For each candidate schedule of the seller/buyer

7 do
8 int sev = 0 // Initialize the sum of the exchange value with zero

9 for int k = 0; k < T ; k + + // For each time k

10 do
11 sev+ = s.CS[j][k] // Calculate the sum of the energy exchanged during T of the edge

12 isAcceptedSolution = sev.Equals(s.Cs[j].EV) // The solution is accepted if the sum is equal

to the value exchanged of the edge

13 if isAcceptedSolution // If the equality is verified for all the edges

14 then
15 SG.PG[i].e.nR.S.Add(S) // Add S as an accepted solution of the seller/buyer

3.1.3 Compromise prescheduling The aim of this module is to generate
every seller-to-buyer association (edge) desired schedule. It consists of selecting
the best combination between the final preschedules of the sellers and buyers.
This can be done by selecting the combination that ensures the minimum gap
between the desired schedules of the sellers and buyers and the proposed com-
promise desired schedule. The pseudo-code of the final components’ schedules is
provided in Algorithm 4. First, we generate the combinations between the final
preschedules of the sellers and the buyers (Lines 1-3). Then, for each seller/buyer
of each combination, we calculate the power quantity for each edge in each can-
didate schedule for all combinations at a time t and fill it into a new vector
(FinalQuantity) (Lines 4-17). After that, a similarity computation of the re-
sulting vector and the initial desired schedule (vector) of each seller/buyer is
done using the cosine similarity measure (Line 18). In fact, we adopted the com-
monly adopted cosine measure to calculate the distance between the proposed
and the desired schedule vectors (instead of many others such the Euclidean Dis-
tance, the Pearson Correlation Coefficient, etc.) since it provides better results
when there are many values in common between the two schedules to compare.
Finally, the combination vector having the biggest similarity or what we call it
here ‘minimum delay’ will be retrieved (Lines 19-27).

3.1.4 Preference-based compromise builder illustration In our previous
illustration, all the buyers and sellers are connected, forming one purchase graph (cf.
Figure 4).

Algorithm 4: Compromise Prescheduling
Input: PG[] // Set of PG forming the SG

Output: Sinit
e [] // Edges desired schedule

1 for int i = 0; i < | SG.PG[] |; i + + // For each PurchaseGraph in the Smart Grid

2 do

3 Comb[] = Combination(SG.PG[i].e.nR+.S[], SG.PG[i].e.nR−.S[]) // Retrieve the possible

combinations of the final sellers and buyers preschedules

4 for int i = 0; i < | Comb[] |; i + + // For each combination

5 do
6 for int j = 0; j < | SG.PG[] |; j + + // For each PurchaseGraph in the Smart Grid

7 do
8 for int k = 0; k < | Comb[i].Ce |; k + + // For each set of edges of the selected combination

9 do
10 if Comb[i].Ce[k].nR == SG.PG[j].nR // Check if we are verifying the schedules of the same

seller/buyer

11 then
12 for int l = 0; l < | Comb[i].CS |; k + + // For each set of candidate schedules of the

selected combination

13 do
14 Comb[i].FinalQuantityPerHour[j][l]+ = Comb[i].CS[k][l] // Sum the power

quantity for each edge in each candidate schedule of each combination

15 for int x = 0; x < | Comb[i].CS |; x + + // For each set of candidate schedules of the selected

combination

16 do
17 FinalQuantity[x] = Comb[i].FinalQuantityPerHour[j][x] // Calculate the

combination’s power quantity for each seller/buyer

18 Comb[i].TotalDelay+ = 1 − Cosinus(Sinit
SG.PG[j].nR

, FinalQuantity) // Calculate the

similarity between the desired schedule of the seller/buyer and the combination’s schedule

19 minDelay = Comb[0].TotalDelay
20 for int i = 0; i < | Comb[] |; i + + // Retrieve the minimum delay

21 do
22 if Comb[i].TotalDelay < minDelay then
23 minDelay = Comb[i].TotalDelat

24 for int i = 0; i < | Comb[] |; i + + // Retrieve the combination having the minimum delay

25 do
26 if Comb[i].TotalDelay == minDelay then

27 Sinit
e [] = Comb[i]

As an input, each seller and buyer proposes its desired schedule. Here, we will
consider that T= 4. 

Sinit

nR+
1

= [3, 14, 0, 0]

Sinit

nR+
4

= [0, 0, 1, 2]

Sinit

nR−1
= [3, 0, 1, 0]

Sinit

nR−2
= [0, 0, 0, 2]

Sinit

nR−3
= [0, 14, 0, 0]

Fig. 4. Purchase Graph Illustration

The aim of applying the Preference-based comprimise builder is to find the de-
sired schedule of the resulting linked couples (nR+

1 ,nR−
3), (nR+

1 ,nR−
1), (nR+

4 ,nR−
1)

and (nR+
4 ,nR−

2): Sinit

nR+
1 ,nR−3

, Sinit

nR+
1 ,nR−1

, Sinit

nR+
4 ,nR−1

and Sinit

nR+
4 ,nR−2

, respectively.

– Candidate components’ prescheduling:
The output of the candidate components’ prescheduling is as follows:

Candidate nR+
1 prescheduling:

There are two possible solutions:

Solution1

{
Sinit

nR+
1 ,nR−3

= [3, 11, 0, 0]

Sinit

nR+
1 ,nR−1

= [0, 3, 0, 0]

Solution2

{
Sinit

nR+
1 ,nR−3

= [3, 0, 0, 0]

Sinit

nR+
1 ,nR−1

= [0, 14, 0, 0]

Those solutions were selected since the sum of the selling power at each time t is
equal to the desired power quantity given as an input (3 kw at t=1 and 14 kw at
t=2)

Candidate nR+
4 prescheduling:

There are two possible solutions:

Solution1

{
Sinit

nR+
4 ,nR−1

= [0, 0, 1, 0]

Sinit

nR+
4 ,nR−2

= [0, 0, 0, 2]

Solution2

{
Sinit

nR+
4 ,nR−1

= [0, 0, 0, 1]

Sinit

nR+
4 ,nR−2

= [0, 0, 1, 1]

Those solutions were selected since the sum of the selling power at each time t is
equal to the desired power quantity given as an input (1 kw at t=3 and 2 kw at t=4)

Candidate nR−
1 prescheduling:

There are two possible solutions:

Solution1

{
Sinit

nR+
1 ,nR−1

= [3, 0, 0, 0]

Sinit

nR+
4 ,nR−1

= [0, 0, 1, 0]

Solution2

{
Sinit

nR+
1 ,nR−1

= [1, 0, 0, 0]

Sinit

nR+
4 ,nR−1

= [2, 0, 1, 0]

Those solutions were selected since the sum of the buying power at each time t is
equal to the desired power quantity given as an input (3 kw at t=1 and 1 kw at t=3)

Candidate nR−
2 prescheduling:

There is one possible solution:

Solution
{
Sinit

nR+
4 ,nR−2

= [0, 0, 0, 2]

Those solutions were selected since the sum of the buying power at each time t is
equal to the desired power quantity given as an input (2 kw at t=4)

Candidate nR−
4 prescheduling:

There is one possible solution:

Solution
{
Sinit

nR+
1 ,nR−4

= [0, 14, 0, 0]

Those solutions were selected since the sum of the buying power at each time t is
equal to the desired power quantity given as an input (14 kw at t=2)

– Final components’ prescheduling:
In our case, the output of the final components’ prescheduling is the same output
generated in the candidate components’ prescheduling. Those solutions ensure that
the sum of the power exchanged between a linkedcouple is equal to the exchanged
value of this couple.

Final nR+
1 prescheduling:

There are two possible solutions:

Solution1

{
Sinit

nR+
1 ,nR−3

= [3, 11, 0, 0] : (nR+
1 , nR

−
3).EV = 14 = 11 + 3 + 0 + 0

Sinit

nR+
1 ,nR−1

= [0, 3, 0, 0] : (nR+
1 , nR

−
1).EV = 3 = 0 + 3 + 0 + 0

Solution2

{
Sinit

nR+
1 ,nR−1

= [3, 0, 0, 0] : (nR+
1 , nR

−
1).EV = 3 = 3 + 0 + 0 + 0

Sinit

nR+
1 ,nR−3

= [0, 14, 0, 0] : (nR+
1 , nR

−
3).EV = 14 = 0 + 14 + 0 + 0

Final nR+
4 prescheduling:

There are two possible solutions:

Solution1

{
Sinit

nR+
4 ,nR−1

= [0, 0, 1, 0] : (nR+
4 , nR

−
1).EV = 1 = 0 + 0 + 1 + 0

Sinit

nR+
4 ,nR−2

= [0, 0, 0, 2] : (nR+
4 , nR

−
2).EV = 2 = 0 + 0 + 0 + 2

Solution2

{
Sinit

nR+
4 ,nR−1

= [0, 0, 0, 1] : (nR+
4 , nR

−
1).EV = 1 = 0 + 0 + 0 + 1

Sinit

nR+
4 ,nR−2

= [0, 0, 1, 1] : (nR+
4 , nR

−
2).EV = 2 = 0 + 0 + 1 + 1

Final nR−
1 prescheduling:

There are two possible solutions:

Solution1

{
Sinit

nR+
1 ,nR−1

= [3, 0, 0, 0] : (nR+
1 , nR

−
1).EV = 3 = 3 + 0 + 0 + 0

Sinit

nR+
4 ,nR−1

= [0, 0, 1, 0] : (nR+
4 , nR

−
1).EV = 1 = 0 + 0 + 1 + 0

Solution2

{
Sinit

nR+
4 ,nR−1

= [1, 0, 0, 0] : (nR+
4 , nR

−
1).EV = 1 = 1 + 0 + 0 + 0

Sinit

nR+
1 ,nR−1

= [2, 0, 1, 0] : (nR+
1 , nR

−
1).EV = 3 = 2 + 0 + 1 + 0

Final nR−
2 prescheduling:

There is one possible solution:

Solution
{
Sinit

nR+
4 ,nR−2

= [0, 0, 0, 2] : (nR+
4 , nR

−
2).EV = 2 = 0 + 0 + 0 + 2

Final nR−
4 prescheduling:

There is one possible solution:

Solution
{
Sinit

nR+
1 ,nR−4

= [0, 14, 0, 0] : (nR+
1 , nR

−
4).EV = 14 = 0 + 14 + 0 + 0

– Compromise prescheduling:
The output of the compromise prescheduling is as follows:

Sinit

nR+
1 ,nR−3

= [3, 0, 0, 0]

Sinit

nR+
1 ,nR−1

= [0, 14, 0, 0]

Sinit

nR+
4 ,nR−1

= [0, 0, 1, 0]

Sinit

nR+
4 ,nR−2

= [0, 0, 0, 2]

This solution is the combination of the final seller and buyer preschedules that
reduces the gap with the initial desired schedules of the sellers and buyers. Here,
the Gap = 0 (the ideal solution).

3.2 Multi-objective Scheduler

Once done with the preferences-based combination generator that aims at ex-
tracting the desired schedules of the seller-to-buyer associations based on the
sellers and buyers desired schedules given as input, it is time to schedule the
resulting associations in a way to minimize the operational, economical and
ecological aspects. As defined in Equation 3, our objective function takes into
account: 1)- the operational aspect by considering the comfort of the sellers and
buyers measured by the delay time between the desired schedule and the real
operation, the peak load reduction of the SG and the components calculated us-
ing the variance of the power at a time t 2)- the economical aspect is considered
by measuring the electricity price at a time t, and 3)- the ecological aspect is
treated by calculating the toxic gas emissions produced at a time t in the SG.

In our work, we adopted Particle Swarm Optimization (PSO), to search for
the near-optimal scheduling for each seller-to-buyer association, because of its
straightforward implementation and demonstrated ability of optimization. In
essence, PSO is a computational method that optimizes a problem by iteratively
trying to improve a candidate solution with regard to a given measure of quality
using an objective function. It is considered as a powerful tool to solve complex
non-linear and non-convex optimization problems. Moreover, it has several other
advantages, such as fewer parameters to adjust, and easier to escape from local
optimal solutions.

Briefly, the problem is solved by having a population of candidate solutions,
here dubbed particles, and moving these particles around in the search-space
according to simple mathematical formula over the particle’s position and ve-
locity. Each particle’s movement is influenced by its local best known position,
but is also guided toward the best-known positions in the search-space, which
are updated as better positions are found by other particles. This is expected to
move the swarm toward the best solutions.

Algorithm 5: Particle Swarm Optimization Algorithm
Input: x[], v[] // Set of particles’ positions and velocities

Output: x[], v[] // Set of updated particles’ positions and velocities

1 for each particle i = 0; i < S; i + + do
2 Initialize the particle’s position with a uniformly distributed random vector: xi U(blo, bup)

3 Initialize the particle’s best known position to its initial position: pi = xi
4 if Dis(pi) < Dis(g) then
5 Update the swarm’s best known position: g = pi
6 Initialize the particle’s velocity: vi = U(| bup − blo |, | bup − blo |)
7 while a termination criterion is not met do
8 for each particle i = 0; i < S; i + + do
9 for each dimension d = 0; i < n; i + + do

10 Pickrandomnumbers : rp, rg U(0, 1)

11 Update the particle’s velocity:
vi,d = × vi,d + p × rp(pi, d − xi, d) + g × rg(gd − xi,d)

12 Update the particle’s position: xi = xi + vi
13 if Dis(xi) < Dis(pi) then
14 Update the particle’s best known position: pi = xi
15 if Dis(pi) < Dis(g) then
16 Update the swarm’s best known position: g = pi

The pseudo-code of the adapted PSO is provided in Algorithm 5. The goal
is to find a solution a for which Dis(a) < Dis(b) for all b, which would mean
that a is the global minimum. Let S be the number of particles in the swarm,
each having a position xi and a velocity vi. Let pi be the best known position of
particle i and let g be the best known position of the entire swarm. The values
blo and bup are respectively the lower and upper boundaries. The termination
criterion can be number of iterations performed, or a solution with adequate
objective function value is found. In our method, we set the parameters as in [17]
to calibrate the PSO problem, used for mathematical models of Smart Homes.

4 Experiments

A set of experiments have been conducted to highlight the efficiency of our
approach as explained below.

4.1 Experimental Context

A prototype has been implemented using Java to conduct the test on a PC with
an Intel Core i7-3630 QM CPU, 2.40 GHz processor with 8 GB RAM. Since the
SG is relatively a recent concept in the power systems area, there is a lack of
a current Benchmark to be based on. Hence, we carried out our experimental
scenario inspired by the one provided in [12] but adapted to fit better the scope
of our study. Here, we set up an SG within an area of 10 km × 10 km with:
1) the main grid located at the onshore , and 2) the SG components randomly
located within this area. The prototype includes the following functionalities: 1)
the Preference-based compromise builder and the 2) Multi-objective scheduler.

4.2 Experimental Metrics and Results

The main criteria used to evaluate the effectiveness of our approach are: i) the
preference-based compromise builder effectiveness, ii) the time needed to gener-

ate the compromises, as well as, iii) the multi-objective scheduler impact on the
electricity cost reduction, the peak loads and the gas emissions.

4.2.1 Preferences-based compromise builder effectiveness The effi-
ciency of the generated desired compromise schedule is measured by its simi-
larity with the desired schedules of the sellers and the buyers given as an input.
The similarity measure used in our module is the ‘Cosine Similarity Measure’,
which results a similarity between 0 and 1 (from an absence of similarity ‘0’ to
the biggest similarity ‘1’).

Fig. 5. Compromise Similarity w.r.t
the number of SG Components

Fig. 6. Time performance w.r.t the
number of SG Components

Figure 5 shows that the worst similarity ratio obtained is 0.72 and the best
one is 0.95. This result reflects that our module ensures nice results providing
an adequate compromise between the seller and the buyer preferences.

4.2.2 Preferences-based compromise builder performance In addition
to testing the effectiveness of our module in reducing the gap between the pro-
posed compromise desired schedule and the desired sellers and buyers, we also
evaluated its time performance. This test consisted of measuring the necessary
time to build the compromise from the sellers and buyers associations (cf. Figure
6), and showed a linear complexity of our algorithm.

Fig. 7. Non-cooperative electricity
load result

Fig. 8. MOCSF electricity load re-
sult

4.2.3 Multi-objective scheduler impact on the SG The cooperation
and the multi-objective aspects of the SG are the key features of our scheduling.
Hence, we measured the following resulting costs: the total electricity prices, the
total toxic gas emissions, the components comfort, and the peak loads.

In this test, two different scenarios were considered: 1) a non-cooperative
scheduling, where each association is selfish in that it only considers its desired
schedule, and 3) a cooperative scheduling based on our proposed multi-objective
scheduling. To remain coherent, we will consider the scheduling of the seller-to-
buyer associations of our same previous illustration. Note that, the output of the
preference-based compromise builder will be used here to calculate the comfort
of the components by calculating the gap between the resulting schedule and the
compromise desired schedule.

Figure 7 shows the electricity load resulting from the non-cooperative case.
At T=2, a peak load (Electricity load = 14 Kw) appeared having several bad
effects on the economical, ecological and the operational costs. From the econom-
ical perspective, this peak load leads to a total electricity cost of 163 c. From
the ecological perspective, and having at T=2, a conventional power generator
(emitting 0.26 Kg Co2/Kwh), the non-cooperation scheduling caused a simul-
taneous gas emissions of 3.64 KgCO2. The only advantage of this scheduling is
that it answers exactly the desired preferences of the components, which gives a
similarity of 1 (the highest), between the proposed and the desired schedules.

Figure 8 shows the electricity load resulting from our multi-objective sched-
uler. It shows how the peak loads are shaved (Highest electricity load = 6 Kw).
The result is a trade-off between the economical, ecological and operational as-
pects. From the economical perspective, the total electricity cost is reduced to
136 c. From the ecological perspective, the highest simultaneous gas emissions
is reduced to 1.57 KgCO2. The only feature affected negatively is the similarity
between the desired and the proposed schedule, reduced to 0.75. Despite this
reduction, the value remains a very good result.

5 Conclusion

In this paper, we proposed MOCSF , a Multi-Objective Cooperative Scheduling
Framework providing a multi-type scheduling for the power generation, storage
and consumption, while taking into account the ecological, economical and op-
erational costs in a power system. MOCSF consists of two main modules: the
Preference-based Compromise Builder, providing the best balance between the
desired schedulers of the sellers and the buyers given as an input, and the Multi-
objective Scheduler, providing seller-to-buyer associations scheduling aiming at
ensuring the economical, ecological and operational satisfactions. Experiments
results showed the potential of our modules in providing efficient preference-
based compromises able to reduce the gap with the initial components prefer-
ences and in minimizing the three-dimensional costs. Currently, we are work-
ing on implementing a privacy-by-design [8] grid control allowing to protect the
components privacy whilst preserving the advanced control and monitoring func-

tionalities of the power systems. Further, it is interesting to apply strategy-proof
techniques, in order to avoid cheating in the desired schedules,

References

1. Christopher O Adika and Lingfeng Wang. Smart charging and appliance scheduling
approaches to demand side management. International Journal of Electrical Power
& Energy Systems, 57:232–240, 2014.

2. Hunt Allcott. Social norms and energy conservation. Journal of Public Economics,
95(9):1082–1095, 2011.

3. Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.
4. Moritz Diehl, H Georg Bock, Johannes P Schlöder, Rolf Findeisen, Zoltan Nagy,

and Frank Allgöwer. Real-time optimization and nonlinear model predictive con-
trol of processes governed by differential-algebraic equations. Journal of Process
Control, 12(4):577–585, 2002.

5. Amin Fakhrazari, Hamid Vakilzadian, and F Fred Choobineh. Optimal energy
scheduling for a smart entity. IEEE Transactions on Smart Grid, 5(6):2919–2928,
2014.

6. Clark W Gellings and JH Chamberlin. Demand-side management. Energy
Efficiency and Renewable Energy Handbook, Second Edition edited by D. Yogi
Goswami, Frank Kreith (Chapter 15), pages 289–310, 1988.

7. Ijaz Hussain, Sajjad Mohsin, Abdul Basit, Zahoor Ali Khan, Umar Qasim, and
Nadeem Javaid. A review on demand response: Pricing, optimization, and appli-
ance scheduling. Procedia Computer Science, 52:843–850, 2015.

8. Marc Langheinrich. Privacy by designprinciples of privacy-aware ubiquitous sys-
tems. In International conference on Ubiquitous Computing, pages 273–291.
Springer, 2001.

9. Julio J Lucia and Eduardo S Schwartz. Electricity prices and power derivatives:
Evidence from the nordic power exchange. Review of derivatives research, 5(1):5–
50, 2002.

10. Amir-Hamed Mohsenian-Rad and el. al. Autonomous demand-side management
based on game-theoretic energy consumption scheduling for the future smart grid.
Smart Grid, IEEE Transactions on, 1(3):320–331, 2010.

11. José Monteiro, Srinivas Devadas, Pranav Ashar, and Ashutosh Mauskar. Schedul-
ing techniques to enable power management. In Proceedings of the 33rd annual
Design Automation Conference, pages 349–352. ACM, 1996.

12. Walid Saad, Zhu Han, and H Vincent Poor. Coalitional game theory for coopera-
tive micro-grid distribution networks. In Communications Workshops (ICC), 2011
IEEE International Conference on, pages 1–5. IEEE, 2011.

13. Ditiro Setlhaolo, Xiaohua Xia, and Jiangfeng Zhang. Optimal scheduling of house-
hold appliances for demand response. Electric Power Systems Research, 116:24–28,
2014.

14. Goran Strbac. Demand side management: Benefits and challenges. Energy policy,
36(12):4419–4426, 2008.

15. Perukrishnen Vytelingum, Thomas D Voice, Sarvapali D Ramchurn, Alex Rogers,
and Nicholas R Jennings. Agent-based micro-storage management for the smart
grid. In Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: Volume 1-Volume 1, pages 39–46. International Foundation
for Autonomous Agents and Multiagent Systems, 2010.

16. Laurence A Wolsey. Mixed integer programming. Wiley Encyclopedia of Computer
Science and Engineering, 2008.

17. Jiawei Zhu, Fabrice Lauri, Abderrafiaa Koukam, and Vincent Hilaire. Scheduling
optimization of smart homes based on demand response. In IFIP International
Conference on Artificial Intelligence Applications and Innovations, pages 223–236.
Springer, 2015.

